FIELD OF THE INVENTION
[0001] The present invention relates to an antibody specific for a receptor protein tyrosine
kinase and nucleic acids encoding such antibody. Furthermore, the use of the antibodies
for preparing a medicament and an in-vitro method of stimulating the proliferation
and/or differentiation of primitive mammalian hematopoietic stem cells are disclosed.
BACKGROUND OF THE INVENTION
[0002] The mammalian hematopoietic system comprises red and white blood cells. These cells
are the mature cells that result from more primitive lineage-restricted cells. The
cells of the hematopoietic system have been reviewed by Dexter and Spooncer in the
Annual Review of Cell Biology
3, 423-441 (1987).
[0003] The red blood cells, or erythrocytes, result from primitive cells referred to by
Dexter and Spooncer as erythroid burst-forming units (BFU-E). The immediate progeny
of the erythroid burst-forming units are called erythroid colony-forming units (CFU-E).
[0004] The white blood cells contain the mature cells of the lymphoid and myeloid systems.
The lymphoid cells include B lymphocytes and T lymphocytes. The B and T lymphocytes
result from earlier progenitor cells referred to by Dexter and Spooncer as preT and
preB cells.
[0005] The myeloid system comprises a number of cells including granulocytes, platelets,
monocytes, macrophages, and megakaryocytes. The granulocytes are further divided into
neutrophils, eosinophils, basophils and mast cells.
[0006] Each of the mature hematopoietic cells are specialized for specific functions. For
example, erythrocytes are responsible for oxygen and carbon dioxide transport. T and
B lymphocytes are responsible for cell-and antibody-mediated immune responses, respectively.
Platelets are involved in blood clotting. Granulocytes and macrophages act generally
as scavengers and accessory cells in the immune response against invading organisms
and their by-products.
[0007] At the center of the hematopoietic system lie one or more totipotent hematopoietic
stem cells, which undergo a series of differentiation steps leading to increasingly
lineage-restricted progenitor cells. The more mature progenitor cells are restricted
to producing one or two lineages. Some examples of lineage-restricted progenitor cells
mentioned by Dexter and Spooncer include granulocyte/macrophage colony-forming cells
(GM-CFC), megakaryocyte colony-forming cells (Meg-CFC), eosinophil colony-forming
cells (Eos-CFC), and basophil colony-forming cells (Bas-CFC). Other examples of progenitor
cells are discussed above.
[0008] The hematopoietic system functions by means of a precisely controlled production
of the various mature lineages. The totipotent stem cell possesses the ability both
to self renew and to differentiate into committed progenitors for all hematopoietic
lineages. These most primitive of hematopoietic cells are both necessary and sufficient
for the complete and permanent hematopoietic reconstitution of a radiation-ablated
hematopoietic system in mammals. The ability of stem cells to reconstitute the entire
hematopoietic system is the basis of bone marrow transplant therapy.
[0009] It is known that growth factors play an important role in the development and operation
of the mammalian hematopoietic system. The role of growth factors is complex, however,
and not well understood at the present time. One reason for the uncertainty is that
much of what is known about hematopoietic growth factors results from
in vitro experiments. Such experiments do not necessarily reflect
in vivo realities.
[0010] In addition,
in vitro hematopoiesis can be established in the absence of added growth factors, provided
that marrow stromal cells are added to the medium. The relationship between stromal
cells and hematopoietic growth factors
in vivo is not understood. Nevertheless, hematopoietic growth factors have been shown to
be highly active
in vivo.
[0011] From what is known about them, hematopoietic growth factors appear to exhibit a spectrum
of activities. At one end of the spectrum are growth factors such as erythropoietin,
which is believed to promote proliferation only of mature erythroid progenitor cells.
In the middle of the spectrum are growth factors such as IL-3, which is believed to
facilitate the growth and development of early stem cells as well as of numerous progenitor
cells. Some examples of progenitor cells induced by IL-3 include those restricted
to the granulocyte/macrophage, eosinophil, megakaryocyte, erythroid and mast cell
lineages.
[0012] At the other end of the spectrum is the hematopoietic growth factor that, along with
the corresponding receptor, was discussed in a series of articles in the October 5,
1990 edition of
Cell. The receptor is the product of the W locus, c-kit, which is a member of the class
of receptor protein tyrosine kinases. The ligand for c-kit, which is referred to by
various names such as stem cell factor (SCF) and mast cell growth factor (MGF), is
believed to be essential for the development of early hematopoietic stem cells and
cells restricted to the erythroid and mast cell lineages in mice; see, for example,
Copeland et al., Cell
63, 175-183 (1990).
[0013] It appears, therefore, that there are growth factors that exclusively affect mature
cells. There also appear to be growth factors that affect both mature cells and stem
cells. The growth factors that affect both types of cells may affect a small number
or a large number of mature cells.
[0014] There further appears to be an inverse relationship between the ability of a growth
factor to affect mature cells and the ability of the growth factor to affect stem
cells. For example, the c-kit ligand, which stimulates a small number of mature cells,
is believed to be more important in the renewal and development of stem cells then
is IL-3, which is reported to stimulate proliferation of many mature cells (see above).
[0015] Prior to the present specification, there have been no reports of growth factors
that exclusively stimulate stem cells in the absence of an effect on mature cells.
The discovery of such growth factors would be of particular significance.
[0016] As mentioned above, c-kit is a protein tyrosine kinase (pTK). It is becoming increasingly
apparent that the protein tyrosine kinases play an important role as cellular receptors
for hematopoietic growth factors. Other receptor pTKs include the receptors of colony
stimulating factor 1 (CSF-1) and PDGF.
[0017] For example, Matthews et al. (
Proc. Natl. Acad. Sci, USA, 88:9026-9030, 1991; published subsequent to the second priority date of the
present patent) has provided a receptor tyrosine kinase cDNA, designated fetal liver
kinase 1 (flk-1) from mouse cell populations of primitive hematopoietic cells and
having a strong homology to the c-Kit subfamily of receptor kinases. Another receptor
tyrosine kinase, designated fetal liver kinase 2 or flk-2, was also found by Matthews
et al. (Cell, 65:1143-1152, 1991; published after the second priority date of the
present patent). It is believed that flk-2 may play a key role in signal transduction
in the totipotent hematopoietic stem cell.
Still another member of the receptor tyrosine kinase family was disclosed by Rosnet
et al. (Genomics, 9:380-385, 1991). Part of a new gene, called FLT3, was isolated
and sequenced and shown to code for a protein having an intracellular kinase domain.
In a further document (Rosnet et al., Oncogene, 6:1641-1650, 1991) FLT3 was shown
to belong to the class III of the tyrosine kinase receptors, including five members,
such as receptors for PDGF, CSF1, SLF and FLT1.
[0018] The pTK family can be recognized by the presence of several conserved amino acid
regions in the catalytic domain. These conserved regions are summarized by Hanks et
al. in Science
241, 42-52 (1988), see Figure 1 starting on page 46 and by Wilks in Proc. Natl. Acad.
Sci. USA
86, 1603-1607 (1989), see Figure 2 on page 1605.
[0019] Additional protein tyrosine kinases that represent hematopoietic growth factor receptors
are needed in order more effectively to stimulate the self-renewal of the totipotent
hematopoietic stem cell and to stimulate the development of all cells of the hematopoietic
system both
in vitro and
in vivo. Novel hematopoietic growth factor receptors that are present only on primitive stem
cells, but are not present on mature progenitor cells, are identified to be receptor
protein tyrosine kinases. Antibodies specific for those receptor protein tyrosine
kinases are also desirable to act as hemapoietic growth factors. Nucleic acid sequences
encoding the antibodies are needed to produce recombinant antibodies.
SUMMARY OF THE INVENTION
[0020] These and other objectives as will be apparent to those with ordinary skill in the
art have been met by providing an antibody specific for a receptor protein kinase
having an amino acid sequence selected from the sequence (i) shown in Figure 2, (ii)
functional equivalents of the sequence shown in Figure 2 containing a substitution,
addition or deletion of the sequence of Figure 2 and (iii) fragments of any of the
foregoing retaining receptor protein tyrosine kinase activity. In a preferred embodiment
the antibody is specific for a receptor protein tyrosine kinase which is human flk-1
or mouse flk-1. The present invention also includes the use of an antibody for preparing
a medicament for stimulating the proliferation and/or differentiation of the primitive
mammalian hematopoietic stem cells and provides an
in vitro method of stimulating the proliferation and/or differentiation of the primitive mammalian
hematopoietic stem cells using said antibodies.
DESCRIPTION OF THE FIGURES
[0021] Figure 1a.1-1a.3 shows the cDNA and amino acid sequences of murine flk-2. The amino
acid residues occur directly below the nucleotides in the open reading frame. Amino
acids 1-27 constitute the hydrophobic leader sequence. Amino acids 28-544 constitute
the extracellular receptor domain. Amino acids 545-564 constitute the transmembrane
region. The remainder of the amino acids constitute the intracellular catalytic domain.
The following amino acid residues in the intracellular domain are catalytic sub-domains
identified by Hanks (see above): 545-564, 618-623, 811-819, 832-834, 857-862, 872-878.
The sequence at residues 709-785 is a signature sequence characteristic of flk-2.
The protein tyrosine kinases generally have a signature sequence in this region.
[0022] Figure 1b shows the cDNA and amino acid sequences of a portion of human flk-2 from
the extracellular domain. Amino acids 1-110 of the human flk-2 correspond to amino
acids 43-152 of murine flk-2.
[0023] Figure 1c shows the cDNA and amino acid sequences of a portion of human flk-2 from
the intracellular (kinase) domain. Amino acids 1-94 of the human flk-2 correspond
to amino acids 751-849 of murine flk-2.
[0024] Figure 2-2.3 shows the cDNA and amino acid sequences of flk-1. Amino acid residue
763-784 constitute the transmembrane region of flk-1.
[0025] Figure 3 shows the time response of binding between a murine stromal cell line (2018)
and APtag-flk-2 as well as APtag-flk-1. APtag without receptor (SEAP) is used as a
control. See Example 8.
[0026] Figure 4 shows the dose response of binding between stromal cells (2018) and APtag-flk-2
as well as APtag-flk-1. APtag without receptor (SEAP) is used as a control. See Example
8.
DETAILED DESCRIPTION OF THE INVENTION
Receptors
[0027] The patent discloses an isolated mammalian nucleic acid molecule encoding a receptor
protein tyrosine kinase (pTK) expressed in primitive mammalian hematopoietic cells
and not expressed in mature hematopoietic cells. The sequence of this receptor protein
tyrosine kinase is shown in Figure 2 and it is called flk-1.
[0028] The nucleic acid molecule may be a DNA, cDNA, or RNA molecule. The mammal in which
the nucleic acid molecule exists may be any mammal, such as a mouse, rat, rabbit,
or human.
[0029] Members of the pTK family can be recognized by the conserved amino acid regions in
the catalytic domains. Examples of pTK consensus sequences have been provided by Hanks
et al. in Science
241, 42-52 (1988); see especially Figure 1 starting on page 46 and by Wilks in Proc.
Natl. Acad. Sci. USA
86, 1603-1607 (1989); see especially Figure 2 on page 1605. A methionine residue at
position 205 in the conserved sequence WMAPES is characteristic of pTK's that are
receptors.
[0030] The Hanks et al article identifies eleven catalytic sub-domains containing pTK consensus
residues and sequences. Flk-1 has most or all of these consensus residues and sequences.
[0031] Some particularly strongly conserved residues and sequences are shown in Table 1.
TABLE 1
Conserved Residues and Sequences in pTKs1 |
Position2 |
Residue or Sequence |
Catalytic Domain |
50 |
G |
I |
52 |
G |
I |
57 |
V |
I |
70 |
A |
II |
72 |
K |
II |
91 |
E |
III |
166 |
D |
VI |
171 |
N |
VI |
184-186 |
DFG |
VII |
208 |
E |
VIII |
220 |
D |
IX |
225 |
G |
IX |
280 |
R |
XI |
1. See Hanks et al., Science 241, 42-52 (1988) |
2. Adjusted in accordance with Hanks et al., Id. |
[0032] A pTK may contain all thirteen of these highly conserved residues and sequences.
As a result of natural or synthetic mutations, the flk-1 may contain fewer than all
thirteen strongly conserved residues and sequences, such as 11, 9, or 7 such sequences.
[0033] Flk-1 generally belongs to the same class of pTK sequences that c-kit belongs to.
It is expressed in primitive hematopoietic cells, but not expressed in mature hematopoietic
cells.
[0034] For the purpose of this specification, a primitive hematopoietic cell is totipotent,
i.e. capable of reconstituting all hematopoietic blood cells
in vivo. A mature hematopoietic cell is non-self-renewing, and has limited proliferative
capacity - i.e., a limited ability to give rise to multiple lineages. Mature hematopoietic
cells, for the purposes of this specification, are generally capable of giving rise
to only one or two lineages
in vitro or
in vivo.
[0035] It should be understood that the hematopoietic system is complex, and contains many
intermediate cells between the primitive totipotent hematopoietic stem cell and the
totally committed mature hematopoietic cells defined above. As the stem cell develops
into increasingly mature, lineage-restricted cells, it gradually loses its capacity
for self-renewal.
[0036] Flk-1 as described in this patent may and may not be expressed in these intermediate
cells. Flk-1 is present in the primitive, totipotent stem cell or cells, and not in
mature cells restricted only to one or, at most, two lineages.
[0037] One further member of the class of receptor pTKs, which is mentioned in this patent,
is called fetal liver kinase 2 (flk-2) after the organ in which it was found. There
is approximately 1 totipotent stem cell per 10
4 cells in mid-gestation (day 14) fetal liver in mice. In addition to fetal liver,
flk-2 is also expressed in fetal spleen, fetal thymus, adult brain, and adult marrow.
[0038] For example, flk-2 is expressed in individual multipotential CFU-Blast colonies capable
of generating numerous multilineage colonies upon replating. It is likely, therefore;
that flk-2 is expressed in the entire primitive (i.e. self-renewing) portion of the
hematopoietic hierarchy. This discovery is consistent with flk-2 being important in
transducing putative self-renewal signals from the environment.
[0039] It is particularly relevant that the expression of flk-2 mRNA occurs in the most
primitive thymocyte subset. Even in two closely linked immature subsets that differ
in expression of the IL-2 receptor, flk-2 expression segregates to the more primitive
subset lacking an IL-2 receptor. The earliest thymocyte subset is believed to be uncommitted.
Therefore, the thymocytes expressing flk-2 may be multipotential. flk-2 is the first
receptor tyrosine kinase known to be expressed in the T-lymphoid lineage.
[0040] The fetal liver mRNA migrates relative to 285 and 185 ribosomal bands on formaldehyde
agarose gels at approximately 3.5 kb while the brain message is considerably larger.
In adult tissues, flk-2 m-RNA from both brain and bone marrow migrated at approximately
3.5 kb.
[0041] The pTK, which is called fetal liver kinase 1 (flk-1), is not a member of the same
class of receptors as flk-2, since flk-1 may be found in some more mature hematopoietic
cells. The amino acid sequence of flk-1 is given in Figure 2.
[0042] The present invention relates to an antibody specific for
a receptor protein tyrosine kinase having an amino acid sequence selected from
(i) the sequence shown in Fig. 2
(ii) functional equivalents of the sequence shown in Fig. 2 containing a substitution,
addition or deletion of the sequence of Fig. 2, and
(iii) fragments of any of the foregoing retaining receptor protein kinase activity.
which is called flk-1.
[0043] The DNA sequence of flk-1 is also given in Figure 2. Flk-1 may be found in the same
organs as flk-2, as well as in fetal brain, stomach, kidney, lung, heart and intestine;
and in adult kidney, heart, spleen, lung, muscle, and lymph nodes.
[0044] The receptor protein tyrosine kinase flk-1 is known to be divided into easily found
domains. The DNA sequence corresponding to the pTK encodes, starting at it's 5'-end
, a hydrophobic leader sequence followed by a hydrophilic extracellular domain, which
binds, to, and is activated by, a specific ligand. Immediately downstream from the
extracellular receptor domain, is a hydrophobic transmembrane region. The transmembrane
region is immediately followed by a basic catalytic domain, which may easily be identified
by reference to the Hanks et al. and Wilks articles discussed above.
[0045] The present invention includes antibodies to flk-1, wherein the extracellular receptor
domain lacks the transmembrane region and catalytic domain. Preferably, the hydrophobic
leader sequence is also removed from the extracellular domain.
[0046] These regions and domains may easily be visually identified by those having ordinary
skill in the art by reviewing the amino acid sequence in a suspected pTK and comparing
it to known pTKs. For example, referring to Figure 1a, the transmembrane region of
flk-2, which separates the extracellular receptor domain from the catalytic domain,
is encoded by nucleotides 1663 (T) to 1722 (C). These nucleotides correspond to amino
acid residues 545 (Phe) to 564 (Cys). The amino acid sequence between the transmembrane
region and the catalytic sub-domain (amino acids 618-623) identified by Hanks et al.
as sub-domain I (i.e., GXGXXG) is characteristic of receptor protein tyrosine kinases.
[0047] The extracellular domain may also be identified through commonly recognized criteria
of extracellular amino acid sequences. The determination of appropriate criteria is
known to those skilled in the art, and has been described, for example, by Hopp et
al, Proc. Nat'l Acad. Sci. USA
78, 3824-3828 (1981); Kyte et al, J. Mol. Biol.
157, 105-132 (1982); Emini, J. Virol.
55, 836-839 (1985); Jameson et al, CA BIOS
4, 181-186 (1988); and Karplus et al, Naturwissenschaften
72, 212-213 (1985). Amino acid domains predicted by these criteria to be surface exposed
characteristic of extracellular domains.
[0048] As will be discussed in more detail below, the nucleic acid molecule that encodes
flk-1 may be inserted into known vectors for use in standard recombinant DNA techniques.
Standard recombinant DNA techniques are those such as are described in Sambrook et
al., "Molecular Cloning," Second Edition, Cold Spring Harbor Laboratory Press (1987)
and by Ausubel et al., Eds, "Current Protocols in Molecular Biology," Green Publishing
Associates and Wiley-Interscience, New York (1987). The vectors may be circular (i.e.
plasmids) or non-circular. Standard vectors are available for cloning and expression
in a host. The host may be prokaryotic or eucaryotic. Prokaryotic hosts are preferably
E. coli. Preferred eucaryotic hosts include yeast, insect and mammalian cells. Preferred
mammalian cells include, for example, CHO, COS and human cells.
Antibodies
[0049] The invention is directed to antibodies that bind to the above described receptor
pTK flk-1. In a preferred embodiment the antibodies, in addition to binding, stimulate
the proliferation of additional primitive stem cells, differentiation into more mature
progenitor cells, or both. In a further preferred embodiment the antibodies comprise
a specificity for the extracellular portion of the receptor protein tyrosine kinase.
[0050] The antibody may also be a molecule that does not occur naturally in a mammal. For
example, antibodies, preferably monoclonal, raised against the receptors of the invention
or against anti-ligand antibodies mimic the shape of, and act as, ligands if they
constitute the negative image of the receptor or anti-ligand antibody binding site.
[0051] In another embodiment, nucleic acid molecules encoding the antibodies of the invention
are provided. The nucleic acid molecule may be RNA, DNA or cDNA. The invention also
include the use of an antibody for preparing a medicament for stimulating the proliferation
and/or differentiation of primitive mammalian hematopoietic cells.
Stimulating Proliferation of Stem Cells
[0052] The invention also provides an in vitro method of stimulating the proliferation and/or
differentiation of primitive mammalian hematopoietic stem cells as defined above.
The method comprises contacting the stem cells with an antibody in accordance with
the present invention.
[0053] The antibody may also be used for preparing a medicament for stimulating the proliferation
and/or differentiation of primitive hematopoietic stem cells
in vivo.
[0054] The ability of an antibody according to the invention to stimulate proliferation
of stem cells
in vitro and
in vivo has important therapeutic applications. such applications include treating mammals,
including humans, whose primitive stem cells do not sufficiently undergo self-renewal.
Example of such medical problems include those that occur when defects in hematopoietic
stem cells or their related growth factors depress the number of white blood cells.
Examples of such medical problems include anemia, such as macrocytic and aplastic
anemia. Bone marrow damage resulting from cancer chemotherapy and radiation is another
example of a medical problem that would be helped by the stem cell factors of the
invention.
Functional Equivalents
[0055] The invention includes functional equivalents of the antibodies described above as
well as of the nucleic acid sequences encoding them. A protein is considered a functional
equivalent of another protein for a specific function if the equivalent protein is
immunologically cross-reactive with, and has the same function as, the antibodies
of the invention. The equivalent may, for example, be a fragment of the antibody or
a substitution, addition or deletion mutant of the antibody.
[0057] Substitutions, additions and/or deletions in the antibodies may be made as long as
the resulting equivalent antibodies are immunologically cross reactive with, and have
the same function as, the native antibodies.
[0058] The equivalent antibodies will normally have substantially the same amino acid sequence
as the native antibodies. An amino acid sequence that is substantially the same as
another sequence, but that differs from the other sequence by means of one or more
substitutions, additions and/or deletions is considered to be an equivalent sequence.
Preferably, less than 25%, more preferably less than 10%, and most preferably less
than 5% of the number of amino acid residues in the amino acid sequence of the native
antibodies are substituted for, added to, or deleted from.
[0059] Equivalent nucleic acid molecules include nucleic acid sequences that encode equivalent
antibodies as defined above. Equivalent nucleic acid molecules also include nucleic
acid sequences that differ from native nucleic acid sequences in ways that do not
affect the corresponding amino acid sequences.
ISOLATION OF NUCLEIC ACID MOLECULES AND PROTEINS
Isolation of Nucleic Acid Molecules Encoding Receptors
[0060] In order to produce nucleic acid molecules encoding mammalian stem cell receptors,
a source of stem cells is provided. Suitable sources include fetal liver, spleen,
or thymus cells or adult marrow or brain cells.
[0061] For example, suitable mouse fetal liver cells may be obtained at day 14 of gestation.
Mouse fetal thymus cells may be obtained at day 14-18, preferably day 15, of gestation.
Suitable fetal cells of other mammals are obtained at gestation times corresponding
to those of mouse.
[0062] Total RNA is prepared by standard procedures from stem cell receptor-containing tissue.
The total RNA is used to direct cDNA synthesis. Standard methods for isolating RNA
and synthesizing cDNA are provided in standard manuals of molecular biology such as,
for example, in Sambrook et al., "Molecular Cloning," Second Edition, Cold Spring
Harbor Laboratory Press (1987) and in Ausubel et al., (Eds), "Current Protocols in
Molecular Biology," Greene Associates/Wiley Interscience, New York (1990).
[0063] The cDNA of the receptor" is amplified by known methods. For example, the cDNA may
be used as a template for amplification by polymerase chain reaction (PCR); see Saiki
et al., Science,
239, 487 (1988) or Mullis et al., U.S. patent 4,683,195. The sequences of the oligonucleotide
primers for the PCR amplification are derived from the sequences of known receptors,
such as from the sequences given in Figure 2 for flk-1.
[0064] The oligonucleotides are synthesized by methods known in the art. Suitable methods
include those described by Caruthers in Science
230, 281-285 (1985).
[0065] In order to isolate the entire protein-coding regions for the receptor, the upstream
oligonucleotide is complementary to the sequence at the 5' end, preferably encompassing
the ATG start codon and at least 5-10 nucleotides upstream of the start codon. The
downstream oligonucleotide is complementary to the sequence at the 3' end, optionally
encompassing the stop codon. A mixture of upstream and downstream oligonucleotides
are used in the PCR amplification. The conditions are optimized for each particular
primer pair according to standard procedures. The PCR product is analyzed by electrophoresis
for the correct size cDNA corresponding to the sequence between the primers.
[0066] Alternatively, the coding region may be amplified in two or more overlapping fragments.
The overlapping fragments are designed to include a restriction site permitting the
assembly of the intact cDNA from the fragments.
[0067] The amplified DNA encoding the receptor may be replicated in a wide variety of cloning
vectors in a wide variety of host cells. The host cell may be prokaryotic or eukaryotic.
The DNA may be obtained from natural sources and, optionally, modified, or may be
synthesized in whole or in part.
[0068] The vector into which the DNA is spliced may comprise segments of chromosomal, non-chromosomal
and synthetic DNA sequences. Some suitable prokaryotic cloning vectors include plasmids
from
E. coli, such as
colE1,
pCR1,
pBR322,
pMB9, pUC, pKSM, and
RP4. Prokaryotic vectors also include derivatives of phage DNA such as
M13 and other filamentous single-stranded DNA phages.
Isolation of Receptors
[0069] DNA encoding the receptor are inserted into a suitable vector and expressed in a
suitable prokaryotic or eucaryotic host. Vectors for expressing proteins in bacteria,
especially
E.coli, are known. Such vectors include the PATH vectors described by Dieckmann and Tzagoloff
in J. Biol. Chem.
260, 1513-1520 (1985). These vectors contain DNA sequences that encode anthranilate synthetase
(TrpE) followed by a polylinker at the carboxy terminus. Other expression vector systems
are based on beta-galactosidase (pEX); lambda P
L; maltose binding protein (pMAL); and glutathione S-transferase (pGST) - see Gene
67, 31 (1988) and Peptide Research
3, 167 (1990).
[0070] Vectors useful in yeast are available. A suitable example is the 2µ plasmid.
[0071] Suitable vectors for use in mammalian cells are also known. Such vectors include
well-known derivatives of SV-40, adenovirus, retrovirus-derived DNA sequences and
vectors derived from combination of plasmids and phage DNA.
[0072] Further eukaryotic expression vectors are known in the art (e.g., P.J. Southern and
P. Berg, J. Mol. Appl. Genet.
1, 327-341 (1982); S. Subramani et al, Mol. Cell. Biol.
1, 854-864 (1981); R.J. Kaufmann and P.A. Sharp, "Amplification And Expression Of Sequences
Cotransfected with A Modular Dihydrofolate Reductase Complementary DNA Gene," J. Mol.
Biol.
159, 601-621 (1982); R.J. Kaufmann and P.A. Sharp, Mol. Cell. Biol.
159, 601-664 (1982); S.I. Scahill et al, "Expression And Characterization Of The Product
Of A Human Immune Interferon DNA Gene In Chinese Hamster Ovary Cells," Proc. Natl.
Acad. Sci. USA
80, 4654-4659 (1983); G. Urlaub and L.A. Chasin, Proc. Natl. Acad. Sci. USA
77, 4216-4220, (1980).
[0073] Useful expression vectors contain at least on expression control sequence that is
operatively linked to the DNA sequence or fragment to be expressed. The control sequence
is inserted in the vector in order to control and to regulate the expression of the
cloned DNA sequence. Examples of useful expression control sequences are the
lac system, the
trp system, the
tac system, the
trc system, major operator and promoter regions of phage lambda, the control region of
fd coat protein, the glycolytic promoters of yeast, e.g., the promoter for 3-phosphoglycerate
kinase, the promoters of yeast acid phosphatase, e.g., Pho5, the promoters of the
yeast alpha-mating factors, and promoters derived from polyoma, adenovirus, retrovirus,
and simian virus, e.g., the early and late promoters or SV40, and other sequences
known to control the expression of genes of prokaryotic or eukaryotic cells and their
viruses or combinations thereof.
[0074] Vectors containing the receptor-encoding DNA and control signals are inserted into
a host cell for expression of the receptor. Some useful expression host cells include
well-known prokaryotic and eukaryotic cells. Some suitable prokaryotic hosts include,
for example,
E. coli, such as
E. coli SG-936,
E. coli HB 101,
E. coli W3110,
E. coli X1776,
E. coli X2282,
E. coli DHI, and
E. coli MRCl,
Pseudomonas,
Bacillus, such as
Bacillus subtilis, and
Streptomyces. Suitable eukaryotic cells include yeast and other fungi, insect, animal cells, such
as COS cells and CHO cells, human cells and plant cells in tissue culture.
[0075] The human homolog of the mouse receptor described above is isolated by a similar
strategy. RNA encoding the receptor is obtained from a source of human cells enriched
for primitive stem cells. Suitable human cells include fetal spleen, thymus and liver
cells, and umbilical cord blood as well as adult brain and bone marrow cells. The
human fetal cells are preferably obtained on the day of gestation corresponding to
mid-gestation in mice: The amino acid sequence of the human flk receptor as well as
of the nucleic acid sequence encoding it is homologous to the amino acid and nucleotide
sequence of the mouse receptor. In the present specification, the sequence of a first
protein, such as an antibody or of a nucleic acid molecule that encodes the protein,
is considered homologous to a second protein or nucleic acid molecule if the amino
acid or nucleotide sequence of the first protein or nucleic acid molecule is at least
about 30% homologous, preferably at least about 50% homologous, and more preferably
at least about 65% homologous to the respective sequences of the second protein or
nucleic acid molecule. In the case of proteins having high homology, the amino acid
or nucleotide sequence of the first protein or nucleic acid molecule is at least about
75% homologous, preferably at least about 85% homologous, and more preferably at least
about 95% homologous to the amino acid or nucleotide sequence of the second protein
or nucleic acid molecule.
[0076] Combinations of mouse oligonucleotide pairs are used as PCR primers to amplify the
human homolog from the cells to account for sequence divergence. The remainder of
the procedure for obtaining the human flk-1 homolog is similar to those described
above for obtaining mouse flk-1 receptors. The less than perfect homology between
the human flk-1 homolog and the mouse oligonucleotides is taken into account in determining
the stringency of the hybridization conditions.
Assay for expression of Receptors on Stem Cells
[0077] In order to demonstrate the expression of flk-1 receptors on the surface of primitive
hematopoietic stem cells, antibodies that recognize the receptor are raised. The receptor
may be the entire protein as it exists in nature, or an antigenic fragment of the
whole protein. Preferably, the fragment comprises the predicted extracellular portion
of the molecule.
[0078] Antigenic fragments may be identified by methods known in the art. Fragments containing
antigenic sequences may be selected on the basis of generally accepted criteria of
potential antigenicity and/or exposure. Such criteria include the hydrophilicity and
relative antigenic index, as determined by surface exposure analysis of proteins.
The determination of appropriate criteria is known to those skilled in the art, and
has been described, for example, by Hopp et al, Proc. Nat'l Acad. Sci. USA
78, 3824-3828 (1981); Kyte et al, J. Mol. Biol.
157, 105-132 (1982); Emini, J. Virol.
55, 836-839 (1985); Jameson et al, CA BIOS
4, 181-186 (1988); and Karplus et al, Naturwissenschaften
72, 212-213 (1985). Amino acid domains predicted by these criteria to be surface exposed
are selected preferentially over domains predicted to be more hydrophobic or hidden.
[0079] The proteins and fragments of the receptors to be used as antigens may be prepared
by methods known in the art. Such methods include isolating or synthesizing DNA encoding
the proteins and fragments, and using the DNA to produce recombinant proteins, as
described above.
[0080] Fragments of proteins and DNA encoding the fragments may be chemically synthesized
by methods known in the art from individual amino acids and nucleotides. Suitable
methods for synthesizing protein fragments are described by Stuart and Young in "Solid
Phase Peptide Synthesis," Second Edition, Pierce Chemical Company (1984). Suitable
methods for synthesizing DNA fragments are described by Caruthers in Science
230, 281-285 (1985).
[0081] If the receptor fragment defines the epitope, but is too short to be antigenic, it
may be conjugated to a carrier molecule in order to produce antibodies. Some suitable
carrier molecules include keyhole limpet hemocyanin, Ig sequences, TrpE, and human
or bovine serum albumen. Conjugation may be carried out by methods known in the art.
One such method is to combine a cysteine residue of the fragment with a cysteine residue
on the carrier molecule.
[0082] The antibodies are preferably monoclonal. Monoclonal antibodies may be produced by
methods known in the art. These methods include the immunological method described
by Kohler and Milstein in Nature
256, 495-497 (1975) and Campbell in "Monoclonal Antibody Technology, The Production and
Characterization of Rodent and Human Hybridomas" in Burdon et al., Eds, Laboratory
Techniques in Biochemistry and Molecular Biology, Volume 13, Elsevier Science Publishers,
Amsterdam (1985); as well as by the recombinant DNA method described by Huse et al
in Science
246, 1275-1281 (1989).
[0083] Polyclonal or monoclonal antisera shown to be reactive with receptor-encoded native
proteins, i.e. with flk-1 encoded proteins, expressed on the surface of viable cells
are used to isolate antibody-positive cells. One method for isolating such cells is
flow cytometry; see, for example, Loken et al., European patent application 317,156.
The cells obtained are assayed for stem cells by engraftment into radiation-ablated
hosts by methods known in the art; see, for example, Jordan et al., Cell
61, 953-963 (1990).
Criteria for Novel Stem Cell Receptor Tyrosine Kinase Expressed in Stem Cells
[0084] Additional novel receptor tyrosine kinase cDNAs are obtained by amplifying cDNAs
from stem cell populations using oligonucleotides as PCR primers; see above. Examples
of suitable oligonucleotides are PTK1 and PTK2, which were described by Wilks et al.
in Proc. Natl. Acad. Sci. USA
86, 1603-1607 (1989). Novel cDNA is selected on the basis of differential hybridization
screening with probes representing known kinases. The cDNA clones hybridizing only
at low stringency are selected and sequenced. The presence of the amino acid triplet
DFG confirms that the sequence represents a kinase. The diagnostic methionine residue
in the WMAPES motif is indicative of a receptor-like kinase, as described above. Potentially
novel sequences obtained are compared to available sequences using databases such
as Genbank in order to confirm uniqueness. Gene-specific oligonucleotides are prepared
as described above based on the sequence obtained. The oligonucleotides are used to
analyze stem cell enriched and depleted populations for expression. Such cell populations
in mice are described, for example, by Jordan et al. in Cell
61, 953-956 (1990); Ikuta et al. in Cell
62, 863-864 (1990) ; Spangrude et al. in Science
241, 58-62 (1988); and Szilvassy et al. in Blood
74, 930-939 (1989). Examples of such human cell populations are described as CD33
.CD34
. by Andrews et al. in the Journal of Experimental Medicine
169, 1721-1731 (1989). Other human stem cell populations are described, for example, in
Civin et al., European Patent Application 395,355 and in Loken et al., European Patent
Application 317,156.
Examples
Comparative Example 1. Cells containing mouse flk-1 and flk-2 ligands. Murine stromal
cell line 2018.
[0085] In order to establish stromal cell lines, fetal liver cells are disaggregated with
collagen and grown in a mixture of Dulbecco's Modified Eagle's Medium (DMEM) and 10%
heat-inactivated fetal calf serum at 37°C. The cells are immortalized by standard
methods. A suitable method involves introducing DNA encoding a growth regulating-
or oncogene-encoding sequence into the target host cell. The DNA may be introduced
by means of transduction in a recombinant viral particle or transfection in a plasmid.
See, for example, Hammerschmidt et al., Nature
340, 393-397 (1989) and Abcouwer et al, Biotechnology
7, 939-946 (1989). Retroviruses are the preferred viral vectors, although SV40 and
Epstein-Barr virus can also serve as donors of the growth-enhancing sequences. A suitable
retrovirus is the ecotropic retrovirus containing a temperature sensitive SV40 T-antigen
(tsA58) and a G418 resistance gene described by McKay in Cell
66, 713-729 (1991). After several days at 37°C, the temperature of the medium is lowered
to 32°C. Cells are selected with G418 (0.5 mg/ml). The selected cells are expanded
and maintained.
[0086] A mouse stromal cell line produced by this procedure is called 2018 and was deposited
on October 30, 1991 in the American Type Culture Collection, Rockville, Maryland,
USA (ATCC); accession number CRL 10907.
Comparative Example 2. Cells containing human flk-1 and flk-2 ligands
[0087] Human fetal liver (18, 20, and 33 weeks after abortion), spleen (18 weeks after abortion),
or thymus (20 weeks after abortion) is removed at the time of abortion and stored
on ice in a balanced salt solution. After mincing into 1 mm fragments and forcing
through a wire mesh, the tissue is washed one time in Hanks Balanced Salt Solution
(HBSS).
[0088] The disrupted tissue is centrifuged at 200 xg for 15 minutes at room temperature.
The resulting pellet is resuspended in 10-20 ml of a tissue culture grade trypsin-EDTA
solution (Flow Laboratories). The resuspended tissue is transferred to a sterile flask
and stirred with a stirring bar at room temperature for 10 minutes. One ml of heat-inactivated
fetal bovine calf serum (Hyclone) is added to a final concentration of 10% in order
to inhibit trypsin activity. Collagenase type IV (Sigma) is added from a stock solution
(10 mg/ml in HBSS) to a final concentration of 100 µg/ml in order to disrupt the stromal
cells. The tissue is stirred at room temperature for an additional 2.5 hours; collected
by centrifugation (400xg, 15 minutes); and resuspended in "stromal medium," which
contains Iscove's modification of DMEM supplemented with 10% heat-inactivated fetal
calf serum, 5% heat-inactivated human serum (Sigma), 4 mM L-glutamine, 1x sodium pyruvate,
(stock of 100x Sigma), 1x non-essential amino acids (stock of 100x, Flow), and a mixture
of antibiotics kanomycin, neomycin, penicillin, streptomycin. Prior to resuspending
the pellet in the stromal medium, the pellet is washed one time with HBSS. It is convenient
to suspend the cells in 60 ml of medium. The number of cultures depends on the amount
of tissue.
Comparative Example 3. Isolating Stromal cells
[0089] Resuspended Cells (example 2) that are incubated at 37°C with 5% carbon dioxide begin
to adhere to the plastic plate within 10-48 hours. Confluent monolayers may be observed
within 7-10 days, depending upon the number of cells plated in the initial innoculum.
Non-adherent and highly refractile cells adhering to the stromal cell layer as colonies
are separately removed by pipetting and frozen. Non-adherent cells are likely sources
of populations of self-renewing stem cells containing flk-2. The adherent stromal
cell layers are frozen in aliquots for future studies or expanded for growth in culture.
[0090] An unexpectedly high level of APtag-flk-2 fusion protein binding to the fetal spleen
cells is observed. Two fetal spleen lines are grown in "stromal medium," which is
described in example 2.
[0091] Non-adherent fetal stem cells attach to the stromal cells and form colonies (colony
forming unit - CPU). Stromal cells and CFU are isolated by means of sterile glass
cylinders and expanded in culture. A clone, called Fsp 62891, contains the flk-2 ligand.
Fsp 62891 was deposited in the American Type Culture Collection, Rockville, Maryland,
U.S.A on November 21, 1991, accession number CRL 10935.
[0092] Fetal liver and fetal thymus cells are prepared in a similar way. Both of these cell
types produce ligands of flk-1 and, in the case of liver, some flk-2. One such fetal
thymus cell line, called F.thy 62891, and one such fetal liver cell line, called FL
62891, were deposited in the American Type Culture Collection, Rockville, Maryland,
U.S.A on November 21, 1991 and April 2, 1992, respectively, accession numbers CRL
10936 and CRL 11005, respectively.
[0093] Stable human cell lines are prepared from fetal cells with the same temperature sensitive
immortalizing virus used to prepare the murine cell line described in example 1.
Comparative Example 4. Isolation of human stromal cell clone
[0094] Highly refractile cells overgrow patches of stromal cells, presumably because the
stromal cells produce factors that allow the formation of the CFU. To isolate stromal
cell clones, sterile glass cylinders coated with vacuum grease are positioned over
the CFU. A trypsin-EDTA solution (100 ml) is added in order to detach the cells. The
cells are added to 5 ml of stromal medium and each (clone) plated in a single well
of 6-well plate.
Comparative Example 5. Plasmid (AP-tag) for expressing secretable alkaline phosphatase (SEAP)
[0095] Plasmids that express secretable alkaline phosphatase are described by Flanagan and
Leder in Cell
63, 185-194 (1990). The plasmids contain a promoter, such as the LTR promoter; a polylinker,
including HindIII and BglII; DNA encoding SEAP; a poly-A signal; and ampicillin resistance
gene; and replication site.
Comparative Example 6. Plasmid for expressing Aptag-flk-2 and Aptag-flk-1 fusion proteins
[0096] Plasmids that express fusion proteins of SEAP and the extracellular portion of either
flk-1 or flk-2 are prepared in accordance with the protocols of Flanagan and Leder
in Cell
63, 185-194 (1990) and Berger et al., Gene
66, 1-10 (1988). Briefly, a HindIII-Bam HI fragment containing the extracellular portion
of flk-1 or flk-2 is prepared and inserted into the HindIII-BglII site of the plasmid
described in example 5.
Comparative Example 7. Production of Aptag-flk-1 or -flk-2 Fusion protein
[0097] The plasmids from Example 6 are transfected into Cos-7 cells by DEAE-dextran (as
described in Current Protocols in Molecular Biology, Unit 16.13, "Transient Expression
of Proteins Using Cos Cells," 1991); and cotransfected with a selectable marker, such
as pSV7neo, into NIH/3T3 cells by calcium precipitation. The NIH/3T3 cells are selected
with 600µg/ml G418 in 100 mm plates. Over 300 clones are screened for secretion of
placental alkaline phosphatase activity. The assay is performed by heating a portion
of the supernatant at 65°C for 10 minutes to inactivate background phosphatase activity,
and measuring the OD
405 after incubating with 1M diethanolamine (pH 9.8), 0.5 mM MgCl
2, 10 mM L-homoarginine (a phosphatase inhibitor), 0.5 mg/ml BSA, and 12 mM p-nitrophenyl
phosphate. Human placental alkaline phosphatase is used to perform a standard curve.
The APtaq-flk-1 clones (F-1AP21-4) produce up to 10 µg alkaline phosphatase activity/ml
and the APtaq-flk-2 clones (F-2AP26-0) produce up to 0.5 µg alkaline phosphatase activity/ml.
Comparative Example 8. Assay for AP-tag-flk-1 or Aptag-flk-2 Binding to Cells
[0098] The binding of APtaq-flk-1 or APtag-flk-2 to cells containing the appropriate ligand
is assayed by standard methods. See, for example, Flanagan and Leder, Cell
63:185-194, 1990). Cells (i.e., mouse stromal cells, human fetal liver, spleen or thymus,
or various control cells) are grown to confluency in six-well plates and washed with
HBHA (Hank's balanced salt solution with 0.5 mg/ml BSA, 0.02% NaN
3, 20 mM HEPES, pH 7.0). Supernatants from transfected COS or NIH/3T3 cells containing
either APtaq-flk-1 fusion protein, APtag-flk-2 fusion protein, or APtag without a
receptor (as a control) are added to the cell monolayers and incubated for two hours
at room temperature on a rotating platform. The concentration of the APtaq-flk-1 fusion
protein, APtag-flk-2 fusion protein, or APtag without a receptor is 60 ng/ml of alkaline
phosphatase as determined by the standard alkaline phosphatase curve (see above).
The cells are then rinsed seven times with HBHA and lysed in 350 µl of 1% Triton X-100™
10 mM Tris-HCl (pH 8.0). The lysates are transferred to a microfuge tube, along with
a further 150 µl rinse with the same solution. After vortexing vigorously, the samples
are centrifuged for five minutes in a microfuge, heated at 65°C for 12 minutes to
inactivate cellular phosphatases, and assayed for phosphatase activity as described
previously. Results of experiments designed to show the time and dose responses of
binding between stromal cells containing the ligands to flk-2 and flk-1 (2018) and
APtag-flk-2, APtag-flk-1 and APtag without receptor (as a control) are shown in Figures
3 and 4, respectively.
Comparative Example 8A. Plasmids for expressing flk1/fms and flk2/fms fusion proteins
[0099] Plasmids that express fusion proteins of the extracellular portion of either flk-1
or flk-2 and the intracellular portion of c-fms (also known as colony-stimulating
factor-1 receptor) are prepared in a manner similar to that described under Example
6 (Plasmid for expressing APtag-flk-2 and APtag-flk-1 fusion proteins). Briefly, a
Hind III - Bam HI fragment containing the extracellular portion of flk1 or flk2 is
prepared and inserted into the Hind III - Bgl II site of a pLH expression vector containing
the intracellular portion of c-fms.
Comparative Example 8B. Expression of flk1/fms or flk2/fms in 3T3 cells
[0100] The plasmids from Example 11 are transfected into NIH/3T3 cells by calcium. The intracellular
portion of c-fms is detected by Western blotting.
Comparative Example 9. Cloning and Expression of cDNA Coding for Mouse Ligand To flk-1
and flk-2 Receptors
[0101] cDNA expressing mouse ligand for flk-1 and flk-2 is prepared by known methods. See,
for example. Seed, B., and Aruffo, A. PNAS
84:3365-3369, 1987; Simmons, D. and Seed, B. J. Immunol.
141:2797-2800; and D'Andrea, A.D., Lodish, H.F. and Wong, G.G. Cell
57:277-285, 1989).
[0102] The protocols are listed below in sequence: (a) RNA isolation; (b) poly A RNA preparation;
(c) cDNA synthesis; (d) cDNA size fractionation; (e) propagation of plasmids (vector);
(f) isolation of plasmid DNA; (g) preparation of vector pSV Sport™ (BRL Gibco) for
cloning; (h) compilation of buffers for the above steps; (i) Transfection of cDNA
encoding Ligands in Cos 7 Cells; (j) panning procedure; (k) Expression cloning of
flk-1 or flk-2 ligand by establishment of an autocrine loop.
9a. Guanidinium thiocyanate/LiCl Protocol for RNA Isolation
[0103] For each ml of mix desired, 0.5 g guanidine thiocyanate (GuSCN) is dissolved in 0.55
ml of 25% LiCl (stock filtered through 0.45 micron filter). 20 µl of mercaptoethanol
is added. (The resulting solution is not good for more than about a week at room temperature.)
[0104] The 2018 stromal cells are centrifuged, and 1 ml of the solution described above
is added to up to 5 x 10
7 cells. The cells are sheared by means of a polytron until the mixture is non-viscous.
For small scale preparations (<10
8 cells), the sheared mixture is layered on 1.5 ml of 5.7M CsCl (RNase free; 1.26 g
CsCl added to every ml 19 mM EDTA pH8), and overlaid with RNase-free water if needed.
The mixture is spun in an SW55 rotor at 50 krpm for 2 hours. For large scale preparations,
25 ml of the mixture is layered on 12 ml CsCl in an SW28 tube, overlaid as above,
and spun at 24 krpm for 8 hours. The contents of the tube are aspirated carefully
with a sterile pasteur pipet connected to a vacuum flask. Once past the CsCl interface,
a band around the tube is scratched with the pipet tip to prevent creeping of the
layer on the wall down the tube. The remaining CsCl solution is aspirated. The resulting
pellet is taken up in water, but not redissolved. 1/10 volume of sodium acetate and
three volumes of ethanol are added to the mixture, and spun. The pellet is resuspended
in water at 70°C, if necessary. The concentration of the RNA is adjusted to 1 mg/ml
and frozen.
[0105] It should be noted that small RNA molecules (e.g., 5S) do not come down. For small
amounts of cells, the volumes are scaled down, and the mixture is overlaid with GuSCN
in RNase-free water on a gradient (precipitation is inefficient when RNA is dilute).
9b. Poly A- RNA preparation
(All buffers mentioned are compiled separately below)
[0106] A disposable polypropylene column is prepared by washing with 5M NaOH and then rinsing
with RNase-free water. For each milligram of total RNA, approximately 0.3 ml (final
packed bed) of oligo dT cellulose is added. The oligo dT cellulose is prepared by
resuspending approximately 0.5 ml of dry powder in 1 ml of 0.1M NaOH and transferring
it into the column, or by percolating 0.1M NaOH through a previously used column.
The column is washed with several column volumes of RNase-free water until the pH
is neutral, and rinsed with 2-3 ml of loading buffer. The column bed is transferred
to a sterile 15 ml tube using 4-6 ml of loading buffer.
[0107] Total RNA from the 2018 cell line is heated to 70°C for 2-3 minutes. LiCl from RNase-free
stock is added to the mixture to a final concentration of 0.5M. The mixture is combined
with oligo dT cellulose in the 15 ml tube, which is vortexed or agitated for 10 minutes.
The mixture is poured into the column, and washed with 3 ml loading buffer, and then
with 3 ml of middle wash buffer. The mRNA is eluted directly into an SW55 tube with
1.5 ml of 2 mM EDTA and 0.1% SDS, discarding the first two or three drops.
[0108] The eluted mRNA is precipitated by adding 1/10 volume of 3M sodium acetate and filling
the tube with ethanol. The contents of the tube are mixed, chilled for 30 minutes
at -20°C, and spun at 50 krpm at 5°C for 30 minutes. After the ethanol is decanted,
and the tube air dried, the mRNA pellet is resuspended in 50-100 µl of RNase-free
water. 5 µl of the resuspended mRNA is heated to 70°C in MOPS/EDTA/formaldehyde, and
examined on an RNase-free 1% agarose gel.
9c. cDNA Synthesis
[0109] The protocol used is a variation of the method described by Gubler and Hoffman in
Gene
25, 263-270 (1983).
1. First Strand. 4 µg of mRNA is added to a microfuge tube, heated to approximately
100°C for 30 seconds, quenched on ice. The volume is adjusted to 70µl with RNAse-free
water. 20 µl of RT1 buffer, 2 µl of RNAse inhibitor (Boehringer 36 u/µl), 1 µl of
5 µg/µl of oligo dT (Collaborative Research), 2.5 µl of 20 mM dXTP's (ultrapure -
US Biochemicals), 1 µl of 1M DTT and 4 µl of RT-XL (Life Sciences, 24 u/µl) are added.
The mixture is incubated at 42°C for 40 minutes, and inactivated by heating at 70°C
for 10 minutes.
2. Second Strand. 320 µl of RNAse-free water, 80 µl of RT2 buffer, 5 µl of DNA Polymerase
I (Boehringer, 5 U/µl), 2 µl RNAse H (BRL 2 u/µl) are added to the solution containing
the first strand. The solution is incubated at 15°C for one hour and at 22°C for an
additional hour. After adding 20 µl of 0.5M EDTA, pH 8.0, the solution is extracted
with phenol and precipitated by adding NaCl to 0.5M linear polyacrylamide (carrier)
to 20 µg/ml, and filling the tube with EtOH. The tube is spun for 2-3 minutes in a
microfuge, vortexed to dislodge precipitated material from the wall of the tube, and
respun for one minute.
3. Adaptors. Adaptors provide specific restriction sites to facilitate cloning, and
are available from BRL Gibco, New England Biolabs, etc. Crude adaptors are resuspended
at a concentration of 1 µg/µl. MgSO4 is added to a final concentration of 10 mM, followed by five volumes of EtOH. The
resulting precipitate is rinsed with 70% EtOH and resuspended in TE at a concentration
of 1 µg/µl. To kinase, 25 µl of resuspended adaptors is added to 3 µl of 10X kinasing
buffer and 20 units of kinase. The mixture is incubated at 37°C overnight. The precipitated
cDNA is resuspended in 240 µl of TE (10/1). After adding 30 µl of 10X low salt buffer,
30 µl of 10X ligation buffer with 0.1mM ATP, 3 µl (2.4 µg) of kinased 12-mer adaptor
sequence, 2 µl (1.6 µg) of kinased 8-mer adaptor sequence, and 1 µl of T4 DNA ligase
(BioLabs, 400 u/µl, or Boehringer, 1 Weiss unit ml), the mixture is incubated at 15°C
overnight. The cDNA is extracted with phenol and precipitated as above, except that
the extra carrier is omitted, and resuspended in 100 µl of TE.
9d. cDNA Size Fractionation.
[0110] A 20% KOAc, 2 mM EDTA, 1 µg/ml ethidium bromide solution and a 5% KOAc, 2 mM EDTA,
1 µg/ml ethidium bromide solution are prepared. 2.6 ml of the 20% KOAc solution is
added to the back chamber of a small gradient maker. Air bubbles are removed from
the tube connecting the two chambers by allowing the 20% solution to flow into the
front chamber and forcing the solution to return to the back chamber by tilting the
gradient maker. The passage between the chambers is closed, and 2.5 ml of 5% solution
is added to the front chamber. Any liquid in the tubing from a previous run is removed
by allowing the 5% solution to flow to the end of the tubing, and then to return to
its chamber. The apparatus is placed on a stirplate, and, with rapid stirring, the
topcock connecting the two chambers and the front stopcock are opened. A polyallomer
5W55 tube is filled from the bottom with the KOAc solution. The gradient is overlaid
with 100 µl of cDNA solution, and spun for three hours at 50k rpm at 22°C. To collect
fractions from the gradient, the SW55 tube is pierced close to the bottom of the tube
with a butterfly infusion set (with the luer hub clipped off). Three 0.5 ml fractions
and then six 0.25 ml fractions are collected in microfuge tubes (approximately 22
and 11 drops, respectively). The fractions are precipitated by adding linear polyacrylamide
to 20 µg/ml and filling the tube to the top with ethanol. The tubes are cooled, spun
in a microfuge tube for three minutes, vortexed, and respun for one minute. The resulting
pellets are rinsed with 70% ethanol and respun, taking care not to permit the pellets
to dry to completion. Each 0.25 ml fraction is resuspended in 10 µl of TE, and 1 µl
is run on a 1% agarose minigel. The first three fractions, and the last six which
contain no material smaller than 1 kb are pooled.
9e. Propagation of Plasmids
[0111] SupF plasmids are selected in nonsuppressing bacterial hosts containing a second
plasmid, p3, which contains amber mutated ampicillin and tetracycline drug resistance
elements. See Seed, Nucleic Acids Res.,
11, 2427-2445 (1983). The p3 plasmid is derived from RP1, is 57 kb in length, and is
a stably maintained, single copy episome. The ampicillin resistance of this plasmid
reverts at a high rate so that amp
r plasmids usually cannot be used in p3-containing strains. Selection for tetracycline
resistance alone is almost as good as selection for ampicillin-tetracycline resistance.
However, spontaneous appearance of chromosomal suppressor tRNA mutations presents
an unavoidable background (frequency about 10
-9) in this system. Colonies arising from spontaneous suppressor mutations are usually
larger than colonies arising from plasmid transformation. Suppressor plasmids are
selected in Luria broth (LB) medium containing ampicillin at 12.5 µg/ml and tetracycline
at 7.5 µg/ml. For scaled-up plasmid preparations, M9 Casamino acids medium containing
glycerol (0.8%) is employed as a carbon source. The bacteria are grown to saturation.
[0112] Alternatively, pSV Sport™ (BRL, Gaithersberg, Maryland) may be employed to provide
SV40 derived sequences for replication, transcription initiation and termination in
COS 7 cells, as well as those sequences necessary for replication and ampicillin resistance
in
E. coli.
9f. Isolation of Vector DNA/Plasmid
[0113] One liter of saturated bacterial cells are spun down in J6 bottles at 4.2k rpm for
25 minutes. The cells are resuspended in 40 ml 10 mM EDTA, pH 8. 80 ml 0.2M NaOH and
1% SDS are added, and the mixture is swirled until it is clear and viscous. 40 ml
5M KOAc, pH 4.7 (2.5M KOAc, 2.5M HOAc) is added, and the mixture is shaken semi-vigorously
until the lumps are approximately 2-3 mm in size. The bottle is spun at 4.2k rpm for
5 minutes. The supernatant is poured through cheesecloth into a 250 ml bottle, which
is then filled with isopropyl alcohol and centrifuged at 4.2k rpm for 5 minutes. The
bottle is gently drained and rinsed with 70% ethanol, taking care not to fragment
the pellet. After inverting the bottle and removing traces of ethanol, the mixture
is resuspended in 3.5 ml Tris base/EDTA (20 mM/10 mM). 3.75 ml of resuspended pellet
and 0.75 ml 10 mg/ml ethidium bromide are added to 4.5 g CsCl. VTi80 tubes are filled
with solution, and centrifuged for at least 2.5 hours at 80k rpm. Bands are extracted
by visible light with 1 ml syringe and 20 gauge or lower needle. The top of the tube
is cut off with scissors, and the needle is inserted upwards into the tube at an angle
of about 30 degrees with respect to the tube at a position about 3 mm beneath the
band, with the bevel of the needle up. After the band is removed, the contents of
the tube are poured into bleach. The extracted band is deposited in a 13 ml Sarstedt
tube, which is then filled to the top with n-butanol saturated with 1M NaCl extract.
If the amount of DNA is large, the extraction procedure may be repeated. After aspirating
the butanol into a trap containing 5M NaOH to destroy ethidium, an approximately equal
volume of 1M ammonium acetate and approximately two volumes of 95% ethanol are added
to the DNA, which is then spun at 10k rpm for 5 minutes. The pellet is rinsed carefully
with 70% ethanol, and dried with a swab or lyophilizer.
9g. Preparation of Vector for Cloning
[0114] 20 µg of vector is cut in a 200 µl reaction with 100 units of BstXI (New York Biolabs)
at 50°C overnight in a well thermostated, circulating water bath. Potassium acetate
solutions (5 and 20%) are prepared in 5W55 tubes as described above. 100 µl of the
digested vector is added to each tube and spun for three hours, 50k rpm at 22°C. Under
300 nm UV light, the desired band is observed to migrate 2/3 of the length of the
tube. Forward trailing of the band indicates that the gradient is overloaded. The
band is removed with a 1 ml syringe fitted with a 20 gauge needle. After adding linear
polyacrylamide and precipitating the plasmid by adding three volumes of ethanol, the
plasmid is resuspended in 50 µl of TE. Trial ligations are carried out with a constant
amount of vector and increasing amounts of cDNA. Large scale ligation are carried
out on the basis of these trial ligations. Usually the entire cDNA prep requires 1-2
µg of cut vector.
9h. Buffers
[0115]
Loading Buffer |
.5M LiCl, 10 mM Tris pH 7.5, 1 mM EDTA .1% SDS. |
Middle Wash Buffer |
.15M LiCl, 10 mM Tris pH 7.5, 1 mM EDTA .1% SDS. |
RT1 Buffer |
.25M Tris pH 8.8 (8.2 at 42-), .25M KCl, 30 mM MgCl2. |
RT2 Buffer |
.1M Tris pH 7.5, 25 mM MgCl2, .5M KCl, .25 mg/ml BSA, 50 mM dithiothreitol (DTT). |
10X Low Salt |
60 mM Tris pH 7.5, 60 mM MgCl2, 50 mM NaCl, 2.5 mg/ml BSA 70 mM DME |
10X Ligation Additions |
1 mM ATP, 20 mM DTT, 1 mg/ml BSA 10 mM spermidine. |
10X Kinasing Buffer |
.5M Tris pH 7.5, 10 mM ATP, 20 mM DTT, 10 mM spermidine, 1 mg/ml BSA 100 mM MgCl2 |
9i. Transfection of cDNA encoding Ligands in Cos 7 Cells
[0116] Cos 7 cells are split 1:5 into 100 mm plates in Dulbecco's modified Eagles medium
(DME)/10% fetal calf serum (FCS), and allowed to grow overnight. 3 ml Tris/DME (0.039M
Tris, pH 7.4 in DME) containing 400 µg/ml DEAE-dextran (Sigma, D-9885) is prepared
for each 100 mm plate of Cos 7 cells to be transfected. 10 µg of plasmid DNA preparation
per plate is added. The medium is removed from the Cos-7 cells and the DNA/DEAE-dextran
mixture is added. The cells are incubated for 4.5 hours. The medium is removed from
the cells, and replaced with 3 ml of DME containing 2% fetal calf serum (FCS) and
0.1 mM chloroquine. The cells are incubated for one hour. After removing the chloroquine
and replacing with 1.5 ml 20% glycerol in PBS, the cells are allowed to stand at room
temperature for one minute. 3 ml Tris/DME is added, and the mixture is aspirated and
washed two times with Tris/DME. 10 ml DME/10% FCS is added and the mixture is incubated
overnight. The transfected Cos 7 cells are split 1:2 into fresh 100 mm plates with
(DME)/10% FCS and allowed to grow.
9j. Panning Procedure for Cos 7 cells Expressing Ligand
1) Antibody-coated plates:
[0117] Bacteriological 100 mm plates are coated for 1.5 hours with rabbit anti-human placental
alkaline phosphatase (Dako, California) diluted 1:500 in 10 ml of 50 mM Tris.HCl,
pH 9.5. The plates are washed three times with 0.15M NaCl, and incubated with 3 mg
BSA/ml PBS overnight. The blocking solution is aspirated, and the plates are utilized
immediately or frozen for later use.
2) Panning cells:
[0118] The medium from transfected Cos 7 cells is aspirated, and 3 ml PBS/0.5 mM EDTA/0.02%
sodium azide is added. The plates are incubated at 37°C for thirty minutes in order
to detach the cells. The cells are triturated vigorously with a pasteur pipet and
collected in a 15 ml centrifuge tube. The plate is washed with a further 2 ml PBS/EDTA/azide
solution, which is then added to the centrifuge tube. After centrifuging at 200 xg
for five minutes, the cells are resuspended in 3 ml of APtaq-flk-1 (F-1AP21-4) or
flk-2 (F-2AP26-0) supernatant from transfected NIH/3T3 cells (see Example 7.), and
incubated for 1.5 hours on ice. The cells are centrifuged again at 200 xg for five
minutes. The supernatant is aspirated, and the cells are resuspended in 3 ml PBS/EDTA/azide
solution. The cell suspension is layered carefully on 3 ml PBS/EDTA/azide/2% Ficoll,
and centrifuged at 200 xg for four minutes. The supernatant is aspirated, and the
cells are resuspended in 0.5 ml PBS/EDTA/azide solution. The cells are added to the
antibody-coated plates containing 4 ml PBS/EDTA/azide/5% FBS, and allowed to stand
at room temperature one to three hours. Non-adhering cells are removed by washing
gently two or three times with 3 ml PBS/5% FBS.
3) Hirt Supernatant:
[0119] 0.4 ml 0.6% SDS and 10 mM EDTA are added to the panned plates, which are allowed
to stand 20 minutes. The viscuous mixture is added by means of a pipet into a microfuge
tube. 0.1 ml 5M NaCl is added to the tube, mixed, and chilled on ice for at least
five hours. The tube is spun for four minutes, and the supernatant is removed carefully.
The contents of the tube are extracted with phenol once, or, if the first interface
is not clean, twice. Ten micrograms of linear polyacrylamide (or other carrier) is
added, and the tube is filled to the top with ethanol. The resulting precipitate is
resuspended in 0.1 ml water or TE. After adding 3 volumes of EtOH/NaOAc, the cells
are reprecipitated and resuspended in 0.1 ml water or TE. The cDNA obtained is transfected
into any suitable
E. coli host by electroporation. Suitable hosts are described in various catalogs, and include
MC1061/p3 or Electromax DH10B Cells of BRL Gibco. The cDNA is extracted by conventional
methods.
[0120] The above panning procedure is repeated until a pure
E. coli clone bearing the cDNA as a unique plasmid recombinant capable of transfecting mammalian
cells and yielding a positive panning assay is isolated. Normally, three repetitions
are sufficient.
9k. Expression cloning of flk1 or flk2 ligand by establishment of an autocrine loop
[0121] Cells expressing flk1/fms or flk2/fms (Example 10) are transfected with 20-30 µg
of a cDNA library from either flk1 ligand or flk2 ligand expressing stromal cells,
respectively. The cDNA library is prepared as described above (a-h). The cells are
co-transfected with 1 µg pLTR neo cDNA. Following transfection the cells are passaged
1:2 and cultured in 800 µg/ml of G418 in Dulbecco's medium (DME) supplemented with
10% CS. Approximately 12 days later the colonies of cells are passaged and plated
onto dishes coated with poly -D-lysine (1 mg/ml) and human fibronectin (15 µg/ml).
The culture medium is defined serum-free medium which is a mixture (3:1) of DME and
Ham's F12 medium. The medium supplements are 8 mM NaHCO
3, 15 mM HEPES pH 7.4, 3 mM histidine, 4 µM MnCl
2, 10 µM ethanolamine, 0.1 µM selenous acid, 2 µM hydrocortisone, 5 µg/ml transferrin,
500 µg/ml bovine serum albumin/linoleic acid complex, and 20 µg/ml insulin (Ref. Zhan,
X, et al. Oncogene
1: 369-376,1987). The cultures are refed the next day and every 3 days until the only
cells capable of growing under the defined medium condition remain. The remaining
colonies of cells are expanded and tested for the presence of the ligand by assaying
for binding of APtag - flk1 or APtag - flk2 to the cells (as described in Example
8). The DNA would be rescued from cells demonstrating the presence of the flk1 or
flk2 ligand and the sequence.
Comparative Example 10. Expression of Ligand cDNA
[0122] The cDNA is sequenced, and expressed in a suitable host cell, such as a mammalian
cell, preferably COS, CHO or NIH/3T3 cells. The presence of the ligand is confirmed
by demonstrating binding of the ligand to APtag-flk2 fusion protein (see above).
Comparative Example 11. Chemical Cross Linking of Receptor and Ligand
[0123] Cross linking experiments are performed on intact cells using a modification of the
procedure described by Blume-Jensen et al et al., EMBO J.,
10, 4121-4128 (1991). Cells are cultured in 100mm tissue culture plates to subconfluence
and washed once with PBS-0.1% BSA.
[0124] To examine chemical cross linking of soluble receptor to membrane-bound ligand, stromal
cells from the 2018 stromal cell line are incubated with conditioned media (CM) from
transfected 3T3 cells expressing the soluble receptor Flk2-APtag. Cross linking studies
of soluble ligand to membrane bound receptor are performed by incubating conditioned
media from 2018 cells with transfected 3T3 cells expressing a Flk2-fms fusion construct.
[0125] Binding is carried out for 2 hours either at room temperature with CM containing
0.02% sodium azide to prevent receptor internalization or at 4°C with CM (and buffers)
supplemented with sodium vanadate to prevent receptor dephosphorylation. Cells are
washed twice with PBS-0.1% BSA and four times with PBS.
[0126] Cross linking is performed in PBS containing 250 mM disuccinimidyl suberate (DSS;
Pierce) for 30 minutes at room temperature. The reaction is quenched with Tris-HCL
pH7.4 to a final concentration of 50 mM.
[0127] Cells are solubilized in solubilization buffer: 0.5% Triton - X100™, 0.5% deoxycholic
acid, 20 mM Tris pH 7.4, 150 mM NaCl, 10mM EDTA, 1mM PMFS, 50 mg/ml aprotinin, 2 mg/ml
bestatin, 2 mg/ml pepstatin and 10mg/ml leupeptin. Lysed cells are immediately transferred
to 1.5 ml Nalgene tubes and solubilized by rolling end to end for 45 minutes at 4°C.
Lysates are then centrifuged in a microfuge at 14,000g for 10 minutes. Solubilized
cross linked receptor complexes are then retrieved from lysates by incubating supernatants
with 10% (v/v) wheat germ lectin-Sepharose™ 6MB beads (Pharmacia) at 4°C for 2 hours
or overnight.
[0128] Beads are washed once with Tris-buffered saline (TBS) and resuspended in 2X SDS-polyacrylamide
nonreducing sample buffer. Bound complexes are eluted from the beads by heating at
95°C for 5 minutes. Samples are analyzed on 4-12% gradient gels (NOVEX) under nonreducing
and reducing conditions (0.35 M 2-mercaptoethanol) and then transferred to PVDF membranes
for 2 hours using a Novex blotting apparatus. Blots are blocked in TBS-3% BSA for
1 hour at room temperature followed by incubation with appropriate antibody.
[0129] Cross linked Flk2-APtag and Flk2-fms receptors are detected using rabbit polyclonal
antibodies raised against human alkaline phosphatase and fms protein, respectively.
The remainder of the procedure is carried out according to the instructions provided
in the ABC Kit (Pierce). The kit is based on the use of a biotinylated secondary antibody
and' avidin-biotinylated horseradish peroxidase complex for detection.
SUPPLEMENTAL ENABLEMENT
[0130] The invention as claimed is enabled in accordance with the above specification and
readily available references and starting materials. Nevertheless, Applicants have
deposited with the American Type Culture Collection, Rockville, Md., USA (ATCC) the
cell lines listed below:
2018, ATCC accession no. CRL 10907, deposited October 30, 1991.
Fsp 62891, ATCC accession no. CRL 10935, deposited November 21, 1991.
F.thy 62891, ATCC accession no. CRL 10936, deposited November 21, 1991.
FL 62891, ATCC accession no. CRL 11005, deposited April 2, 1992.
[0131] These deposits were made under the provisions of the Budapest Treaty on the International
Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure
and the regulations thereunder (Budapest Treaty). This assures maintenance of a viable
culture for 30 years from date of deposit. The organisms will be made available by
ATCC under the terms of the Budapest Treaty. Availability of the deposited strains
is not to be construed as a license to practice the invention in contravention of
the rights granted under the authority of any government in accordance with its patent
laws.
SEQUENCE LISTING
[0132]
(1) GENERAL INFORMATION:
(i) APPLICANT: TRUSTEES OF PRINCETON UNIVERSITY
(ii) TITLE OF INVENTION: Totipotent Hematopoietic Stem Cell Receptors And Their Ligands
(iii) NUMBER OF SEQUENCES: 8
(iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: IMCLONE SYSTEMS INCORPORATED
(B) STREET: 180 VARICK STREET
(C) CITY: NEW YORK
(D) STATE: NEW YORK
(E) COUNTRY: US
(F) ZIP: 10014
(v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25
(vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER:
(B) FILING DATE: 02-APR-1992
(C) CLASSIFICATION:
(viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: FEIT, IRVING N.
(B) REGISTRATION NUMBER: 28,601
(C) REFERENCE/DOCKET NUMBER: LEM-3-PPPPT
(ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: 212-645-1405
(B) TELEFAX: 212-645-2054
(2) INFORMATION FOR SEQ ID NO:1:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3453 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 31..3009
(ix) FEATURE:
(A) NAME/KEY: mat_peptide
(B) LOCATION: 31..3006
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:





(2) INFORMATION FOR SEQ ID NO:2:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 992 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:




(2) INFORMATION FOR SEQ ID NO:3:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 332 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 1..332
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:


(2) INFORMATION FOR SEQ ID NO:4:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 110 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

(2) INFORMATION FOR SEQ ID NO:5:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 284 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 1..282
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

(2) INFORMATION FOR SEQ ID NO:6:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 94 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:


(2) INFORMATION FOR SEQ ID NO:7:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5406 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 208..4311
(ix) FEATURE:
(A) NAME/KEY: mat_peptide
(B) LOCATION: 208..4308
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:








(2) INFORMATION FOR SEQ ID NO:8:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1367 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(ix) SEQUENCE DESCRIPTION: SEQ ID NO:8:





