(19)
(11) EP 0 909 921 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Hinweis auf die Patenterteilung:
02.01.2003  Patentblatt  2003/01

(21) Anmeldenummer: 97810773.8

(22) Anmeldetag:  14.10.1997
(51) Internationale Patentklassifikation (IPC)7F23D 23/00, F23D 17/00, F23D 14/02, F23D 14/78

(54)

Brenner für den Betrieb eines Wärmeerzeugers

Burner for operating a heat generator

Brûleur pour la mise en oeuvre d'un générateur de chaleur


(84) Benannte Vertragsstaaten:
CH DE FR GB LI NL SE

(43) Veröffentlichungstag der Anmeldung:
21.04.1999  Patentblatt  1999/16

(73) Patentinhaber: ALSTOM
75116 Paris (FR)

(72) Erfinder:
  • Knöpfel, Hans Peter
    5627 Besenbüren (CH)
  • Ruck, Thomas
    5507 Mellingen (CH)

(74) Vertreter: Berglund, Stefan et al
Bjerkéns Patentbyra KB Östermalmsgatan 58
114 50 Stockholm
114 50 Stockholm (SE)


(56) Entgegenhaltungen: : 
EP-A- 0 376 259
EP-A- 0 780 630
DE-A- 3 033 988
EP-A- 0 670 456
EP-A- 0 797 051
   
  • PATENT ABSTRACTS OF JAPAN vol. 18, no. 341 (M-1629), 28.Juni 1994 & JP 06 082084 A (SHOEI SEISAKUSHO), 22.März 1994,
  • PATENT ABSTRACTS OF JAPAN vol. 96, no. 7, 31.Juli 1996 & JP 08 082419 A (HITACHI LTD), 26.März 1996,
   
Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


Beschreibung

Technisches Gebiet



[0001] Die Erfindung betrifft einen Brenner für den Betrieb eines Wärmeerzeugers gemäss Anspruch 1.

Stand der Technik



[0002] Aus EP-0 797 051 A2 ist ein Brenner bekanntgeworden, der anströmungsseitig aus einem Drallerzeuger besteht, wobei die hierin gebildete Strömung nahtlos in eine Mischstrecke übergeführt wird. Dies geschieht anhand einer am Anfang der Mischstrecke zu diesem Zweck gebildeten Strömungssgeometrie, welche aus Uebergangskanälen besteht, die sektoriell, entsprechend der Zahl der wirkenden Teilkörper des Drallerzeugers, die Stirnfläche der Mischstrecke erfassen und in Strömungsrichtung drallförmig verlaufen. Abströmungsseitig dieser Uebergangskanäle weist die Mischstrecke eine Anzahl Filmlegungsbohrungen auf, welche eine Erhöhung der Strömungsgeschwindigkeit entlang der Rohrwand gewährleisten. Anschliessend folgt eine Brennkammer, wobei der Uebergang zwischen der Mischstrecke und der Brennkammer durch einen Querschnittssprung gebildet wird, in dessen Ebene sich eine Rückströmzone oder Rückströmblase bildet.

[0003] Konzentrisch zur Mischstrecke ist eine Vielzahl von Mischelementen vorgesehen, welche der Bildung eines Gemisches aus Verbrennungsluft und Brennstoff dienen. Dieses Gemisch aus dem jeweiligen Mischelement bildet dann jeweils eine Pilotstufe der Brennkammer.

[0004] Dieser Brenner gewährleislet gegenüber denjenigen aus dem vorangegangenen Stand der Technik eine signifikante Verbesserung hinsichtlich Stärkung der Flammenstabilität, tieferer Schadstoff-Emissionen, geringerer Pulsationen, vollständigen Ausbrandes, grossen Betriebsbereichs, guter Querzündung zwischen den verschiedenen Brennem, kompakter Bauweise, verbesserter Mischung, etc.. Dieser Brenner weist autonome Vorkehrungen auf, um die Gasturbine insbesondere in ihren transienten Lastbereichen sicher fahren zu können. Dabei muss die Integrierung von solchen Vorkehrungen in den Brenner zu keinen zusätzlichen Schadstoff-Emissionen führen, welche die betrieblichen und emissionsmässigen Vorteile des zugrundegelegten Brenners in Frage stellen könnten.

Darstellung der Erfindung



[0005] Hier will die Erfindung Abhilfe schaffen. Der Erfindung liegt die Aufgabe zugrunde, bei einem Brenner der eingangs genannten Art Vorkehrungen vorzuschlagen, welche eine Stärkung der Flammenstabilität für einen stabilen Betrieb, insbesondere in den transienten Lastbereichen, gewährleisten, unter der weiteren Aufgabenstellung, dass die Schadstoff-Emissionen tief bleiben.

[0006] Zu diesem Zweck wird der Brenner derart erweitert, dass im Bereich seines Ueberganges zum nachgeschalteten Brennraum ein ringförmiges System zur Bereitstellung eines Brennstoff/Luft-Gemisches vorgesehen wird, das allgemein als Pilotstufe fungiert. Durch eine Anzahl in Umfangsrichtung vorgehener Austrittsbohrungen in den Brennraum werden entsprechende Pilotbrenner geschaffen, welche aus Stabilitätsgründen im Diffusionsbetrieb betrieben werden und direkt in den Brennraum wirken.

[0007] Die wesentlichen Vorteile des erfindungsgemässen Gegenstandes sind darin zu sehen, dass diese einzelnen Pilotbrenner mit einem geringen Gasanteil betrieben werden, so dass sich das dort eingebrachte Gas mit einem verhältnismässig kleinen Luftanteil vermischt und als vorgemischte Flamme mit minimierten Schadstoff-Emissionen brennt.

[0008] Diese Luftmenge übernimmt zunächst anhand einer Prallkühlung die Kühlung der brennkammerabgewandten Seite, bevor sie sich dann mit dem Gas vermischt und anschliessend als vorgemischte Flamme mit minimierten Schadstoff-Emissionen die Pilotierung der Hauptflamme im Brennraum aufrechterhält.

[0009] Durch diese Prallkühlung ist die Oberfläche des Pilotgasringes vom heissen Gas und von der Flammenstrahlung aus dem Brennraum weitgehend isoliert, so dass die thermische Belastung in diesem Bereich wesentlich verringert wird.

[0010] Auch bei 100% Pilotbetrieb brennen die einzelnen Pilotbrenner, aus Stabilitätsgründen im Diffusionsbetrieb, da hier der Anteil der Kühllluft gegenüber dem Gas sehr klein ist.

[0011] Mit dem erfindungsgemässen Gegenstand wird auch erreicht, dass die minimierte Kühlmenge ebenfalls dem Brennprozess zugeführt werden kann.

[0012] Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.

[0013] Im folgenden werden anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung unwesentlichen Merkmale sind fortgelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.

Kurze Bezeichnung der Zeichnungen



[0014] Es zeigt:
Fig. 1
einen als Vormischbrenner ausgelegten Brenner mit einer Mischstrecke stromab eines Drallerzeugers sowie mit Pilotbrennern,
Fig. 2
eine schematische Darstellung des Brenners gemäss Fig. 1 mit Disposition der zusätzlichen Brennstoff-Injektoren.
Fig. 3
einen aus mehreren Schalen bestehenden Drallerzeuger in perspektivischer Darstellung, entsprechend aufgeschnitten,
Fig. 4
einen Querschnitt durch einen zweischaligen Drallerzeuger,
Fig. 5
einen Querschnitt durch einen vierschaligen Drallerzeuger,
Fig. 6
eine Ansicht durch einen Drallerzeuger, dessen Schalen schaufelförmig profiliert sind,
Fig. 7
eine Ausgestaltung der Uebergangsgeometrie zwischen Drallerzeuger und Mischstrecke und
Fig. 8
eine Abrisskante zur räumlichen Stabilisierung der Rückströmzone.

Wege zur Ausführung der Erfindung, gewerbliche Verwendbarkeit



[0015] Fig. 1 zeigt den Gesamtaufbau eines Brenners. Anfänglich ist ein Drallerzeuger 100 wirksam, dessen Ausgestaltung in den nachfolgenden Fig. 3-6 noch näher gezeigt und beschrieben wird. Es handelt sich bei diesem Drallerzeuger 100 um ein kegelförmiges Gebilde, das tangential mehrfach von einem tangential einströmenden Verbrennungsluftstromes 115 beaufschlagt wird. Die sich hierein bildende Strömung wird anhand einer stromab des Drallerzeugers 100 vorgesehenen Uebergangsgeometrie nahtlos in ein Uebergangsstück 200 übergeleitet, dergestalt, dass dort keine Ablösungsgebiete auftreten können. Die Konfiguration dieser Uebergangsgeometrie wird unter Fig. 6 näher beschrieben. Dieses Uebergangsstück 200 ist abströmungsseitig der Uebergangsgeometrie durch ein Mischrohr 20 verlängert, wobei beide Teile die eigentliche Mischstrecke 220 bilden. Selbstverständlich kann die Mischstrecke 220 aus einem einzigen Stück bestehen, d.h. dann, dass das Uebergangsstück 200 und das Mischrohr 20 zu einem einzigen zusammenhängenden Gebilde verschmelzen, wobei die Charakteristiken eines jeden Teils erhalten bleiben. Werden Uebergangsstück 200 und Mischrohr 20 aus zwei Teilen erstellt, so sind diese durch einen Buchsenring 10 verbunden, wobei der gleiche Buchsenring 10 kopfseitig als Verankerungsfläche für den Drallerzeuger 100 dient. Ein solcher Buchsenring 10 hat darüber hinaus den Vorteil, dass verschiedene Mischrohre eingesetzt werden können. Abströmungsseitig des Mischrohres 20 befindet sich der eigentliche Brennraum 30 einer Brennkammer, welche hier lediglich durch ein Flammrohr versinnbildlicht ist. Die Mischstrecke 220 erfüllt weitgehend die Aufgabe, dass stromab des Drallerzeugers 100 eine definierte Strecke bereitgestellt wird, in welcher eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt werden kann. Diese Mischstrecke, also vordergründig das Mischrohr 20, ermöglicht des weiteren eine verlustfreie Strömungsführung, so dass sich auch in Wirkverbindung mit der Uebergangsgeometrie zunächst keine Rückströmzone oder Rückströmblase bilden kann, womit über die Länge der Mischstrecke 220 auf die Mischungsgüte für alle Brennstoffarten Einfluss ausgeübt werden kann. Diese Mischstrecke 220 hat aber noch eine andere Eigenschaft, welche darin besteht, dass in ihr selbst das Axialgeschwindigkeits-Profil ein ausgeprägtes Maximum auf der Achse besitzt, so dass eine Rückzündung der Flamme aus der Brennkammer nicht möglich ist. Allerdings ist es richtig, dass bei einer solchen Konfiguration diese Axialgeschwindigkeit zur Wand hin abfällt. Um Rückzündung auch in diesem Bereich zu unterbinden, wird das Mischrohr 20 in Strömungs- und Umfangsrichtung mit einer Anzahl regelmässig oder unregelmässig verteilter Bohrungen 21 verschiedenster Querschnitte und Richtungen versehen, durch welche eine Luftmenge in das Innere des Mischrohres 20 strömt, und entlang der Wand im Sinne einer Filmlegung eine Erhöhung der Durchfluss-Geschwindigkeit induzieren. Diese Bohrungen 21 können auch so ausgelegt werden, dass sich an der Innenwand des Mischrohres 20 mindestens zusätzlich noch eine Effusionskühlung einstellt. Eine andere Möglichkeit eine Erhöhung der Geschwindigkeit des Gemisches innerhalb des Mischrohres 20 zu erzielen, besteht darin, dass dessen Durchflussquerschnitt abströmungsseitig der Uebergangskanäle 201, welche die bereits genannten Uebergangsgeometrie bilden, eine Verengung erfährt, wodurch das gesamte Geschwindigkeitsniveau innerhalb des Mischrohres 20 angehoben wird. In der Figur verlaufen diese Bohrungen 21 unter einem spitzen Winkel gegenüber der Brennerachse 60. Des weiteren entspricht der Auslauf der Uebergangskanäle 201 dem engsten Durchflussquerschnitt des Mischrohres 20. Die genannten Uebergangskanäle 201 überbrükken demnach den jeweiligen Querschnittsunterschied, ohne dabei die gebildete Strömung negativ zu beeinflussen. Wenn die gewählte Vorkehrung bei der Führung der Rohrströmung 40 entlang des Mischrohres 20 einen nicht tolerierbaren Druckverlust auslöst, so kann hiergegen Abhilfe geschaffen werden, indem am Ende dieses Mischrohres ein in der Figur nicht gezeigter Diffusor vorgesehen wird. Am Ende des Mischrohres 20 schliesst sich sodann eine Brennkammer 30 (Brennraum) an, wobei zwischen den beiden Durchflussquerschnitten ein durch eine Brennerfront 70 gebildeter Querschnittssprung vorhanden ist. Erst hier bildet sich eine zentrale Flammenfront mit einer Rückströmzone 50, welche gegenüber der Flammenfront die Eigenschaften eines körperlosen Flammenhalters aufweist. Bildet sich innerhalb dieses Querschnittssprunges während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, so führt dies zu einer verstärkten Ringstabilisation der Rückströmzone 50. Danebst darf nicht unerwähnt bleiben, dass die Erzeugung einer stabilen Rückströmzone 50 auch eine ausreichend hohe Drallzahl in einem Rohr erfordert. Ist eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner stark verdrallter Luftströmungen am Rohrende, beispielsweise durch tangentiale Oeffnungen, erzeugt werden. Dabei geht man hier davon aus, dass die hierzu benötigte Luftmenge in etwa 5-20% der Gesamtluftmenge beträgt. Was die Ausgestaltung der Brennerfront 70 am Ende des Mischrohres 20 zur Stabilisierung der Rückströmzone oder Rückströmblase 50 betrifft, wird auf die Beschreibung unter Fig. 8 verwiesen.
Konzentrisch zum Mischrohr 20, im Bereich seines Auslaufes, wird ein Pilotbrennersystem 300 vorgesehen. Dieses besteht aus einer inneren Ringkammer 301, in welche ein Brennstoff, vorzugsweise ein gasförmiger Brennstoff 303 einströmt. Nebengeordnet zu dieser inneren Ringkammer 301 ist eine zweite Ringkammer 302 disponiert, in welche eine Luftmenge 304 einströmt. Beide Ringkammern 301, 302 weisen individuell gestaltete Durchgangsöffnungen auf, dergestalt, dass die einzelnen Medien 303, 304 funktionsbedingt in eine gemeinsame nachgeschaltete Ringkammer 308 strömen. Die Ueberleitung des gasförmigen Brennstoffes 303 von der Ringkammer 301 in die nachgeschaltete Ringkammer 308 wird durch eine Anzahl in Umfangsrichtung angeordneter Oeffnungen 309 bewerkstelligt. Die Durchgangsgeometrie dieser Oeffnungen 309 ist so gestaltet, dass der gasförmige Brennstoff 303 mit einem grossen Vermischungspotential in die nachgeschaltete Ringkammer 308 einströmt. Die andere Ringkammer 302 schliesst mit einer gelochten Platte 305 ab, wobei die hier vorgesehenen Bohrungen 310 so gestaltet sind, dass die dort durchströmende Luftmenge 304 eine Prallkühlung auf die Bodenplatte 307 der nachgeschalteten Ringkammer 308. Diese Bodenplatte hat die Funktion eines Hitzeschutzbleches gegenüber der kalorischen Belastung aus dem Brennraum 30, so dass diese Prallkühlung hier äusserst effizient ausfallen muss.

[0016] Diese Luft vermischt sich nach vollzogener Kühlung innerhalb dieser Ringkammer 308 mit dem hinzuströmenden gasförmigen Brennstoff 303 aus den Oeffnungen 309 der stromauf angeordneten Ringkammer 301, bevor dieses Gemisch dann durch eine Anzahl brennraumseitig angeordneter Bohrungen 306 in den Brennraum 30 abströmt. Das hier ausströmende Gemisch brennt als vorgemischte Diffusionsflamme mit minimierten Schadstoff-Emissionenen und bildet sonach je Bohrung 306 einen in den Brennraum 30 wirkenden Pilotbrenner, welcher einen stabilen Betrieb gewährleistet.

[0017] Fig. 2 zeigt eine schematische Ansicht des Brenners gemäss Fig. 1, wobei hier insbesondere auf die Umspülung einer zentral angeordneten Brennstoffdüse 103 und auf die Wirkung von Brennstoff-Injektoren 170 hingewiesen wird. Die Wirkungsweise der restlichen Hauptbestandteile des Brenners, nämlich Drallerzeuger 100 und Uebergangsstück 200 werden unter den nachfolgenden Figuren näher beschrieben. Die Brennstoffdüse 103 wird mit einem beabstandeten Ring 190 ummantelt, in welchem eine Anzahl in Umfangsrichtung disponierter Bohrungen 161 gelegt sind, durch welche eine Luftmenge 160 in eine ringförmige Kammer 180 strömt und dort die Umspülung der Brennstofflanze vomimmt. Diese Bohrungen 161 sind schräg nach vorne angelegt, dergestalt, dass eine angemessene axiale Komponente auf der Brennerachse 60 entsteht. In Wirkverbindung mit diesen Bohrungen 161 sind zusätzliche Brennstoff-Injektoren 170 vorgesehen, welche eine bestimmte Menge vorzugsweise eines gasförmigen Brennstoffes in die jeweilige Luftmenge 160 eingeben, dergestalt, dass sich im Mischrohr 20 eine gleichmässige Brennstoffkonzentration 150 über den Strömungsquerschnitt einstellt, wie die Darstellung in der Figur versinnbildlichen will. Genau diese gleichmässige Brennstoffkonzentration 150, insbesondere die starke Konzentration auf der Brennerachse 60 sorgt dafür, dass sich eine Stabilisierung der Flammenfront am Ausgangs des Brenners einstellt, womit aufkommende Brennkammerpulsationen vermieden werden.

[0018] Um den Aufbau des Drallerzeugers 100 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 3 mindestens Fig. 4 herangezogen wird. Im folgenden wird bei der Beschreibung von Fig. 3 nach Bedarf auf die übrigen Figuren hingewiesen.

[0019] Der erste Teil des Brenners nach Fig. 1 bildet den nach Fig. 3 gezeigten Drallerzeuger 100. Dieser besteht aus zwei hohlen kegelförmigen Teilkörpern 101, 102, die versetzt zueinander ineinandergeschachtelt sind. Die Anzahl der kegelförmigen Teilkörper kann selbstverständlich grösser als zwei sein, wie die Figuren 5 und 6 zeigen; dies hängt jeweils, wie weiter unten noch näher zur Erläuterung kommen wird, von der Betriebsart des ganzen Brenners ab. Es ist bei bestimmten Betriebskonstellationen nicht ausgeschlossen, einen aus einer einzigen Spirale bestehenden Drallerzeuger vorzusehen. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachsen 101b, 102b (Vgl. Fig. 4) der kegeligen Teilkörper 101, 102 zueinander schafft bei der benachbarten Wandung, in spiegelbildlicher Anordnung, jeweils einen tangentialen Kanal, d.h. einen Lufteintrittsschlitz 119, 120 (Vgl. Fig. 4), durch welche die Verbrennungsluft 115 in Innenraum des Drallerzeugers 100, d.h. in den Kegelhohlraum 114 desselben strömt. Die Kegelform der gezeigten Teilkörper 101, 102 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teilkörper 101, 102 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich einer Trompete resp. Tulpe. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 101, 102 weisen je einen zylindrischen ringförmigen Anfangsteil 101a auf. Im Bereich dieses zylindrischen Anfangsteils ist die bereits unter Fig. 2 erwähnte Brennstoffdüse 103 untergebracht, welche vorzugsweise mit einem flüssigen Brennstoff 112 betrieben wird. Die Eindüsung 104 dieses Brennstoffes 112 fällt in etwa mit dem engsten Querschnitt des durch die kegeligen Teilkörper 101, 102 gebildeten Kegelhohlraumes 114 zusammen. Die Eindüsungskapazität und die Art dieser Brennstoffdüse 103 richtet sich nach den vorgegebenen Parametern des jeweiligen Brenners. Die kegeligen Teilkörper 101, 102 weisen des weiteren je eine Brennstoffleitung 108, 109 auf, welche entlang der tangentialen Lufteintrittsschlitze 119, 120 angeordnet und mit Eindüsungsöffnungen 117 versehen sind, durch welche vorzugsweise ein gasförmiger Brennstoff 113 in die dort durchströmende Verbrennungsluft 115 eingedüst wird, wie dies die Pfeile 116 versinnbildlichen wollen. Diese Brennstoffleitungen 108, 109 sind vorzugsweise spätestens am Ende der tangentialen Einströmung, vor Eintritt in den Kegelhohlraum 114, angeordnet, dies um eine optimale Luft/Brennstoff-Mischung zu erhalten. Bei dem durch die Brennstoffdüse 103 herangeführten Brennstoff 112 handelt es sich, wie erwähnt, im Normalfall um einen flüssigen Brennstoff, wobei eine Gemischbildung mit einem anderen Medium, beispielsweise mit einem rückgeführten Rauchgas, ohne weiteres möglich ist. Dieser Brennstoff 112 wird unter einem vorzugsweise sehr spitzen Winkel in den Kegelhohlraum 114 eingedüst. Aus der Brennstoffdüse 103 bildet sich sonach ein kegeliges Brennstoffspray 105, das von der tangential einströmenden rotierenden Verbrennungsluft 115 umschlossen und abgebaut wird. In axialer Richtung wird sodann die Konzentration des eingedüsten Brennstoffes 112 fortlaufend durch die einströmenden Verbrennungsluft 115 zu einer Vermischung Richtung Verdampfung abgebaut. Wird ein gasförmiger Brennstoff 113 über die Oeffnungsdüsen 117 eingebracht, geschieht die Bildung des Brennstoff/Luft-Gemisches direkt am Ende der Lufteintrittsschlitze 119, 120. Ist die Verbrennungsluft 115 zusätzlich vorgeheizt, oder beispielsweise mit einem rückgeführten Rauchgas oder Abgas angereichert, so unterstützt dies nachhaltig die Verdampfung des flüssigen Brennstoffes 112, bevor dieses Gemisch in die nachgeschaltete Stufe strömt, hier in das Uebergangsstück 200 (Vgl. Fig. 1 und 7). Die gleichen Ueberlegungen gelten auch, wenn über die Leitungen 108, 109 flüssige Brennstoffe zugeführt werden sollten. Bei der Gestaltung der kegeligen Teilkörper 101, 102 hinsichtlich des Kegelwinkels und der Breite der tangentialen Lufteintrittsschlitze 119, 120 sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft 115 am Ausgang des Drallerzeugers 100 einstellen kann. Allgemein ist zu sagen, dass eine Verkleinerung der tangentialen Lufteintrittsschlitze 119, 120 die schnellere Bildung einer Rückströmzone bereits im Bereich des Drallerzeugers begünstigt. Die Axialgeschwindigkeit innerhalb des Drallerzeugers 100 lässt sich durch eine entsprechende unter Fig. 2 (Pos. 160) näher beschriebene Zuführung einer Luftmenge erhöhen bzw. stabilisieren. Eine entsprechende Drallerzeugung in Wirkverbindung mit dem nachgeschalteten Uebergangsstück 200 (Vgl. Fig. 1 und 7) verhindert die Bildung von Strömungsablösungen innerhalb des dem Drallerzeuger 100 nachgeschalteten Mischrohr. Die Konstruktion des Drallerzeugers 100 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 119, 120 zu verändern, womit ohne Veränderung der Baulänge des Drallerzeugers 100 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 101, 102 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben vorgesehen werden kann. Es ist des weiteren möglich, die Teilkörper 101, 102 durch eine gegenläufig drehende Bewegung spiralartig ineinander zu verschachteln. Somit ist es möglich, die Form, die Grösse und die Konfiguration der tangentialen Lufteintrittsschlitze 119, 120 beliebig zu variieren, womit der Drallerzeuger 100 ohne Veränderung seiner Baulänge universell einsetzbar ist.

[0020] Aus Fig. 4 geht unter anderen die geometrische Konfiguration von wahlweise vorzusehenden Leitbleche 121a, 121b hervor. Sie haben Strömungseinleitungsfunktion, wobei diese, entsprechend ihrer Länge, das jeweilige Ende der kegeligen Teilkörper 101, 102 in Anströmungsrichtung gegenüber der Verbrennungsluft 115 verlängern. Die Kanalisierung der Verbrennungsluft 115 in den Kegelhohlraum 114 kann durch Oeffnen bzw. Schliessen der Leitbleche 121a, 121b um einen im Bereich des Eintritts dieses Kanals in den Kegelhohlraum 114 plazierten Drehpunkt 123 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 119, 120 dynamisch verändert werden soll, beispielsweise um eine Aenderung der geschwindigkeit der Verbrennungsluft 115 zu erreichen. Selbstverständlich können diese dynamische Vorkehrungen auch statisch vorgesehen werden, indem bedarfsmässige Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 101, 102 bilden.

[0021] Fig. 5 zeigt gegenüber Fig. 4, dass der Drallerzeuger 100 nunmehr aus vier Teilkörpern 130, 131, 132, 133 aufgebaut ist. Die dazugehörigen Längssymmetrieachsen zu jedem Teilkörper sind mit der Buchstabe a gekennzeichnet. Zu dieser Konfiguration ist zu sagen, dass sie sich aufgrund der damit erzeugten, geringeren Drallstärke und im Zusammenwirken mit einer entsprechend vergrösserten Schlitzbreite bestens eignet, das Aufplatzen der Wirbelströmung abströmungsseitig des Drallerzeugers im Mischrohr zu verhindern, womit das Mischrohr die ihm zugedachte Rolle bestens erfüllen kann.

[0022] Fig. 6 unterscheidet sich gegenüber Fig. 5 insoweit, als hier die Teilkörper 140, 141, 142, 143 eine Schaufelprofilform haben, welche zur Bereitstellung einer gewissen Strömung vorgesehen wird. Ansonsten ist die Betreibungsart des Drallerzeugers die gleiche geblieben. Die Zumischung des Brennstoffes 116 in den Verbrennungsluftstromes 115 geschieht aus dem Innern der Schaufelprofile heraus, d.h. die Brennstoffleitung 108 ist nunmehr in die einzelnen Schaufeln integriert. Auch hier sind die Längssymmetrieachsen zu den einzelnen Teilkörpern mit der Buchstabe a gekennzeichnet.

[0023] Fig. 7 zeigt das Uebergangsstück 200 in dreidimensionaler Ansicht. Die Uebergangsgeometrie ist für einen Drallerzeuger 100 mit vier Teilkörpern, entsprechend der Fig. 5 oder 6, aufgebaut. Dementsprechend weist die Uebergangsgeometrie als natürliche Verlängerung der stromauf wirkenden Teilkörper vier Uebergangskanäle 201 auf, wodurch die Kegelviertelfläche der genannten Teilkörper verlängert wird, bis sie die Wand des Mischrohres schneidet. Die gleichen Ueberlegungen gelten auch, wenn der Drallerzeuger aus einem anderen Prinzip, als den unter Fig. 3 beschriebenen, aufgebaut ist. Die nach unten in Strömungsrichtung verlaufende Fläche der einzelnen Uebergangskanäle 201 weist eine in Strömungsrichtung spiralförmig verlaufende Form auf, welche einen sichelförmigen Verlauf beschreibt, entsprechend der Tatsache, dass sich vorliegend der Durchflussquerschnitt des Uebergangsstückes 200 in Strömungsrichtung konisch erweitert. Der Drallwinkel der Uebergangskanäle 201 in Strömungsrichtung ist so gewählt, dass der Rohrströmung anschliessend bis zum Querschnittssprung am Brennkammereintritt noch eine genügend grosse Strecke verbleibt, um eine perfekte Vormischung mit dem eingedüsten Brennstoff zu bewerkstelligen. Ferner erhöht sich durch die oben genannten Massnahmen auch die Axialgeschwindigkeit an der Mischrohrwand stromab des Drallerzeugers. Die Uebergangsgeometrie und die Massnahmen im Bereich des Mischrohres bewirken eine deutliche Steigerung des Axialgeschwindigkeitsprofils zum Mittelpunkt des Mischrohres hin, so dass der Gefahr einer Frühzündung entscheidend entgegengewirkt wird.

[0024] Fig. 8 zeigt die bereits angesprochene Abrisskante, welche am Brenneraustritt gebildet ist. Der Durchflussquerschnitt des Rohres 20 erhält in diesem Bereich einen Uebergangsradius R, dessen Grösse grundsätzlich von der Strömung innerhalb des Rohres 20 abhängt. Dieser Radius R wird so gewählt, dass sich die Strömung an die Wand anlegt und so die Drallzahl stark ansteigen lässt. Quantitativ lässt sich die Grösse des Radius R so definieren, dass dieser > 10% des Innendurchmessers d des Rohres 20 beträgt. Gegenüber einer Strömung ohne Radius vergrössert sich nun die Rückströmblase 50 gewaltig. Dieser Radius R verläuft bis zur Austrittsebene des Rohres 20, wobei der Winkel β zwischen Anfang und Ende der Krümmung < 90° beträgt. Entlang des einen Schenkels des Winkels β verläuft die Abrisskante A ins Innere des Rohres 20 und bildet somit eine Abrissstufe S gegenüber dem vorderen Punkt der Abrisskante A, deren Tiefe > 3 mm beträgt. Selbstverständlich kann die hier parall zur Austrittsebene des Rohres 20 verlaufende Kante anhand eines gekrümmten Verlaufs wieder auf Stufe Austrittsebene gebracht werden. Der Winkel β', der sich zwischen Tangente der Abrisskante A und Senkrechte zur Austrittsebene des Rohres 20 ausbreitet, ist gleich gross wie Winkel β. Die Vorteile dieser Ausbildung dieser Abrisskante gehen aus EP-0 780 629 A2 unter Dem Kapitel "Darstellung der Erfindung" hervor. Eine weitere Ausgestaltung der Abrisskante zum selben Zweck lässt sich mit brennkammerseitigen torusähnlichen Einkerbungen erreichen. Diese Druckschrift ist einschliessend des dortigen Schutzumfanges was die Abrisskante betrifft ein integrierender Bestandteil vorliegender Beschreibung.

Bezugszeichenliste



[0025] 
10
Buchsenring
20
Mischrohr, Teil der Mischstrecke 220
21
Bohrungen, Oeffnungen
30
Brennkammer, Brennraum
40
Strömung, Rohrströmung im Mischrohr, Hauptströmung
50
Rückströmzone, Rückströmblase
60
Brennerachse
100
Drallerzeuger
101, 102
Kegelförmige Teilkörper
101a
Ringförmiger Anfangsteil
101b, 102b
Längssymmetrieachsen
103
Brennstoffdüse
104
Brennstoffeindüsung
105
Brennstoffspray (Brennstoffeindüsungsprofil)
108, 109
Brennstoffleitungen
112
Flüssiger Brennstoff
113
Gasförmiger Brennstoff
114
Kegelhohlraum
115
Verbrennungsluft (Verbrennungsluftstrom)
116
Brennstoff-Eindüsung aus den Leitungen 108, 109
117
Brennstoffdüsen
119, 120
Tangentiale Lufteintrittsschlitze
121a, 121b
Leitbleche
123
Drehpunkt der Leitbleche
130, 131, 132, 133
Teilkörper
131a, 131a, 132a, 133a
Längssymmetrieachsen
140, 141, 142, 143
Schaufelprofilförmige Teilkörper
140a, 141a, 142a, 143a
Längssymmetrieachsen
150
Brennstoffkonzentration
160
Luftmenge, Mischluft
161
Bohrungen, Oeffnungen
170
Brennstoff-Injektoren
180
Ringförmige Luftkammer
190
Ring
200
Uebergangsstück, Teil der Mischstrecke 220
201
Uebergangskanäle
220
Mischstrecke
300
Pilotbrennersystem
301
Innere Ringkammer
302
Nebengeordnete Ringkammer
303
Gasförmiger Brennstoff
304
Luftmenge
305
Gelochte Platte
306
Bohrungen in den Brennraum, Pilotbrenner
307
Hitzeschutzblech
308
Nachgeschaltete Ringkammer
309
Oeffnungen der inneren Ringkammer
310
Löcher für Prallkühlung des Hitzeschutzbleches



Ansprüche

1. Brenner zum Betrieb eines Wärmeerzeugers, wobei der Brenner im wesentlichen aus einem Drallerzeuger (100) für einen Verbrennungsluftstrom, aus Mitteln zur Eindüsung mindestens eines Brennstoffes in den Verbrennungsluftstrom besteht, wobei stromab des Drallerzeugers eine Mischstrecke (220) angeordnet ist, welche innerhalb eines ersten Streckenteils in Strömungsrichtung eine Anzahl Uebergangskanäle (201) zur Ueberführung einer im Drallerzeuger gebildeten Strömung in ein stromab dieser Uebergangskanäle nachgeschaltetes Mischrohr (20) aufweist, wobei im unteren Bereich des Mischrohres (20) mit Wirkung in einen dem Mischrohr (20) nachgeschalteten Brennraum (30) ein Pilotbrennersystem (300) angeordnet ist, welches aus mindestens zwei medienführenden Kammern (301, 302) und aus einer weiteren gemeinsamen nachgeschalteten Kammer (308) besteht, wobei in dieser nachgeschalteten Kammer (308) die Medien (303, 304) aus den beiden anderen Kammern (301, 302) mischbar sind, und wobei die nachgeschaltete Kammer (308) Mittel zur Bildung von in den Brennraum (30) wirkenden vom Gemisch der beiden Medien (303, 304) betreibbaren Pilotbrennern (306) aufweist.
 
2. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass durch die medienführenden Kammern (301, 303) ringförmig und nebengeordnet ausgebildet sind, dass durch die erste Ringkammer (301) ein gasförmiger Brennstoff (303) und durch die zweite Ringkammer (302) eine Luftmenge (304) strömen, dass in der zweiten Ringkammer (302) Mittel (305) eingebaut sind, durch welche die dort strömende Luft (304) eine Prallkühlung auf ein endseitig des Pilotbrennersystems (300) angeordnetes Hitzeschutzblech (307) bewerkstelligt.
 
3. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass das Mittel zur Bildung der Prallkühlung eine in der nebengeordneten Ringkammer (302) bodenbildende gelochte Platte (305) ist.
 
4. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel aus einem kopfseitig des Drallerzeugers (100) und in Wirkverbindung mit einer Brennstoffdüse (103) angeordneten Ring (190) besteht, dass dier Ring (190) eine Anzahl in Umfangsrichtung angeordneter Bohrungen (161) aufweist, und dass in eine durch die Bohrungen (161) strömende Luftmenge (160) ein Brennstoff (170) eindüsbar ist.
 
5. Brenner nach Anspruch 4, dadurch gekennzeichnet, dass die Bohrungen (161) schräg nach vorne gerichtet sind.
 
6. Brenner nach Anspruch 4, dadurch gekennzeichnet, dass die Brennstoffdüse (103) von einer rinförmiger Luftkammer (180) umgeben ist.
 
7. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Brennerfront des Mischrohres (20) zur nachgeschalteten Brennraum (30) mit einer Abrisskante (A) ausgebildet ist.
 
8. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Uebergangskanäle (201) in der Mischstrecke (220) der Anzahl der vom Drallerzeuger (100) gebildeten Teilströme entspricht.
 
9. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass das den Uebergangskanälen (201) nachgeschaltete Mischrohr (20) in Strömungs- und Umfangsrichtung mit Oeffnungen (21) zur Eindüsung eines Luftstromes ins Innere des Mischrohres (20) versehen ist.
 
10. Brenner nach Anspruch 9, dadurch gekennzeichnet, dass die Oeffnungen (21) unter einem spitzen Winkel gegenüber der Brennerachse (60) des Mischrohres (20) verlaufen.
 
11. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Durchflussquerschnitt des Mischrohres (20) stromab der Uebergangskanäle (201) kleiner, gleich gross oder grösser als der Querschnitt der im Drallerzeuger (100, 100a) gebildeten Strömung (40) ist.
 
12. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass stromab der Mischstrecke (220) eine Brennkammer (30) angeordnet ist, dass zwischen der Mischstrecke (220) und der Brennkammer (30) ein Querschnittssprung vorhanden ist, der den anfänglichen Strömungsquerschnitt der Brennkammer (30) induziert, und dass im Bereich dieses Querschnittssprunges eine Rückströmzone (50) wirkbar ist.
 
13. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass stromauf der Brennerfront (70) ein Diffusor und/oder eine Venturistrecke vorhanden ist.
 
14. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Drallerzeuger (100) aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) besteht, dass die jeweiligen Längssymmetrieachsen (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) dieser Teilkörper gegeneinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper in deren Längserstreckung tangentiale Kanäle (119, 120) für einen Verbrennungsluftstromes (115) bilden, und dass im von den Teilkörpern gebildeten Innenraum (114) mindestens eine Brennstoffdüse (103 wirkbar ist.
 
15. Brenner nach Anspruch 14, dadurch gekennzeichnet, dass im Bereich der tangentialen Kanäle (119, 120) in deren Längserstreckung weitere Brennstoffdüsen (117) angeordnet sind.
 
16. Brenner nach Anspruch 14, dadurch gekennzeichnet, dass die Teilkörper (140, 141, 142, 143) im Querschnitt eine schaufelförmige Profilierung aufweisen.
 
17. Brenner nach Anspruch 14, dadurch gekennzeichnet, dass die Teilkörper in Strömungsrichtung einen festen Kegelwinkel, oder eine zunehmende Kegelneigung, oder eine abnehmende Kegelneigung aufweisen.
 
18. Brenner nach Anspruch 14, dadurch gekennzeichnet, dass die Teilkörper spiralförmig ineinandergeschachtelt sind.
 


Claims

1. A burner for operating a heat generator, wherein the burner substantially consists of a swirl generator (100) for a combustion air stream, means for feeding at least one fuel into the combustion air stream, wherein a mixing length (220) is provided downstream the swirl generator, which length within a first length part in the flow direction comprises a number of transition channels (201) for transferring a stream formed in the swirl generator to a mixing pipe (20) provided downstream these transition channels, wherein a pilot burner system (300) is provided in the lower area of the mixing pipe (20) to operate in a combustion space (30) downstream the mixing pipe (20), which pilot burner system consists of at least two media conveying chambers (301, 302) and a further downstream chamber (308), wherein the media (303, 304) from both the other chambers (301, 302) are mixable in this downstream chamber (308), and wherein the downstream chamber (308) comprises means for the forming of pilot burners (306) operating in the combustion space (30) and operable by the mixture of both the media (303, 304).
 
2. A burner according to claim 1, characterised in that the media conveying chambers (301, 303) are annular and provided beside each other, that a gaseous fuel (303) flows through the first annular chamber (301) and an air quantity (304) through the second annular chamber (302), that means (305) are mounted in the second annular chamber (302), through which the here flowing air (304) provides an impingement cooling on a heat protecting sheet (307) provided on one side of the pilot burner system (300).
 
3. A burner according to claim 2, characterised in that the means for the forming of the impingement cooling is a perforated plate (305) forming the bottom of the second annular chamber (302).
 
4. A burner according to claim 1, characterised in that the means consists of a ring (190) provided at head of the swirl generator (100) and in operable connection with a fuel nozzle (103), that the ring (190) comprises a number of holes (161) provided in the peripheral direction, and that a fuel (170) is introduceable into an air quantity (160) flowing through the holes (161).
 
5. A burner according to claim 4, characterised in that the holes (161) are directed obliquely forwardly.
 
6. A burner according to claim 4, characterised in that the fuel nozzle (103) is surrounded by an annular air chamber (180).
 
7. A burner according to claim 1, characterised in that the front of the burner of the mixing pipe (20) is designed with a removing edge (A) to the downstream combustion space (30).
 
8. A burner according to claim 1, characterised in that the number of transition channels (201) in the mixing length (220) corresponds to the number of part streams formed by the swirl generator (100).
 
9. A burner according to claim 1, characterised in that the mixing pipe (20) downstream the transition channels (201) in the flow and peripheral direction is provided with openings (21) for feeding an air stream into the interior of the mixing pipe (20).
 
10. A burner according to claim 9, characterised in that the openings (21) extend with an acute angle in relation to the burner axis (60) of the mixing pipe (20).
 
11. A burner according to claim 1, characterised in that the flow cross-section of the mixing pipe (20) downstream the transition channels (201) is smaller, equal to or larger than the cross-section of the stream formed in the swirl generator (100, 100a).
 
12. A burner according to claim 1, characterised in that a combustion chamber (30) is provided downstream the mixing length (220), that a cross-section shifting is present between the mixing length (220) and the combustion chamber (30), which shifting induces the initial flow cross-section of the combustion chamber (30), and that a back flow zone (50) is operable in the area of this cross-section shifting.
 
13. A burner according to claim 1, characterised in that a diffuser and/or a venturi length is provided upstream the front of the burner (70).
 
14. A burner according to claim 1, characterised in that the swirl generator (100) consists of two hollow conical part bodies (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) provided in each other in the flow direction, that the respective longitudinal symmetrical axes (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) of these part bodies extend displaced from each other in such a manner that the adjacent walls of the part bodies in their longitudinal extension form tangential channels (119, 120) for a combustion air stream (115), and that at least one fuel nozzle (103) is operable in the inner space (114) formed by the part bodies.
 
15. A burner according to claim 14, characterised in that further fuel nozzles (117) are provided in the area of the tangential channels (119, 120).
 
16. A burner according to claim 14, characterised in that the part body (140, 141, 142, 143) have a blade-shaped profile in a cross-section.
 
17. A burner according to claim 14, characterised in that the part bodies in the flow direction have a fixed cone angle, or an increasing cone inclination, or a decreasing cone inclination.
 
18. A burner according to claim 14, characterised in that the part bodies are spirally provided in each other.
 


Revendications

1. Brûleur pour faire fonctionner un générateur de chaleur, le brûleur étant constitué essentiellement d'un générateur (100) de tourbillons pour un courant d'air de combustion, de moyens (117) d'injection d'au moins un combustible dans le courant d'air de combustion, une zone (220) de mélange étant disposée en aval du générateur de tourbillons et comportant dans une première partie dans la direction du courant un certain nombre de canaux (201) de raccordement pour faire passer un courant formé dans ce générateur de tourbillons dans un tube (20) de mélange en aval de ces canaux de raccordement, un système (300) à brûleur pilote étant disposé dans la partie inférieure du tube (20) de mélange avec effet dans une chambre (30) de combustion montée en aval du tube (20) de mélange, ce système étant constitué d'au moins deux chambres (301, 302) de passage de fluide et d'une autre chambre (308) commune montée en aval, les fluides (303, 304) provenant des deux autres chambres (301, 302) pouvant être mélangés dans cette chambre (308) montée en aval et la chambre (308) montée en aval ayant des moyens de formation de brûleurs (306) pilotes agissant dans la chambre (30) de combustion et pouvant être alimentés par le mélange des deux fluides (303, 304).
 
2. Brûleur suivant la revendication 1, caractérisé en ce que les chambres (301, 303) sont de forme annulaire et sont disposées l'une à côté de l'autre, en ce qu'il passe dans la première chambre (301) annulaire un combustible (303) gazeux et dans la deuxième chambre (302) annulaire une quantité (304) d'air, en ce qu'il est monté dans la deuxième chambre (302) annulaire des moyens (305) par lesquels l'air (304) qui y passe provoque un refroidissement par rebondissement sur une tôle (307) de protection vis-à-vis de la chaleur, disposée du côté de l'extrémité du système (300) à brûleur pilote.
 
3. Brûleur suivant la revendication 2, caractérisé en ce que le moyen de formation du refroidissement par rebondissement est une plaque (305) perforée formant un fond dans la chambre (302) annulaire secondaire.
 
4. Brûleur suivant la revendication 1, caractérisé en ce que les moyens sont constitués d'un anneau (190) disposé du côté de la tête du générateur (100)de tourbillons et coopérant avec une buse (103) pour du combustible, en ce que l'anneau (190) a un certain nombre de trous (161) disposés dans la direction périphérique et en ce qu'un combustible (170) peut être injecté dans une quantité (160) d'air passant parles trous (161).
 
5. Brûleur suivant la revendication 4, caractérisé en ce que les trous (161) sont inclinés vers l'avant.
 
6. Brûleur suivant la revendication 4, caractérisé en ce que la buse (103) pour le combustible est entourée d'une chambre (180) annulaire pour de l'air.
 
7. Brûleur suivant la revendication 1, caractérisé en ce que le front du brûleur du tube (20) de mélange, tourné vers le chambre (30) de combustion en aval, est constitué en ayant un bord (A) de décollement.
 
8. Brûleur en ce que le nombre des canaux (201) de raccordement dans la zone (220) de mélange correspond au nombre de courants partiels formés par le générateur (100) de tourbillons.
 
9. Brûleur suivant la revendication 1, caractérisé en ce que le tube (20) de mélange en aval des canaux (201) de raccordement est muni, dans la direction du courant et dans la direction périphérique, de trous (21) d'injection d'un courant d'air à l'intérieur du tube (20) de mélange.
 
10. Brûleur suivant la revendication 9, caractérisé en ce que les trous (21) font un angle aigu avec l'axe (60) de brûleur du tube (20) de mélange.
 
11. Brûleur suivant la revendication 1, caractérisé en ce que la section transversale de passage du tube (20) de mélange est en aval des canaux (201) de raccordement plus petite, égale ou plus grande que la section transversale du courant (40) formé dans le générateur (100) de tourbillons.
 
12. Brûleur suivant la revendication 1, caractérisé en ce qu'il est disposé une chambre (30) de combustion en aval de la zone (220) de mélange, en ce qu'il est prévu entre la zone (220) de mélange et la chambre (30) de combustion un saut de section transversale, qui induit la section transversale initiale du courant de la chambre de combustion et en ce qu'une zone (50) de reflux peut agir dans la région de ce saut de section transversale.
 
13. Brûleur suivant la revendication 1, caractérisé en ce qu'il est prévu en amont du front (70) du brûleur un diffuseur et/ou une zone de venturi.
 
14. Brûleur suivant la revendication 1, caractérisé en ce que le générateur (100) de tourbillons est constitué d'au moins deux sous-pièces (101, 102, 130, 131, 132, 133, 140, 141, 142, 143) creuses, coniques et emboîtées l'une dans l'autre dans la direction du courant, en ce que les axes (101b, 102b ; 130a, 131a, 132a, 133a ; 140a, 141a, 142a, 143a) respectifs de symétrie longitudinale de ces sous-pièces s'étendent en étant décalés l'un par rapport à l'autre, de façon à ce que les parois voisines des sous-pièces forment dans leur étendue longitudinale des canaux (119, 120) tangentiels pour un courant (115) d'air de combustion et en ce qu'il est prévu au moins une buse (103) pour du combustible dans la chambre (114) intérieure formée par les sous-pièces.
 
15. Brûleur suivant la revendication 14, caractérisé en ce que d'autres buses (117) pour du combustible sont disposées dans la région des canaux (119, 120) tangentiels dans leur étendue longitudinale.
 
16. Brûleur suivant la revendication 14, caractérisé en ce que les sous-pièces (140, 141, 142, 143) ont en coupe transversale un profilage en forme d'aube.
 
17. Brûleur suivant la revendication 14, caractérisé en ce que les sous-pièces ont dans la direction du courant un angle de cône qui est fixe ou une inclinaison de cône qui est croissante ou une inclinaison de cône qui est décroissante.
 
18. Brûleur suivant la revendication 14, caractérisé en ce que les pièces partielles s'emboîtent l'une dans l'autre en forme de spirale.
 




Zeichnung