[0001] The invention relates to a refrigeration cycle using a non-azeotrope refrigerant
according to the pre-characterizing portion of claim 1. Such a cycle is known, for
example, from US-A-5 186 012.
[0002] First, a case in which a non-azeotrope refrigerant is used as a working medium will
be explained. The non-azeotrope refrigerant is a refrigerant in which two or more
types of refrigerants having different boiling points are mixed, and has characteristics
shown in Fig. 3. Fig. 3 is a vapor-liquid equilibrium diagram illustrating characteristics
of a non-azeotrope refrigerant in which two types of refrigerants are mixed. The horizontal
axis indicates the composition ratio X of a refrigerant having a low boiling point,
and the vertical axis indicates temperature. With pressure as a parameter, a saturation
vapor line and a saturation liquid line exist in a high temperature region indicated
by pressure P
H when, for example, pressure is high and when, conversely, pressure is low, these
lines exist in a low temperature region indicated by pressure P
L. The composition ratio X = 0 indicates that the refrigerant is formed of only a high-boiling-point
refrigerant, and the composition ratio X = 1.0 indicates that the refrigerant is formed
of only a low-boiling-point refrigerant. In a mixture refrigerant, as shown in Fig.
3, a saturation liquid line and a saturation vapor line are determined by the composition
thereof. The area below the saturation liquid line indicates the supercooled state,
and the area above the saturation vapor line indicates the superheated state. The
portion surrounded by the saturation liquid line and the saturation vapor line is
a two-phase state of liquid and vapor. In Fig. 3, X
0 denotes the composition ratio of a refrigerant sealed in a refrigeration cycle. Points
P1 to P4 indicate the typical points of the refrigeration cycle, and point P1 indicates
a compressor outlet portion; point P2 indicates a condenser outlet portion; point
P3 indicates an evaporator inlet portion; and point P4 indicates a compressor inlet
portion.
[0003] An explanation will be given below of problems relating to leakage out of the refrigeration
cycle, to variations in the composition of a circulating refrigerant within the refrigeration
cycle in a non-steady state such as at the start-up time of the refrigeration cycle,
and to refrigeration cycle operation control.
[0004] The leakage of a refrigerant out of the refrigeration cycle is not none even in a
hermetically sealed type air-conditioner or refrigerator. In Fig. 3, point A indicates
the two-phase portion in the refrigeration cycle, in which the liquid of composition
X
a1 and the vapor of composition X
a2 exist. If the mixture refrigerant should leak out of a heat-transfer tube of a heat
exchanger or from a connection tube of a component, it would be a refrigerant of composition
ratio X
a1 in the case of liquid leakage, and a refrigerant of composition ratio X
a2 in the case of vapor leakage. Therefore, the composition ratio of the refrigerant
remaining within the refrigeration cycle differs depending upon whether liquid or
vapor leaks.
[0005] Fig. 4 is an illustration of a problem caused by the leakage of a refrigerant to
the outside. If liquid leaks, the remaining mixture refrigerant enters the state of
X
1 in which the ratio of a low boiling-point refrigerant is large; if vapor leaks, the
remaining mixture refrigerant enters the state of X
2 in which the ratio of a high boiling-point refrigerant is large. In Fig. 2, X
0 indicates the composition ratio of a refrigerant which is sealed in initially. If
a state in which the composition is X
0 is compared with a state in which the composition is X
1 at the same pressure, the temperature when the composition is X
1 is lower. If, however, a state in which the composition is X
0 is compared with a state in which the composition is X
2 at the same pressure, the temperature when the composition is X
2 is higher.
[0006] Fig. 5 shows general characteristics of a refrigeration cycle with respect to the
composition ratio of the low boiling-point refrigerant. When the composition ratio
X becomes larger, and therefore heating and cooling performance improves.
[0007] If the refrigerant leaks out of the refrigeration cycle in which a non-azeotrope
refrigerant is used as a working medium, as described above, the composition ratio
of the refrigerant remaining within the refrigeration cycle changes from the initial
composition ratio, i.e., from the designed composition ratio for the apparatus depending
upon leaked portions. Even if there is no leakage to the outside, there is a possibility
that the composition ratio of the refrigerant circulating within the refrigeration
cycle may vary in the non-steady state of the refrigeration cycle.
[0008] Changes in the composition ratio of the refrigerant within the refrigeration cycle
cause problems; for example, heating and cooling capacity is varied, or pressure or
temperature becomes abnormal. Therefore, the refrigeration cycle must be controlled
properly.
[0009] Since a chlorofluorocarbon refrigerant containing chlorine is considered to damage
an ozone layer, a non-azeotropic mixture of a chlorofluorocalcium refrigerant containing
no chlorine has been proposed as an alternative refrigerant. A consideration must
be given to the mixture refrigerant in order to safeguard the earth environment.
[0010] The control of a refrigeration cycle in which a non-azeotropic mixture is used as
a working medium is disclosed in, for example, Japanese Patent Unexamined Publication
Nos. 59-129366, 61-213554, and 64-58964.
[0011] Japanese Patent Unexamined Publication No. 59-129366 discloses that an electrostatic
capacitance sensor is used as a means for detecting the composition of a refrigerant
circulating within the refrigeration cycle. Further, it is disclosed that the refrigeration
cycle comprises a first liquid receiver and a second liquid receiver, an electric
heater being disposed in the second liquid receiver. When the outdoor air temperature
is low during a heating operation, the electric heater of the second liquid receiver
is operated and controlled so that a set refrigerant concentration is reached.
[0012] Disclosed in Japanese Patent Unexamined Publication No. 61-213554 is an apparatus
comprising a separator for separating a low-boiling-point refrigerant, a liquid receiver
for storing a low-boiling-point refrigerant, and a control valve for returning the
refrigerant from the liquid receiver, which apparatus controls the composition of
the refrigerant on the basis of the temperature of an element to be cooled.
[0013] Disclosed in Japanese Patent Unexamined Publication No. 64-58964 is a mixture refrigerant
composition variable refrigeration cycle in which the upper portion of the liquid
receiver is connected to a refrigerant tank and the lower portion of the liquid receiver
is connected to the refrigerant tank, which refrigeration cycle comprises a refrigerant
tank capable of exchanging heat with a gas pipe through which a heat-source-side heat
exchanger is connected to a use-side heat exchanger, a liquid receiver and the like.
[0014] As described above, in the refrigeration cycle in which a non-azeotrope refrigerant
is sealed in, the composition ratio of the refrigerant within the refrigeration cycle
may vary when the refrigerant leaks out of the refrigeration cycle or during the non-steady
operation of the refrigeration cycle. The capacity of the refrigeration cycle can
be varied by making the composition variable. Therefore, to obtain a high-capacity
refrigeration cycle, it is important to control the refrigerant composition ratio
within the refrigeration cycle so as to realize a stable operation. There has been
a demand for a method of varying this composition ratio inexpensively. Further, it
is necessary to use a refrigerant which does not contain chlorine and does not damage
the ozone layer, in which a consideration is given to safeguard the earth environment.
[0015] US-A-5 186 012 discloses a heat pump system using a non-azeotropic refrigerant mixture
comprising a main refrigeration circuit, an engine coolant circuit, and a refrigerant
rectifier circuit interfacing with the main refrigeration circuit and the engine coolant
circuit. The refrigerant rectifier circuit comprises in order of decreasing relative
elevation a condenser, a storage vessel in communication with a condenser, a rectifier
in communication with a storage tank and a condenser, a receiver vessel in communication
with a rectifier, and a boiler in communication with the rectifier and the receiver
vessel. A ratio detecting means is disposed in the receiver. The refrigerant rectifier
circuit is used to adjust the relative concentrations of lower boiling point refrigerant,
and higher boiling point refrigerant in the non-azeotropic refrigerant mixture thereby
changing the cooling or heating capacity of the heat pump system. However, in the
system according to US-A-5 186 012 only liquid refrigerant can be taken from the receiver.
[0016] In general according to the prior art adjustment of the relative concentrations of
the components of a non-azeotropic refrigerant is carried out actively operating only
with one phase of the refrigerant. Therefore, the prior art has the problem that the
width of the adjustment of the concentration is narrow.
[0017] It is an object of the invention to provide a refrigeration cycle using a non-azeotrope
refrigerant, which refrigeration cycle ensures a wide range of adjustment.
[0018] This object is achieved by a refrigeration cycle according to claim 1.
[0019] In the refrigeration cycle according to the invention not only liquid refrigerant
flow between the heat-source-side and the use-side through the receiver is ensured
but also gas refrigerant can be taken from the receiver in response to the composition
ratio of the refrigerant detected by the composition ratio detecting means. This allows
adjustment of the refrigerant composition ratio in a wide range. Moreover it is advantageous
that the composition ratio detecting means is not disposed in the receiver but between
the heat-source-side heat exchanger and the receiver. This arrangement of the composition
ratio detecting means allows a more accurate measurement of the refrigerant composition
ratio mainly used in the refrigeration cycle.
[0020] Advantageous and preferred embodiments of the refrigeration cycle according to the
invention are subject matter of claims 2 to 5.
[0021] Preferred embodiments of the invention will now be described with respect to the
accompanying drawings in which
Fig. 1 is a schematic view of a refrigeration cycle having a control apparatus for
controlling the composition of a non-azeotrope refrigerant;
Fig. 2 is a longitudinal sectional view of a refrigerant circuit for controlling the
composition of the refrigerant;
Fig. 3 is a diagram illustrating the characteristics of a non-azeotrope refrigerant;
Fig. 4 is a diagram illustrating the relationship between the composition of the non-azeotrope
refrigerant and temperature;
Fig. 5 is a diagram illustrating the characteristics of a refrigeration cycle in which
a non-azeotrope refrigerant is used;
Fig. 6 is a diagram illustrating the characteristics of a non-azeotrope refrigerant;
Fig. 7 shows an example of the composition of three-type mixture refrigerant;
Fig. 8 is a sectional view of an electrostatic capacitance type composition ratio
detecting sensor;
Fig. 9 is a diagram illustrating the relationship between the composition of the non-azeotrope
refrigerant and the electrostatic capacitance value;
Fig. 10 is a flowchart illustrating the control of the composition of the non-azeotrope
refrigerant;
Fig. 11 is a schematic view of a refrigeration cycle having a control apparatus for
controlling the composition ratio of the non-azeotrope refrigerant;
Fig. 12 is a detailed view of a refrigerant separation circuit;
Fig. 13 is a flowchart illustrating the control of the composition ratio of the non-azeotrope
refrigerant;
[0022] Fig. 1 illustrates a refrigeration cycle in which a plurality of indoor machines
are connected to one outdoor machine in accordance with a first embodiment of the
present invention. Referring to Fig. 1, reference numeral 1 denotes a compressor;
reference numeral 2 denotes an outdoor heat exchanger; reference numeral 3 denotes
an outdoor air blower; reference numeral 4 denotes a four-way valve; reference numeral
5 denotes an accumulator; reference numeral 6 denotes a receiver; and reference numeral
7 denotes an outdoor refrigerant control valve which acts as a pressure reducing mechanism
during a heating operation. Reference numeral 8 denotes a sensor for detecting the
composition of a non-azeotrope refrigerant; reference numeral 10 denotes a refrigerant
tank; reference numeral 11 denotes a cooling unit; reference numerals 12, 13 and 14
denote open/close valves; reference numerals 15, 16 and 17 denote pipes; reference
numerals 91, 92, 93 and 94 denote check valves which constitute an outdoor machine.
Reference numerals 20a and 20b denote indoor heat exchangers; reference numerals 21a
and 21b denote indoor refrigerant control valves which act as a pressure reducing
mechanism during a cooling operation; reference numerals 22 and 23 denote refrigerant
distribution units; and reference numerals 24 and 25 denote pipes for connecting indoor
machines to outdoor machines. The illustration of the indoor air blower is omitted.
[0023] Next, a detecting apparatus in which an electrostatic capacitance sensor 8 for detecting
the composition of a non-azeotrope refrigerant is used, and a control apparatus for
controlling the open/close valves 12, 13 and 14 are disposed on the outdoor side.
In Fig. 1, the illustration of the control system of the refrigeration cycle is omitted.
A refrigerant which does not contain chlorine and does not damage the ozone layer
is used as the refrigerant. In this embodiment, an example in which HFC32 and HFC134a
are used as the non-azeotrope refrigerant will be explained.
[0024] Next, the flow of the refrigerant will be explained. During a cooling operation,
the refrigerant discharged from the compressor flows in the following order: the four-way
valve 4 → the outdoor heat exchanger 2 → the check valve 93 → the composition sensor
8 → the outdoor refrigerant control valve 7 → the check valve 92 → the receiver 6.
The refrigerant is distributed by a refrigerant distribution unit 23, a part of the
refrigerant flows in the order: the indoor heat exchanger 20a → the indoor refrigerant
control valve 21a, and the other flow in the order: the indoor heat exchanger 20b
→ the indoor refrigerant control valve 21b. They merge in a distribution unit 22 and
flow in the order: the pipe 24 → the four-way valve 4 → the accumulator 5, and return
to the compressor. At this time, the indoor heat exchangers 20a and 20b act as evaporators
and a cooling operation is performed.
[0025] On the other hand, during a heating operation, the refrigerant discharged from the
compressor flows in the following order: the four-way valve 4 → the pipe 24 → the
distribution unit 22. A part of the refrigerant flows in the order: the indoor refrigerant
control valve 21a → the indoor heat exchanger 20a, and the other flow in the order:
the indoor refrigerant control valve 21b → the indoor heat exchanger 20b. They merge
in a distribution unit 23 and flow in the order: the pipe 25 → the receiver 6 → the
check valve 94 → the composition sensor 8 → the outdoor control valve 7 → the check
valve 91 → the outdoor heat exchanger 2 → the four-way valve 4 → the accumulator 5,
and return to the compressor. At this time, the indoor heat exchangers 20a and 20b
act as condensers and a heating operation is performed.
[0026] The details of the low-boiling-point refrigerant separation circuit of Fig. 1 are
shown in Fig. 2. In Fig. 2, a cooling unit 11 is a double-pipe heat exchanger. When
a liquid refrigerant is stored in a refrigerant storage tank 10, the open/close valves
12 and 13 are opened. In this case, the liquid in the bottom of the receiver 6 flows
out through the open/close valve 12, and the liquid is formed into a low-temperature
refrigerant by the pressure reducing effect of the open/close valve 12 and guided
into the inner pipe of the cooling unit 11. On the other hand, gas inside the receiver
6 flows out through the open/close valve 13 and is guided into the outer pipe of the
cooling unit 11. The low-temperature refrigerant gas of the inner pipe exchanges heat
with the gas of the outer pipe, and the low-temperature refrigerant is gasified and
guided into the accumulator 5 through the pipe 15. The condensed liquefied refrigerant
of the outer pipe is guided into the refrigerant storage tank 10. When a predetermined
amount of liquid refrigerant is stored in the refrigerant storage tank 10, the open/close
valves 12 and 13 are closed. The above operation and effect make it possible to store
the liquid refrigerant in the refrigerant storage tank 10. To discharge the liquid
refrigerant from the refrigerant storage tank 10, the open/close valve 14 is opened
so that the liquid refrigerant can be discharged to the accumulator 5 through the
pipe 15.
[0027] The composition varying effect will be explained below.
[0028] The state of the refrigerant inside the receiver, which is made clear by the experiment
conducted by the inventors of the present invention, will now be explained using a
cooling operation as an example. Gas and liquid flow into the receiver 6 from the
pipe 17, and the gas rises in the liquid layer inside the receiver 6, forming a gas
layer. Then, the gas is condensed by the inner wall of the receiver 6 and liquefied.
Thereafter, the gas is formed into only liquid in an outlet pipe 16 and flows out.
The experimental results show that when the refrigerant dryness of the inlet is great,
the liquid disappears inside the receiver 6, and when the refrigerant dryness is small,
the receiver 6 is filled with the liquid. The experiment also revealed that the variation
of the dryness with respect to the variation in the amount of liquid is 0.01 or less.
That is, the dryness of the refrigerant which flows into the receiver is very small.
[0029] Fig. 6 illustrates changes of the state of the refrigerant in a refrigerant passage
from the condenser to the receiver when a non-azeotrope refrigerant is used as a thermal
medium. The horizontal axis indicates the composition ratio X of the low-boiling-point
refrigerant, i.e., HFC32, and the vertical axis indicates temperature, with pressure
being constant. The state X = 0 indicates a state in which only HFC134a is contained
in the refrigerant, and the state X = 1 indicates a state in which the refrigerant
is formed of only HFC32. In the non-azeotrope refrigerant, as shown in the figure,
the temperature of the saturation vapor differs from that of the saturation liquid
at the same pressure. The composition ratio X
0 indicates the composition ratio of the refrigerant sealed in the refrigeration cycle.
Point A indicates the state of the inlet of the condenser; point B indicates the condensation
start point; point C indicates the state of the inside of the receiver; and point
D indicates the state of the outlet of the cooling unit. Point C, as described above,
indicates that the flow rate of the liquid is very small. Point E indicates the liquid
state inside the receiver, and the composition ratio of HFC32 is X
1. Point F indicates the gas state, and the composition ratio of HFC32 is X
g. It can be seen that the composition ratio of gas at point F is greater than the
composition ratio X
0 of the refrigerant sealed in the refrigeration cycle, and the composition ratio in
the refrigeration cycle can be varied by taking out gas.
[0030] In Figs. 1 and 2, a gas refrigerant having a large composition ratio of HFC32 taken
out from the upper portion of the receiver 6 is liquefied in the cooling unit 11 and
stored in the tank 10. As a result, the composition ratio of the refrigerant within
the refrigeration cycle becomes smaller than X
0. When the composition ratio of the refrigerant within the refrigeration cycle is
smaller than X
0, it is possible to return the refrigerant having a large composition ratio of HFC32
to the refrigeration cycle by opening the open/close valve 14.
[0031] As described above, the refrigerant composition ratio in the main refrigeration cycle
can be varied by taking out or returning the gas refrigerant inside the receiver.
[0032] Although the above-described embodiment describes a case in which a mixture refrigerant
of two types of refrigerants, i.e., HFC32 and HFC134a, are used as a refrigerant,
the present invention may be applied to a mixture refrigerant of more than two types.
For example, the present invention may be applied to a threetype mixture refrigerant
of HFC32, HFC125 and HFC134a shown in Fig. 7. The numeric values shown in Fig. 7 indicate
weight percentage (%) of HFC32, HFC125 and HFC134a, and a mixture refrigerant of various
weight percentages may be considered. Of HFC32, HFC125 and HFC134a, the boiling points
of HFC32 and HFC125 are higher than that of HFC134a, and therefore the present invention
utilizing the difference between the boiling points of mixed refrigerants may be applied.
HFC32 and HFC125 exhibit azeotropic characteristics which can be regarded as a single
refrigerant, and the above-described mixture refrigerant can be assumed as a mixture
refrigerant of the azeotrope refrigerant of HFC32 and HFC125, and HFC134a. The composition
varying function of the present invention may be exhibited for a mixture refrigerant
of HFC32, HFC125 and HFC134a. In Figs. 1 and 2, gas in the upper portion of the receiver
6 is a low boiling-point refrigerant having a large refrigerant composition ratio,
whose compositions of HFC32 and HFC125 from among the three types of refrigerants
are large. The gas having large compositions of HFC32 and HFC125, taken out from the
upper portion of the receiver 6, is liquefied by the cooling unit 11 and stored in
the tank 10. As a result, regarding the composition ratio of the refrigerant within
the refrigeration cycle, the composition ratios of low-boiling-point refrigerants,
i.e., HFC32 and HFC125, are small, and the composition ratio of the high-boiling-point
refrigerant, i.e., HFC134a, is large. Regarding the composition ratio within the refrigeration
cycle, it is possible to return the composition ratio of the HFC32 and HFC125 to the
original state by opening the open/close valve 14. As stated above, it is possible
to vary the composition of the refrigerant in the case of a three-type mixture refrigerant.
[0033] Next, an explanation will be given of an embodiment of the electrostatic capacitance
type sensor 8 for detecting the composition of a mixture refrigerant. Fig. 8 is a
sectional view of the electrostatic capacitance type composition detecting sensor
8 shown in Fig. 1. In Fig. 8, reference numeral 53 denotes an outer tube electrode,
and reference numeral 54 denotes an inner tube electrode, both of which are hollow
tubes. The inner tube electrode 54 is fixed at its both ends by stoppers 55a and 55b
in which a circular groove is provided in the central portion of the outer tube electrode
53. The outer diameter of the stoppers 55a and 55b is nearly the same as the inner
diameter of the outer tube electrode 53, and the side opposite to the inner tube electrode
holding side is fixed by the refrigerant introduction pipe 59 having an outer diameter
nearly the same as the inner diameter of the outer tube electrode 53. In addition,
the refrigerant introduction pipe 59 is fixed to the outer tube electrode 53.
[0034] As a result, the inner tube electrode 54 is fixed to the central portion of the outer
tube electrode 53. An outer-tube electrode signal line 56 and an inner-tube electrode
signal line 57 are connected to the outer tube electrode 53 and the inner tube electrode
54 in order to detect an electrostatic capacitance value. A signal line guide tube
58 (e.g. a hermetic terminal) for guiding the inner-tube electrode signal line 57
to the outside of the outer tube electrode 53 and for preventing the refrigerant inside
from escaping to the outside, are disposed outside the inner-tube electrode signal
line 57. In the stoppers 55a and 55b, at least one through passage having a size smaller
than the inner diameter of the inner tube electrode 54 is disposed in the central
portion thereof, and at least one passage for the refrigerant is disposed at a place
between the inner tube electrode 54 and the outer tube electrode 53, so that the flow
of the mixture refrigerant flowing through the inside is not obstructed.
[0035] Next, an explanation will be given of a method of detecting the composition of a
mixture refrigerant by using the electrostatic capacitance type composition ratio
detecting sensor 8. Fig. 9 illustrates the relationship between the composition ratio
of the refrigerant and the electrostatic capacitance value when the electrostatic
capacitance sensor is used. Fig. 9 illustrates measured values obtained when HFC134a
is used as a high boiling-point refrigerant and HFC32 is used as a low boiling-point
refrigerant from among the mixture refrigerant and they are sealed in the composition
ratio detecting sensor shown in Fig. 8 as gas and liquid, respectively. The horizontal
axis indicates the composition ratio of the HFC32, and the vertical axis indicates
the electrostatic capacitance value which is an output from the composition ratio
detecting sensor 8.
[0036] In Fig. 9, a comparison of the electrostatic capacitance value of gas of each refrigerant
with that of liquid of each refrigerant shows that the liquid refrigerant has a larger
value, and the difference between the electrostatic capacitance value of gas and that
of liquid is large, in particular, in the HFC134a. This indicates that the electrostatic
capacitance value varies when the dryness of the refrigerant varies. In contrast,
a comparison between the electrostatic capacitance values of HFC134a and HFC32 shows
that HFC32 has a larger electrostatic capacitance value for both liquid and gas. This
indicates that only a gas or liquid refrigerant exists in the composition ratio detecting
sensor 8, and when the composition of the refrigerant varies, the electrostatic capacitance
value varies.
[0037] However, since the inside of the composition ratio detecting sensor 8 enters a two-phase
state of gas and liquid, the electrostatic capacitance value varies due to the dryness
of the refrigerant in addition to the composition ratio of the mixture refrigerant,
it becomes impossible to detect the composition ratio. Therefore, when the composition
ratio of the mixture refrigerant is detected by using the composition ratio detecting
sensor 8, it is necessary to dispose the composition ratio detecting sensor 8 in a
portion where the refrigerant is always gas or liquid in the refrigeration cycle.
In this embodiment, since the check valves 91 to 94 are arranged, the refrigerant
passing through the composition ratio detecting sensor 8 is in a liquid state. Means
other than the electrostatic capacitance type may be used for the composition ratio
detecting means.
[0038] Next, Fig. 10 is a flowchart illustrating a method of controlling the refrigeration
cycle shown in Fig. 1. When a predetermined condition is satisfied after the refrigeration
cycle is started, the composition ratio is determined on the basis of a signal from
the composition ratio detecting sensor 8. A check is made to determine whether the
detected composition ratio X is greater than the composition ratio X
0 of the refrigerant sealed in the refrigeration cycle. When X > (X
0 + α), the open/close valves 12 and 13 are opened. When the condition (X
0 - α) ≤ X ≤ (X
0 + α) is satisfied, the open/close valves 12 and 13 are closed. When the detected
composition ratio
X < (X
0 - α), the open/close valve 14 is opened, and when (X
0 -
α) ≤ X ≤ (X
0 + α) is satisfied, the open/close valve 14 is closed. α is the tolerance.
[0039] Therefore, it is possible to control the composition of the refrigerant within the
refrigeration cycle to X
0 or thereabouts, making it possible to prevent the pressure on the high pressure side
from abnormally increasing and making a stable operation possible. Since the composition
ratio of the non-azeotrope refrigerant can be varied, it becomes possible to vary
the heating and cooling capacity as shown in Fig. 3.
[0040] Next, a second embodiment of the refrigeration cycle in accordance with the present
invention is shown in Fig. 11. Fig. 11 also shows a refrigeration cycle in which the
composition ratio of the non-azeotrope refrigerant can be varied, and the functions
of the embodiment shown in Fig. 1 are integrated. Components in Fig. 11 having the
same reference numerals as those in Fig. 1 designate identical components. Reference
numerals 33 and 34 denote pipes. Reference numeral 40 denotes a refrigerant tank;
reference numerals 41 and 43 denote open/close valves; and reference numerals 42 and
44 denote pipes. The refrigerant tank 40 is formed integral with the accumulator 5
as shown in Fig. 11, so that heat can be exchanged between the refrigerant tank 40
and the accumulator 5. The direction of flow of the refrigerant during heating and
cooling operations is the same as in Fig. 1. In Fig. 11, it is possible to make the
liquid refrigerant in the bottom portion of the accumulator 5 flow out to the tank
40 via the open/close valve 43 and stored therein.
[0041] Further, the gas refrigerant inside the receiver 6 can be condensed and liquefied
by making the gas refrigerant flow into the tank 40 via the open/close valve 41 and
exchanging heat with the accumulator 5. It is also possible to make the liquid refrigerant
in the bottom portion of the tank 40 flow out into the accumulator 5 via the open/close
valve 43 so that the liquid refrigerant is returned to the main refrigeration cycle.
Therefore, by opening the open/close valve 41, it is possible to release gas having
a large composition ratio of HFC32 from the main refrigeration cycle and decrease
the composition ratio of HFC32. On the other hand, by opening the open/close valve
43, it is possible to release the liquid refrigerant having a large composition ratio
of HFC134a from the main refrigeration cycle and decrease the composition ratio of
HFC134a.
[0042] Fig. 12 is a detailed view of the receiver 6, the accumulator 5 and the tank 40,
all of which are shown in Fig. 11. Components in Fig. 12 having the same reference
numerals as those in Fig. 11 designate identical components. A pipe 34 through which
the accumulator 5 is connected to the compressor 1 is formed into a U-shape inside
the accumulator 5, and the end portion thereof is open in the upper portion of the
accumulator 5. A hole 36 for returning oil circulating within the refrigeration cycle
is disposed in the bottommost portion of the U-shape, and a hole 35 for making a part
of gas flow out is disposed in the topmost portion of the U-shape. A pipe 42 and the
open/close valve 41 are connected to each other at an appropriate position in the
upper portion of the receiver 6 and at an appropriate position in the upper portion
of the refrigerant tank 40. Further, a pipe 44 and the open/close valve 43 are connected
to each other at appropriate positions of the lower portion of the accumulator 5 and
the refrigerant tank 40. Although the refrigerant tank 40 is formed integral in the
lower portion of the accumulator 5 in Fig. 12, the refrigerant tank 40 may be arranged
in any way if heat can be exchanged between the accumulator 5 and the refrigerant
tank 40.
[0043] Fig. 13 is a flowchart for controlling the refrigeration cycle shown in Fig. 11.
When a predetermined condition is satisfied after the refrigeration cycle is started,
the composition ratio is determined on the basis of a signal from the composition
ratio detecting sensor. A check is made to determine whether the detected composition
ratio X is greater than the composition ratio X
0 of the refrigerant sealed in the refrigeration cycle. When X > (X
0 + α), the open/close valve 41 is opened. When the condition (X
0 - α) ≤ X ≤ (X
0 + α) is satisfied, the open/close valve 41 is closed. When the detected composition
ratio X < (X
0 + α) and X < (X
0 - α), the open/close valve 43 is opened. When (X
0 - α) ≤ X ≤ (X
0 + α) is satisfied, the open/close valve 43 is closed. Therefore, it is possible to
control the composition of the refrigerant within the refrigeration cycle to X
0 or thereabouts, making a stable operation possible. Since the composition ratio of
the non-azeotrope refrigerant can be varied, it becomes possible to vary the heating
and cooling capacity as shown in Fig. 3.
1. Refrigeration cycle using a non-azeotrope refrigerant and comprising
- a compressor (1),
- a heat-source-side heat exchanger (2),
- a use-side heat exchanger (20a, 20b),
- a refrigerant pressure reducing apparatus (7),
- a refrigerant receiver (6) disposed between a side of said heat-source-side heat
exchanger (2) and said use-side heat exchanger (20a, 20b), whereby said side is opposite
to another side of said heat-source-side heat exchanger (2) connected to said compressor
(1),
- a composition ratio detecting means (8) arranged for detecting a composition ratio
of the refrigerant, and
- composition ratio control means (10 to 15, 40 to 44)
characterized in that
- the composition ratio detecting means (8) is disposed between said heat-source-side
heat exchanger (2) and said receiver (6), and
- the composition ratio control means (10 to 15, 40 to 44) are arranged for taking
out gas refrigerant from said receiver (6) on the basis of the composition ratio of
the refrigerant detected by said composition ratio detecting means (8) so as to vary
the refrigerant composition ratio mainly used in said refrigeration cycle.
2. Refrigeration cycle according to claim 1,
characterized in that
- the refrigeration cycle comprises an accumulator (5) arranged for supplying the
compressor (1) with refrigerant, and
- the composition ratio control means comprise
- a refrigerant tank (10) connected with
- the receiver (6) via a first pipe comprising a first open/close valve (13), and
- the accumulator (5) via a second pipe (15) comprising a second open/close valve
(14),
and
- a third pipe comprising a third open/close valve (12), which third pipe is coupled
with the receiver (6) at one end of the third pipe and joins the second pipe (15)
between the second open/close valve (14) and the accumulator (5),
whereby
- a part of the third pipe is embedded into a part of the first pipe, which parts
in such a way form a cooling unit (11),
- the first open/close valve (13) and the third open/close valve (12) are arranged
between the cooling unit (11) and the receiver (6),
- the receiver (6), the refrigerant tank (10), the cooling unit (11), the first pipe,
the third pipe, the first open/close valve (13), and the third open/close valve (12)
are arranged such that when the first and third open/close valves (13, 12) are open
- liquid refrigerant in a bottom of the receiver (6) flows out through the third open/close
valve (12) thereby being transformed into a low-temperature refrigerant by a'pressure
reducing effect of the third open/close valve (12),
- gas refrigerant inside the receiver (6) flows out through the first open/close valve
(13), condenses in the cooling unit (11) and is then guided as liquid into the refrigerant
tank (10),
and
- the refrigerant tank (10), the second pipe (15), the third pipe, the second open/close
valve (14), the third open/close valve (12), and the accumulator (5) are arranged
such that the liquid stored in the refrigerant tank (10) can be discharged to the
accumulator (5) through the second pipe (15) when the third open/close valve (12)
is closed and the second open/close valve (14) is open.
3. Refrigeration cycle according to claim 1,
characterized in that
- the refrigeration cycle comprises an accumulator (5) arranged for supplying the
compressor (1) with refrigerant, and
- the composition ratio control means comprise
- a refrigerant tank (40) connected with
- the receiver (6) via a first pipe (42) comprising a first open/close valve (41),
and
- the accumulator (5) via a second pipe (44) comprising a second open/close valve
(43),
whereby
- the accumulator (5) and the refrigerant tank (40) are arranged such that heat can
be exchanged between the refrigerant tank (40) and the accumulator (5),
- the receiver (6), the refrigerant tank (40), the first pipe (42) and the first open/close
valve (41) are arranged such that when the first open/close valve (41) is open gas
refrigerant inside the receiver (6) flows out through the first pipe (42) into the
refrigerant tank (40) where it is condensed to liquid due to the heat exchange with
the accumulator (5), and
- the refrigerant tank (40), the second pipe (44), the second open/close valve (43),
and the accumulator (5) are arranged such that the liquid stored in the refrigerant
tank (40) can be discharged to the accumulator (5) through the second pipe (44) when
the second open/close valve (43) is open.
4. Refrigeration cycle according to claim 3, characterized in that the refrigerant tank (40) is formed integral in a lower portion of the accumulator
(5).
5. Refrigeration cycle according to claim 1, characterized in that the composition ratio detecting means (8) is an electrostatic capacitance type sensor.
1. Ein nicht-azeotropes Kältemittel verwendender Kältekreislauf
- mit einem Kompressor (1),
- mit einem wärmequellenseitigen Wärmeaustauscher (2),
- mit einem verwendungsseitigen Wärmeaustauscher (20a, 20b),
- mit einer Reduziervorrichtung (7) für den Kältemitteldruck,
- mit einem Sammler (6) für das Kältemittel, der zwischen einer Seite des wärmequellenseitigen
Wärmeaustauschers (2) und dem verwendungsseitigen Wärmeaustauscher (20a, 20b) angeordnet
ist, wobei die Seite der anderen, mit dem Kompressor (1) verbundenen Seite des wärmequellenseitigen
Wärmeaustauschers (2) gegenüberliegt,
- mit einer Detektoreinrichtung (8) für das Zusammensetzungsverhältnis, die für das
Erfassen eines Zusammensetzungsverhältnisses des Kältemittels angeordnet ist, und
- mit Steuereinrichtungen (10 bis 15, 40 bis 44) für das Zusammensetzungsverhältnis,
dadurch gekennzeichnet,
- dass die Detektoreinrichtung (8) für das Zusammensetzungsverhältnis zwischen dem wärmequellenseitigen
Wärmeaustauscher (2) und dem Sammler (6) angeordnet ist, und
- dass die Steuereinrichtungen (10 bis 15, 40 bis 44) für das Zusammensetzungsverhältnis
für die Abnahme von gasförmigem Kältemittel aus dem Sammler (6) auf der Basis des
Kältemittelszusammensetzungsverhältnisses angeordnet sind, das von der Detektoreinrichtung
(8) für das Zusammensetzungsverhältnis erfasst wird, um so das Kältemittelzusammensetzungsverhältnis
zu variieren, das hauptsächlich in dem Kältekreislauf verwendet wird.
2. Kältekreistauf nach Anspruch 1,
dadurch gekennzeichnet,
- dass der Kältekreislauf einen Speicher (5) aufweist, der für die Versorgung des Kompressors
(1) mit Kältemittel angeordnet ist, und
- dass die Steuereinrichtungen für das Zusammensetzungsverhältnis einen Kältemittelbehälter
(10), der mit dem Sammler (6) über ein erstes Rohr mit einem ersten Ventil (13) zum
Öffnen und Schließen und mit dem Speicher (5) über ein zweites Rohr (15) mit einem
zweiten Ventil (14) zum Öffnen und Schließen verbunden ist, und ein ein drittes Ventil
(12) zum Öffnen und Schließen aufweisendes drittes Rohr hat, das mit dem Sammler (6)
an seinem einen Ende verbunden und an das zweite Rohr (15) zwischen dem zweiten Ventil
(15) zum Öffnen und Schließen und dem Speicher (5) angeschlossen ist, wobei
- ein Teil des dritten Rohres so in ein Teil des ersten Rohres eingebettet ist, dass
die Teile eine Kühleinheit (11) bilden,
- das erste Ventil (13) zum Öffnen und Schließen und das dritte Ventil (12) zum Öffnen
und Schließen zwischen der Kühleinheit (11) und dem Sammler (6) angeordnet sind,
- der Sammler (6), der Kältemittelbehälter (10), die Kühleinheit (11), das erste Rohr,
das dritte Rohr, das erste Ventil (13) zum Öffnen und Schließen und das dritte Ventil
(12) zum Öffnen und Schließen so angeordnet sind, dass, wenn das erste und das dritte
Ventil (13, 12) zum Öffnen und Schließen offen sind
-- flüssiges Kältemittel am Boden des Sammlers (6) durch das dritte Ventil (12) zum
Öffnen und Schließen abströmt, wodurch es in ein Kältemittel mit niedriger Temperatur
durch die druckreduzierende Wirkung des dritten Ventils (12) zum Öffnen und Schließen
umgewandelt wird,
-- gasförmiges Kältemittel in dem Sammler (6) durch das erste Ventil (13) zum Öffnen
und Schließen abströmt, in der Kühleinheit (11) kondensiert und dann als Flüssigkeit
in den Kältemittelbehälter (10) geführt wird, und
- der Kältemittelbehälter (10) das zweite Rohr (15), das dritte Rohr, das zweite Ventil
(14) zum Öffnen und Schließen, das dritte Ventil (12) zum Öffnen und Schließen und
der Speicher (5) so angeordnet sind, dass die in dem Kältemittelbehälter (10) gespeicherte
Flüssigkeit zum Speicher (5) über das zweite Rohr (15) abgeführt wird, wenn das dritte
Ventil (12) zum Öffnen und Schließen geschlossen und das zweite Ventil (14) zum Öffnen
und Schließen geöffnet ist.
3. Kältekreislauf nach Anspruch 1,
dadurch gekennzeichnet,
- dass der Kältekreislauf einen Speicher (5) aufweist, der zum Versorgen des Kompressors
(1) mit Kältemittel angeordnet ist, und
- dass die Steuereinrichtungen für das Zusammensetzungsverhältnis einen Kältemittelbehälter
(40), der mit dem Sammler (6) über ein erstes Rohr (42), das ein erstes Ventil (41)
zum Öffnen und Schließen aufweist, und mit dem Speicher (5) über ein zweites Rohr
(44) verbunden ist, das ein zweites Ventil (43) zum Öffnen und Schließen aufweist,
wobei
- der Speicher (5) und der Kältemittelbehälter (40) so angeordnet sind, dass zwischen
dem Kältemittelbehälter (40) und dem Speicher (5) Wärme ausgetauscht werden kann,
- der Sammler (6), der Kältemittelbehälter (40), das erste Rohr (42) und das erste
Ventil (41) zum Öffnen und Schließen so angeordnet sind, dass wenn das erste Ventil
(41) zum Öffnen und Schließen offen ist, gasförmiges Kältemittel innerhalb des Sammlers
(6) durch das erste Rohr (42) in den Kältemittelbehälter (40) abfließt, wo es zu Flüssigkeit
aufgrund des Wärmeaustausches mit dem Speicher (5) kondensiert wird, und
- der Kältemittelbehälter (40), das zweite Rohr (44), das zweite Ventil (43) zum Öffnen
und Schließen und der Speicher (5) so angeordnet sind, dass die in dem Kältemittelbehälter
(40) gespeicherte Flüssigkeit zum Speicher (5) durch das zweite Rohr (44) abgeführt
werden kann, wenn das zweite Ventil (43) zum Öffnen und Schließen offen ist.
4. Kältekreislauf nach Anspruch 3, dadurch gekennzeichnet, dass der Kältemittelbehälter (40) in einem unteren Teil des Speichers (5) in einem Stück
damit ausgebildet ist.
5. Kältekreislauf nach Anspruch 1, dadurch gekennzeichnet, dass die Detektoreinrichtung (8) für das Zusammensetzungsverhältnis ein Sensor ist, der
mit der elektrostatischen Kapazität arbeitet.
1. Cycle de réfrigération utilisant un réfrigérant non-azéotrope et comportant
- un compresseur (1),
- un échangeur thermique du côté source de chaleur (2),
- un échangeur thermique du côté utilisation (20a, 20b),
- un dispositif de réduction de pression de réfrigérant (7),
- un récepteur de réfrigérant (6) positionné entre un côté dudit échangeur thermique
du côté source de chaleur (2) et ledit échangeur thermique du côté utilisation (20a,
20b), de sorte que ledit côté est opposé à un autre côté dudit échangeur thermique
du côté source de chaleur (2) connecté audit compresseur (1),
- des moyens de détection de rapport de composition (8) conçus pour détecter un rapport
de composition du réfrigérant, et
- des moyens de commande de rapport de composition (10 à 15, 40 à 44)
caractérisé en ce que
- les moyens de détection de rapport de composition (8) sont positionnés entre ledit
échangeur thermique du côté source de chaleur (2) et ledit récepteur (6), et
- les moyens de commande de rapport de composition (10 à 15, 40 à 44) sont conçus
pour extraire un gaz réfrigérant depuis ledit récepteur (6) sur la base du rapport
de composition du réfrigérant détecté par lesdits moyens de détection de rapport de
composition (8) de manière à faire varier le rapport de composition de réfrigérant
principalement utilisé dans ledit cycle de réfrigération.
2. Cycle de réfrigération selon la revendication 1,
caractérisé en ce que
- le cycle de réfrigération comporte un accumulateur (5) conçu pour alimenter le compresseur
(1) en réfrigérant, et
- les moyens de commande de rapport de composition comportent
- un réservoir de réfrigérant (10) connecté au récepteur (6) via un premier tuyau
comportant une première soupape d'ouverture/fermeture (13), et
- à l'accumulateur (5) via un deuxième tuyau (15) comportant une deuxième soupape
d'ouverture/fermeture (14),
et
- un troisième tuyau comportant une troisième soupape d'ouverture/fermeture (12),
lequel troisième tuyau est couplé au récepteur (6) à une extrémité du troisième tuyau
et rejoint le deuxième tuyau (15) entre 1a deuxième soupape d'ouverture/fermeture
(14) et l'accumulateur (5),
de sorte que
- une partie du troisième tuyau est enrobée dans une partie du premier tuyau, lesquelles
parties forment de cette manière une unité de refroidissement (11),
- la première soupape d'ouverture/fermeture (13) et la troisième soupape d'ouverture/fermeture
(12) sont agencées entre l'unité de refroidissement (11) et le récepteur (6),
- le récepteur (6), le réservoir de réfrigérant (10), l'unité de refroidissement (11),
le premier tuyau, le troisième tuyau, la première soupape d'ouverture/fermeture (13)
et la troisième soupape d'ouverture/fermeture (12) sont agencés de sorte que, lorsque
les première et troisième soupapes d'ouverture/fermeture (13, 12) sont ouvertes
- un réfrigérant liquide dans une partie inférieure du récepteur (6) s'écoule à travers
la troisième soupape d'ouverture/fermeture (12) de manière à être transformé en un
réfrigérant à basse température par un effet de réduction de pression de la troisième
soupape d'ouverture/fermeture (12),
- un gaz réfrigérant à l'intérieur du récepteur (6) s'écoule à travers la première
soupape d'ouverture/fermeture (13), se condense dans l'unité de refroidissement (11)
et est alors guidé sous la forme d'un liquide dans le réservoir de réfrigérant (10),
et
- le réservoir de réfrigérant (10), le deuxième tuyau (15), le troisième tuyau, la
deuxième soupape d'ouverture/fermeture (14), la troisième soupape d'ouverture/fermeture
(12) et l'accumulateur (5) sont agencés de sorte que le liquide stocké dans le réservoir
de réfrigérant (10) peut être déchargé dans l'accumulateur (5) à travers le deuxième
tuyau (15) lorsque la troisième soupape d'ouverture/fermeture (12) est fermée et la
deuxième soupape d'ouverture/fermeture (14) est ouverte.
3. Cycle de réfrigération selon la revendication 1,
caractérisé en ce que
- le cycle de réfrigération comporte un accumulateur (5) conçu pour alimenter le compresseur
(1) par un réfrigérant, et
- les moyens de commande de rapport de composition comportent
- un réservoir de réfrigérant (40) connecté
- au récepteur (6) via un premier tuyau (42) comportant une première soupape d'ouverture/fermeture
(41), et
- à l'accumulateur (5) via un deuxième tuyau (44) comportant une deuxième soupape
d'ouverture/fermeture (43),
de sorte que
- l'accumulateur (5) et le réservoir de réfrigérant (40) sont conçus de sorte qu'une
chaleur peut être échangée entre le réservoir de réfrigérant (10) et l'accumulateur
(5),
- le récepteur (6), le réservoir de réfrigérant (40), le premier tuyau (42) et la
première soupape d'ouverture/fermeture (41) sont agencés de sorte que, lorsque la
première soupape d'ouverture/fermeture (41) est ouverte, un gaz réfrigérant à l'intérieur
du récepteur (6) s'écoule à travers le premier tuyau (42) dans le réservoir de réfrigérant
(10) où il est condensé en un liquide du fait de l'échange de chaleur avec l'accumulateur
(5), et
- le réservoir de réfrigérant (40), le deuxième tuyau (44), la deuxième soupape d'ouverture/fermeture
(43) et l'accumulateur (5) sont agencés de sorte que le liquide stocké dans le réservoir
de réfrigérant (40) peut être déchargé dans l'accumulateur (5) à travers le deuxième
tuyau (44) lorsque la deuxième soupape d'ouverture/fermeture (43) est ouverte.
4. Cycle de réfrigération selon la revendication 3, caractérisé en ce que le réservoir de réfrigérant (40) est formé en un seul bloc dans une partie inférieure
de l'accumulateur (5).
5. Cycle de réfrigération selon la revendication 1, caractérisé en ce que les moyens de détection de rapport de composition (8) sont un capteur de type à capacité
électrostatique.