| (19) |
 |
|
(11) |
EP 1 109 635 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
27.11.2002 Bulletin 2002/48 |
| (22) |
Date of filing: 03.09.1999 |
|
| (51) |
International Patent Classification (IPC)7: B21D 22/22 |
| (86) |
International application number: |
|
PCT/EP9906/544 |
| (87) |
International publication number: |
|
WO 0001/3815 (16.03.2000 Gazette 2000/11) |
|
| (54) |
PROCESS FOR THE PRODUCTION OF CAN BODIES AND OF FILLED AND CLOSED CANS
VERFAHREN ZUM HERSTELLEN VON DOSENKÖRPERN, UND VON GEFÜLLTEN UND GESCHLOSSEN BEHÄLTERN
VON DOSEN
PROCEDE DE PRODUCTION DE CORPS DE BOITES ET DE BOITES REMPLIES ET FERMEES
|
| (84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
| (30) |
Priority: |
04.09.1998 NL 1010009
|
| (43) |
Date of publication of application: |
|
27.06.2001 Bulletin 2001/26 |
| (73) |
Proprietor: Corus Staal BV |
|
1970 CA Ijmuiden (NL) |
|
| (72) |
Inventor: |
|
- RAS, Hendrik, Bastiaan
NL-1964 KX Heemskerk (NL)
|
| (74) |
Representative: Kruit, J., Ir. |
|
Corus Technology BV
Corus Intellectual Property Department
PO Box 10000 1970 CA IJmuiden 1970 CA IJmuiden (NL) |
| (56) |
References cited: :
WO-A-95/05253 DE-U- 8 712 526 US-A- 2 989 019
|
DE-C- 964 138 GB-A- 900 651 US-A- 3 564 895
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The invention relates firstly to a process for producing can bodies from substantially
metal blanks, which process comprises the operation of punching discs out of sheet
material and the production of can bodies by deep drawing and/or wall ironing, each
can body comprising a can wall and a can base (see JP-A-07232230). In the packaging
industry, blanks are generally understood to mean the preforms from which can bodies
are produced by deep drawing and/or wall ironing.
[0002] Apart from the production of can bodies, the invention also relates to a process
for producing filled and closed cans. Large numbers of cans of this nature are used
for the packaging of drinks and foodstuffs, but also of other materials.
[0003] The basis of the following text will generally relate to the production of a beverage
can, although the invention is specifically not limited thereto.
[0004] A generally customary process consists in round discs being punched out of a sheet-metal
material, which discs can be used as blanks. This production of blanks may take place
at the can-maker's factory, but also at the steel manufacturer's factory, in which
case the manufacturer can immediately reuse the return scrap. The processing of flat
blanks of this nature involves one or more deep-drawing operations, optionally followed
by a so-called wall-ironing operation. During deep drawing, the wall thickness of
the can formed, or the intermediate forms thereof, remains essentially unchanged.
During wall ironing, however, the wall material becomes much thinner, resulting in
a considerable saving of material. However, the base of the can to a large extent
retains the original sheet thickness, or slightly less, if the base is subsequently
also profiled.
[0005] Such profiling may, for example, consist in pressing a so-called core into the base
in order to provide the base with a somewhat greater dimensional stability. Nevertheless,
the base is still only slightly thinner than the original thickness of the sheet material
used. Likewise, the mechanical properties of the base are substantially determined
by those of the starting material.
[0006] The choice of the starting material is essentially determined by the requirements
which the deep drawing and/or the wall ironing of the can wall impose on this material;
consequently, it is impossible to use a more rigid and harder starting material, which
could lead to a thinner base.
[0007] Therefore, the object of the invention is to provide a process in which it is nevertheless
possible to save considerable amounts of material in the blank, and therefore also
in the can body.
[0008] To this end, the invention consists in the process for producing can bodies as described
in the preamble, in which the sheet material is biaxially stretched at the location
of the centre section of the blank which is to be formed, while an area of the blank
which is to be formed, outside the centre section, is held clamped in place.
[0009] As a result of this biaxial stretching, the centre section of the blank becomes thinner
but, in the process, also undergoes considerable work-hardening. That part of the
blank which lies further towards the outside is not biaxially stretched, and consequently
maintains the original properties of the material.
[0010] As a result of the biaxial stretching of the centre section, material is displaced
outwards from the centre, with the result that some of the material which would otherwise
form the can base now forms part of the can wall. Consequently, the stamped disc from
which a blank is formed may be smaller, with the result that material is saved. Moreover,
this makes it possible to deep draw a can from a blank by means of a single deep-drawing
operation. By suitably adapting the shape of the can base, it is possible for the
latter to retain the same rigidity.
[0011] The biaxial stretching of the centre sections of the blanks which are to be formed
may take place before discs are stamped out of the sheet material. In that case, the
sheet has to be clamped locally in place at every position from which a disc is stamped
out and has to be stretched within each clamping rim. The blanks can then be stamped
out of the sheet.
[0012] However, preference is given to a process in which the discs are stamped out of the
sheet material prior to the biaxial stretching of the centre section of the blank.
In this way, simple equipment for the biaxial stretching can be used.
[0013] Metal can bodies for beverage cans are usually produced from aluminium or steel.
Although the novel process can also be applied to aluminium sheet material, it has
been found that it is preferable to use the process on steel-based sheet material.
This is because it has been found that in this case more substantial deformation of
the base material is possible, leading to a greater saving of material.
[0014] It has also been found preferable to apply the novel process to sheet material which
is metallically coated and/or coated with a plastic. As a result, fewer subsequent
operations are required on the final can body in order to fill and close the can.
[0015] The biaxial stretching of the centre section of the blank to be formed may be carried
out in various ways. For example, it is conceivable to employ the generally known
technique of hydroforming for this purpose, or alternatively the technique of spinning
using a spinning roll. However, both methods have been found to be extremely time-consuming.
Therefore, preference is given to a method according to the invention in which the
biaxial stretching is carried out by pressing a punch with a convexly shaped head
against the centre section of the blank which is to be formed. The shape of the convexly
shaped head may be adapted to the desired distribution of the strengthening over the
surface of the blank. Generally, however, the surface of this head will be approximately
in the shape of a segment of a sphere.
[0016] The biaxially stretched centre section will correspond to at least the can base which
is to be formed from the blank. Making the whole of this can base thinner saves additional
material. In particular, however, it is preferable for the biaxially stretched centre
section also to comprise that part of the blank from which a conical transition piece
from the can base to the can wall is formed. It should be noted that a conical transition
piece of this nature is in very widespread use for beverage cans.
[0017] It will be clear that as the extent of stretching increases, the amount of material
which can be saved rises. However, it must also be realized that in this case too
there are limits imposed by the material used.
[0018] A good level of biaxial stretching for steel cans can be achieved if this biaxial
stretching leads to a thickness reduction of between 20 and 30% on the average. To
date, the best results have been obtained with thickness reductions which are uniformly
distributed over the centre section and which constitute a reduction of between 23
and 27%.
[0019] As has already been stated, it is possible to start from sheet material which is
coated. If the sheet material is steel-based, it has been found that good results
are obtained if the starting material is steel sheet which is metallically coated
on two sides with one of the materials selected from the group consisting of tin and
chromium-chromium oxide, and which is furthermore coated on two sides with at least
one layer of plastic selected from the group consisting of PET, polypropylene and
copolymers thereof.
[0020] Steel sheet which has been coated in this way is generally known per se and requires
no further explanation.
[0021] Furthermore, it has proven important for the novel process for the sheet material
used to have an n-value of at least 0.16. The way in which the n-value, also known
as the "strain-hardening exponent", is determined is described in ASTM method E 646.
[0022] In the known process for deep-drawing and wall-ironing steel cans, it is customary,
first of all, to deep draw a so-called cup from blanks, and then to subject this cup
itself to a further deep-drawing operation before a wall-ironing operation is carried
out. Preferably, in this case, the second deep-drawing operation and the wall-ironing
operation are combined in a single operation. It has been found that when the novel
process is used, after the biaxial stretching of the blank only a single deep-drawing
operation, preferably in combination with the wall-ironing operation, is required.
Moreover, an additional advantage of this novel process is that, surprisingly, the
generally recognized problem of chime wrinkling, particularly in the conical transition
zone of the base, no longer arises.
[0023] As has been noted above, one possibility consists in making the blanks separately
from the work involved in forming the can bodies. However, it has been found that
it is entirely possible to carry out the biaxial stretching of punched discs to form
blanks and the forming of can bodies therefrom in line in successive processing steps
using separate processing machines.
[0024] The invention furthermore relates to a process for producing filled or closed cans.
By starting from material which has been coated with plastic on two sides, it has
proven possible not only to form can bodies from the coated blanks, but also subsequently
to fill these can bodies and to seal them with a lid in a known way. This makes it
possible to provide a so-called "form-fill-seam" line for beverage cans. This saves
the costs of transporting empty cans.
[0025] Finally, the invention also relates to the metal can body itself, comprising a can
wall and a can base. This novel can body is characterized in that the can base is
made from work-hardened material with a thickness of between 2.5 and 2.75 x the wall
thickness of the can wall. This thickness ratio is significantly lower than in known
beverage cans, in which this ratio is generally between 2.8 and 3.2. Preference is
in this case given to a thickness ratio of the base and the wall of between 2.55 and
2.66. This provides a good compromise between, on the one hand, demands which are
imposed on the material and, on the other hand, the possibility of saving material.
[0026] A steel can body as described above should preferably have a can base in which the
material exhibits a tensile stress, at 0.2% elongation, of 620 ± 70 N/mm
2 and a hardness R 30 C of 76 ± 3 N/mm
2.
[0027] The invention will now be explained in more detail with reference to a number of
figures and test results.
[0028] Fig. 1 illustrates the biaxial stretching of a centre section of a disc.
[0029] Fig. 2 shows the further processing of the blank obtained in this way.
[0030] In Fig. 1, reference numeral 1 denotes a disc of steel sheet, a wide periphery of
which is clamped between an upper clamping ring 2 and a lower clamping ring 3, and
is held between these clamping rings 2,3. A convex punch 4 is pressed against the
centre section of disc 1; the left-hand side of the figure shows the position of convex
punch 4 prior to deformation of the disc 1, while the right-hand part of the figure
shows its position at the end of the biaxial stretching of the disc. In this position,
the centre section of the disc has bulged outwards into the shape 5. A disc diameter
of 125 mm and a disc thickness of 0.22 mm are used. The starting material was tin-plated
steel sheet with a yield stress of 283 N/mm
2, a tensile strength of 385 N/mm
2, an r-value of 1.21 and an n-value of 0.16. During production of the convex shape
5, the material becomes thinner and harder in the centre section of disc 1, which
will ultimately form the base of the can which is to be formed.
[0031] Fig. 2 shows the blank 5, formed as shown in Figure 1, located in a following processing
device. In this case, the edge of the blank 5 is located between a drawing die 6 and
a blank-holder ring 7 of a deep-drawing press. The left-hand half of Figure 2 shows
the position of a punch 8 at the beginning of deep-drawing, while the right-hand half
of the figure shows a position virtually at the end of this deep-drawing operation.
Unlike in the operation shown in Figure 1, in which the edge of the disc is held in
place, during the deep-drawing operation the edge is drawn out between the drawing
die 6 and the blank-holder ring 7. The punch 8 shown is approximately conical in the
vicinity of its end, making it possible to form the conical transition 11 to the base
10 which is customary in many beverage cans. Due to the convex shape 5 of the blank,
the material now matches the shape of the punch better, thus preventing chime wrinkling.
[0032] Due to the hardened and thinner base 10, some of the material emanating from the
centre section of the blank is displaced outwards and, in so doing, forms the transition
zone 11 or even part of the wall of the deep-drawn cup. Consequently, it is possible
to start with a disc diameter of 125 mm in order to form a beverage can with a diameter
of approximately 66 mm and a height of 115 mm, which has hitherto required discs with
a diameter of 130 mm. In the can formed, this leads to a material saving of approximately
8%.
[0033] Fig. 2 also shows a wall-ironing ring 9. By moving the punch 8 further, the cup formed
by deep-drawing can be shaped further into a can body by wall ironing.
[0034] It should be noted that in practice a plurality of wall-ironing rings, for example
2 to 4 such rings, are generally positioned one behind the other. The positioning
of these wall-ironing rings is generally known and is not shown in the figure.
1. Process for producing can bodies from metal blanks (5), which process comprises the
operation of punching discs (1) out of sheet material and the production of can bodies
by deep drawing and/or wall ironing, each can body comprising a can wall and a can
base, characterized in that the sheet material is biaxially stretched at the location of the centre section of
the blank which is to be formed, while an area of the blank which is to be formed,
outside the centre section, is held clamped in place.
2. Process according to Claim 1, characterized in that the discs (1) are stamped out of the sheet material prior to the biaxial stretching
of the centre section of the blank.
3. Process according to Claim 1 or 2, characterized in that steel-based sheet is used as the starting material.
4. Process according to Claim 1, 2 or 3, characterized in that the sheet material is metallically coated and/or coated with a plastic.
5. Process according to one of Claims 1-4, characterized in that the biaxial stretching is carried out by pressing a punch (4) with a convexly shaped
head against the centre section of the blank which is to be formed.
6. Process according to one of Claims 1-5, characterized in that the biaxially stretched centre section corresponds to at least the can base which
is to be formed from the blank.
7. Process according to Claim 6, characterized in that the biaxially stretched centre section comprises also that part of the blank from
which a conical transition part from the can base to the can wall is formed.
8. Process according to Claim 3 or one of Claims 4-7 in combination with Claim 3, characterized in that biaxial stretching is carried out to an extent which results in a thickness reduction
of between 20 and 30% on the average.
9. Process according to Claim 8, characterized in that the thickness reduction is uniformly distributed within a range from 23 to 27%.
10. Process according to one of Claims 5 to 9, characterized in that the starting material is steel sheet which is metallically coated on two sides with
one of the materials selected from the group comprising tin and chromium-chromium
oxide, and which is furthermore coated on two sides with at least one layer of plastic
selected from the group comprising PET, polypropylene and copolymers thereof.
11. Process according to one of Claim 1 to 10, characterized in that the sheet material used has an n-value of at least 0.16.
12. Process according to one of the preceding Claims, characterized in that the can body is produced from the biaxially stretched blank using a single deep-drawing
step, followed by at least one wall-ironing operation.
13. Process according to one of the preceding Claims, characterized in that the biaxial stretching of sheet material, and the forming of can bodies therefrom,
are carried out in line in successive processing steps.
14. Process for producing filled and closed cans, characterized in that can bodies are formed using the process of Claim 10, in combination with Claim 12
or 13, after which the can are filled and are sealed in a known way using a lid.
1. Verfahren zum Herstellen von Dosenkörpern aus Metallrohlingen (5), welches den Arbeitsgang
des Ausstanzens von Scheiben (1) aus Blechmaterial und der Herstellung von Dosenkörpern
durch Tiefziehen und/oder Abstreck- oder Gleitziehen der Wandungen umfasst, wobei
jeder Dosenkörper eine Dosenzarge und einen Dosenboden aufweist, dadurch gekennzeichnet, dass das Blechmaterial entlang zweier Achsen an der Stelle gereckt wird, an der sich der
Mittelabschnitt des zu formenden Metallrohlings befindet, wohingegen ein Bereich des
zu formenden Rohlings, der außerhalb des Mittelabschnitts liegt, in seiner Position
festgeklemmt gehalten wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Scheiben (1) vor dem biaxialen Recken des Mittelabschnitts des Rohlings aus dem
Blechmaterial ausgestanzt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Ausgangsmaterial ein Blech auf Stahlbasis verwendet wird.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das Blechmaterial mit einer metallischen Beschichtung versehen und/oder mit einer
Kunststoffschicht überzogen wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Vorgang des biaxialen Reckens durch Aufpressen eines Stanzteils (4) mit konvex
geformtem Kopf gegen den Mittelabschnitt des zu formenden Rohlings ausgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der biaxial gereckte Mittelabschnitt zumindest dem Boden der Dose entspricht, der
aus dem Rohling geformt werden soll.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der biaxial gereckte Mittelabschnitt auch den Teil des Rohlings umfasst, aus dem
ein konisch zulaufendes Übergangsteil vom Deckel der Dose bis zur Dosenzarge geformt
wird.
8. Verfahren nach Anspruch 3 oder einem der Ansprüche 4 bis 7 in Kombination mit Anspruch
3, dadurch gekennzeichnet, dass der Arbeitsgang des biaxialen Reckens in einem Ausmaß ausgeführt wird, das zur Verringerung
der Dicke um 20 bis 30 % im Mittel führt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Verringerung der Dicke innerhalb eines Bereichs von 23 bis 27 % gleichmäßig verteilt
ist.
10. Verfahren nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass das Ausgangsmaterial ein Stahlblech ist, welches auf zwei Seiten mit einer metallischen
Beschichtung aus einer der Substanzen versehen ist, die aus der Gruppe gewählt sind,
welche Zinn und Chrom-Chromoxid umfasst, und welches außerdem auf zwei Seiten mit
mindestens einer Kunststoffschicht versehen ist, die aus der Gruppe gewählt ist, welche
PET, Polypropylen und deren Kopolymere umfasst.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das verwendete Blechmaterial einen n-Wert von mindestens 0,16 aufweist.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Dosenkorpus aus dem biaxial gereckten Rohling unter Einsatz eines Arbeitsschritts
mit Tiefziehen mit mindestens einem anschließenden Arbeitsgang zum Abstreckziehen
hergestellt wird.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Arbeitsgang des biaxialen Reckens des Blechmaterials und der Arbeitsgang der
Formung von Dosenkörpern aus diesem Blech in aufeinander folgenden Bearbeitungsgängen
auf einer Produktionsstraße stattfinden.
14. Verfahren zur Herstellung befüllter und verschlossener Dosen, dadurch gekennzeichnet, dass unter Anwendung des Verfahrens nach Anspruch 10 in Verbindung mit Anspruch 12 oder
13 Dosenkörper gebildet werden, und dass anschließend die Dosen in an sich bekannter
Weise befüllt und unter Verwendung eines Deckels dicht verschlossen werden.
1. Procédé pour fabriquer des corps de boîtes à partir d'ébauches métalliques (5), ce
procédé comprenant l'opération consistant à découper des disques (1) à l'emporte-pièce
dans de la tôle métallique et à fabriquer des corps de boîtes par emboutissage profond
et/ou étirage de paroi, chaque corps de boîte comportant une paroi et une base de
boîte, caractérisé en ce que la tôle est soumise à un étirage bi-axial au niveau de la partie centrale de l'ébauche
à mettre en forme, tandis qu'une zone de l'ébauche à mettre en forme en dehors de
la partie centrale, est maintenue en place par serrage.
2. Procédé selon la revendication 1, caractérisé en ce que les disques (1) sont formés par estampage de la tôle métallique avant l'étirage bi-axial
de la partie centrale de l'ébauche.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la tôle à base d'acier est utilisée comme matière initiale.
4. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que la tôle est revêtue de métal et/ou est revêtue de matière plastique.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'étirage bi-axial est effectué en poussant un poinçon (4) à tête de forme convexe
contre la partie centrale de l'ébauche à mettre en forme.
6. Procédé selon quelconque des revendications 1 à 5, caractérisé en ce que la partie centrale soumise à un étirage bi-axial correspond au moins à la base de
boîte à mettre en forme à partir de l'ébauche.
7. Procédé selon la revendication 6, caractérisé en ce que la partie centrale soumise à un étirage bi-axial comporte également la partie de
l'ébauche à partir de laquelle est formée une partie de transition conique depuis
la base de la boîte vers la paroi de la boîte.
8. Procédé selon la revendication 3 ou selon l'une quelconque des revendications 4 à
7 en combinaison avec la revendication 3, caractérisé en ce que l'étirage bi-axial est effectué dans une mesure qui aboutit à une réduction d'épaisseur
comprise en moyenne entre 20 et 30%.
9. Procédé selon la revendication 8, caractérisé en ce que la réduction d'épaisseur est uniformément répartie entre 23 et 27%.
10. Procédé selon l'une quelconque des revendications 5 à 9, caractérisé en ce que la matière initiale est de la tôle d'acier pourvue d'un revêtement métallique sur
ses deux faces, l'une des matières étant choisie dans le groupe comprenant l'étain
et le chrome-oxyde de chrome, et en outre revêtue sur ses deux faces d'au moins une
couche de matière plastique choisie dans le groupe comprenant le PET, le polypropylène
et des copolymères de ceux-ci.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la tôle utilisée a une valeur n d'au moins 0,16.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le corps de boîte est réalisé à partir de l'ébauche soumis à un étirage bi-axial
en utilisant une seule étape d'emboutissage profond suivie par au moins une opération
d'étirage de paroi.
13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étirage bi-axial de la tôle et la mise en forme de corps de boîte à partir de celle-ci
sont effectués sur une chaîne lors d'étapes de traitement successives.
14. Procédé pour réaliser des boîtes remplies et fermées, caractérisé en ce que des corps de boîtes sont formés à l'aide du procédé selon la revendication 10, en
combinaison avec la revendication 12 ou 13, après quoi les boîtes sont remplies et
sont fermées hermétiquement d'une manière connue, à l'aide d'un couvercle.
