BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] This invention relates broadly to diamond film coating of objects. More particularly,
this invention relates to a mandrel apparatus and a method utilizing the mandrel apparatus
for the simultaneous diamond film coating of a plurality of cutting tools.
2. State of the Art
[0002] Diamond has exceptional hardness, thermal conductivity, electrical insulation and
light transmission properties, and is therefore useful in various applications such
as cutting tools, heat sinks, insulators, electronic substrate materials, etc. Natural
diamond, however, is monocrystalline and limited in size and geometry. As a result,
a number of techniques have recently been developed, such as high pressure high temperature
deposition (HPHT) and chemical vapor deposition (CVD), for synthesizing and depositing
diamond on substrates of various shapes, sizes and materials.
[0003] Synthetic CVD diamond film can be deposited as a thin and permanent coating on a
substrate, such as on the wear surface of a tool or an environmentally protective
coating. When a CVD diamond film is deposited in this manner, it is generally referred
to as a "thin film". Thin film CVD diamond deposition is one method of the art used
in forming cutting tools. Alternatively, a thicker diamond film can be deposited on
a substrate and then removed, preferably intact, as a single "free standing" piece
for use in applications such as heat sinks, optical windows, and cutting tools. These
free standing pieces are usually referred to as "thick films".
[0004] In the forming of thick diamond films, titanium nitride coated molybdenum and other
materials having similar properties, such as titanium-zirconium-molybdenum alloys
and tungsten, have traditionally been used as a substrate (mandrel) upon which synthetic
diamond is to be deposited. The mandrel configuration of the prior art has generally
been of the mesa type with a circular base portion and a stepped circular upper portion
of a smaller size than the base portion. The size of such a mandrel has generally
been of the order of about 8.89 to 10.16 cm (3.5 to 4 inches) in diameter. After a
diamond film is deposited on such a mandrel, the diamond separates during cooling
and detaches from the mesa surface, forming a free standing diamond film, which may
be used to form cutting tools by attaching the diamond film to a metal base tool structure
in a known manner.
[0005] While the thick diamond films of the prior art solve various needs of the art, it
will be appreciated that the cost of generating the thick diamond film and attaching
it to a cutting tool is large due to slow growth rates, low yield, etc. Thus, there
still exists a need for a low cost, high-yield process to produce diamond film coated
products such as cutting tool inserts, whether via thin film or thick film technology.
SUMMARY OF THE INVENTION
[0006] It is therefore an object of the invention to provide an apparatus and method for
depositing a thin diamond film by arc-jet deposition on a plurality of substrates
in an efficient manner.
[0007] It is also an object of the invention to provide an arc-jet apparatus and method
for depositing diamond film on a plurality of spinning cutting tool inserts.
[0008] It is a further object of the invention to provide a mandrel adapted to allow the
simultaneous arc-jet diamond coating of a plurality of substrates fitting on the mandrel
surface.
[0009] It is also an object of the invention to provide a mandrel used in a diamond film
arc-jet deposition process which has a plurality of tool insert receiving wells.
[0010] In accordance with the objects of the invention, which will be discussed in detail
below, the invention comprises a mandrel which is used in a spinning synthetic diamond
deposition apparatus, such as an arc-jet apparatus. The mandrel has a plurality of
receiving wells in its surface which is to be exposed to a diamond growth species
or plasma, with the wells having substantially the same contour (i.e., side shapes)
as the tool inserts which are to be received therein and coated with a diamond film.
The mandrel can be a titanium-nitride coated molybdenum body into which a plurality
of pockets or wells are machined. In a particular embodiment, the mandrel is formed
as a layered composite of a flat surfaced mandrel base, to which is attached an upper
plate of a lesser thickness than the mandrel base. The upper plate is preferably formed
of molybdenum and is provided with receiving wells which are cut through the plate
to form a grid. In this embodiment, a thin layer (foil) of a low melting metal may
be provided between the mandrel base and the grid. The upper plate, the foil, and
the grid are preferably attached to each other by bolts or other suitable means.
[0011] According to a preferred aspect of the invention, the pockets or wells of either
embodiment may be provided with identical or differing geometries, provided that the
geometries match those of the substrates to be coated. It will be appreciated that
the second embodiment of the invention is particularly suited to providing pockets
of different geometries, as it is relatively simple to make cut-outs of different
geometries to suit various needs.
[0012] With the mandrels of the invention as described, the cutting tool inserts which are
coated with the diamond growth species or plasma are cooled by direct radiation from
the inserts as well as by conduction. In particular, a narrow gap is formed between
the inserts and the mandrel when the inserts are located in their receiving wells.
Since there is some gas trapped in between the inserts and their wells, and since
the gas is mostly hydrogen, a very good thermal conductor, the thermal coupling of
the inserts to the mandrel is very good.
[0013] Additional objects and advantages of the invention will become apparent to those
skilled in the art upon reference to the detailed description taken in conjunction
with the provided figures.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014]
Figure 1 is a schematic cross-sectional view in elevation of an arc-jet coating apparatus
with a spinning mandrel;
Figure 2 is a perspective view of a version of the invention showing a cylindrical
mandrel with machined wells;
Figure 3 is a top plan view of the mandrel of Figure 2 with tool inserts located in
the receiving wells of the mandrel;
Figure 4 is an elevational view in cross-section taken along the line 4-4 of Figure
3;
Figure 5 is an enlarged view in elevation of a part of the cross-sectional view of
Figure 4, taken along the line 5-5 of Figure 3;
Figure 6 is an exploded perspective view of a second version of the present invention
showing a composite mandrel;
Figure 7 is a top plan view of the grid of Figure 6;
Figure 8 is an exploded cross-sectional view in elevation of the composite mandrel
of Figure 6; and
Figures 9-11 are top plan views of third, fourth and fifth versions of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0015] An arc-jet apparatus 10 which can be used in conjunction with the invention is seen
in Fig. 1. The apparatus 10 of Fig. 1 includes a lower deposition chamber 100 and
an upper plasma forming chamber 200. The upper chamber includes vacuum housing walls
211, within which are located an arc-forming section 215, cylindrical magnets 218,
and cooling coils 234. The arc-forming section 215 includes a cylindrical anode 291
and a rod-like cathode 292 which are energized by a source of electric potential (not
shown), and an injector 295 mounted adjacent the cathode so as to permit injected
fluid to pass over the cathode. In the illustrated embodiment the input fluid may
be, for example, a mixture of hydrogen and methane, although the methane could alternatively
be fed in downstream. The cylindrical magnets 217 are utilized to accelerate and focus
the plasma generated at the arc forming section toward the lower deposition chamber
100 as the magnets maintain the plasma within a narrow column until the plasma reaches
the deposition region. A nozzle 115 which connects the upper and lower chambers 200,
100 is preferably provided to control the arc-jet beam size.
[0016] As seen in Fig. 1, the deposition chamber 100 contains a substrate holder 120 which
includes a base 121, and a radiator 123 or other suitable, necessary, or desired device
mounted on the base. The holder 120 is mounted on a shaft 140 which is rotated by
a motor 170, and the mandrel 150 of the present invention is mounted on the holder
120, such as by retainer bolts (not shown).
[0017] In operation, a mixture of hydrogen and methane is fed to the injector 295 of the
plasma forming chamber 100, and a plasma is obtained in front of the arc-forming section
215 and accelerated and focused toward the deposition chamber 100 via the nozzle 115.
As is known in the art, synthetic polycrystalline diamond can be formed from the described
plasma, as the carbon in the methane is selectively deposited as diamond on an appropriate
substrate, and the graphite which forms in the process is dissipated by combination
with the hydrogen facilitating gas.
[0018] Figures 2-5 show in more detail a first embodiment of the mandrel 150 of the present
invention. The mandrel 150 has a circular perimeter 300, an upper surface 302, a sidewall
304, and a lower surface 306. A plurality of receiving wells or pockets 308 are machined
into upper surface 302 of mandrel 150. As may be seen from Figures 2 and 3, the first
embodiment of the mandrel of the invention has a plurality of substantially identically
contoured receiving wells 308 which receive a plurality of substantially identical
tool inserts 310. The conformity of the contour of the inserts 310 to the receiving
wells 308 is seen in Fig. 4, with the inserts preferably extending above the upper
surface 302 of the mandrel. The extent to which the inserts extend above the upper
surface 302 of the mandrel is determined at least partially by the extent to which
it is desired to coat the flank of the tool inserts 310. Thus, for a tool insert having
a thickness of 3mm, it may be desired to provide a coated flank of 2mm as measured
from the top surface; and as a result, the tool inserts would be arranged to extend
approximately 2mm out from the receiving wells. In addition, and as discussed in more
detail with reference to Figs. 9-11, by providing the wells with exaggerated corners,
it is possible to ensure that the entire cutting edge of the tool inserts will be
coated with a diamond film.
[0019] Returning to Fig. 4, it is seen that an indent 312 for a thermocouple (not shown)
is preferably provided in the lower surface 306 of the mandrel 150. A plurality of
bolt holes 314 which may be threaded if desired are also provided to attach the mandrel
150 to the holder 120 (see Fig. 1) of the arc-jet apparatus. By way of example only,
the mandrel 150 may be about one inch in thickness, and the receiving wells may be
about 0.762 to 1.27 mm (0.030 to 0.050 inches) (i.e., about 1mm) in depth. The invention,
however, is not intended to be limited to these parameters.
[0020] Figure 5 shows a cross-section in greater detail through mandrel 150 and one insert
310, taken along the line 5-5 of Figure 3. A layer of gas 316, trapped between the
conforming surfaces of the tool insert 310 and receiving well 308 is shown in Figure
5. The gas layer 316, which is mostly hydrogen, is formed during the arc-jet deposition
process, and forms a good thermal conductor. The mandrel 150 is typically formed from
a titanium nitride coated molybdenum substrate which provides a stable fixture upon
which the inserts 310 are held without masking the area to be coated. The uncoated
cutting tool inserts (typically formed from tungsten-carbide) are held in place by
the wells 308 formed in the mandrel to such a degree that they can be spun at speeds
greater than 300 rpm in the direct path of the plasma beam discharge area.
[0021] A second embodiment of the present invention is shown in Figures 6, 7 and 8, which
illustrate a composite mandrel 650. The composite mandrel 650 generally comprises
a flat plate 618 and a mandrel base 620. The mandrel base 620 is made e.g., of molybdenum
and has a sidewall 604 and a flat upper surface 602. The flat plate 618, which may
also be made of molybdenum, has a circular perimeter 600 and has receiving wells 608
which are preferably cut through the plate 618 to form a grid. Interposed between
the plate 618 and the mandrel base 620 is a metal foil layer 622. The grid 618, mandrel
base 620, and foil layer 622 may be affixed to each other by means of bolts (not shown)
or any other suitable means. The foil layer 622 is a low-melting point metal such
as silver or germanium and acts as a liquid-metal interface between the inserts 610
and a cooling load; thereby providing an interface of high thermal conduction for
the flat grid plate 618, and aiding in the adhesion of the grid 618 to the molybdenum
mandrel base 620.
[0022] It should be noted that in the second embodiment of the invention, the wells 608
and the cutting tool inserts 610 are provided with at least two differing geometries
as indicated at 608a, 608b.
[0023] Figure 8 is a cross-sectional view of the composite mandrel of Figure 6, taken along
the line 8-8 of Figure 7, and shows the metal foil layer 622, the mandrel base 620,
and the inserts 610 in the receiving wells 608 of the flat grid plate 618. The lower
surface 606 of the mandrel base 620 has a plurality of preferably threaded bolt holes
614 for attaching the base 620 to the holder 120 of the arc-jet apparatus, and a thermocouple
receiving well 612. The flat grid plate 618 may be for example about 0.762 to 1.27
mm (0.030 to 0.050 inches) in thickness; foil layer 622 about 0.0254 mm (0.001 inches)
in thickness; and mandrel base 620 about 2.54 cm (one inch) in thickness. However,
the invention is not intended to be limited to these dimensions.
[0024] Turning to Figs. 9-11, top plan views of three additional mandrels in accord with
the invention are seen. In Fig. 9, the mandrel 950 includes a plurality of substantially
square wells 908, with the corners of the wells 908 being provided with small radius
circular extensions 911 which permit the entire edges of the tool inserts to be coated
with synthetic diamond. In the regular arrangement of Fig. 9, all of the wells are
substantially identical in configuration. In Fig. 10, the mandrel 1050 includes a
first plurality of substantially rhombus-shaped (diamond-shaped) wells 1008a, and
a second plurality of substantially triangular wells 1008b. Again, as in Fig. 10,
all of the wells are provided with small radius circular extensions at their corners
1011. The mandrel 1150 of Fig. 11 is similar to that of Fig. 9, with all wells 1108
being substantially identical in configuration and including the small radius circular
extensions 1111, except that the wells of the mandrel 1150 are rhombus in shape, and
generally larger than those of Fig. 9.
[0025] Using the mandrel embodiments of the invention 150, 650, 950, 1050, 1150 (or one
of similar nature), the mandrel and inserts are placed in the arc-jet for deposition
of synthetic diamond thereon. Because the contours and sizes (with the exception of
the height) of the inserts are substantially identical to the contours and sizes of
the mandrel wells, the inserts will remain in the wells during rotation. It will be
appreciated that in an arc-jet system, the spinning of the mandrel ensures that a
large number of inserts may be coated uniformly with diamond films whose characteristics
do not vary substantially.
[0026] There have been described and illustrated herein several embodiments of a method
and apparatus for coating cutting tool inserts with thin diamond films by use of a
mandrel having receiving wells for holding the inserts, wherein the contour of the
receiving wells is the same as that of the inserts. While particular embodiments of
theinvention have been described, it is not intended that the invention be limited
thereto, as it is intended that the invention be as broad in scope as the art will
allow and that the specification be read likewise. Also, while generally rectangular,
diamond-shaped, and triangular receiving wells have been shown, other well and substrate
geometries such as circular, hexagonal or octagonal may be used. Furthermore, while
particular types of mandrel substrates and substrate coatings have been disclosed,
it will be understood that other mandrel substrates and substrate coatings can be
used. For example, and not by way of limitation, while a titanium nitride coated molybdenum
mandrel substrate has been disclosed, a titanium carbonitride coated molybdenum mandrel
substrate may also be used. It will therefore be appreciated by those skilled in the
art that yet other modifications could be made to the provided invention without departing
from the scope of the appended claims.
1. An apparatus for depositing diamond films on a plurality of substrates, comprising
:
a mandrel having a plurality of receiving wells having contours substantially identical
to the contours of the plurality of substrates, said plurality of receiving wells
for receiving the plurality of substrates,
said mandrel being attached to a means to rotate said mandrel about its central axis,
in an arc-jet diamond film coating apparatus.
2. An apparatus according to claim 1, wherein :
said mandrel is circular.
3. An apparatus according to claim 1, wherein :
said mandrel is made from molybdenum.
4. An apparatus according to claim 1, wherein :
each of said plurality of receiving wells is identical in geometry.
5. An apparatus to claim 1, wherein :
at least two of said plurality of said receiving wells have different geometries.
6. An apparatus according to claim 1, wherein :
said mandrel comprises a circular mandrel base having a flat upper surface, and a
separate circular plate having said receiving wells therein, said separate plate being
attached to said mandrel base upper surface.
7. An apparatus according to claim 6, wherein :
said receiving wells are holes through said circular plate.
8. An apparatus according to claim 7, wherein :
said mandrel further comprises a layer of a low melting point metal foil interposed
between said mandrel base and said circular plate.
9. An apparatus according to claim 6, wherein :
said mandrel further comprises a layer of a low melting point metal foil interposed
between said mandrel base and said circular plate.
10. An apparatus according to claim 6, wherein :
each of said plurality of receiving wells is substantially identical in geometry.
11. An apparatus according to claim 6, wherein :
at least two of said plurality of receiving wells have different geometries.
12. A method of coating a plurality of substrates with a diamond film, comprising :
a) provided a mandrel having a plurality of receiving wells, said mandrel being attached
to a means to rotate said mandrel about its central axis, in an arc-jet diamond film
coating apparatus;
b) inserting into the plurality of receiving wells a plurality of substrates having
contours substantially identical to the contours of the receiving wells;
c) depositing diamond on said plurality of substrates in said plurality of receiving
wells to form a plurality of substrates having a diamond film coated thereon.
13. A method according to claim 12, wherein :
said substrates are cutting tool inserts comprised of molybdenum.
14. A method according to claim 12, wherein :
said depositing is performed in an arc-jet diamond coating apparatus.
15. A method according to claim 12, wherein :
said mandrel is circular, and said method further comprises rotating said mandrel
about its central axis while said depositing is performed.
16. A method according to claim 12, wherein :
said plurality of receiving wells are substantially identical in geometry.
17. A method according to claim 12, wherein :
at least two of said plurality of receiving wells have different geometries.
18. A method according to claim 12, wherein :
said providing a mandrel includes providing a base plate having a flat upper surface,
and attaching to said base plate a separate flat plate having said receiving wells
therein, said separate plate being attached to said mandrel base upper surface.
19. A method according to claim 18, wherein :
said wells are holes extending through said flat plate.
20. A method according to claim 18, wherein :
said providing a mandrel includes providing a layer of a low melting point metal foil
between said mandrel base and said flat plate.
21. A use of an apparatus according to any of claim 1 to 11, for the simultaneous diamond
film coating of a plurality of cutting tool inserts.
1. Vorrichtung zum Beschichten einer Vielzahl von Substraten mit Diamantschichten umfassend:
einen Träger mit einer Vielzahl von Aufnahmevertiefungen, die Konturen aufweisen,
die im Wesentlichen zu den Konturen der Vielzahl von Substraten identisch sind, wobei
die Vielzahl von Aufnahmevertiefungen geeignet ist, die Vielzahl von Substraten aufzunehmen,
wobei der Träger an einem Mittel befestigt ist, um den Träger um seine Mittelachse
in einer Arc-Jet-Diamantbeschichtungsvorrichtung zu drehen.
2. Vorrichtung nach Anspruch 1, wobei der Träger rund ist.
3. Vorrichtung nach Anspruch 1, wobei der Träger aus Molybdän besteht.
4. Vorrichtung nach Anspruch 1, wobei alle Aufnahmevertiefungen eine identische Geometrie
haben.
5. Vorrichtung nach Anspruch 1, wobei zumindest zwei der Aufnahmevertiefungen unterschiedliche
Geometrien haben.
6. Vorrichtung nach Anspruch 1, wobei der Träger ein rundes Trägerelement mit einer ebenen
Oberseite und eine separate runde Platte mit den Aufnahmevertiefungen darin umfasst,
wobei die separate Platte an der Oberseite des runden Trägerelementes befestigt ist.
7. Vorrichtung nach Anspruch 6, wobei die Aufnahmevertiefungen Löcher durch die runde
Platte sind.
8. Vorrichtung nach Anspruch 7, wobei der Träger zudem eine Schicht aus einer zwischen
dem Trägerelement und der runden Platte angeordneten Metallfolie mit einem niedrigen
Schmelzpunkt umfasst.
9. Vorrichtung nach Anspruch 6, wobei der Träger zudem eine Schicht aus einer zwischen
dem Trägerelement und der runden Platte angeordneten Metallfolie mit einem niedrigen
Schmelzpunkt umfasst.
10. Vorrichtung nach Anspruch 6, wobei alle Aufnahmevertiefungen eine im Wesentlichen
identische Geometrie haben.
11. Vorrichtung nach Anspruch 6, wobei zumindest zwei der Aufnahmevertiefungen unterschiedliche
Geometrien haben.
12. Verfahren zum Beschichten einer Vielzahl von Substraten mit einer Diamantschicht umfassend:
a) Bereitstellen eines Trägers mit einer Vielzahl von Aufnahmevertiefungen,
wobei der Träger an einem Mittel befestigt ist, um die Drehscheibe um seine Mittelachse
in einer Arc-Jet-Diamantbeschichtungsvorrichtung zu drehen;
b) Einbringen einer Vielzahl von Substraten in die Vielzahl von Aufnahmevertiefungen,
wobei die Vielzahl von Substraten Konturen aufweisen, die im Wesentlichen zu den Konturen
der Aufnahmevertiefungen identisch sind;
c) Beschichten der Vielzahl von Substraten in der Vielzahl von Aufnahmevertiefungen
mit Diamant, um eine Vielzahl von Substraten zu bilden, die mit einer Diamantschicht
beschichtet sind.
13. Verfahren nach Anspruch 12, wobei die Substrate Schneidwerkzeugeinsätze aus Molybdän
sind.
14. Verfahren nach Anspruch 12, wobei das Beschichten in einer Arc-Jet-Diamantbeschichtungsvorrichtung
ausgeführt wird.
15. Verfahren nach Anspruch 12, wobei der Träger rund ist und das Verfahren ferner ein
Drehen des Trägers um seine Mittelachse umfasst, während die Beschichtung ausgeführt
wird.
16. Verfahren nach Anspruch 12, wobei alle Aufnahmevertiefungen eine im Wesentlichen identische
Geometrie haben.
17. Verfahren nach Anspruch 12, wobei zumindest zwei der Vielzahl von Aufnahmevertiefungen
unterschiedliche Geometrien haben.
18. Verfahren nach Anspruch 12, wobei das Bereitstellen eines Trägers das Bereitstellen
einer Grundplatte mit einer ebenen Oberseite und das Befestigen einer separaten ebenen
Platte mit den Aufnahmevertiefungen darin an der Grundplatte umfasst, wobei die separate
Platte an der Oberseite der Trägerelements befestigt ist.
19. Verfahren nach Anspruch 18, wobei die Vertiefungen Löcher sind, die sich durch die
ebene Platte hindurch erstrecken.
20. Verfahren nach Anspruch 18, wobei das Bereitstellen eines Trägers das Bereitstellen
einer Schicht aus einer Metallfolie mit einem niedrigen Schmelzpunkt zwischen dem
Trägerelement und der ebenen Platte umfasst.
21. Verwendung einer Vorrichtung nach einem der Ansprüche 1 - 11 zum gleichzeitigen Diamantschichtbeschichten
einer Vielzahl von Schneidwerkzeugeinsätzen.
1. Dispositif pour déposer des films de diamant sur plusieurs substrats, comprenant :
un mandrin présentant plusieurs puits (« wells ») de réception présentant des contours
sensiblement identiques aux contours des plusieurs substrats, lesdits plusieurs puits
de réception étant étudiés pour recevoir les plusieurs substrats,
ledit mandrin étant relié à un moyen pour mettre en rotation ledit mandrin autour
de son axe, dans un dispositif de revêtement de film de diamant de type à jet-arc.
2. Dispositif selon la revendication 1, dans lequel :
ledit mandrin est circulaire.
3. Dispositif selon la revendication 1, dans lequel :
ledit mandrin est fabriqué en molybdène.
4. Dispositif selon la revendication 1, dans lequel :
chacun desdits puits de réception est identique en géométrie.
5. Dispositif selon la revendication 1, dans lequel :
au moins deux desdits plusieurs puits de réception présentent des géométries différentes.
6. Dispositif selon la revendication 1, dans lequel :
ledit mandrin comprend une base circulaire de mandrin présentant une surface supérieure
plate, et un plateau circulaire de séparation présentant lesdits puits de réception
à l'intérieur, ledit plateau de séparation étant relié à ladite surface supérieure
de base de mandrin.
7. Dispositif selon la revendication 6, dans lequel :
lesdits puits de réception sont des orifices formés à travers ledit plateau circulaire.
8. Dispositif selon la revendication 7, dans lequel :
ledit mandrin comprend en outre une couche de feuille métallique à faible point de
fusion interposée entre ladite base de mandrin et ledit plateau circulaire.
9. Dispositif selon la revendication 6, dans lequel :
ledit mandrin comprend en outre une couche de feuille métallique à faible point de
fusion interposée entre ladite base de mandrin et ledit plateau circulaire.
10. Dispositif selon la revendication 6, dans lequel :
chacun desdits plusieurs puits de réception est sensiblement identique en géométrie.
11. Dispositif selon la revendication 6, dans lequel :
au moins deux desdits plusieurs puits de réception présentent des géométries différentes.
12. Procédé de revêtement de plusieurs substrats par un film de diamant, comprenant :
a) l'apport d'un mandrin présentant plusieurs parois de réception, ledit mandrin étant
relié à un moyen pour mettre en rotation ledit mandrin autour de son axe, dans un
dispositif de revêtement de film de diamant de type à jet-arc;
b) l'insertion à l'intérieur des plusieurs puits de réception des substrats présentant
des contours sensiblement identiques aux contours des puits de réception;
c) la déposition de diamant sur lesdits plusieurs substrats dans lesdits plusieurs
puits de réception afin de former plusieurs substrats présentant un revêtement de
film de diamant sur eux.
13. Procédé selon la revendication 12, dans lequel :
lesdits substrats sont des inserts d'outils tranchants comprenant du molybdène.
14. Procédé selon la revendication 12, dans lequel :
ladite déposition est réalisée dans un dispositif de revêtement de diamant de type
à jet-arc.
15. Procédé selon la revendication 12, dans lequel :
ledit mandrin est circulaire, et ledit procédé comprend en outre la rotation dudit
mandrin autour de son axe central lorsque ladite déposition est réalisée.
16. Procédé selon la revendication 12, dans lequel :
lesdits plusieurs puits de réception sont sensiblement identiques en géométrie.
17. Procédé selon la revendication 12, dans lequel :
au moins deux desdits plusieurs puits de réception présentent des géométries différentes.
18. Procédé selon la revendication 12, dans lequel :
ledit apport d'un mandrin inclut l'apport d'un plateau de base présentant une surface
supérieure plate, et la fixation audit plateau de base d'un plateau plat de séparation
présentant lesdits puits de réception à l'intérieur, ledit plateau de séparation étant
relié à ladite surface supérieure de base de mandrin.
19. Procédé selon la revendication 18, dans lequel :
lesdits puits sont des orifices s'étendant à travers ledit plateau plat.
20. Procédé selon la revendication 18, dans lequel :
ledit apport de mandrin inclut l'apport d'une couche de feuille métallique à faible
point de fusion entre ladite base de mandrin et ledit plateau plat.
21. Utilisation d'un dispositif selon l'une quelconque des revendication 1 à 11, pour
le revêtement simultané par un film de diamant de plusieurs inserts d'outils tranchants.