Fielf of the invention
[0001] This invention relates to vessel propulsion arrangements, and, in particular but
not exclusively, to propulsion systems intended for operation in ice-covered waters
and/or in ice conditions.
Background of the invention
[0002] Conventionally the movement of a vessel, such as a ship or a ferry, has been provided
by a propeller attached to a drive shaft. The drive shaft is rotated by a drive apparatus
positioned within the hull of the vessel, and the drive shaft is then lead through
the hull such that the propeller extends to the water. The vessels are maneuvered
by separate steering gears, such as by rudder gears.
[0003] At present much attention is being paid to the application of so called azimuth thruster
units or azimuthing propulsion units which provide both the vessel propulsion and
also the maneuvering. These atzimuthing propulsion units are gaining increasing popularity,
and they are applied for many type of vessels, as they have proven to provide many
benefits when compared to conventional solutions. They have proven to be especially
advantageous when using the vessels in ice conditions.
[0004] One widely known azimuth thruster unit for ship propulsion and maneuvering in ice
is offered by ABB Azipod Oy, the tradename for these being
Azipod. These azimuthing units operate in a pulling mode and consist of a streamlined strut
and a torpedo-shaped pod containing drive elements and a propeller shaft with a screw
propeller mounted on the overhanging part of the shaft (for more details, see e.g.
[0005] Azipod, Project Guide, Sept. 1995 or FI patent No. 76977 in the name of ABB Azipod
Oy).
[0006] A shortcoming of the azimuthing unit of the above type is that the screw propeller
is not protected against possible damages caused by the ice while the propulsive efficiency
of the fixed-pitch propeller is not sufficient in all conditions.
[0007] A Norwegian company Ugland Offshore provides azimuth thruster unit which operate
in a pulling mode and consist of a streamlined strut and a torpedo-shaped pod containing
drive elements and a propeller shaft with a controllable-pitch ducted propeller mounted
on the overhanging part of the shaft (for more details, see e.g. Brochures on the
Fennica and Nordica Icebreakers published by Ugland Offshore, Norway).
[0008] The drawback of the above unit is also that the propeller blades are unprotected
against the destructive effect of ice. The performance of a vessel operating in heavy
ice is also unsatisfactory as it is not advantageous to use a nozzle arrangement surrounding
the propeller owing to the tendency of the nozzle inlet to clog with ice blocks which
are drawn in to the nozzle by the propeller. This results in a sharp reduction of
propeller thrust and an increase in hull vibration. In case of clogging the ship often
comes to a standstill state which, among other disadvantages affects of stopping the
ship, increases the danger of collision with the following ship moving in the convoy.
If the ice is seized between the blades and the nozzle when the ship is moving through
hammocky ice, the removal of this by reversing the propeller has proven to be difficult
and in many instances impossible.
[0009] One known improvement is an azimuth thruster for ship propulsion and maneuvering
in ice conditions, which has a streamlined strut and a torpedo-shaped pod containing
drive elements and propeller shaft with the ducted propeller and particular ice-breaking
elements mounted on the overhanging part of the shaft, thus making it possible to
break and crush the ice before entering into the nozzle (see Finnish patent No. 91513
A, int. class B63H 5/16).
[0010] The drawback of such a unit is that the nozzle inlet is still unprotected against
clogging with ice fragments. It is also impossible to throw ice fragments away from
the nozzle owing to the relatively small size of the ice-breaking elements when compared
to the propeller, and thus to the nozzle, diameter. The unit disclosed by the FI patent
91513 is intended for breaking (crushing) of ice and admitting it through the nozzle,
but this operation can be accomplished only for a substantially thin ice in conditions
in which comparatively small propellers are used, for instance in propulsive systems
used in harbor icebreakers. In heavy ice conditions, such as in the Arctic, this unit
is ineffective and unable to throw the larger size ice fragments away from the nozzle,
while the smaller size fragments entrained into the nozzle deteriorate the propeller
performance.
Summary of the invention
[0011] The general problem lies on the fact that the prior art proposals have not been able
to satisfactorily to solve the problem caused by iced conditions. What is needed is
a solution for propulsion units which improves the characteristics of a vessel moving
in iced conditions.
[0012] An object of the invention is to provide an improvement to a performance and characteristics
of a vessel used in ice conditions by providing a reliable protection of nozzle inlet
against clogging of the same with ice fragments and by raising the effectiveness of
propulsion in general in ice conditions. A further object is to provide a corresponding
improvement for vessels using azimuthing propulsion units or thrusters in heavy ice
conditions.
[0013] This object is attained by specially designed propulsion system comprising ice-breaking
elements which are in form of rotatable blades or vanes and attached to a portion
of the drive shaft projecting outside the water inlet of a nozzle for breaking and/or
crushing ice before the ice enters into the nozzle are designed. The design is such
that the point of maximum diameter of the blades or vanes is having an axial distance
from the plane of the water inlet which is 0.02 to 0.25 times the diameter of the
propeller and the rotatable blades or vanes are having a diameter which is 0.6 to
0.8 times the diameter of the propeller. The inventive method utilizes the above design.
[0014] According to a preferred solution the blades or vanes are uniformly placed in a circle
on the plane perpendicular to the propeller shaft. According to a further embodiment
the propulsion unit is formed by an azimuthing propulsion unit.
[0015] In the following the present invention and the objects and advantages thereof will
be described by way of an example with reference to the annexed drawings.
Brief description of the drawings
[0016] For a better understanding of the present invention and in order to show how the
same may be carried into effect reference will now be made, by way of example, to
the accompanying drawings, in which:
Figure 1 shows, partially in section, an azimuth thruster with ice-breaking elements,
Figure 2 shows the results obtained from model tests of the propulsive unit fitted
with ice-breaking elements.
Detailed description of the drawings
[0017] The azimuth thruster disclosed by Fig. 1 comprises a streamlined strut or support
1 rotatably mounted relative to the hull of the vessel. A torpedo-shaped pod 2 is
attached to the strut 1 and contains drive elements (not shown in the figure). A propeller
drive shaft 3 is connected to the drive elements, and project outside from the pod
2. A screw propeller 4 is mounted on the overhanging part of the shaft 3 and inside
a nozzle 5. The nozzle 5 is a hollow, tube like element (the nozzle is sectioned in
figure 1) attached to the pod 2 by means of support arms or mounting brackets 7 and
has an inlet 10 for the inflowing water and correspondingly an outlet for the outflowing
water. The azimuth thruster as a whole is usually fitted in the rear end 8 of a vessel,
but the thruster may also be fitted otherwise, such as in the forward end of the vessel.
The skilled person is familiar with the above described basic members of an azimuthing
propulsion system provided with a nozzle and the possible modifications and variations
thereof as well, and these are thus not explained in more detail herein.
[0018] According to the present invention the ice-breaking elements 6 are in the form of
blades or vanes which are fitted on the propeller shaft 3 fore of the screw propeller
and the nozzle inlet 10 at a distance of Δ = 0.02-0.25 D
p, where D
p is the diameter of the propeller 4. The blades or vanes 6 are robustly constructed,
i.e. they are made more solid than it is actually necessary for guiding the flow of
water, so that they can effectively fulfill also the other basic functions thereof,
namely breaking and/or throwing away the ice in front of the nozzle inlet.
[0019] The inventors discovered that the diameter of the ice-breaking blades and vanes has
to be chosen so that they can effectively perform their.basic functions: throwing
away and breaking/crushing of ice and formation of flow before the nozzle. For this
purpose the blade diameter must be 1.5-2 times larger than that of the propeller hub
9. The upper limit of the blade (vane) diameter is, in turn, dictated by the need
to avoid much heavier ice loads on the propeller shaft than what is the case when
using an open screw propeller (i.e. no nozzle). In the course of thruster operation
the blades (vanes) will have to frequently mill the ice. In this case, ice anti-torque
moment will be proportional to the blade diameter to the power 2-2.5 (see e.g. 5
th Lips Propeller Symposium, Drunen, the Netherlands, 19-20 May, 1983). Therefore, the
selection of the size of the ice-breaking elements was considered to be a subject
for study which should be conducted by taking into account both characteristics of
the propulsion unit and the ship aft lines, and, further, ice navigation conditions.
The inventors found that by selecting a blade (vane) diameter (at the maximum diameter
point) which is within the range of 0.6-0.8 times the propeller diameter optimal properties
can achieved in this sense. Accomplished model test confirmed this discovery.
[0020] It was found that the ice-breaking blades or vanes 6 must be mounted fore of the
nozzle inlet 10 and spaced from the fore edge i.e. the inlet 10 of the nozzle 5. However,
with the blades positioned in too close proximity to the nozzle inlet opening 10,
ice casting away by the blades will be hindered by drawing in forces of the nozzle.
In this case, all ice pieces in way of the nozzle inlet opening will be destroyed
by milling which will, in turn, result to an undesired wasting of the shaft rotation
energy and excessive loading of the shaft line. However, the blades cannot be mounted
at a too great distance in front of the nozzle either since they will then loose their
screw/nozzle protection capability. What was discovered in this sense is that the
optimum spacing Δ between the blades (vanes) at the point of their maximum diameter
and the plane of the nozzle opening is 0.02-0.25 times the diameter of the screw propeller
in the shroud. This was also confirmed by the model test.
[0021] The inventors also found that in most cases it is preferred to position the ice-breaking
blades or vanes uniformly in the plane perpendicular to that of the propeller shaft
in order to eliminate inertial loads on the shaft line.
[0022] The final diameter of the ice-breaking blades (vanes), their number and spacing from
the nozzle fore edge for each particular vessel and navigation conditions should be
selected on the basis of data obtained from tests in hydrodynamic and ice model basins.
[0023] Mounting of ice-breaking blades fore of the nozzle leads to a reduction of hydrodynamic
efficiency of the propulsion unit. Hence, it was necessary to estimate the degree
of the blades (vanes) effect on the hydrodynamic efficiency of the propulsion unit
proposed herein. The inventors carried out special comparative hydrodynamic tests
of the proposed propeller and of an isolated "screw-nozzle" combination. In both cases,
the same "screw-nozzle" set was used, and the blades (vanes) were modelled by mounting,
at various distances fore of the nozzle of an additional four-blade propeller model
having a diameter equal to 0.7 times the diameter of the screw propeller in the nozzle.
Using dynamometers, hydrodynamic thrust T
B on the shaft, torque Q
Σ, nozzle thrust T
H were measured, as well as shaft rotation η and propeller speed V. Values of the following
dimensionless coefficients were calculated:
- total thrust

- propeller torque

where:
ρ is water density, and
D is ducted propeller diameter
relative advance is

and
propeller efficiency is

[0024] Results of the accomplished model tests are shown in Fig. 2. The values of λ are
presented on the x-axis and values of K
TΣ, K
QΣ and η
p on the y-axis.
[0025] The curves (1), (2), (3) in this plot correspond to the values of K
TΣ, K
QΣ and η
p for the standard "screw-nozzle" propulsion unit. The curves (4), (5) and (6) show
the values of K
TΣ, K
QΣ and η
p, respectively, for the proposed propulsive unit.
[0026] Thus, it can be seen that the rotating blades/vanes mounted fore of the nozzle do
not impair significantly the hydrodynamic efficiency of the propeller as defined in
the appended claims when compared to the traditional "screw-nozzle" combination.
[0027] The operation of an azimuth thruster can be described shortly in the following manner.
A rotating screw propeller develops a thrust that drives the vessel. Owing to the
nozzle the thrust is additionally increased by 20-25%. Blades and/or vanes dimensioned
as stated above and which rotate together with the screw propeller cast away and/or
destroy ice and prevent blocking of the nozzle inlet opening.
[0028] Thus, the invention provides apparatus and a method by which a significant improvement
is achieved in the area of propulsion systems. It should, however, be understood that
the above description of an example of the invention is not meant to restrict the
invention to the specific forms presented in this connection but rather the present
invention is meant to cover all modifications, similarities and alternatives which
are included in the spirit and scope of the present invention, as defined by the appended
claims. For instance, upon reading the above description together with the annexed
drawing it will be obvious to the skilled person to use this invention in connection
with conventional propulsion units.
1. A propulsion system comprising:
a drive shaft;
a propeller attached to the drive shaft;
a nozzle surrounding the propeller, the nozzle having a water inlet and a water outlet;
and
rotatable blades or vanes attached to a portion of the drive shaft which projects
outside the water inlet for breaking and/or crushing ice before the ice enters into
the nozzle, the point of maximum diameter of the blades or vanes having an axial distance
from the plane of the water inlet which is 0.02 to 0.25 times the diameter of the
propeller, and the rotatable blades or vanes having a diameter which is 0.6 to 0.8
times the diameter of the propeller.
2. A propulsion system in accordance with claim 1, wherein
it comprises an azimuthing propulsion unit used both for moving and manoeuvring
a vessel, said propulsion unit comprising a support for rotatably connecting the propulsion
unit to a vessel and a pod connected to the support and enclosing drive elements for
rotating the drive shaft, and
the nozzle is fixedly attached to said pod.
3. A propulsion system in accordance with claim 1 or 2, wherein the blades or vanes are
uniformly spaced over the circumference in a plane normal to the propeller shaft.
4. An azimuth thruster for vessel propulsion and manoeuvring under ice conditions, comprising:
a support for connecting the thruster to a vessel,
a pod enclosing drive elements,
a propeller shaft having a propeller and ice-breaking elements mounted on an overhanging
part of the shaft protruding out from a nozzle surrounding the propeller,
the ice-breaking elements being in the form of blades or vanes secured fore of the
propeller and capable of ice breaking and/or crushing, characterized in that
the blades or vanes, at their maximum diameter points, are positioned at a distance
of 0.02 - 0.25 times the propeller diameter from the inlet of the nozzle, and
the diameters of the blades or vanes are selected to be equal to 0.6 - 0.8 times the
propeller diameter.
5. A vessel azimuth thruster according to claim 4, characterized in that the blades or vanes of the ice-breaking elements are uniformly spaced over the circumference
in a plane normal to the propeller shaft.
6. A method of moving a vessel in ice conditions by means of a propulsion system comprising
a drive shaft, a propeller attached to the drive shaft and a nozzle surrounding the
propeller, the nozzle having a water inlet and a water outlet, comprising
breaking and/or crushing the ice before the ice enters into the nozzle by means
of rotatable blades or vanes attached to a portion of the drive shaft which projects
outside the water inlet, the blades or vanes being designed such that the point of
maximum diameter of the blades or vanes is positioned in an axial distance from the
plane of the water inlet which is 0.02 to 0.25 times the diameter of the propeller
and that the rotatable blades or vanes have a diameter which is 0.6 to 0.8 times the
diameter of the propeller.
7. A method according to claim 6, wherein the vessel is moved and manoeuvred by means
of an azimuthing propulsion unit.
1. Antriebssystem umfassend:
eine Antriebswelle;
eine an der Antriebswelle angebrachte Antriebsschraube;
eine die Antriebsschraube umgebende Düse, welche einen Wassereinlass und einen Wasserauslass
hat; und
an einem Bereich der Antriebswelle, der von dem Wassereinlass nach außen vorsteht
angebrachte drehbare Blätter oder Schaufeln zum Brechen und/oder Zerkleinern von Eis
bevor das Eis in die Düse eintritt, wobei der Punkte maximalen Durchmessers der Blätter
oder Schaufeln einen Abstand von der Ebene des Wassereinlasses aufweist, der 0,02
bis 0,25 mal dem Durchmesser der Antriebsschraube entspricht, und wobei die drehbaren
Blätter oder Schaufeln einen Durchmesser haben, der 0,6 bis 0,8 mal dem Durchmesser
der Antriebsschraube entspricht.
2. Antriebssystem nach Anspruch 1, wobei es eine Azimutantriebseinheit umfasst, welche
für das Bewegen und Manövrieren eines Wasserfahrzeugs verwendet wird, welche Antriebseinheit
eine Halterung zum drehbaren Verbinden der Antriebseinheit mit einem Wasserfahrzeug
und ein mit der Halterung verbundenes Gehäuse, das Antriebselemente zum Drehen der
Antriebswelle einschließt, umfasst, und wobei die Düse fest an dem Gehäuse angebracht
ist.
3. Antriebssystem nach Anspruch 1 oder 2, wobei die Blätter oder Schaufeln gleichmäßig
über den Umfang in einer Ebene senkrecht zu der Antriebsschraubenwelle verteilt sind.
4. Ein Azimutschuberzeuger für Wasserfahrzeugantrieb und Steuerung unter vereisten Bedingungen,
umfassend:
einer Halterung zum Verbinden des Schuberzeugers mit einem Wasserfahrzeug,
ein Antriebselemente einschließendes Gehäuse,
eine Antriebsschraubenwelle mit einer Schraube und Eisbrechelementen, die an einem
vorstehenden Abschnitt der Welle montiert sind, der von einer Düse, die die Schraube
umgibt, nach außen vorsteht,
wobei die Eisbrechelemente in Form von Blättern oder Schaufeln ausgebildet sind, die
vor der Schraube befestigt sind und dazu geeignet sind, Eis zu brechen und/oder zu
zerkleinern, dadurch gekennzeichnet, dass
die Blätter oder Schaufeln, an ihren Punkten maximalen Durchmessers in einem Abstand
von 0,02 bis 0,25 mal dem Schraubendurchmesser von dem Einlass der Düse angeordnet
sind, und, dass die Durchmesser der Blätter oder Schaufeln derart gewählt sind, dass
sie gleich 0,6 bis 0,8 mal dem Schraubendurchmesser entsprechen.
5. Wasserfahrzeug-Azimutschuberzeuger nach Anspruch 4, dadurch gekennzeichnet, dass die Blätter oder Schaufeln der Eisbrechelemente gleichmäßig über dem Umfang in einer
Ebene senkrecht zu der Schraubenwelle verteilt sind.
6. Verfahren zum Bewegen eines Wasserfahrzeugs unter vereisten Bedingungen mittels eines
Antriebssystems umfassend eine Antriebswelle, eine Antriebsschraube, die an der Antriebswelle
angebracht ist, und eine Düse, die die Antriebsschraube umgibt, welche Düse einen
Wassereinlass und einen Wasserauslass hat, umfassend
Brechen und/oder Zerkleinern des Eises bevor das Eis in die Düse eintritt mittels
rotierbarer Blätter oder Schaufeln, die an einem Abschnitt der Antriebswelle angeordnet
sind, der von dem Wassereinlass nach außen vorsteht, welche Blätter oder Schaufeln
derart gestaltet sind, dass der Punkt maximalen Durchmessers der Blätter oder Schaufeln
in einem axialen Abstand von der Ebene des Wassereinlasses angeordnet ist, der 0,02
bis 0,25 mal dem Durchmesser der Antriebsschraube entspricht und welche drehbaren
Blätter oder Schaufel einen Durchmesser haben, der 0,6 bis 0,8 mal dem Durchmesser
der Antriebsschraube entspricht.
7. Verfahren nach Anspruch 6, wobei das Wasserfahrzeug durch eine Azimutantriebseinheit
bewegt und manövriert wird.
1. Système de propulsion comprenant :
un arbre menant ;
une hélice fixée à l'arbre menant ;
une buse entourant l'hélice, la buse comportant une entrée d'eau et une sortie d'eau
; et
des lames ou aubes tournantes fixées à une portion de l'arbre menant qui font saillie
vers l'extérieur de l'entrée d'eau pour casser et/ou broyer la glace avant que la
glace entre dans la buse, le point du diamètre maximum des lames ou aubes ayant une
distance axiale du plan de l'entrée d'eau qui représente 0,02 à 0,25 fois le diamètre
de l'hélice, et les lames ou aubes tournantes ont un diamètre qui représente 0,6 à
0,8 fois le diamètre de l'hélice.
2. Système de propulsion selon la revendication 1, où il comprend une unité de propulsion
azimutale utilisée à la fois pour déplacer et manoeuvrer un navire, ladite unité de
propulsion comprenant un support pour relier d'une manière tournante l'unité de propulsion
à un navire et une nacelle reliée au support et renfermant des éléments d'entraînement
pour faire tourner l'arbre menant, et la buse est attachée fixement à ladite nacelle.
3. Système de propulsion selon la revendication 1 ou 2, où les lames ou aubes sont espacées
uniformément sur la circonférence dans un plan perpendiculaire à l'arbre de propulsion.
4. Poussoir azimutal pour la propulsion et la manoeuvre de navires sous des conditions
de glace, comprenant :
un support pour relier le poussoir à un navire, une nacelle renfermant des éléments
d'entraînement,
un arbre de propulsion comportant une hélice et des éléments pour casser la glace
montés sur une partie en porte-à-faux de l'arbre faisant saillie d'une buse entourant
l'hélice, les éléments pour casser la glace se présentant sous la forme de lames ou
aubes fixées en amont de l'hélice et aptes à casser et/ou broyer la glace, caractérisé en ce que les lames ou aubes, aux points de leur diamètre maximum, sont positionnées à une
distance de 0,02-0,25 fois le diamètre de l'hélice de l'entrée de la buse et les diamètres
des lames ou aubes sont sélectionnées pour être égaux à 0,6 - 0,8 fois le diamètre
de l'hélice.
5. Pousseur azimutal de navire selon la revendication 4, caractérisé en ce que les lames ou aubes des éléments destinés à casser la glace sont espacées uniformément
sur la circonférence dans un plan normal à l'arbre d'hélice.
6. Procédé de déplacement d'un navire dans des conditions de glace au moyen d'un système
de propulsion comprenant un arbre menant, une hélice attachée à l'arbre menant et
une buse entourant l'hélice, la buse comportant une entrée d'eau et une sortie d'eau,
comprenant :
la rupture et/ou le broyage de la glace avant que la glace entre dans la buse au moyen
de lames ou aubes tournantes fixées à une portion de l'arbre menant qui fait saillie
vers l'extérieur de l'entrée d'eau, les lames ou aubes étant conçues de façon que
le point du diamètre maximum des lames ou aubes soit positionné dans une distance
axiale du plan de l'entrée d'eau qui représente 0,02 à 0,25 fois le diamètre de l'hélice,
et en ce que les lames ou aubes tournantes ont un diamètre qui représente 0,6 à 0,8
fois le diamètre de l'hélice.
7. Procédé selon la revendication 6, où le navire est déplacé et manoeuvré au moyen d'une
unité de propulsion azimutale.