(19)
(11) EP 0 747 504 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
24.07.2002 Bulletin 2002/30

(21) Application number: 96201499.9

(22) Date of filing: 29.05.1996
(51) International Patent Classification (IPC)7C23C 16/44, C23C 16/26, C23C 16/50

(54)

Spinning holder for cutting tool inserts for arc-jet diamond deposition

Rotierender Halter für Schneidensätze bei der Abscheidung des Diamants mittels des Arc-Jet Verfahrens

Support rotatif pour plaquettes de coupe à revêtir avec du diamant par le procédé arc-jet


(84) Designated Contracting States:
DE FR GB

(30) Priority: 07.06.1995 US 473198

(43) Date of publication of application:
11.12.1996 Bulletin 1996/50

(73) Proprietor: SAINT GOBAIN INDUSTRIAL CERAMICS, INC.
Worcester, MA 01615-0138 (US)

(72) Inventor:
  • Olson, James M.
    Framingham, MA 01701 (US)

(74) Representative: Richebourg, Michel François 
Cabinet Michel Richebourg, "Le Clos du Golf", 69, rue Saint-Simon
42000 Saint Etienne
42000 Saint Etienne (FR)


(56) References cited: : 
EP-A- 0 378 230
EP-A- 0 636 706
EP-A- 0 597 445
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] This invention relates broadly to diamond film coating of objects. More particularly, this invention relates to a mandrel apparatus and a method utilizing the mandrel apparatus for the simultaneous diamond film coating of a plurality of cutting tools.

    2. State of the Art



    [0002] Diamond has exceptional hardness, thermal conductivity, electrical insulation and light transmission properties, and is therefore useful in various applications such as cutting tools, heat sinks, insulators, electronic substrate materials, etc. Natural diamond, however, is monocrystalline and limited in size and geometry. As a result, a number of techniques have recently been developed, such as high pressure high temperature deposition (HPHT) and chemical vapor deposition (CVD), for synthesizing and depositing diamond on substrates of various shapes, sizes and materials.

    [0003] Synthetic CVD diamond film can be deposited as a thin and permanent coating on a substrate, such as on the wear surface of a tool or an environmentally protective coating. When a CVD diamond film is deposited in this manner, it is generally referred to as a "thin film". Thin film CVD diamond deposition is one method of the art used in forming cutting tools. Alternatively, a thicker diamond film can be deposited on a substrate and then removed, preferably intact, as a single "free standing" piece for use in applications such as heat sinks, optical windows, and cutting tools. These free standing pieces are usually referred to as "thick films".

    [0004] In the forming of thick diamond films, titanium nitride coated molybdenum and other materials having similar properties, such as titanium-zirconium-molybdenum alloys and tungsten, have traditionally been used as a substrate (mandrel) upon which synthetic diamond is to be deposited. The mandrel configuration of the prior art has generally been of the mesa type with a circular base portion and a stepped circular upper portion of a smaller size than the base portion. The size of such a mandrel has generally been of the order of about 8.89 to 10.16 cm (3.5 to 4 inches) in diameter. After a diamond film is deposited on such a mandrel, the diamond separates during cooling and detaches from the mesa surface, forming a free standing diamond film, which may be used to form cutting tools by attaching the diamond film to a metal base tool structure in a known manner.

    [0005] While the thick diamond films of the prior art solve various needs of the art, it will be appreciated that the cost of generating the thick diamond film and attaching it to a cutting tool is large due to slow growth rates, low yield, etc. Thus, there still exists a need for a low cost, high-yield process to produce diamond film coated products such as cutting tool inserts, whether via thin film or thick film technology.

    SUMMARY OF THE INVENTION



    [0006] It is therefore an object of the invention to provide an apparatus and method for depositing a thin diamond film by arc-jet deposition on a plurality of substrates in an efficient manner.

    [0007] It is also an object of the invention to provide an arc-jet apparatus and method for depositing diamond film on a plurality of spinning cutting tool inserts.

    [0008] It is a further object of the invention to provide a mandrel adapted to allow the simultaneous arc-jet diamond coating of a plurality of substrates fitting on the mandrel surface.

    [0009] It is also an object of the invention to provide a mandrel used in a diamond film arc-jet deposition process which has a plurality of tool insert receiving wells.

    [0010] In accordance with the objects of the invention, which will be discussed in detail below, the invention comprises a mandrel which is used in a spinning synthetic diamond deposition apparatus, such as an arc-jet apparatus. The mandrel has a plurality of receiving wells in its surface which is to be exposed to a diamond growth species or plasma, with the wells having substantially the same contour (i.e., side shapes) as the tool inserts which are to be received therein and coated with a diamond film. The mandrel can be a titanium-nitride coated molybdenum body into which a plurality of pockets or wells are machined. In a particular embodiment, the mandrel is formed as a layered composite of a flat surfaced mandrel base, to which is attached an upper plate of a lesser thickness than the mandrel base. The upper plate is preferably formed of molybdenum and is provided with receiving wells which are cut through the plate to form a grid. In this embodiment, a thin layer (foil) of a low melting metal may be provided between the mandrel base and the grid. The upper plate, the foil, and the grid are preferably attached to each other by bolts or other suitable means.

    [0011] According to a preferred aspect of the invention, the pockets or wells of either embodiment may be provided with identical or differing geometries, provided that the geometries match those of the substrates to be coated. It will be appreciated that the second embodiment of the invention is particularly suited to providing pockets of different geometries, as it is relatively simple to make cut-outs of different geometries to suit various needs.

    [0012] With the mandrels of the invention as described, the cutting tool inserts which are coated with the diamond growth species or plasma are cooled by direct radiation from the inserts as well as by conduction. In particular, a narrow gap is formed between the inserts and the mandrel when the inserts are located in their receiving wells. Since there is some gas trapped in between the inserts and their wells, and since the gas is mostly hydrogen, a very good thermal conductor, the thermal coupling of the inserts to the mandrel is very good.

    [0013] Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] 

    Figure 1 is a schematic cross-sectional view in elevation of an arc-jet coating apparatus with a spinning mandrel;

    Figure 2 is a perspective view of a version of the invention showing a cylindrical mandrel with machined wells;

    Figure 3 is a top plan view of the mandrel of Figure 2 with tool inserts located in the receiving wells of the mandrel;

    Figure 4 is an elevational view in cross-section taken along the line 4-4 of Figure 3;

    Figure 5 is an enlarged view in elevation of a part of the cross-sectional view of Figure 4, taken along the line 5-5 of Figure 3;

    Figure 6 is an exploded perspective view of a second version of the present invention showing a composite mandrel;

    Figure 7 is a top plan view of the grid of Figure 6;

    Figure 8 is an exploded cross-sectional view in elevation of the composite mandrel of Figure 6; and

    Figures 9-11 are top plan views of third, fourth and fifth versions of the invention.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT



    [0015] An arc-jet apparatus 10 which can be used in conjunction with the invention is seen in Fig. 1. The apparatus 10 of Fig. 1 includes a lower deposition chamber 100 and an upper plasma forming chamber 200. The upper chamber includes vacuum housing walls 211, within which are located an arc-forming section 215, cylindrical magnets 218, and cooling coils 234. The arc-forming section 215 includes a cylindrical anode 291 and a rod-like cathode 292 which are energized by a source of electric potential (not shown), and an injector 295 mounted adjacent the cathode so as to permit injected fluid to pass over the cathode. In the illustrated embodiment the input fluid may be, for example, a mixture of hydrogen and methane, although the methane could alternatively be fed in downstream. The cylindrical magnets 217 are utilized to accelerate and focus the plasma generated at the arc forming section toward the lower deposition chamber 100 as the magnets maintain the plasma within a narrow column until the plasma reaches the deposition region. A nozzle 115 which connects the upper and lower chambers 200, 100 is preferably provided to control the arc-jet beam size.

    [0016] As seen in Fig. 1, the deposition chamber 100 contains a substrate holder 120 which includes a base 121, and a radiator 123 or other suitable, necessary, or desired device mounted on the base. The holder 120 is mounted on a shaft 140 which is rotated by a motor 170, and the mandrel 150 of the present invention is mounted on the holder 120, such as by retainer bolts (not shown).

    [0017] In operation, a mixture of hydrogen and methane is fed to the injector 295 of the plasma forming chamber 100, and a plasma is obtained in front of the arc-forming section 215 and accelerated and focused toward the deposition chamber 100 via the nozzle 115. As is known in the art, synthetic polycrystalline diamond can be formed from the described plasma, as the carbon in the methane is selectively deposited as diamond on an appropriate substrate, and the graphite which forms in the process is dissipated by combination with the hydrogen facilitating gas.

    [0018] Figures 2-5 show in more detail a first embodiment of the mandrel 150 of the present invention. The mandrel 150 has a circular perimeter 300, an upper surface 302, a sidewall 304, and a lower surface 306. A plurality of receiving wells or pockets 308 are machined into upper surface 302 of mandrel 150. As may be seen from Figures 2 and 3, the first embodiment of the mandrel of the invention has a plurality of substantially identically contoured receiving wells 308 which receive a plurality of substantially identical tool inserts 310. The conformity of the contour of the inserts 310 to the receiving wells 308 is seen in Fig. 4, with the inserts preferably extending above the upper surface 302 of the mandrel. The extent to which the inserts extend above the upper surface 302 of the mandrel is determined at least partially by the extent to which it is desired to coat the flank of the tool inserts 310. Thus, for a tool insert having a thickness of 3mm, it may be desired to provide a coated flank of 2mm as measured from the top surface; and as a result, the tool inserts would be arranged to extend approximately 2mm out from the receiving wells. In addition, and as discussed in more detail with reference to Figs. 9-11, by providing the wells with exaggerated corners, it is possible to ensure that the entire cutting edge of the tool inserts will be coated with a diamond film.

    [0019] Returning to Fig. 4, it is seen that an indent 312 for a thermocouple (not shown) is preferably provided in the lower surface 306 of the mandrel 150. A plurality of bolt holes 314 which may be threaded if desired are also provided to attach the mandrel 150 to the holder 120 (see Fig. 1) of the arc-jet apparatus. By way of example only, the mandrel 150 may be about one inch in thickness, and the receiving wells may be about 0.762 to 1.27 mm (0.030 to 0.050 inches) (i.e., about 1mm) in depth. The invention, however, is not intended to be limited to these parameters.

    [0020] Figure 5 shows a cross-section in greater detail through mandrel 150 and one insert 310, taken along the line 5-5 of Figure 3. A layer of gas 316, trapped between the conforming surfaces of the tool insert 310 and receiving well 308 is shown in Figure 5. The gas layer 316, which is mostly hydrogen, is formed during the arc-jet deposition process, and forms a good thermal conductor. The mandrel 150 is typically formed from a titanium nitride coated molybdenum substrate which provides a stable fixture upon which the inserts 310 are held without masking the area to be coated. The uncoated cutting tool inserts (typically formed from tungsten-carbide) are held in place by the wells 308 formed in the mandrel to such a degree that they can be spun at speeds greater than 300 rpm in the direct path of the plasma beam discharge area.

    [0021] A second embodiment of the present invention is shown in Figures 6, 7 and 8, which illustrate a composite mandrel 650. The composite mandrel 650 generally comprises a flat plate 618 and a mandrel base 620. The mandrel base 620 is made e.g., of molybdenum and has a sidewall 604 and a flat upper surface 602. The flat plate 618, which may also be made of molybdenum, has a circular perimeter 600 and has receiving wells 608 which are preferably cut through the plate 618 to form a grid. Interposed between the plate 618 and the mandrel base 620 is a metal foil layer 622. The grid 618, mandrel base 620, and foil layer 622 may be affixed to each other by means of bolts (not shown) or any other suitable means. The foil layer 622 is a low-melting point metal such as silver or germanium and acts as a liquid-metal interface between the inserts 610 and a cooling load; thereby providing an interface of high thermal conduction for the flat grid plate 618, and aiding in the adhesion of the grid 618 to the molybdenum mandrel base 620.

    [0022] It should be noted that in the second embodiment of the invention, the wells 608 and the cutting tool inserts 610 are provided with at least two differing geometries as indicated at 608a, 608b.

    [0023] Figure 8 is a cross-sectional view of the composite mandrel of Figure 6, taken along the line 8-8 of Figure 7, and shows the metal foil layer 622, the mandrel base 620, and the inserts 610 in the receiving wells 608 of the flat grid plate 618. The lower surface 606 of the mandrel base 620 has a plurality of preferably threaded bolt holes 614 for attaching the base 620 to the holder 120 of the arc-jet apparatus, and a thermocouple receiving well 612. The flat grid plate 618 may be for example about 0.762 to 1.27 mm (0.030 to 0.050 inches) in thickness; foil layer 622 about 0.0254 mm (0.001 inches) in thickness; and mandrel base 620 about 2.54 cm (one inch) in thickness. However, the invention is not intended to be limited to these dimensions.

    [0024] Turning to Figs. 9-11, top plan views of three additional mandrels in accord with the invention are seen. In Fig. 9, the mandrel 950 includes a plurality of substantially square wells 908, with the corners of the wells 908 being provided with small radius circular extensions 911 which permit the entire edges of the tool inserts to be coated with synthetic diamond. In the regular arrangement of Fig. 9, all of the wells are substantially identical in configuration. In Fig. 10, the mandrel 1050 includes a first plurality of substantially rhombus-shaped (diamond-shaped) wells 1008a, and a second plurality of substantially triangular wells 1008b. Again, as in Fig. 10, all of the wells are provided with small radius circular extensions at their corners 1011. The mandrel 1150 of Fig. 11 is similar to that of Fig. 9, with all wells 1108 being substantially identical in configuration and including the small radius circular extensions 1111, except that the wells of the mandrel 1150 are rhombus in shape, and generally larger than those of Fig. 9.

    [0025] Using the mandrel embodiments of the invention 150, 650, 950, 1050, 1150 (or one of similar nature), the mandrel and inserts are placed in the arc-jet for deposition of synthetic diamond thereon. Because the contours and sizes (with the exception of the height) of the inserts are substantially identical to the contours and sizes of the mandrel wells, the inserts will remain in the wells during rotation. It will be appreciated that in an arc-jet system, the spinning of the mandrel ensures that a large number of inserts may be coated uniformly with diamond films whose characteristics do not vary substantially.

    [0026] There have been described and illustrated herein several embodiments of a method and apparatus for coating cutting tool inserts with thin diamond films by use of a mandrel having receiving wells for holding the inserts, wherein the contour of the receiving wells is the same as that of the inserts. While particular embodiments of theinvention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Also, while generally rectangular, diamond-shaped, and triangular receiving wells have been shown, other well and substrate geometries such as circular, hexagonal or octagonal may be used. Furthermore, while particular types of mandrel substrates and substrate coatings have been disclosed, it will be understood that other mandrel substrates and substrate coatings can be used. For example, and not by way of limitation, while a titanium nitride coated molybdenum mandrel substrate has been disclosed, a titanium carbonitride coated molybdenum mandrel substrate may also be used. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without departing from the scope of the appended claims.


    Claims

    1. An apparatus for depositing diamond films on a plurality of substrates, comprising :

    a mandrel having a plurality of receiving wells having contours substantially identical to the contours of the plurality of substrates, said plurality of receiving wells for receiving the plurality of substrates,

    said mandrel being attached to a means to rotate said mandrel about its central axis, in an arc-jet diamond film coating apparatus.


     
    2. An apparatus according to claim 1, wherein :

    said mandrel is circular.


     
    3. An apparatus according to claim 1, wherein :

    said mandrel is made from molybdenum.


     
    4. An apparatus according to claim 1, wherein :

    each of said plurality of receiving wells is identical in geometry.


     
    5. An apparatus to claim 1, wherein :

    at least two of said plurality of said receiving wells have different geometries.


     
    6. An apparatus according to claim 1, wherein :

    said mandrel comprises a circular mandrel base having a flat upper surface, and a separate circular plate having said receiving wells therein, said separate plate being attached to said mandrel base upper surface.


     
    7. An apparatus according to claim 6, wherein :

    said receiving wells are holes through said circular plate.


     
    8. An apparatus according to claim 7, wherein :

    said mandrel further comprises a layer of a low melting point metal foil interposed between said mandrel base and said circular plate.


     
    9. An apparatus according to claim 6, wherein :

    said mandrel further comprises a layer of a low melting point metal foil interposed between said mandrel base and said circular plate.


     
    10. An apparatus according to claim 6, wherein :

    each of said plurality of receiving wells is substantially identical in geometry.


     
    11. An apparatus according to claim 6, wherein :

    at least two of said plurality of receiving wells have different geometries.


     
    12. A method of coating a plurality of substrates with a diamond film, comprising :

    a) provided a mandrel having a plurality of receiving wells, said mandrel being attached to a means to rotate said mandrel about its central axis, in an arc-jet diamond film coating apparatus;

    b) inserting into the plurality of receiving wells a plurality of substrates having contours substantially identical to the contours of the receiving wells;

    c) depositing diamond on said plurality of substrates in said plurality of receiving wells to form a plurality of substrates having a diamond film coated thereon.


     
    13. A method according to claim 12, wherein :

    said substrates are cutting tool inserts comprised of molybdenum.


     
    14. A method according to claim 12, wherein :

    said depositing is performed in an arc-jet diamond coating apparatus.


     
    15. A method according to claim 12, wherein :

    said mandrel is circular, and said method further comprises rotating said mandrel about its central axis while said depositing is performed.


     
    16. A method according to claim 12, wherein :

    said plurality of receiving wells are substantially identical in geometry.


     
    17. A method according to claim 12, wherein :

    at least two of said plurality of receiving wells have different geometries.


     
    18. A method according to claim 12, wherein :

    said providing a mandrel includes providing a base plate having a flat upper surface, and attaching to said base plate a separate flat plate having said receiving wells therein, said separate plate being attached to said mandrel base upper surface.


     
    19. A method according to claim 18, wherein :

    said wells are holes extending through said flat plate.


     
    20. A method according to claim 18, wherein :

    said providing a mandrel includes providing a layer of a low melting point metal foil between said mandrel base and said flat plate.


     
    21. A use of an apparatus according to any of claim 1 to 11, for the simultaneous diamond film coating of a plurality of cutting tool inserts.
     


    Ansprüche

    1. Vorrichtung zum Beschichten einer Vielzahl von Substraten mit Diamantschichten umfassend:

    einen Träger mit einer Vielzahl von Aufnahmevertiefungen, die Konturen aufweisen, die im Wesentlichen zu den Konturen der Vielzahl von Substraten identisch sind, wobei die Vielzahl von Aufnahmevertiefungen geeignet ist, die Vielzahl von Substraten aufzunehmen,

       wobei der Träger an einem Mittel befestigt ist, um den Träger um seine Mittelachse in einer Arc-Jet-Diamantbeschichtungsvorrichtung zu drehen.
     
    2. Vorrichtung nach Anspruch 1, wobei der Träger rund ist.
     
    3. Vorrichtung nach Anspruch 1, wobei der Träger aus Molybdän besteht.
     
    4. Vorrichtung nach Anspruch 1, wobei alle Aufnahmevertiefungen eine identische Geometrie haben.
     
    5. Vorrichtung nach Anspruch 1, wobei zumindest zwei der Aufnahmevertiefungen unterschiedliche Geometrien haben.
     
    6. Vorrichtung nach Anspruch 1, wobei der Träger ein rundes Trägerelement mit einer ebenen Oberseite und eine separate runde Platte mit den Aufnahmevertiefungen darin umfasst, wobei die separate Platte an der Oberseite des runden Trägerelementes befestigt ist.
     
    7. Vorrichtung nach Anspruch 6, wobei die Aufnahmevertiefungen Löcher durch die runde Platte sind.
     
    8. Vorrichtung nach Anspruch 7, wobei der Träger zudem eine Schicht aus einer zwischen dem Trägerelement und der runden Platte angeordneten Metallfolie mit einem niedrigen Schmelzpunkt umfasst.
     
    9. Vorrichtung nach Anspruch 6, wobei der Träger zudem eine Schicht aus einer zwischen dem Trägerelement und der runden Platte angeordneten Metallfolie mit einem niedrigen Schmelzpunkt umfasst.
     
    10. Vorrichtung nach Anspruch 6, wobei alle Aufnahmevertiefungen eine im Wesentlichen identische Geometrie haben.
     
    11. Vorrichtung nach Anspruch 6, wobei zumindest zwei der Aufnahmevertiefungen unterschiedliche Geometrien haben.
     
    12. Verfahren zum Beschichten einer Vielzahl von Substraten mit einer Diamantschicht umfassend:

    a) Bereitstellen eines Trägers mit einer Vielzahl von Aufnahmevertiefungen,
    wobei der Träger an einem Mittel befestigt ist, um die Drehscheibe um seine Mittelachse in einer Arc-Jet-Diamantbeschichtungsvorrichtung zu drehen;

    b) Einbringen einer Vielzahl von Substraten in die Vielzahl von Aufnahmevertiefungen, wobei die Vielzahl von Substraten Konturen aufweisen, die im Wesentlichen zu den Konturen der Aufnahmevertiefungen identisch sind;

    c) Beschichten der Vielzahl von Substraten in der Vielzahl von Aufnahmevertiefungen mit Diamant, um eine Vielzahl von Substraten zu bilden, die mit einer Diamantschicht beschichtet sind.


     
    13. Verfahren nach Anspruch 12, wobei die Substrate Schneidwerkzeugeinsätze aus Molybdän sind.
     
    14. Verfahren nach Anspruch 12, wobei das Beschichten in einer Arc-Jet-Diamantbeschichtungsvorrichtung ausgeführt wird.
     
    15. Verfahren nach Anspruch 12, wobei der Träger rund ist und das Verfahren ferner ein Drehen des Trägers um seine Mittelachse umfasst, während die Beschichtung ausgeführt wird.
     
    16. Verfahren nach Anspruch 12, wobei alle Aufnahmevertiefungen eine im Wesentlichen identische Geometrie haben.
     
    17. Verfahren nach Anspruch 12, wobei zumindest zwei der Vielzahl von Aufnahmevertiefungen unterschiedliche Geometrien haben.
     
    18. Verfahren nach Anspruch 12, wobei das Bereitstellen eines Trägers das Bereitstellen einer Grundplatte mit einer ebenen Oberseite und das Befestigen einer separaten ebenen Platte mit den Aufnahmevertiefungen darin an der Grundplatte umfasst, wobei die separate Platte an der Oberseite der Trägerelements befestigt ist.
     
    19. Verfahren nach Anspruch 18, wobei die Vertiefungen Löcher sind, die sich durch die ebene Platte hindurch erstrecken.
     
    20. Verfahren nach Anspruch 18, wobei das Bereitstellen eines Trägers das Bereitstellen einer Schicht aus einer Metallfolie mit einem niedrigen Schmelzpunkt zwischen dem Trägerelement und der ebenen Platte umfasst.
     
    21. Verwendung einer Vorrichtung nach einem der Ansprüche 1 - 11 zum gleichzeitigen Diamantschichtbeschichten einer Vielzahl von Schneidwerkzeugeinsätzen.
     


    Revendications

    1. Dispositif pour déposer des films de diamant sur plusieurs substrats, comprenant :

    un mandrin présentant plusieurs puits (« wells ») de réception présentant des contours sensiblement identiques aux contours des plusieurs substrats, lesdits plusieurs puits de réception étant étudiés pour recevoir les plusieurs substrats,

    ledit mandrin étant relié à un moyen pour mettre en rotation ledit mandrin autour de son axe, dans un dispositif de revêtement de film de diamant de type à jet-arc.


     
    2. Dispositif selon la revendication 1, dans lequel :

    ledit mandrin est circulaire.


     
    3. Dispositif selon la revendication 1, dans lequel :

    ledit mandrin est fabriqué en molybdène.


     
    4. Dispositif selon la revendication 1, dans lequel :

    chacun desdits puits de réception est identique en géométrie.


     
    5. Dispositif selon la revendication 1, dans lequel :

    au moins deux desdits plusieurs puits de réception présentent des géométries différentes.


     
    6. Dispositif selon la revendication 1, dans lequel :

    ledit mandrin comprend une base circulaire de mandrin présentant une surface supérieure plate, et un plateau circulaire de séparation présentant lesdits puits de réception à l'intérieur, ledit plateau de séparation étant relié à ladite surface supérieure de base de mandrin.


     
    7. Dispositif selon la revendication 6, dans lequel :

    lesdits puits de réception sont des orifices formés à travers ledit plateau circulaire.


     
    8. Dispositif selon la revendication 7, dans lequel :

    ledit mandrin comprend en outre une couche de feuille métallique à faible point de fusion interposée entre ladite base de mandrin et ledit plateau circulaire.


     
    9. Dispositif selon la revendication 6, dans lequel :

    ledit mandrin comprend en outre une couche de feuille métallique à faible point de fusion interposée entre ladite base de mandrin et ledit plateau circulaire.


     
    10. Dispositif selon la revendication 6, dans lequel :

    chacun desdits plusieurs puits de réception est sensiblement identique en géométrie.


     
    11. Dispositif selon la revendication 6, dans lequel :

    au moins deux desdits plusieurs puits de réception présentent des géométries différentes.


     
    12. Procédé de revêtement de plusieurs substrats par un film de diamant, comprenant :

    a) l'apport d'un mandrin présentant plusieurs parois de réception, ledit mandrin étant relié à un moyen pour mettre en rotation ledit mandrin autour de son axe, dans un dispositif de revêtement de film de diamant de type à jet-arc;

    b) l'insertion à l'intérieur des plusieurs puits de réception des substrats présentant des contours sensiblement identiques aux contours des puits de réception;

    c) la déposition de diamant sur lesdits plusieurs substrats dans lesdits plusieurs puits de réception afin de former plusieurs substrats présentant un revêtement de film de diamant sur eux.


     
    13. Procédé selon la revendication 12, dans lequel :

    lesdits substrats sont des inserts d'outils tranchants comprenant du molybdène.


     
    14. Procédé selon la revendication 12, dans lequel :

    ladite déposition est réalisée dans un dispositif de revêtement de diamant de type à jet-arc.


     
    15. Procédé selon la revendication 12, dans lequel :

    ledit mandrin est circulaire, et ledit procédé comprend en outre la rotation dudit mandrin autour de son axe central lorsque ladite déposition est réalisée.


     
    16. Procédé selon la revendication 12, dans lequel :

    lesdits plusieurs puits de réception sont sensiblement identiques en géométrie.


     
    17. Procédé selon la revendication 12, dans lequel :

    au moins deux desdits plusieurs puits de réception présentent des géométries différentes.


     
    18. Procédé selon la revendication 12, dans lequel :

    ledit apport d'un mandrin inclut l'apport d'un plateau de base présentant une surface supérieure plate, et la fixation audit plateau de base d'un plateau plat de séparation présentant lesdits puits de réception à l'intérieur, ledit plateau de séparation étant relié à ladite surface supérieure de base de mandrin.


     
    19. Procédé selon la revendication 18, dans lequel :

    lesdits puits sont des orifices s'étendant à travers ledit plateau plat.


     
    20. Procédé selon la revendication 18, dans lequel :

    ledit apport de mandrin inclut l'apport d'une couche de feuille métallique à faible point de fusion entre ladite base de mandrin et ledit plateau plat.


     
    21. Utilisation d'un dispositif selon l'une quelconque des revendication 1 à 11, pour le revêtement simultané par un film de diamant de plusieurs inserts d'outils tranchants.
     




    Drawing