(19)
(11) EP 1 015 308 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
05.03.2003 Bulletin 2003/10

(21) Application number: 98945326.1

(22) Date of filing: 15.09.1998
(51) International Patent Classification (IPC)7B63H 5/16
(86) International application number:
PCT/FI9800/725
(87) International publication number:
WO 9901/4113 (25.03.1999 Gazette 1999/12)

(54)

PROPULSION SYSTEM AND METHOD

ANTRIEBSSYSTEM UND VERFAHREN

SYSTEME ET PROCEDE DE PROPULSION


(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 15.09.1997 RU 97115318

(43) Date of publication of application:
05.07.2000 Bulletin 2000/27

(73) Proprietors:
  • ABB Azipod Oy
    00980 Helsinki (FI)
  • Krylov Shipbuilding Research Institute
    St. Petersburg, 196158 (RU)

(72) Inventors:
  • ALEKSEYEV, Yuriy Nikolaevich
    St. Petersburg, 198096 (RU)
  • ANDRYUSHIN, Alexandre Vladislavovich
    St. Petersburg, 196233 (RU)
  • BEZZUBIK, Oleg Nikolaevich
    St. Petersburg, 190008 (RU)
  • BELYASHOV, Valeriy Adamovich
    St. Petersburg, 193015 (RU)
  • PASHIN, Valentin Mikhailovich
    St. Petersburg, 192236 (RU)
  • PONOMAREV, Andrei Vasilievich
    St. Petersburg, 193123 (RU)
  • SPIRO, Vadim Evgenievich
    St. Petersburg, 196135 (RU)

(74) Representative: Hjelt, Dag Silvio Hjalmar Andrea et al
Borenius & Co Oy Ab Tallberginkatu 2 A
00180 Helsinki
00180 Helsinki (FI)


(56) References cited: : 
FI-B- 91 513
US-A- 4 427 393
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Fielf of the invention



    [0001] This invention relates to vessel propulsion arrangements, and, in particular but not exclusively, to propulsion systems intended for operation in ice-covered waters and/or in ice conditions.

    Background of the invention



    [0002] Conventionally the movement of a vessel, such as a ship or a ferry, has been provided by a propeller attached to a drive shaft. The drive shaft is rotated by a drive apparatus positioned within the hull of the vessel, and the drive shaft is then lead through the hull such that the propeller extends to the water. The vessels are maneuvered by separate steering gears, such as by rudder gears.

    [0003] At present much attention is being paid to the application of so called azimuth thruster units or azimuthing propulsion units which provide both the vessel propulsion and also the maneuvering. These atzimuthing propulsion units are gaining increasing popularity, and they are applied for many type of vessels, as they have proven to provide many benefits when compared to conventional solutions. They have proven to be especially advantageous when using the vessels in ice conditions.

    [0004] One widely known azimuth thruster unit for ship propulsion and maneuvering in ice is offered by ABB Azipod Oy, the tradename for these being Azipod. These azimuthing units operate in a pulling mode and consist of a streamlined strut and a torpedo-shaped pod containing drive elements and a propeller shaft with a screw propeller mounted on the overhanging part of the shaft (for more details, see e.g.

    [0005] Azipod, Project Guide, Sept. 1995 or FI patent No. 76977 in the name of ABB Azipod Oy).

    [0006] A shortcoming of the azimuthing unit of the above type is that the screw propeller is not protected against possible damages caused by the ice while the propulsive efficiency of the fixed-pitch propeller is not sufficient in all conditions.

    [0007] A Norwegian company Ugland Offshore provides azimuth thruster unit which operate in a pulling mode and consist of a streamlined strut and a torpedo-shaped pod containing drive elements and a propeller shaft with a controllable-pitch ducted propeller mounted on the overhanging part of the shaft (for more details, see e.g. Brochures on the Fennica and Nordica Icebreakers published by Ugland Offshore, Norway).

    [0008] The drawback of the above unit is also that the propeller blades are unprotected against the destructive effect of ice. The performance of a vessel operating in heavy ice is also unsatisfactory as it is not advantageous to use a nozzle arrangement surrounding the propeller owing to the tendency of the nozzle inlet to clog with ice blocks which are drawn in to the nozzle by the propeller. This results in a sharp reduction of propeller thrust and an increase in hull vibration. In case of clogging the ship often comes to a standstill state which, among other disadvantages affects of stopping the ship, increases the danger of collision with the following ship moving in the convoy. If the ice is seized between the blades and the nozzle when the ship is moving through hammocky ice, the removal of this by reversing the propeller has proven to be difficult and in many instances impossible.

    [0009] One known improvement is an azimuth thruster for ship propulsion and maneuvering in ice conditions, which has a streamlined strut and a torpedo-shaped pod containing drive elements and propeller shaft with the ducted propeller and particular ice-breaking elements mounted on the overhanging part of the shaft, thus making it possible to break and crush the ice before entering into the nozzle (see Finnish patent No. 91513 A, int. class B63H 5/16).

    [0010] The drawback of such a unit is that the nozzle inlet is still unprotected against clogging with ice fragments. It is also impossible to throw ice fragments away from the nozzle owing to the relatively small size of the ice-breaking elements when compared to the propeller, and thus to the nozzle, diameter. The unit disclosed by the FI patent 91513 is intended for breaking (crushing) of ice and admitting it through the nozzle, but this operation can be accomplished only for a substantially thin ice in conditions in which comparatively small propellers are used, for instance in propulsive systems used in harbor icebreakers. In heavy ice conditions, such as in the Arctic, this unit is ineffective and unable to throw the larger size ice fragments away from the nozzle, while the smaller size fragments entrained into the nozzle deteriorate the propeller performance.

    Summary of the invention



    [0011] The general problem lies on the fact that the prior art proposals have not been able to satisfactorily to solve the problem caused by iced conditions. What is needed is a solution for propulsion units which improves the characteristics of a vessel moving in iced conditions.

    [0012] An object of the invention is to provide an improvement to a performance and characteristics of a vessel used in ice conditions by providing a reliable protection of nozzle inlet against clogging of the same with ice fragments and by raising the effectiveness of propulsion in general in ice conditions. A further object is to provide a corresponding improvement for vessels using azimuthing propulsion units or thrusters in heavy ice conditions.

    [0013] This object is attained by specially designed propulsion system comprising ice-breaking elements which are in form of rotatable blades or vanes and attached to a portion of the drive shaft projecting outside the water inlet of a nozzle for breaking and/or crushing ice before the ice enters into the nozzle are designed. The design is such that the point of maximum diameter of the blades or vanes is having an axial distance from the plane of the water inlet which is 0.02 to 0.25 times the diameter of the propeller and the rotatable blades or vanes are having a diameter which is 0.6 to 0.8 times the diameter of the propeller. The inventive method utilizes the above design.

    [0014] According to a preferred solution the blades or vanes are uniformly placed in a circle on the plane perpendicular to the propeller shaft. According to a further embodiment the propulsion unit is formed by an azimuthing propulsion unit.

    [0015] In the following the present invention and the objects and advantages thereof will be described by way of an example with reference to the annexed drawings.

    Brief description of the drawings



    [0016] For a better understanding of the present invention and in order to show how the same may be carried into effect reference will now be made, by way of example, to the accompanying drawings, in which:

    Figure 1 shows, partially in section, an azimuth thruster with ice-breaking elements,

    Figure 2 shows the results obtained from model tests of the propulsive unit fitted with ice-breaking elements.


    Detailed description of the drawings



    [0017] The azimuth thruster disclosed by Fig. 1 comprises a streamlined strut or support 1 rotatably mounted relative to the hull of the vessel. A torpedo-shaped pod 2 is attached to the strut 1 and contains drive elements (not shown in the figure). A propeller drive shaft 3 is connected to the drive elements, and project outside from the pod 2. A screw propeller 4 is mounted on the overhanging part of the shaft 3 and inside a nozzle 5. The nozzle 5 is a hollow, tube like element (the nozzle is sectioned in figure 1) attached to the pod 2 by means of support arms or mounting brackets 7 and has an inlet 10 for the inflowing water and correspondingly an outlet for the outflowing water. The azimuth thruster as a whole is usually fitted in the rear end 8 of a vessel, but the thruster may also be fitted otherwise, such as in the forward end of the vessel. The skilled person is familiar with the above described basic members of an azimuthing propulsion system provided with a nozzle and the possible modifications and variations thereof as well, and these are thus not explained in more detail herein.

    [0018] According to the present invention the ice-breaking elements 6 are in the form of blades or vanes which are fitted on the propeller shaft 3 fore of the screw propeller and the nozzle inlet 10 at a distance of Δ = 0.02-0.25 Dp, where Dp is the diameter of the propeller 4. The blades or vanes 6 are robustly constructed, i.e. they are made more solid than it is actually necessary for guiding the flow of water, so that they can effectively fulfill also the other basic functions thereof, namely breaking and/or throwing away the ice in front of the nozzle inlet.

    [0019] The inventors discovered that the diameter of the ice-breaking blades and vanes has to be chosen so that they can effectively perform their.basic functions: throwing away and breaking/crushing of ice and formation of flow before the nozzle. For this purpose the blade diameter must be 1.5-2 times larger than that of the propeller hub 9. The upper limit of the blade (vane) diameter is, in turn, dictated by the need to avoid much heavier ice loads on the propeller shaft than what is the case when using an open screw propeller (i.e. no nozzle). In the course of thruster operation the blades (vanes) will have to frequently mill the ice. In this case, ice anti-torque moment will be proportional to the blade diameter to the power 2-2.5 (see e.g. 5th Lips Propeller Symposium, Drunen, the Netherlands, 19-20 May, 1983). Therefore, the selection of the size of the ice-breaking elements was considered to be a subject for study which should be conducted by taking into account both characteristics of the propulsion unit and the ship aft lines, and, further, ice navigation conditions. The inventors found that by selecting a blade (vane) diameter (at the maximum diameter point) which is within the range of 0.6-0.8 times the propeller diameter optimal properties can achieved in this sense. Accomplished model test confirmed this discovery.

    [0020] It was found that the ice-breaking blades or vanes 6 must be mounted fore of the nozzle inlet 10 and spaced from the fore edge i.e. the inlet 10 of the nozzle 5. However, with the blades positioned in too close proximity to the nozzle inlet opening 10, ice casting away by the blades will be hindered by drawing in forces of the nozzle. In this case, all ice pieces in way of the nozzle inlet opening will be destroyed by milling which will, in turn, result to an undesired wasting of the shaft rotation energy and excessive loading of the shaft line. However, the blades cannot be mounted at a too great distance in front of the nozzle either since they will then loose their screw/nozzle protection capability. What was discovered in this sense is that the optimum spacing Δ between the blades (vanes) at the point of their maximum diameter and the plane of the nozzle opening is 0.02-0.25 times the diameter of the screw propeller in the shroud. This was also confirmed by the model test.

    [0021] The inventors also found that in most cases it is preferred to position the ice-breaking blades or vanes uniformly in the plane perpendicular to that of the propeller shaft in order to eliminate inertial loads on the shaft line.

    [0022] The final diameter of the ice-breaking blades (vanes), their number and spacing from the nozzle fore edge for each particular vessel and navigation conditions should be selected on the basis of data obtained from tests in hydrodynamic and ice model basins.

    [0023] Mounting of ice-breaking blades fore of the nozzle leads to a reduction of hydrodynamic efficiency of the propulsion unit. Hence, it was necessary to estimate the degree of the blades (vanes) effect on the hydrodynamic efficiency of the propulsion unit proposed herein. The inventors carried out special comparative hydrodynamic tests of the proposed propeller and of an isolated "screw-nozzle" combination. In both cases, the same "screw-nozzle" set was used, and the blades (vanes) were modelled by mounting, at various distances fore of the nozzle of an additional four-blade propeller model having a diameter equal to 0.7 times the diameter of the screw propeller in the nozzle. Using dynamometers, hydrodynamic thrust TB on the shaft, torque QΣ, nozzle thrust TH were measured, as well as shaft rotation η and propeller speed V. Values of the following dimensionless coefficients were calculated:
    • total thrust

    • propeller torque

    where:

    ρ is water density, and

    D is ducted propeller diameter

    relative advance is

    and
    propeller efficiency is



    [0024] Results of the accomplished model tests are shown in Fig. 2. The values of λ are presented on the x-axis and values of K, K and ηp on the y-axis.

    [0025] The curves (1), (2), (3) in this plot correspond to the values of K, K and ηp for the standard "screw-nozzle" propulsion unit. The curves (4), (5) and (6) show the values of K, K and ηp, respectively, for the proposed propulsive unit.

    [0026] Thus, it can be seen that the rotating blades/vanes mounted fore of the nozzle do not impair significantly the hydrodynamic efficiency of the propeller as defined in the appended claims when compared to the traditional "screw-nozzle" combination.

    [0027] The operation of an azimuth thruster can be described shortly in the following manner. A rotating screw propeller develops a thrust that drives the vessel. Owing to the nozzle the thrust is additionally increased by 20-25%. Blades and/or vanes dimensioned as stated above and which rotate together with the screw propeller cast away and/or destroy ice and prevent blocking of the nozzle inlet opening.

    [0028] Thus, the invention provides apparatus and a method by which a significant improvement is achieved in the area of propulsion systems. It should, however, be understood that the above description of an example of the invention is not meant to restrict the invention to the specific forms presented in this connection but rather the present invention is meant to cover all modifications, similarities and alternatives which are included in the spirit and scope of the present invention, as defined by the appended claims. For instance, upon reading the above description together with the annexed drawing it will be obvious to the skilled person to use this invention in connection with conventional propulsion units.


    Claims

    1. A propulsion system comprising:

    a drive shaft;

    a propeller attached to the drive shaft;

    a nozzle surrounding the propeller, the nozzle having a water inlet and a water outlet; and

    rotatable blades or vanes attached to a portion of the drive shaft which projects outside the water inlet for breaking and/or crushing ice before the ice enters into the nozzle, the point of maximum diameter of the blades or vanes having an axial distance from the plane of the water inlet which is 0.02 to 0.25 times the diameter of the propeller, and the rotatable blades or vanes having a diameter which is 0.6 to 0.8 times the diameter of the propeller.


     
    2. A propulsion system in accordance with claim 1, wherein
       it comprises an azimuthing propulsion unit used both for moving and manoeuvring a vessel, said propulsion unit comprising a support for rotatably connecting the propulsion unit to a vessel and a pod connected to the support and enclosing drive elements for rotating the drive shaft, and
       the nozzle is fixedly attached to said pod.
     
    3. A propulsion system in accordance with claim 1 or 2, wherein the blades or vanes are uniformly spaced over the circumference in a plane normal to the propeller shaft.
     
    4. An azimuth thruster for vessel propulsion and manoeuvring under ice conditions, comprising:

    a support for connecting the thruster to a vessel,

    a pod enclosing drive elements,

    a propeller shaft having a propeller and ice-breaking elements mounted on an overhanging part of the shaft protruding out from a nozzle surrounding the propeller,

    the ice-breaking elements being in the form of blades or vanes secured fore of the propeller and capable of ice breaking and/or crushing, characterized in that

    the blades or vanes, at their maximum diameter points, are positioned at a distance of 0.02 - 0.25 times the propeller diameter from the inlet of the nozzle, and

    the diameters of the blades or vanes are selected to be equal to 0.6 - 0.8 times the propeller diameter.


     
    5. A vessel azimuth thruster according to claim 4, characterized in that the blades or vanes of the ice-breaking elements are uniformly spaced over the circumference in a plane normal to the propeller shaft.
     
    6. A method of moving a vessel in ice conditions by means of a propulsion system comprising a drive shaft, a propeller attached to the drive shaft and a nozzle surrounding the propeller, the nozzle having a water inlet and a water outlet, comprising
       breaking and/or crushing the ice before the ice enters into the nozzle by means of rotatable blades or vanes attached to a portion of the drive shaft which projects outside the water inlet, the blades or vanes being designed such that the point of maximum diameter of the blades or vanes is positioned in an axial distance from the plane of the water inlet which is 0.02 to 0.25 times the diameter of the propeller and that the rotatable blades or vanes have a diameter which is 0.6 to 0.8 times the diameter of the propeller.
     
    7. A method according to claim 6, wherein the vessel is moved and manoeuvred by means of an azimuthing propulsion unit.
     


    Ansprüche

    1. Antriebssystem umfassend:

    eine Antriebswelle;

    eine an der Antriebswelle angebrachte Antriebsschraube;

    eine die Antriebsschraube umgebende Düse, welche einen Wassereinlass und einen Wasserauslass hat; und

    an einem Bereich der Antriebswelle, der von dem Wassereinlass nach außen vorsteht angebrachte drehbare Blätter oder Schaufeln zum Brechen und/oder Zerkleinern von Eis bevor das Eis in die Düse eintritt, wobei der Punkte maximalen Durchmessers der Blätter oder Schaufeln einen Abstand von der Ebene des Wassereinlasses aufweist, der 0,02 bis 0,25 mal dem Durchmesser der Antriebsschraube entspricht, und wobei die drehbaren Blätter oder Schaufeln einen Durchmesser haben, der 0,6 bis 0,8 mal dem Durchmesser der Antriebsschraube entspricht.


     
    2. Antriebssystem nach Anspruch 1, wobei es eine Azimutantriebseinheit umfasst, welche für das Bewegen und Manövrieren eines Wasserfahrzeugs verwendet wird, welche Antriebseinheit eine Halterung zum drehbaren Verbinden der Antriebseinheit mit einem Wasserfahrzeug und ein mit der Halterung verbundenes Gehäuse, das Antriebselemente zum Drehen der Antriebswelle einschließt, umfasst, und wobei die Düse fest an dem Gehäuse angebracht ist.
     
    3. Antriebssystem nach Anspruch 1 oder 2, wobei die Blätter oder Schaufeln gleichmäßig über den Umfang in einer Ebene senkrecht zu der Antriebsschraubenwelle verteilt sind.
     
    4. Ein Azimutschuberzeuger für Wasserfahrzeugantrieb und Steuerung unter vereisten Bedingungen, umfassend:

    einer Halterung zum Verbinden des Schuberzeugers mit einem Wasserfahrzeug,

    ein Antriebselemente einschließendes Gehäuse,

    eine Antriebsschraubenwelle mit einer Schraube und Eisbrechelementen, die an einem vorstehenden Abschnitt der Welle montiert sind, der von einer Düse, die die Schraube umgibt, nach außen vorsteht,

    wobei die Eisbrechelemente in Form von Blättern oder Schaufeln ausgebildet sind, die vor der Schraube befestigt sind und dazu geeignet sind, Eis zu brechen und/oder zu zerkleinern, dadurch gekennzeichnet, dass

    die Blätter oder Schaufeln, an ihren Punkten maximalen Durchmessers in einem Abstand von 0,02 bis 0,25 mal dem Schraubendurchmesser von dem Einlass der Düse angeordnet sind, und, dass die Durchmesser der Blätter oder Schaufeln derart gewählt sind, dass sie gleich 0,6 bis 0,8 mal dem Schraubendurchmesser entsprechen.


     
    5. Wasserfahrzeug-Azimutschuberzeuger nach Anspruch 4, dadurch gekennzeichnet, dass die Blätter oder Schaufeln der Eisbrechelemente gleichmäßig über dem Umfang in einer Ebene senkrecht zu der Schraubenwelle verteilt sind.
     
    6. Verfahren zum Bewegen eines Wasserfahrzeugs unter vereisten Bedingungen mittels eines Antriebssystems umfassend eine Antriebswelle, eine Antriebsschraube, die an der Antriebswelle angebracht ist, und eine Düse, die die Antriebsschraube umgibt, welche Düse einen Wassereinlass und einen Wasserauslass hat, umfassend
    Brechen und/oder Zerkleinern des Eises bevor das Eis in die Düse eintritt mittels rotierbarer Blätter oder Schaufeln, die an einem Abschnitt der Antriebswelle angeordnet sind, der von dem Wassereinlass nach außen vorsteht, welche Blätter oder Schaufeln derart gestaltet sind, dass der Punkt maximalen Durchmessers der Blätter oder Schaufeln in einem axialen Abstand von der Ebene des Wassereinlasses angeordnet ist, der 0,02 bis 0,25 mal dem Durchmesser der Antriebsschraube entspricht und welche drehbaren Blätter oder Schaufel einen Durchmesser haben, der 0,6 bis 0,8 mal dem Durchmesser der Antriebsschraube entspricht.
     
    7. Verfahren nach Anspruch 6, wobei das Wasserfahrzeug durch eine Azimutantriebseinheit bewegt und manövriert wird.
     


    Revendications

    1. Système de propulsion comprenant :

    un arbre menant ;

    une hélice fixée à l'arbre menant ;

    une buse entourant l'hélice, la buse comportant une entrée d'eau et une sortie d'eau ; et

    des lames ou aubes tournantes fixées à une portion de l'arbre menant qui font saillie vers l'extérieur de l'entrée d'eau pour casser et/ou broyer la glace avant que la glace entre dans la buse, le point du diamètre maximum des lames ou aubes ayant une distance axiale du plan de l'entrée d'eau qui représente 0,02 à 0,25 fois le diamètre de l'hélice, et les lames ou aubes tournantes ont un diamètre qui représente 0,6 à 0,8 fois le diamètre de l'hélice.


     
    2. Système de propulsion selon la revendication 1, où il comprend une unité de propulsion azimutale utilisée à la fois pour déplacer et manoeuvrer un navire, ladite unité de propulsion comprenant un support pour relier d'une manière tournante l'unité de propulsion à un navire et une nacelle reliée au support et renfermant des éléments d'entraînement pour faire tourner l'arbre menant, et la buse est attachée fixement à ladite nacelle.
     
    3. Système de propulsion selon la revendication 1 ou 2, où les lames ou aubes sont espacées uniformément sur la circonférence dans un plan perpendiculaire à l'arbre de propulsion.
     
    4. Poussoir azimutal pour la propulsion et la manoeuvre de navires sous des conditions de glace, comprenant :

    un support pour relier le poussoir à un navire, une nacelle renfermant des éléments d'entraînement,

    un arbre de propulsion comportant une hélice et des éléments pour casser la glace montés sur une partie en porte-à-faux de l'arbre faisant saillie d'une buse entourant l'hélice, les éléments pour casser la glace se présentant sous la forme de lames ou aubes fixées en amont de l'hélice et aptes à casser et/ou broyer la glace, caractérisé en ce que les lames ou aubes, aux points de leur diamètre maximum, sont positionnées à une distance de 0,02-0,25 fois le diamètre de l'hélice de l'entrée de la buse et les diamètres des lames ou aubes sont sélectionnées pour être égaux à 0,6 - 0,8 fois le diamètre de l'hélice.


     
    5. Pousseur azimutal de navire selon la revendication 4, caractérisé en ce que les lames ou aubes des éléments destinés à casser la glace sont espacées uniformément sur la circonférence dans un plan normal à l'arbre d'hélice.
     
    6. Procédé de déplacement d'un navire dans des conditions de glace au moyen d'un système de propulsion comprenant un arbre menant, une hélice attachée à l'arbre menant et une buse entourant l'hélice, la buse comportant une entrée d'eau et une sortie d'eau, comprenant :

    la rupture et/ou le broyage de la glace avant que la glace entre dans la buse au moyen de lames ou aubes tournantes fixées à une portion de l'arbre menant qui fait saillie vers l'extérieur de l'entrée d'eau, les lames ou aubes étant conçues de façon que le point du diamètre maximum des lames ou aubes soit positionné dans une distance axiale du plan de l'entrée d'eau qui représente 0,02 à 0,25 fois le diamètre de l'hélice, et en ce que les lames ou aubes tournantes ont un diamètre qui représente 0,6 à 0,8 fois le diamètre de l'hélice.


     
    7. Procédé selon la revendication 6, où le navire est déplacé et manoeuvré au moyen d'une unité de propulsion azimutale.
     




    Drawing