Cross-Reference to Related Application
[0001] This application is a related to PCT Application Serial Number PCTUS95/11742, filed
12 September 1995 and entitled "SYSTEM FOR CONTROLLING THE FLOW OF TEMPERATURE CONTROL
FLUID. "
Field of the Invention
[0002] This invention relates to a system for maintaining engine lubrication oil at a desired
temperature by controlling the state of one or more flow control valves which regulate
the flow of temperature control fluid within an internal combustion gasoline or diesel
engine equipped with a radiator.
Background of the Invention
[0003] Page 169 of the
Goodheart-Willcox Automotive Encyclopedia, The Goodheart-Willcox Company, Inc., South Holland, Illinois, 1995 describes that
as fuel is burned in an internal combustion engine, about one-third of the heat energy
in the fuel is converted to power. Another third goes out the exhaust pipe unused,
and the remaining third must be handled by a cooling system. This third is often underestimated
and even less understood.
[0004] Most internal combustion engines employ a pressurized cooling system to dissipate
the heat energy generated by the combustion process. The cooling system circulates
water or liquid coolant through a water jacket which surrounds certain parts of the
engine (e.g., block, cylinder, cylinder head, pistons). The heat energy is transferred
from the engine parts to the coolant in the water jacket. In hot ambient air temperature
environments, or when the engine is working hard, the transferred heat energy will
be so great that it will cause the liquid coolant to boil (i.e., vaporize) and destroy
the cooling system. To prevent this from happening, the hot coolant is circulated
through a radiator well before it reaches its boiling point. The radiator dissipates
enough of the heat energy to the surrounding air to maintain the coolant in the liquid
state.
[0005] In cold ambient air temperature environments, especially below zero degrees Fahrenheit
(-17.8 °C), or when a cold engine is started, the coolant rarely becomes hot enough
to boil. Thus, the coolant does not need to flow through the radiator. Nor is it desirable
to dissipate the heat energy in the coolant in such environments since internal combustion
engines operate most efficiently and pollute the least when they are running relatively
hot. A cold running engine will have significantly greater sliding friction between
the pistons and respective cylinder walls than a hot running engine because oil viscosity
decreases with temperature. A cold running engine will also have less complete combustion
in the engine combustion chamber and will build up sludge more rapidly than a hot
running engine. In an attempt to increase the combustion when the engine is cold,
a richer fuel is provided. All of these factors lower fuel economy and increase levels
of hydrocarbon exhaust emissions.
[0006] To avoid running the coolant through the radiator, coolant systems employ a thermostat.
The thermostat operates as a one-way valve, blocking or allowing flow to the radiator.
Fig. 2 of
U.S. Patent No. 4,545,333 shows a typical prior art thermostat controlled coolant systems. Most prior art coolant
systems employ wax pellet type or bimetallic coil type thermostats. These thermostats
are self-contained devices which open and close according to precalibrated temperature
values.
[0007] Practical design constraints limit the ability of the coolant system to adapt to
a wide range of operating environments. For example, the heat removing capacity is
limited by the size of the radiator and the volume and speed of coolant flow. The
state of the self-contained prior art wax pellet type or bimetallic coil type thermostats
is controlled solely by coolant temperature. Thus, other factors such as ambient air
temperature cannot be taken into account when setting the state of such thermostats.
[0008] Numerous proposals have been set forth in the prior art to more carefully tailor
the coolant system to the needs of the vehicle and to improve upon the relatively
inflexible prior art thermostats.
[0009] U.S. Patent No. 5,121,714 discloses a system for directing coolant into the engine in two different streams
when the oil temperature is above a predetermined value. One stream flows through
the cylinder head and the other stream flows through the cylinder block. When the
oil temperature is below the predetermined value, a flow control valve closes off
the stream through the cylinder block. The flow control valve is connected to an electronic
control unit (ECU). The ECU sends control signals to the flow control valve and to
other engine cooling system components.
U.S. Patent No. 5,121,714 also employs a typical prior art thermostat valve 108 for directing the cooling fluid
through a radiator when its temperature is above a preselected value. This patent
also describes that the thermostat valve can be replaced by an electrical-control
valve, although no specific examples are disclosed.
[0010] U.S. Patent No. 4,744,336 discloses a solenoid actuated piston type flow control valve for infinitely varying
coolant flow into a servo controlled valve. The solenoids receive pulse signals from
an electronic control unit (ECU). The ECU receives inputs from sensors measuring ambient
temperature, engine input and output coolant temperature, combustion temperature,
manifold pressure and heater temperature.
[0011] The goal of all engine cooling systems is to maintain the internal engine temperature
as close as possible to a predetermined value. Since engine coolant temperature generally
tracks internal engine temperature, the prior art approach to controlling internal
engine temperature control is to control engine coolant temperature. Many problems
arise from this approach. For example, sudden load increases on an engine may cause
the internal engine temperature to significantly exceed the optimum value before the
coolant temperature reflects this fact. If the thermostat is in the closed state just
before the sudden load increase, the extra delay in opening will prolong the period
of time in which the engine is unnecessarily overheated.
[0012] Another problem occurs during engine start-up or warm-up. During this period of time,
the coolant temperature rises more rapidly than the internal engine temperature. Since
the thermostat is actuated by coolant temperature, it often opens before the internal
engine temperature has reached its predetermined value, thereby causing coolant in
the water jacket to prematurely cool the engine. Still other scenarios exist where
the engine coolant temperature cannot be sufficiently regulated to cause the desired
internal engine temperature.
[0013] When the internal engine temperature is not maintained at an optimum value, the engine
oil will also not be at the optimum temperature. Engine oil life is largely dependent
upon wear conditions. Engine oil life is significantly shortened if an engine is run
either too cold or too hot. As noted above, a cold running engine will have less complete
combustion in the engine combustion chamber and will build up sludge more rapidly
than a hot running engine. The sludge contaminates the oil. A hot running engine will
prematurely break down the oil. Thus, more frequent oil changes are needed when the
internal engine temperature is not consistently maintained at its optimum value.
[0014] Prior art cooling systems also do not account for the fact that the optimum oil temperature
varies with ambient air temperature. As the ambient air temperature declines, the
internal engine components lose heat more rapidly to the environment and there is
an increased cooling effect on the internal engine components from induction air.
To counter these effects and thus maintain the internal engine components at the optimum
operating temperature, the engine oil should be hotter in cold ambient air temperatures
than in hot ambient air temperatures. Current prior an cooling systems cannot account
for this difference because the cooling system is responsive only to coolant temperature.
[0015] In sum, the prior art approach of employing coolant temperature to control the internal
engine temperature is crude and inaccurate. Accordingly, despite the large number
of ideas proposed to improve the performance of engine cooling systems, there is still
a need for cooling system which more effectively matches its performance to the instantaneous
needs of the engine, while still meeting the plurality of other functions noted above
which are demanded of the cooling system. There is especially a need for a system
and technique for controlling the state of one or more flow control valves in engine
cooling systems in accordance with predetermined engine and ambient temperature conditions,
including the actual internal engine temperature. The present invention fills that
need.
Summary of the Invention
[0016] The present invention is defined in the independent claims of this specification,
to which reference should now be made. The dependent claims define preferred but optional
features of the invention.
[0017] Thus, in the present invention a temperature control system in a liquid cooled internal
combustion engine equipped with a radiator controls the state of a flow control valve
for controlling flow of a temperature control fluid through a passageway in the engine.
A sensor detects a temperature indicative of the engine oil temperature. Another sensor
detects the temperature of the temperature control fluid. An engine computer receives
signals from the sensors. In one embodiment, the engine computer compares the engine
oil temperature signal to a predetermined value to control actuation of the valve.
[0018] In another embodiment, the engine computer compares the engine oil temperature signal
to a predetermined engine oil temperature value. The engine computer adjusts a predetermined
temperature control fluid temperature value based on the comparison of the engine
oil temperature signal to the predetermined engine oil temperature value. The engine
computer then compares the temperature control fluid temperature signal to the adjusted
temperature control fluid temperature. The engine computer actuates the flow control
valve based on the comparison of the temperature control fluid temperature signal
to the adjusted temperature control fluid temperature.
[0019] The predetermined engine oil temperature value and predetermined temperature control
fluid temperature value preferably vary with ambient air. Accordingly, the engine
computer determines the predetermined value by comparing the sensed ambient air temperature
to one or more sets of values defining a curve.
[0020] The foregoing and other objects features and advantages of the present invention
will become more apparent in light of the following detailed description of the preferred
embodiments thereof, as illustrated in the accompanying drawings.
Brief Description of the Drawings
[0021] For the purpose of illustrating the invention, there is shown in the drawings a form
which is presently preferred; it being understood, however, that this invention is
not limited to the precise arrangements and instrumentalities shown.
[0022] Fig. 1 is a top plan view of one preferred form of a hydraulically operated electronic
engine temperature control valve for controlling the flow of temperature control fluid
in an engine.
[0023] Fig. 2 is a sectional side view of the valve in Fig. 1, taken along line 2-2 in Fig.
1.
[0024] Fig. 3 is a different sectional side view of the valve in Fig. 1, taken along line
3-3 in Fig. 1.
[0025] Fig. 4 is yet another sectional side view of the valve in Fig. 1, taken along line
4-4 in Fig. 1.
[0026] Fig. 5 is a horizontal sectional view of the valve in Figs. 1 and 2, taken along
line 5-5 in Fig. 2.
[0027] Fig. 6 is a diagrammatic view of the valve in Fig. 1 connected to parts of an engine.
[0028] Fig. 7 is sectional side view of a preferred form of a multi-function valve which
controls the flow of temperature control fluid to plural parts of an engine, shown
in a first position.
[0029] Fig. 8 is sectional side view of the multi-function valve of Fig. 7, shown in a second
position.
[0030] Fig. 9 is a sectional side view of a piston type hydraulically operated electronic
engine temperature control valve for controlling the flow of temperature control fluid
in an engine.
[0031] Fig. 10 is an end view of the valve in Fig. 9.
[0032] Fig. 11 is a sectional side view of another embodiment of a piston type hydraulically
operated electronic engine temperature control valve for controlling the flow of temperature
control fluid in an engine.
[0033] Fig. 12 is an end view of the valve in Fig. 11. Fig. 13A is an enlarged view of a
stationary rod seal employed in the embodiment of the invention shown in Fig. 7.
[0034] Fig. 13B is an enlarged view of a gasket seal employed in the embodiment of the invention
shown in Fig. 7.
[0035] Fig. 14A is a diagrammatic illustration of one embodiment of the temperature control
system according to the present invention employing the temperature control valve
in a GM 3800 V6 transverse internal combustion engine during normal operation.
[0036] Fig. 14B is a diagrammatic illustration of the temperature control system of Fig
14A during the warm-up phase.
[0037] Fig. 14C is a diagrammatic illustration of a second embodiment of the temperature
control system of the present invention employing the novel EETC valve to control
flow to the radiator in a GM 3800 V6 transverse internal combustion engine during
the warm-up phase.
[0038] Fig. 14D is a diagrammatic illustration of the second embodiment of the temperature
control system of Fig 14C during normal operation showing part of the TCF flowing
to the radiator and part flowing through the intake manifold and the oil pan.
[0039] Fig. 14E is a diagrammatic illustration of a third embodiment of the temperature
control system of the present invention employing a remote shut-off valve (as shown
in Figs. 8 and 33) in a GM 3800 V6 transverse internal combustion engine during normal
operation.
[0040] Fig. 14F is a diagrammatic illustration of the third embodiment of the temperature
control system of Fig 14E during normal operation showing the TCF flowing to the radiator.
[0041] Fig. 15 is an exploded view of a portion of the valve in Fig. 2 showing a preferred
embodiment of a diaphragm and how it attaches to the valve housing.
[0042] Figs. 16A and 16B are sectional views of a hydraulic fluid injector suitable for
controlling the state or position of the valves in the invention.
[0043] Fig. 16C is a sectional view of an alternative type of hydraulic fluid injector suitable
for controlling the state or position of the valves in the invention.
[0044] Fig. 17 is a block diagram circuit of the connections to and from an engine computer
for controlling the state or position of the valves in the invention.
[0045] Fig. 18 is a diagrammatic sectional view of an engine block showing a temperature
control fluid passageway through the engine block to an oil pan, for use with the
valve shown in Fig. 7.
[0046] Figs. 19 and 20 are graphs showing the state of a valve at selected temperature control
fluid and ambient air temperature in an improved system.
[0047] Fig. 21 is a graph showing the state of prior art wax pellet type or bimetallic coil
type thermostats at the same selected temperature control fluid and ambient air temperatures
of temperatures as in Figs. 19 and 20.
[0048] Figs. 22A and 22B are graphs showing the state of a plurality of valves at selected
temperature control fluid and ambient air temperatures in an improved system.
[0049] Fig. 23 is a graph showing the actual temperature of the temperature control fluid
when controlling the plurality of valves referred to in Fig. 22A according to the
Fig. 22A scheme, compared to the actual temperature of engine coolant when a prior
art thermostat is employed and controlled according to the Fig. 21 scheme.
[0050] Fig. 24 is a graph showing the state of a valve in the invention at selected temperature
control fluid and ambient air temperatures for normal (low) engine load and high engine
load conditions.
[0051] Fig. 25 shows a plot of the optimum engine oil temperature at selected ambient air
temperatures.
[0052] Fig. 26 is a graph showing the state of a valve in the invention at selected temperature
control fluid and ambient air temperatures for normal (low) engine load conditions
and during start-up/warm-up.
[0053] Fig. 27 is a flowchart showing a system for determining valve states based on multiple
engine operating conditions shown in Figs. 24 and 26.
[0054] Fig. 28 is a block diagram circuit of the connections to and from an engine computer
for controlling the state or position of the valves in the invention according to
the multiple engine operating conditions shown in Figs. 24 and 26.
[0055] Fig. 29 is a graph of the actual engine oil temperature at selected ambient air temperatures
when employing the invention in Figs. 24-28.
[0056] Fig. 30 shows a trend line of temperature control fluid temperature and oil temperature
during vehicle operation when employing the invention in Figs. 24-28.
[0057] Fig. 31A is an idealized diagrammatic view of temperature control fluid flow paths
through an engine including the intake manifold and the oil pan during warm-up.
[0058] Fig. 31B is an idealized diagrammatic view of temperature control fluid flow paths
through an engine including the intake manifold and the oil pan during normal operation
with the EETC valve partially open.
[0059] Fig. 32A is an idealized diagrammatic view of a second embodiment showing the temperature
control fluid flow paths through an engine including the intake manifold and the oil
pan during warm-up.
[0060] Fig. 32B is an idealized diagrammatic view of the second embodiment of Fig. 32A showing
the temperature control fluid flow paths during normal operation.
[0061] Fig. 33 is a diagrammatic sectional view of an engine block showing restrictor/shutoff
flow control valves in accordance with the invention.
[0062] Fig. 34 is a sectional side view of the restrictor/shutoff valve mounted to a fluid
passageway.
[0063] Fig. 35 is an exploded view of the parts of the restrictor/shutoff valve in Fig.
34.
[0064] Fig. 36 is a sectional view of the restrictor/shutoff valve in Fig. 34, taken along
line 36-36 in Fig. 34.
[0065] Fig. 37 is a sectional view of the restrictor/shutoff valve in Fig. 34, taken along
line 37-37 in Fig. 34.
[0066] Fig. 38 is a sectional side view of an alternative embodiment of the restrictor/shutoff
valve in its environment for simultaneously controlling fluid flow in two different
passageways.
[0067] Fig. 39 is a diagrammatic sectional view of the water jacket in an engine block showing
how the restrictor/shutoff valve controls fluid flow in interior and exterior passageways
of the water jacket.
[0068] Fig. 40 is a diagrammatic view of the coolant circulation flow path through a prior
art engine when a thermostat is closed.
[0069] Fig. 41 is an idealized diagrammatic view of the coolant circulation flow path through
a prior art engine when a thermostat is open.
[0070] Fig. 42 is an actual diagrammatic view of the coolant circulation flow path through
a prior art engine when a thermostat is open.
[0071] Fig. 43 is a sectional side view of a preferred form of a multi-function valve which
controls the flow of temperature control fluid to plural parts of an engine.
[0072] Fig. 44A is a diagrammatic illustration of an alternate embodiment of the temperature
control system according to the present invention in an internal combustion which
includes a by-pass waterjacket for assisting in engine warm-up.
[0073] Fig. 44B is a diagrammatic illustration of the temperature control system shown in
Fig. 44A during normal operation.
[0074] Fig. 45A is a graphical illustration of one method for adjusting the temperature
control fluid temperature component.
[0075] Fig. 45B is a graphical illustration of the result of adjusting the temperature control
curve to account for engine conditions.
[0076] Fig. 45C is a graphical illustration of another method for adjusting the temperature
control fluid temperature component.
[0077] Fig. 46 is an empirical curve showing the actual engine oil temperature and the temperature
control fluid temperature over a time period during which the engine was subjected
to varying load conditions.
[0078] Fig. 47 is an actual plot of data generated on a GM 3800 V6 engine while experiencing
varying load conditions.
[0079] Fig. 48 is a graphical illustration of an alternate embodiment of the present invention
wherein a constant desired oil temperature is utilized.
[0080] Fig. 49 is an illustration of an electronically assisted thermostat for use in a
temperature control system.
Description of the Preferred Embodiment
[0081] While the invention will be described in connection with a preferred embodiment,
it will be understood that it is not intended to limit the invention to that embodiment.
On the contrary, it is intended to cover all alternatives, modifications and equivalents
as may be included within the spirit and scope of the invention as defined by the
appended claims.
[0082] Certain terminology is used herein for convenience only and is not be taken as a
limitation on the invention. Particularly, words such as "upper," "lower," "left,"
"right," "horizontal," "vertical," "upward," and "downward" merely describe the configuration
shown in the figures. Indeed, the valves and related components may be oriented in
any direction. For example while a vertically oriented radiator is illustrated in
the figures, a horizontally oriented radiator is well within the scope of the invention.
[0083] Apparatus depicting the preferred embodiments of the novel electronic engine temperature
control valve are illustrated in the drawings.
[0084] Fig. 1 shows a top plan view of an electronic engine temperature control valve
10 (hereafter, "EETC valve
10") as it would appear attached to an engine temperature control fluid passageway
12. (Only a portion of the passageway
12 is visible in this view.) The EETC valve
10 is attached to the passageway
12 by mounting bolts
14. The EETC valve
10 includes two major subcomponents, a valve mechanism
16 and a pair of solenoid actuated hydraulic fluid injectors
18 and
20. The injector
18 is a fluid inlet valve and the injector
20 is a fluid outlet valve. In effect, the injectors
18,
20 are one-way flow through valves. The view in Fig. 1 shows valve housing sub-parts
including housing
22 of the valve mechanism
16 and housings
24 and
26 of the respective hydraulic fluid injectors
18 and
20. The EETC valve
10 also includes fluid pressure sensor
28 mounted to the valve housing through insert
30. In the preferred embodiment, the insert
30 is a brass fitting.
[0085] Also visible in Fig. 1 are electrical terminals
32,
34, and fluid inlet and outlet tubes
36,
38, associated with respective fluid injectors
18 and
20. These tubes are attached to respective solid tubes which feed into the valve housing
through inserts
30. Those inserts
30 are not visible in this view. However, the insert
30 associated with the inlet tube
36 is visible in Fig. 3. The inlet tube
36 is connected to a source of pressurized hydraulic fluid, such as engine lubrication
oil. The outlet tube
38 is connected to a low pressure reservoir of the hydraulic fluid, such as an engine
lubrication oil pan. Each of the electrical terminals
32,
34 are connected at one end to a solenoid inside of its respective fluid injector (not
shown) and at the other end to a computerized engine electronic control unit (ECU)
(not shown).
[0086] Fig. 2 shows a sectional side view of one version of the EETC valve
10, taken along line 2-2 in Fig. 1. In this version, the EETC valve
10 is a hydraulically actuated diaphragm valve
40. The diaphragm valve
40 reciprocates within the valve housing
22 along axis A between a first and second state or position. The solid lines in Fig.
2 shows the valve
40 in the first position which is associated with a valve "closed" state. Fig. 2 also
shows the valve's second position in phantom which is associated with a valve "open"
state. In the first "closed" position, the valve
40 prevents flow of temperature control fluid (hereafter, "TCF") through passageway
opening
42. In the second "open" position, the valve
40 allows fluid flow through the opening
42. The opening
42 leads to the engine radiator (not shown). Also visible in Fig. 2 is the electrical
terminal
34 and the outlet tube
38 associated with the solenoid
20, the fluid pressure sensor
28, and one of the mounting bolts
14.
[0087] The temperature control fluid (TCF) referred to herein is typically known in the
art as "coolant." Coolant is a substance, ordinarily fluid, used for cooling any part
of a reactor in which heat is generated. However, as will be described below, the
TCF not only removes heat energy from engine components but is also employed in certain
embodiments to deliver heat energy to certain engine components. Thus, the TCF is
more than merely a coolant. Likewise, while the prior art referenced herein relates
to engine cooling systems, the invention herein employs its unique valve(s) in an
engine temperature control system, providing both cooling and heating functions to
engine components.
[0088] Turning again to Fig. 2, the valve
40 reciprocates within the valve mechanism housing
22. The housing
22 is constructed of body
44 and cover
46, held together by band clamp or crimp
48. The body
44 includes a generally horizontal dividing wall
50 which divides the body
44 into upper compartment
52 and lower compartment
54. (It should be recognized that the dividing wall
50 is a generally cylindrical disk in three dimensions.) The center of the dividing
disk or wall
50 has a circular bore to allow passage of a reciprocating valve shaft or rod therethrough,
as described below. A cylindrical collar
56 extends vertically upward and downward from the inner edge of the dividing wall
50, thereby coinciding with the outer circumference of the circular bore. The collar
56 is integral with the dividing wall
50. The lower end of the lower compartment
54 leads to the opening
42.
[0089] As noted above, the valve
40 reciprocates between a first "closed" position wherein the valve
40 prevents flow of TCF through passageway opening
42 and a second "open" position wherein the valve
40 allows fluid flow through the opening
42. When the valve
40 is "closed," the water pump circulates the TCF only through the engine block water
jacket. If the heater or defroster is in operation, the fluid is also circulated through
a heat exchanger for the passenger compartment heater, typically a heater core. When
the valve
40 is "open," most of the TCF flows through the radiator before it is circulated through
the engine block water jacket and the heater's heat exchanger.
[0090] Thus, in the embodiment of the invention shown in Fig. 2, the valve
40 functions in a manner similar to the prior art wax pellet thermostat. However, unlike
the fixed temperature wax pellet thermostat, the valve
40 is electronically controlled and thus can be opened and closed according to a computer
controlled signal tailored to specific engine operating conditions and ambient environmental
conditions.
[0091] The diaphragm valve
40 includes upper chamber
58, diaphragm
60, plate
62, lower chamber
64, shaft or rod
66, valve member
68 and biasing spring
70. The diaphragm
60, plate
62 and spring
70 are disposed in the housing body's upper compartment
52. The diaphragm
60 separates the housing body's upper compartment
52 into the upper and lower chambers
58,
64. The spring
70 is seated on one side against a lower surface of the plate
62 and on the other side against an upper surface of the housing body's dividing wall
50. The rod
66 is also seated on one side against the lower surface of the plate
62 and extends through the housing body's upper and lower compartments
52,
54. The diaphragm
60 is mechanically linked to the valve member
68 through the plate
62 and the rod
66. The position of the diaphragm
60 is thus communicated through the plate
62 and the rod
66 to the valve member
68, thereby causing the valve member
68 to reciprocate between the first and second positions, shown in solid and in phantom,
respectively.
[0092] The lower chamber portion of the body
44 includes air bleed opening
72 therethrough for removing and reintroducing air into the lower chamber
64 as the diaphragm valve
40 is moved between its first and second positions. Radial O-ring
74 prevents the hydraulic fluid from leaking out of passage
76.
[0093] The valve
40 also includes a gasket seal
78 around the periphery of the opening
42 to allow the valve member
68 to close off flow through the opening
42 when the valve
40 is in the first position. In the preferred embodiment of the invention, the gasket
seal
78 also functions as the valve seat for the valve member
68. The gasket seal
78 is generally square in vertical cross-section, although other shapes are contemplated
by the invention. One preferred type of gasket seal material is Viton®, manufactured
by E.I. Du Pont De Nemours & Co., Wilmington, DE. An O-ring
80 is disposed within the outer circumference of the rod
80 to prevent TCF in the lower compartment
54 from leaking into the valve's lower chamber
64.
[0094] In the preferred embodiment of the invention, the diaphragm
60 possesses special characteristics to allow it to more easily withstand very high
pressures. Details of the diaphragm
60 are more fully discussed with respect to Fig. 15.
[0095] The diaphragm valve upper chamber
58 is in fluid communication with hydraulic fluid passageway
82 through opening
84 therebetween. The fluid passageway
82 is in fluid communication with the outlet of the hydraulic fluid injector
18 and the inlet of the hydraulic fluid injector
20 through the passage
76, as best shown in Fig. 4. The fluid passageway is also in fluid communication with
the fluid pressure sensor
28 to allow the pressure in the passageway to be monitored for controlling the valve
state. Diaphragm valves of the size suitable for installation in an engine fluid passageway
can typically withstand pressures in the range of 200 psi (1378.9 kPa). The diaphragm
strength is typically the first component to fail due to excessive high pressure.
Pressure monitoring helps to ensure that pressures do not exceed those which the valve
components can safely handle.
[0096] A warning system can be incorporated which would send a signal from the pressure
sensor 28 to the ECU when the pressure exceeds or falls below a predetermined limit,
such as if there is a loss of hydraulic pressure. The ECU could then display a suitable
warning to the operator. Additionally, override mechanisms. such as an electro-mechanical
device, could be activated to lock the EETC valve in the open position thereby maintaining
flow to the radiator during valve failure.
[0097] In the preferred embodiment of the invention, the diaphragm includes certain features
to allow it to better withstand a high pressure environment. Fig. 15 shows a preferred
diaphragm and an exploded view of the preferred manner in which the diaphragm is mounted
in the diaphragm valve mechanism housing to achieve the best results under high pressure.
[0098] Unlike prior art diaphragm valves, such as disclosed in
U.S. Patent No. 4,484,541, which are actuated and deactuated by applying and removing a vacuum to and from an
upper chamber, the diaphragm valve
40 disclosed herein is preferably actuated by pressurized and depressurizing the upper
chamber
58 with hydraulic fluid. A hydraulic fluid system has numerous advantages over a vacuum
actuated system including less sensitivity to temperature extremes, and increased
accuracy, durability and reliability. These are very considerations since the EETC
system must function under a multitude of extreme conditions, both environmental and
physical. Accordingly, a reliable power source is required and one of the most dependable
sources of hydraulic fluid in an engine is pressurized engine oil.
[0099] The EETC internal engine circuit is generally operating at higher temperatures to
optimize engine performance. These higher temperatures require higher pressures to
actuate the EETC valve (e.g., about 10 pounds of force). Standard electro-mechanical
solenoid-type or vacuum-type valves may experience operational problems during the
worst case conditions. The novel EETC valve of the present invention is designed to
provide the force required to actuate the valve when less than 50 % of normal engine
oil pressure is available, such as when there is a low amount of oil present, a high
oil temperature, or the oil pump is worn. Accordingly, the hydraulically actuated
EETC valve disclosed is the preferred valve for the disclosed system.
[0100] In operation, the valve
40 functions as follows. When the engine is operating and it is desired to open the
valve
40, the ECU sends a control signal to the solenoid of the hydraulic fluid injector
18 to open the injector's valve. Simultaneously, the ECU sends a control signal to the
solenoid of the hydraulic fluid injector
20 to close that injector's valve, if it is not already closed. Pressurized hydraulic
fluid from the fluid inlet tube
36 flows through the fluid injector
18, the hydraulic fluid passageway
82, the opening
84 and into the valve upper chamber
58, where it pushes against the diaphragm
60 and plate
62. When the fluid pressure against the diaphragm
60 and plate
62 exceeds the opposing force of the biasing spring
70, the diaphragm
60 moves downward, thereby causing the valve member
68 to move downward. The upper chamber
58 expands as the diaphragm
60 and plate
62 moves downward. As the upper chamber
58 fills with fluid, the pressure in the chamber rises. When the pressure sensor
28 detects that the fluid pressure has reached a predetermined level, it causes the
ECU to start a timer which runs for a predetermined period of time. After that time
has expired, the ECU sends a control signal to the solenoid of the hydraulic fluid
injector
18 to close the injector's valve. The hydraulic fluid in the upper chamber
58 thus remains trapped therein.
[0101] The predetermined pressure level and time period are empirically determined so as
to allow the valve member
68 to reach its open or second position. To avoid excessively activating the injector's
solenoids, the open injector valve should be closed as soon as the diaphragm valve
40 has reached the desired state. Also, a diaphragm valve
40 is selected which will always open under less pressure than exists in the hydraulic
fluid system that the inlet fluid injector
18 is attached to. To remove air trapped in the upper chamber
58 and/or connected passageways, the ECU can be programmed to open the valve of the
outlet fluid injector
20 for a short period of time (e.g., one second). This is similar to the technique for
bleeding air from a vehicle's hydraulic braking system.
[0102] If hydraulic fluid leaks out of the upper chamber
58, the pressure sensor
28 will immediately sense this condition. The ECU responds by again sending a control
signal to the solenoid of the hydraulic fluid injector
18 to open the injector's valve. When the pressure sensor
28 detects that the fluid pressure has again reached the predetermined level, it causes
the ECU to start a timer which runs again for a predetermined period of time. After
that time has expired, the ECU sends a control signal to the solenoid of the hydraulic
fluid injector
18 to close the injector's valve.
[0103] The process of opening the EETC valve is automatically delayed by the ECU during
engine start-up until the source of the hydraulic fluid pressure reaches it normal
operating level. In one embodiment of the invention which employs engine lubrication
oil as the hydraulic fluid, the delay period is about two or three seconds to allow
for lubrication of all critical engine components.
[0104] When it is desired to close the valve
40, the above steps are reversed. That is, the ECU sends a control signal to the solenoid
of the hydraulic fluid injector
18 to close the injector's valve, if it is not already closed. Simultaneously, the ECU
sends a control signal to the solenoid of the hydraulic fluid injector
20 to open that injector's valve. The pressurized hydraulic fluid inside the upper chamber
58 flows out of the upper chamber
58 through the opening
84, into the hydraulic fluid passageway
82, through the open valve of the hydraulic fluid injector
20 and into the fluid outlet tube
38. The fluid outlet tube
38 connects to a reservoir (not shown) of hydraulic fluid. As the hydraulic fluid empties
out of the upper chamber
58, biasing spring
70 pushes the diaphragm
60 and plate
62 upward, thereby causing the valve member
68 to move upward until the valve
40 becomes closed. When the pressure sensor
28 detects that the upper chamber
58 is no longer pressurized, it causes the ECU to send a control signal to the solenoid
of the hydraulic fluid injector
20 to close that injector's valve.
[0105] The vehicle's engine does not need to be operating to close the valve
40. Thus, during a "hot engine off soak" (i.e., the time period subsequent to shutting
off a hot engine), the valve
40 stays open since the hydraulic fluid remains trapped in the upper chamber
58. This function mimics prior art cooling systems which maintain an open path to the
radiator until the thermostat's wax pellet rehardens. After the engine has cooled
down, the ECU (which is powered from the vehicle's battery) causes the valve
40 to close, as described above.
[0106] Fig. 3 shows a different sectional side view of the diaphragm version of the EETC
valve
10, taken along line 3-3 in Fig. 1. This view more clearly shows the entire path of
the TCF from a passageway leading from the engine block water jacket, through the
valve
40 and to the radiator. As noted above, if the valve
40 is closed, the TCF circulates directly back into the engine block water jacket, without
being diverted into the radiator.
[0107] Fig. 3 also shows the inlet hydraulic fluid injector
18 and the fluid inlet tube
36 leading thereto, along with the insert
30 associated therewith. As noted above, the insert
30 is preferably a brass fitting. The passageway
82 from the outlet of the injector's valve to the upper chamber
58 is not visible in this view but is clearly shown in Fig. 4. The fluid connection
or path between the fluid inlet tube
36 and the injector
18 is also not visible in this view but is understandable with respect to Fig. 6.
[0108] Fig. 4 shows yet another sectional side view of the diaphragm version of the EETC
valve
10, taken along line 3-3 in Fig. 1. This view shows fluid passageway
86 from the outlet of the hydraulic fluid injector
18 to the passage
76 leading to the diaphragm upper chamber
58, and from the upper chamber
58 to the passage
76 leading from the hydraulic fluid injector
20. Again, the fluid connections or paths between the fluid inlet and outlet tubes
36,
38 and the respective injectors
18,
20 are also not visible in this view but are understandable with respect to Fig. 6.
[0109] Fig. 5 is a horizontal sectional view of the EETC valve
10 in Figs. 1 and 2, taken along line 5-5 in Fig. 2. This view shows more of the internal
structure of the valve parts.
[0110] Fig. 6 shows diagrammatically the preferred embodiment of how the EETC valve
10 connects to a source of hydraulic fluid. In this embodiment of the invention, the
source of hydraulic fluid is engine lubrication oil. In Fig. 6, a portion of oil pan
94 is cut away to show engine lubrication oil pump
90 and engine lubrication oil reservoir
92 in oil pan
94. As is well known in the art, outlet
96 of the oil pump
90 feeds oil to practically all of the engine moving parts under pump pressure through
distributing headers (not shown). To provide a source of pressurized hydraulic fluid
to the inlet fluid injector
18, the fluid inlet tube
36 is connected to the oil pump outlet
96. An optional replaceable filter
98 may be placed in the pressurized oil line to ensure that the oil flowing to the valve
10 does not clog the injectors. To provide a return path for the hydraulic fluid exiting
from the outlet fluid injector
20, the fluid outlet tube
38 is connected to the oil reservoir
92 in the oil pan
94.
[0111] Figs. 7, 8, 13A, 13B and 15 show another preferred form of an EETC valve (designated
with the numeral
100) which simultaneously controls the flow of TCF to plural parts of an engine. In one
embodiment, the EETC valve
100 controls fluid flow to the radiator and the oil pan. This EETC valve is discussed
in detail in U.S. Patent No, 5,458,096. (It should be noted that the present invention
is applicable to any embodiment of the EETC valve. For the sake of simplicity, reference
will be made to EETC valve
10 and/or
100).
[0112] Fig. 14A diagrammatically shows one embodiment of the temperature control system
according to the present invention in a GM 3800 V6 transverse internal combustion
engine. The system includes a modified version of the multi-function EETC valve
100, with fluid paths to the intake manifold and the oil pan. The fluid flow paths to
and from the automobile heater are not shown in this simplified diagram. The system
shown in Fig. 14A functions as follows.
[0113] When the valve
100 is in the second position (i.e., open to TCF flowing to the radiator, closed to TCF
flowing to the intake manifold/oil pan), the TCF enters a TCF jacket
200 formed in a cylinder block. From there, it is supplied to through passageways
202' to the cylinder head waterjacket
202. The TCF leaving the jackets
200 and
202 flows through the EETC valve
100 and is introduced to radiator
206 through radiator inlet passage
208. The TCF which enters the radiator
206 is cooled during its passage therethrough by air flow from cooling fan
210 located at the rear side of the radiator
206. The cooled TCF is supplied to a TCF pump
212 (e.g., a water pump) through the radiator outlet passage
214. The TCF supplied to the pump
212 is again circulated to the jackets
200 and
202.
[0114] Fig. 14B illustrates the temperature control system when the valve
100 is in the first position (i.e., closed to TCF flowing to the radiator, open to TCF
flowing to the intake manifold/oil pan). In this embodiment, restrictors
400 are preferably utilized to restrict and/or prevent the flow of the TCF from the engine
block jacket
200 to the cylinder head
202. Therefore, only a small amount of the TCF entering jacket
200 is supplied to the cylinder head jacket
202 (indicated in the figures by the small arrows). The smaller mass of TCF in the cylinder
head will, accordingly, heat up quickly. Meanwhile the restricted mass of TCF in the
block waterjacket
200 operates as an insulator to prevent heat loss. The TCF leaving the cylinder head
jacket
202 is prevented from entering the radiator inlet passage
208 by EETC valve
100. Hence, the TCF bypasses the radiator
206 and enters the intake manifold jacket
204. From the intake manifold jacket
204, the TCF flows to the oil pan 94 through bypass passageway
216 and into heat exchanger
218. The heat exchanger
218 preferably comprises a U-shaped heat conductive tube
220 which allows heat from the TCF to pass into the oil in the oil pan
94. Other tubing shapes are also suitable. The TCF exiting the heat exchanger
218 flows back into the pump
212 for recirculation into the engine block.
[0115] In cold temperature environments, or when an engine is first warmed up, the engine
lubrication oil should be heated to its normal operating temperature as rapidly as
possible, and maintained at that temperature. In prior art engine cooling systems,
engine coolant is not employed to assist in this goal. To the contrary, prior art
systems work against this goal by immediately circulating coolant through the jacket
and removing heat from the engine block, and, thus, from the engine oil, inhibiting
it from reaching its optimum temperature as quickly as possible.
[0116] The present invention helps to achieve that goal by circulating a portion of the
TCF through the oil pan
94. Since the valve
100 is likely to be in the first position when the engine is in cold temperature environments,
or when it is first warmed up, the oil in the oil pan
94 will receive warm or hot TCF when it needs it the most. The heat energy transferred
from the warm or hot TCF into the oil allows the oil to more quickly reach its ideal
operating temperature. In effect, the TCF diverted to the oil pan
94 recaptures some of the parasitic engine heat loss caused by circulation of the TCF.
[0117] The inventive system described herein allows the engine oil to capture some of the
heat energy in the TCF after the engine is turned off. In contrast, the heat energy
in the coolant of prior art cooling systems is wasted by being passed into the environment.
Since the valve
100, in the present invention, will always be in the first position after engine cooldown,
heat energy can pass by convection through the passageway
216 and into the oil pan
94. If the ambient air temperature is very cold, the valve
100 may even remain in the first position during and after engine operation. Thus, convective
heating of the engine oil will continue after the engine is turned off. The mass of
hot TCF has the potential to keep the engine oil warm longer after engine shut-off.
As a result, the present invention provides substantial benefits in situations where
an engine is subject to frequent on/off cycles, e.g., delivery vehicles.
[0118] As noted above, the EETC valve
100 may operate in alternate embodiments. For example, a second embodiment incorporates
the EETC valve
100 to physically control fluid flow through the radiator. As a consequence of inhibiting
and permitting the flow to the radiator, the flow through the intake manifold and
oil pan is controlled. This is diagrammatically shown in Figs. 14C and 14D and operates
as follows. When the EETC valve
100 is in a first position, flow to the radiator is blocked and flow through the oil
pan and through the intake manifold is permitted (e.g., engine warm-up phase). When
the EETC valve
100 is in a second position (Fig. 14D), flow to the radiator is permitted. The flow to
intake manifold and oil pan is not physically restricted, but the pressure from the
water pump will cause a significant amount of the TCF to flow through the radiator
with a minimal amount flowing through the intake manifold and the oil pan.
[0119] A third embodiment of the temperature control system is shown in Figs. 14E and 14F.
A valve
300 controls the flow of fluid through the intake manifold jacket
204 which surrounds the intake manifold (not shown). For the purposes herein, the valve
300 can be any valve which is moved from a first position to a second position by hydraulic
fluid pressure applied to a valve chamber, wherein the first position is associated
with unrestricted fluid flow through an associated passageway and the second position
is associated with either restricted or blocked flow through the passageway. One example
of a valve
300 suitable for this purpose is described in Figs. 33-39 of this disclosure. However,
the valve
300 can comprise any type of hydraulically fluid actuated valve such as a piston valve,
diaphragm valve or the like. Furthermore, while the preferred valve is actuated by
hydraulic pressure, other actuation mechanisms are well within the scope of this invention.
The valve is shown positioned in close proximity to the EETC valve
100 for the sake of convenience. It should be well understood that the valve
300 may be placed at any suitable location for restricting and/or blocking flow into
the intake manifold jacket
204.
[0120] It is also contemplated that the temperature control system can be configured such
that the EETC valve
100 also controls flow of the temperature control fluid to the intake manifold. When
it is desired to move the valve
100 into the second position, pressurized hydraulic fluid simultaneously flows along
fluid outlet tube
174 and into the chamber (not shown) of the intake manifold flow control valve
300. The pressurized fluid in this chamber causes the valve
300 to move from the first position (unrestricted flow) to the second position (restricted
or blocked flow).
[0121] When it is desired to move the valve
100 back into the first position, the hydraulic fluid flows from valve
300 back into the EETC valve
100 and out through the outlet hydraulic fluid injector. In this manner, the state of
the EETC valve
100 determines the state of the valve
300.
[0122] The purpose of this control scheme is to reduce the amount of heat energy flowing
through the intake manifold when the engine is hot. In a typical internal combustion
engine, the intake manifold has an ideal temperature of about 120 degrees Fahrenheit
(48.9 °C). In such engines, there is no significant advantage in heating the intake
manifold to temperatures higher than about 130 degrees Fahrenheit (54.5 °C). In fact,
extremely hot intake manifold temperatures reduce combustion efficiency. This is due
to the fact that air expands as it is heated. Consequently, as the air volume expands,
the number of oxygen molecules per unit volume decreases. Since combustion requires
oxygen, reducing the amount of oxygen molecules in a given volume decreases combustion
efficiency. Prior art cooling jackets typically deliver coolant through the intake
manifold at all times. When an engine is running hot, the coolant temperature is typically
in a range from about 220 to about 260 degrees Fahrenheit (104.4 °C - 126.7 °C). Thus,
the coolant may be significantly hotter than the ideal temperature of the intake manifold.
Nevertheless, the prior art cooling system will continue to deliver hot coolant through
the intake manifold, thereby maintaining the intake manifold temperature in an excessively
high range.
[0123] The second embodiment of the invention described herein employs the EETC valve
100 to restrict or block the flow of TCF through the intake manifold, thereby avoiding
the unwanted condition described above. When the EETC valve
100 is in the first position, it is likely that the temperature of the TCF is below that
which would cause the intake manifold to exceed its ideal operating temperature. Thus,
when the EETC valve
100 is in the first position, flow of TCF through the intake manifold is permitted. This
scheme functions with or without the modification to the temperature control fluid
passageway for diverting the fluid to the oil pan.
[0124] The valve
300 may, instead, be mounted at the end of the intake manifold jacket
204 (not shown in the figures), thereby "dead heading" the flow of fluid through the
jacket
204. "Dead heading" is used herein to describe the state whereby the flow of fluid is
blocked but the fluid still remains in the water jacket passage due to the continuous
pumping of fluid by the engine's water pump. "Restricting" is used in this embodiment
to describe the state whereby the flow of fluid is partially blocked but a portion
of the fluid still flows in the water jacket passage due to the continuous pumping
of fluid by the engine's water pump. Since heat energy is primarily transferred to
and from the engine block by the flow of fluid, dead heading the flow will have almost
the same effect as shutting off the flow. This is due, in part, to the cooling effect
provided by the air passing through the intake manifold, which operates to extract
the heat from the "stagnant" TCF in the water jacket of the intake manifold. A minimum
amount of convective fluid heat flow will still occur between the intake manifold
jacket
204 and the cylinder head and block jackets
200 and
202 in this configuration, since the channels between the cylinder head and the intake
manifold are still open. However, it is more preferable to place the valve
300 in the passageway leading to the beginning of the intake manifold jacket
204 (shown in Figs. 14E and 14F), thereby preventing both fluid flow through the intake
manifold jacket
204 and convective fluid heat flow between the jacket
204 and the jackets
200 and
202.
[0125] The configuration in Figs. 14A through 14F wherein the EETC valve
100 controls fluid flow to the radiator, oil pan and a portion of the engine block water
jacket (e.g., the portion around the intake manifold) produces a highly effective
engine temperature control system in a wide range of ambient temperature conditions,
as well as during engine warm up. In cold temperature environments and during warm
up, the EETC valve
100 allows flow of the TCF to the oil pan and the intake manifold, thereby causing the
engine oil and intake manifold to more rapidly reach their ideal operating temperatures.
Once the engine is sufficiently warmed up, or when the engine is operating in very
hot ambient air temperatures, the EETC valve
100 shuts off flow of the TCF to both the oil pan and the intake manifold since neither
the oil, nor the intake manifold need additional heat energy under either of those
conditions.
[0126] The EETC valve
100 can also control the flow of the TCF to portions of the engine block water jacket
other than the portion around the intake manifold. The valve
300 shown in Figs. 14E and 14F can, alternatively, be placed to block or restrict flow
through portions of the cylinder block jacket
200 or the cylinder head jacket
202. In another embodiment, a plurality of water jacket blocking/restricting valves can
be simultaneously controlled from the hydraulic fluid system of the diaphragm valve
102. Figs. 14A through 14F show such additional valves
400 in phantom. Fig 14F illustrates the restricting/shutting off of some of the channels
202' between the engine block
200 and the cylinder head jacket
202.
[0127] The alternate embodiments shown in Figs. 14A through 14F illustrate the use of restrictor/shut-off
valves to prevent or reduce the passage of fluid to a portion of the cylinder head
and/or the intake manifold. As stated above, these configurations are beneficial when
the engine is cold, such as during start-up, since they heat the oil to its optimum
operating temperature as soon as possible. Although constant circulation of the TCF
fluid through the engine, without including the radiator, will eventually heat up
the engine oil, doing so will take considerably longer than desired. Accordingly,
in these embodiments, the heat from the cylinder head and/or the intake manifold is
channeled to the engine oil to heat it up directly. The EETC valve in these embodiments
would, preferably, be similar to the valve depicted in Fig. 43. However, the flow
would be directed to the intake manifold before proceeding to the oil pan.
[0128] The passageways controlled and the locations of the EETC and restrictor/shut-off
valves will, of course, vary depending on the configuration of the engine chosen.
Those skilled in the art, upon reading this disclosure, will be readily capable of
varying the disclosed preferred embodiments without departing from the scope of the
invention.
[0129] The EETC valve
100 can also be employed to address a design compromise inherent in prior art engine
cooling systems employing prior art thermostats. Prior art Figs. 40 and 41 show a
simplified diagrammatical representation of coolant circulation flow paths through
such an engine. The coolant temperature is represented by stippling densities, hot
coolant having the greatest density and cold coolant having the smallest density.
Fig. 40 shows that when thermostat
1200 is closed, the coolant that exits water jacket
1202 flows through orifice
1204, into the intake side of water pump
1206, and then back to the water jacket
1202. Thus, the coolant circulates entirely within the engine water jacket
1202, avoiding radiator
1208. Fig. 41 shows that when the thermostat
1200 is open, all of the coolant circulates through the radiator
1208, into the intake side of the water pump
1206, and then back to the water jacket
1202.
[0130] Fig. 41 is an idealized diagram of coolant flow. Since fluid takes the path of least
resistance, most of the coolant will flow through the larger opening associated with
the thermostat
1200, as opposed to the more restrictive orifice
1204. However, a small amount of coolant still passes through the orifice
1204 and into the intake side of the water pump
1206, as shown in prior art Fig. 42. Since this small amount of coolant is not cooled
by the radiator
1208, it raises the overall temperature of the coolant reentering the water jacket to
a level higher than is desired.
[0131] To minimize this problem, the opening associated with the thermostat
1200 is made as large as possible and the orifice
1204 is made as small as possible. However, if the orifice
1204 is made too small, circulation through the water jacket
1202 will be severely restricted when the thermostat
1200 is closed. This may potentially cause premature overheating of portions of the engine
block and will reduce the amount of heat energy available for the heater and intake
manifold during engine start-up and in cold temperature environments. If the orifice
1204 is made too large, the percentage of coolant flowing therethrough will be large when
the thermostat
1200 is open. Accordingly, the average temperature of the coolant returning to the water
jacket
1202 will be too hot to properly cool the engine.
[0132] Thus, prior art engine cooling systems must always attempt to strike the proper balance
between extremes when sizing the orifice
1204, thereby resulting in a compromised, but never idealized, size. In an idealized system,
the orifice
1204 is open and large when the thermostat
1200 is closed, and is closed when the thermostat
1200 is open.
[0133] Fig. 43 shows how the EETC valve
100 can be employed to create this idealized system. This embodiment is described in
U.S. Patent No. 5,458,096.
[0134] The EETC valve
100 can also be employed in an anticipatory mode to address one problem in prior art
engine cooling systems, specifically, the problem of sudden engine block temperature
peaks caused when a turbocharger or supercharger is activated. These sudden peaks,
in turn, may cause a rapid rise in coolant temperature and engine oil temperature
to levels which exceed the ideal range. Since prior art cooling systems typically
cannot shut off flow of coolant to the intake manifold, the rise in engine block temperature
causes even more unnecessary heat energy to flow around the already overheated intake
manifold. Furthermore, if the engine is still warming up, the prior art wax pellet
type thermostat might not even be open. The thermostat might also be closed even if
the coolant temperature has reached the range in which it should open, due to hysteresis
associated with melting of the wax.
[0135] The invention herein can employ the EETC valve
100 to lessen the temperature rise effects of the turbocharger or supercharger. When
the turbocharger or supercharger is activated, a signal can be immediately delivered
to the EETC valve
100 to cause it to move into its second position, if it is already not in that position.
In the preferred system, this will stop the flow of TCF to the engine oil and through
the intake manifold in anticipation of a rapid temperature rise in the oil and the
intake manifold due to the action of the turbocharger or supercharger. Likewise, the
flow of TCF through the radiator will lessen any peaking of the engine block temperature.
A short time after the turbocharger or supercharger is deactivated, the EETC valve
can then be returned to the state dictated by the ECU.
[0136] Figs. 9 through 12 disclose alternate embodiments of the EETC valve which utilize
a piston for controlling flow. These embodiments are described in U.S. Patent No.
5,458,096.
[0137] Figs. 16A and 16B show one preferred hydraulic fluid injector
700 in cross-section which is suitable for controlling the state or position of the EETC
valves in the invention. As noted above, the fluid injector
700 is solenoid activated and includes an electrical terminal
702 connected at one end to injector solenoid
704 and at the other end to an ECU (not shown). When the solenoid
704 is energized, it causes needle valve
706 to move up, thereby moving it away from seat
708 and opening orifice
710 to fluid flow. When the solenoid
704 is deenergized, biasing spring
712 causes the needle valve
706 to return to the closed position.
[0138] Fig. 16A shows the inlet fluid flow path from a source of pressurized hydraulic fluid,
through the injector and to the valve chamber. The valve in this figure thus performs
the function of the valve
18 in Fig. 4. Fig 16B shows the outlet fluid flow path from the valve chamber, through
the injector and to a reservoir of hydraulic fluid. The valve in this figure thus
performs the function of the valve
20 in Fig. 4.
[0139] The fluid injector
700 is similar to a DEKA Type II bottom feed injector, commercially manufactured by Siemens
Automotive, Newport News, VA. Although this injector is typically employed to inject
metered quantities of gasoline into the combustion chamber of an engine, it can also
function as a valve to pass other types of hydraulic fluid therethrough.
[0140] When the hydraulic fluid is engine lubrication oil, the Siemens type injector can
be employed with only minor modifications such as an increased lift or stroke (e.g.,
.016 inches (0.004 mm), instead of .010 inches (0.0025 mm)) and a larger flow orifice
710 (e.g., .060" Ø area (0.015 mm)) for increased flow capacity. The biasing spring
712 is preferably a heavy armature spring to seal against up to 80 psi (551 kPa) pressure
in a reverse position. The needle valve
706 preferably includes a 3% silicon iron armature
707 to obtain the appropriate lift. The metal housing of the injector is slightly modified
and arranged to allow for twist snap-in assembly. The O-rings are smaller and relocated
to be on the valve body. Also, since engine oil is not as corrosive as gasoline, internal
components of the Siemens type injector do not need to be plated. Furthermore, the
filter associated with commercially available injectors is not employed.
[0141] The inlet fluid injector
700 is preferably operated in a reverse flow pattern. That is, fluid flows through the
inlet injector
700 in an opposite direction as the injector is normally employed in a gasoline engine.
When the inlet injector
700 is operated in this manner, pressure from the valve chamber tends to seal the needle
valve
706 against its seat
708, thereby lessening the tendency of the injector
700 to leak. This also ensures that the EETC valve remains open during engine off "hot
soak" if conditions warrant an open state.
[0142] Fig. 16C shows an alternative type of hydraulic fluid injector
800 in cross-section which is suitable for controlling the state or position of the EETC
valves in the invention. The injector
800 is similar to a DEKA Type I top feed injector, commercially manufactured by Siemens
Automotive, Newport News, VA. In this type of injector, the hydraulic fluid flows
through the entire length. Although Fig. 16C shows both fluid flow paths through the
same injector
800, only one injector
800 is employed for each path. The injector
800 is also preferably operated in a reverse flow pattern and without a filter. This
type of injector has a numerous advantages over the DEKA Type II injector.
[0143] When employing the injector
800 in an EETC valve, the top of the injector
800 is connected directly to the EETC valve's upper chamber, not to a common passage.
This allows for more versatile packaging configurations because the inlet and outlet
injectors do not need to be physically near each other. It also reduces the amount
of retained trapped air in the EETC valve, potentially eliminating the need to bleed
out trapped air when filling the chamber. The injector
800 is also smaller and cheaper than the injector
700. One disadvantage of this type of injector is that it is more difficult to get hydraulic
fluid such as oil to flow smoothly therethrough.
[0144] Fig. 17 shows a block diagram circuit of the connections to and from ECU
900 for controlling the state or position of the EETC valves. The preferred embodiment
of the ECU
900 receives sensor output signals from at least the following sources:
1. an ambient air sensor in an air cleaner (clean side) or other suitable location;
2. a temperature sensor at the end of the engine block's (or the inlet to the cylinder
head) temperature control fluid water jacket;
3. a pressure sensor in the engine block's temperature control fluid water jacket;
4. a temperature sensor for providing a temperature indicative of the engine block
or engine oil temperature;
5. a pressure sensor in the engine block oil line; and
6. a pressure sensor in the EETC valve's hydraulic fluid passageway.
[0145] The ECU
900 utilizes some or all of those sensor signals to generate open/close command signals
for the fluid injectors of the EETC valve. As noted above, the hydraulic fluid pressure
signals are also employed to detect unsafe operating conditions. The engine oil fluid
pressure signal can be employed to detect unsafe operating conditions and/or to determine
when the oil lubrication system is sufficiently pressurized to allow for proper operation
of the EETC valve.
[0146] A typical control routine for opening a diaphragm type EETC valve sized to replace
a prior art wax pellet or bimetallic coil type thermostat and employing fluid injectors
connected to the engine lubrication oil system is as follows:
1. If engine is being started, wait appropriate amount of time until engine oil is
adequately pressurized. It will typically take two to three seconds to allow it to
reach a minimum pressure of 40 psi (275.8 kPa).
2. Activate solenoid of inlet fluid injector to open its valve. (Close valve of outlet
fluid injector, if it is not already closed.)
3. Wait until chamber pressure (as measured by the fluid pressure sensor) reaches
about 25 psi (172.3 kPa).
4. Activate a two second timer in the ECU.
5. After two seconds, deactivate the solenoid of the inlet fluid injector to close
its valve.
6. If the fluid pressure sensor detects a pressure drop below 25 psi, repeat steps
2-5.
[0147] If the engine oil is warm, the total time to complete steps 2-5 will be about six
seconds. If the engine oil is cold, step 2 will take longer, thereby lengthening the
total time.
[0148] The ECU
900 can also perform other emergency control functions to maintain the TCF in a safe
range. For example, in extremely hot ambient air conditions, the temperature of the
TCF might exceed a safe range, even if the EETC valve is fully open. In typical prior
art vehicles, an overheating condition will be signalled to the driver through a dashboard
mounted engine warning light or the like. The novel system shown in Fig. 17 can respond
to this condition by temporarily opening the heater core valve and/or shutting off
the vehicle's air conditioning system. The first of these measures will assist in
removing excess heat from the engine block. The second of these measures will reduce
the load on the engine, thereby reducing its heat energy output. If these measures
still fail to reduce the temperature of the TCF to a safe range, the system can then
activate the engine warning light. Another dashboard mounted light can indicate when
the ECU has taken emergency control of the vehicle's climate control system.
[0149] Likewise, in extremely cold, sub-zero ambient air temperatures, the heater core valve
can be automatically deactivated or restricted to avoid draining heat energy from
the engine block until the temperature of the TCF reaches an acceptable minimum level.
[0150] One example of how the ECU
900 controls the state or position of an EETC valve based on specific parameters is described
in Figs. 19-21 of this disclosure, and will be discussed in more detail hereinbelow.
This embodiment is an improvement over conventional thermostatic systems, and is disclosed
an claimed in EP 0 787 249. The present invention as claimed is an improvement over
the system shown in Figs. 19-22B and will be discussed further on.
[0151] Fig. 18 diagrammatically shows the flow path of the TCF through a heat exchanger
in the oil pan from the passageway
160. The passageway
160 can also lead to other passages and tubes disposed in other engine parts, thereby
allowing the TCF to warm or heat those other parts too. For example, additional TCF
passages can lead to tubes disposed in the reservoir of the automatic transmission,
the brake system's master cylinder or ABS system, windshield washer fluid or the like.
The TCF would then flow to these parts whenever it flows to the oil pan. Alternatively,
flow to one or more of these parts can be controlled by a separate flow control valve
so that when the TCF flows to the oil pan, the fluid selectively flows to desired
parts in accordance with different temperature parameters.
[0152] The EETC valves described herein are designed to replace the prior art wax pellet
type or bimetallic coil type thermostat. These thermostats are typically located in
an opening connecting a radiator inlet passage to an outlet of an engine water jacket.
Accordingly, the EETC valves are dimensioned to fit into that opening. Likewise, the
EETC valve housing includes holes to allow the valves to be mounted in that opening
in the same manner as the prior art thermostats are mounted within the engine. Thus,
the EETC valves can be retrofitted into existing engine TCF passageways. The only
additional apparatus required to install the EETC valve are the hydraulic fluid lines
and electrical wires for connection to the inlet and outlet hydraulic fluid injectors.
These lines and wires can be placed inside the engine compartment wherever space permits.
It may be desirable to modify the TCF passageway to provide the extra passageways
160 and/or
216 shown diagrammatically in Figs. 14A through 14F and Fig. 18. Likewise, if the EETC
valve is employed to control the intake manifold flow control valve
300 and/or the cylinder head valve
400, the fluid outlet tube
174 must be provided from the EETC valve to the valve
300.
[0153] Notwithstanding the above discussion of the valve location, the EETC valve can alternatively
be located wherever it can properly perform the function(s) attributed thereto. Likewise,
the EETC valve can have other sizes which are appropriate for its alternative location.
[0154] The EETC valves are suitable for any form of internal combustion engine which opens
and closes an engine block TCF passageway to a radiator. Thus, both gasoline and diesel
engine environments are within the scope of the invention.
[0155] Although the hydraulic fluid which controls the state or position of the EETC valve
is preferably engine oil, it can be any type of pressurized hydraulic fluid associated
with a vehicle powered by an internal combustion engine. In one alternative embodiment,
the hydraulic fluid is power steering fluid wherein the source of the pressurized
hydraulic fluid is the high pressure line of a power steering pump. The hydraulic
fluid emptied from the EETC valve flows into the power steering fluid reservoir. In
this embodiment, the power steering pump is modified so that it provides high pressure
at all times. That is, high pressure can be tapped from the pump when the wheel is
not being turned and when the engine is off, in addition to when the wheel is being
turned. Also, this version employs a prior art pressure regulating valve in the high
pressure line to achieve a constant output pressure of about 10 to about 120 psi (69
kPa - 83 kPa), regardless of the varying input pressure of the power steering unit,
which can range up to 1000 psi (6894 kPa). In this manner, the EETC valve is never
exposed to pressures exceeding about 120 psi (827 kPa), regardless of the output pressure
of the power steering unit.
[0156] The invention also contemplates the use of alternate means for controlling the EETC
valve, although these may not be preferred. For example, TCF fluid could be fed to
a separate pump which pressurizes the fluid. The pressurized TCF is then fed into
the injectors for actuating the diaphragm. In yet another embodiment of the invention,
an electro-mechanical servo could actuate the valve. Those skilled in the art would
readily appreciate the variations that are possible within the scope of this invention.
[0157] Dead heading or restricting TCF flow through portions of the water jacket reduces
heat loss from the engine block. It also reduces the mass of TCF circulating through
the water jacket, thereby raising the temperature of the circulating mass above what
it would be if the mass was larger. Both of these effects allows the engine block
to warm up more quickly. As noted above, heat energy is primarily transferred to and
from the engine block by the flow of fluid. Therefore, dead heading or restricting
the flow will have almost the same effect as shutting off the flow. Since dead heading
or restricting TCF flow effectively traps all or part of the TCF in the dead headed
or restricted passageway, the trapped TCF acts as an insulator. That is, the hot fluid
in the water jacket prevents the engine heat from readily dissipating to the environment.
This is due, primarily, to the fact that the TCF is a better insulator than a conductor.
Accordingly, this insulating function further reduces heat loss from the engine block.
[0158] Some preferred materials for constructing the EETC valve and operating parameters
are described in U.S. Patent 5,458,096.
[0159] The ECU
900 can be programmed with specific information to control the state of the EETC valves
and any restrictor/shutoff valves
300 and/or
400 associated therewith.
[0160] Figs. 19 and 20 show one example of how the ECU
900 is programmed with information to control the state of an EETC valve based upon the
temperature of the TCF and the ambient air temperature, whereas Fig. 21 shows the
state of prior art wax pellet type or bimetallic coil type thermostats within the
same ranges of temperatures.
[0161] Turning first to Fig. 21, prior art wax pellet type or bimetallic coil type thermostats
are factory set to open and close at a preselected coolant temperature. Thus, the
state of these thermostats are not affected by the ambient air temperature. That is,
no matter how cold the ambient air temperature becomes, these thermostats will open
when the coolant temperature reaches the factory set value. A thermostat designed
for use in a cooling system employing a permanent type antifreeze (as opposed to an
alcohol type antifreeze) is typically calibrated to open at about 188 to about 195
degrees Fahrenheit (86.7 °C - 90.6 °C) and be fully open between about 210 to about
212 degrees Fahrenheit (98.9 °C - 100 °C).
[0162] Since the EETC valves are computer controlled, their states can be set to optimize
engine temperature conditions over a wide range of ambient air temperatures and TCF
temperatures. In one embodiment, the ECU
900 in Fig. 17 is programmed with the curve shown in Fig. 19. The curve is defined by
a two-dimensional mathematical function of t1 =
f(t2), where t1 is the temperature of the TCF in the engine block and t2 is the ambient
air temperature, t1 and t2 being axes on an orthogonal coordinate system (i.e., defined
by a set of predetermined values having a TCF component and an ambient air component.)
The curve divides the coordinate system into two regions, one on either side of the
curve.
[0163] In operation, the ECU
900 continuously monitors the ambient air temperature and the TCF temperature to determine
what state the EETC valve should be in. If coordinate pairs of these values lie in
region 1 of the Fig. 19 graph, the EETC valve is closed (or remains closed if it is
already in that state). Likewise, if coordinate pairs of these values lie in region
2, the EETC valve is opened (or remains open if it is already in that state). If coordinate
pairs lie exactly on the curve, the ECU is programmed to either automatically select
one of the two regions or to modify one or both of the values so that the coordinate
pair does not lie exactly on the curve.
[0164] Alternately, the state of the EETC valve could be controlled simply based on the
actual engine oil temperature. In such an embodiment, the actual engine oil temperature
would be compared to a predetermined optimum engine temperature which is preferably
a function of the ambient temperature, as shown in Figure 25 (i.e., a curve defined
by a set of predetermined values having an ambient air temperature component and an
engine oil temperature component.) When the actual engine oil temperature is colder
than the desired/optimum temperature, the EETC valve could be closed thereby raising
the engine temperature. Similarly, if the actual engine oil temperature is higher
than the desired/optimum temperature, the EETC valve could be opened, thereby circulating
the TCF through the radiator to cool it down. One deficiency with using the engine
oil temperature as a controlling factor is the lag time involved in bringing the oil
to a prescribed temperature. Additionally, there are upper and lower temperature limits
on the TCF that should not be exceeded in current automobile cooling systems.
[0165] The curve shown in Fig. 19 has been experimentally determined to provide improved
engine temperature control in a typical internal combustion engine when an EETC valve
replaces the typical prior art thermostats described above. As shown, at least a portion
of the curve has a non-zero slope. However, the curve can be different, depending
upon the desired operating parameters of the engine and its accessories. An engine
employing an EETC valve which is controlled according to the curve in Fig. 19 will
have lower emissions, better fuel economy and a more responsive vehicle climate control
system than the same engine employing the thermostat. These improvements will be greatest
in the lower ambient temperature ranges.
[0166] To illustrate some advantages of the EETC system, consider a vehicle which is first
started up when the ambient air temperature is zero degrees Fahrenheit (-17.8 °C).
Until the coolant or TCF temperature reaches about 188 degrees Fahrenheit (86.7 °C),
the prior art system in Fig. 21 and the EETC system in Fig. 19 will both prevent the
coolant or TCF from flowing through the radiator. However, when the coolant temperature
exceeds about 188 degrees Fahrenheit (86.7 °C), the prior art system will open the
thermostat and allow either some or virtually all of the coolant to flow through the
radiator, thereby lowering the coolant temperature. This reduces the ability of the
vehicle's heater/defroster to deliver hot air (i.e., heat) to the vehicle interior
and windows because the coolant flowing through the heater core will be cooler than
if it did not flow through the radiator. Furthermore, this also unnecessarily removes
valuable heat energy from the engine block.
[0167] When the ambient temperature is zero degrees Fahrenheit (-17.8 °C), typical internal
combustion engines often do not need to be cooled by coolant flow through the water
jacket since the ambient air presents a significant heat sink. Furthermore, when the
ambient air temperature is about zero degrees Fahrenheit (-17.8 °C), the heat energy
emitted by engine combustion often does not raise the oil temperature or the engine
block above the level desired for safe and optimum operation. In fact, in sub-zero
ambient air temperatures, the engine block of a typical internal combustion engine
will have an average temperature of less than 150 degrees Fahrenheit (65.6 °C) which
is less than the ideal operating temperature. Accordingly, high oil viscosity and
sludge build-up, which increases emissions and lowers fuel economy, are virtually
unavoidable conditions when operating engines having prior art thermostat controlled
cooling systems in sub-zero ambient air temperatures.
[0168] Consider the same vehicle operating in the same ambient temperature environment with
an EETC valve system. As shown in Fig. 19, the EETC valve will remain closed until
the TCF exceeds about 260 degrees Fahrenheit (126.7 °C), a condition that might not
even occur unless the engine is driven very hard and/or fast. Consequently, the TCF
flowing through the engine water jacket will not unnecessarily remove valuable heat
energy from the engine block and engine lubrication oil. Furthermore, the TCF flowing
through the heater core will become hot more quickly and will remain hotter than the
coolant in the Fig. 21 scenario, thereby resulting in improved defrosting and vehicle
interior heating capabilities.
[0169] In a control system employing the curve in Fig. 19, the EETC valve can be any of
the valves described in the invention. If the EETC valve is employed in conjunction
with one or more of the restrictor/shutoff flow control valves
300 or
400, the curve can be slightly modified to obtain optimum temperature control conditions.
Specifically, the portion of the curve between about 58 to about 80 degrees Fahrenheit
(about 14.4 °C to about 26.7 °C) in Fig. 19 can have the same slope as the portion
of the curve between about 60 degrees to about zero degrees Fahrenheit (about 15.6
°C to about -17.8°C), as shown in Figure 20.
[0170] When the EETC valve is employed in conjunction with the additional flow control valves,
emission levels will even be lower, fuel economy even greater, and the vehicle climate
control system even more responsive than the system employing only the EETC valve.
If the EETC valve
100 is employed in the system, hot TCF will flow through the oil pan at virtually all
times when the ambient air temperature is zero degrees Fahrenheit (-17.8 °C). This
will improve the oil viscosity and reduce engine sludge build-up.
[0171] When the EETC valve is employed in conjunction with the intake manifold flow control
valve
300, engine performance improvements will occur in high temperature environments as a
result of avoiding excessive heating of the intake manifold, as discussed above with
respect to the system in Figs. 14A through 14C.
[0172] When the EETC valve is employed in conjunction with flow control valves associated
with the cylinder head and/or cylinder block, as discussed above with respect to Figures
14A through 14C, very precise tailoring of engine temperature can be achieved. For
example, when the ambient temperature is very low and the EETC valve is closed, the
one or more flow control valves are likewise closed to restrict and/or dead head the
TCF that would ordinarily flow through certain portions of the engine block. Preferably,
the TCF is allowed to flow only through the hottest portions of the engine block,
such as areas of the cylinder head jacket closest to the cylinders. This achieves
at least two desired effects. First, the TCF flowing through the limited portions
of the engine water jacket will not unnecessarily remove valuable heat energy from
the engine block and engine lubrication oil. Second, the limited amount of the TCF
which exits the water jacket will be hotter than if the TCF flowed through all parts
of the engine block. Thus, the TCF flowing through the heater core will become hot
more quickly and will remain hotter than if the TCF flowed through all parts of the
engine block, thereby resulting in improved defrosting and vehicle interior heating
capabilities.
[0173] Fig. 22A shows a valve state graph which employs a curve similar to the curve in
Fig. 20 but which employs the valve states to control the state of the EETC valve
and two restrictor/shutoff valves. In region 1, the EETC valve is closed and the restrictor/shutoff
valves are in an restricted/blocked state. In region 2, the EETC valve is open and
the restrictor/shutoff valves are in an unrestricted/unblocked state.
[0174] Fig. 23 graphically shows a dotted curve of the actual temperature of the temperature
control fluid measured in an engine block of a GM 3800 transverse engine equipped
with an EETC valve and two restrictor/shutoff valves when the state of the valves
are controlled according to the Fig. 22A scheme. The restrictor/shutoff valves are
located on either side of a V-shaped engine block in the outer TCF flow passages around
the cylinder liner, and together restrict the flow through the engine block by about
50 percent in their fully restricted state. Fig. 23 also shows a dashed curve of the
actual temperature of engine coolant measured in the engine block when a prior art
wax pellet type or bimetallic coil type thermostat is employed and its state determined
according to the prior art Fig. 21 scheme.
[0175] The prior art thermostat operates to try to maintain a constant coolant temperature
in a range from about 180 to about 190 degrees Fahrenheit (about 82.2 °C to about
87.8 °C). However, when the ambient air temperature is very hot (e.g., 100 degrees
Fahrenheit (37.8 °C)), the coolant temperature will exceed the desired range even
if the thermostat is fully open and if the engine is running under continuous high
load conditions. This is because the ability of the vehicle's cooling system to cool
the coolant is dependent upon the capacity of the radiator. It is usually impractical
and too expensive to install a radiator large enough to maintain temperatures below
200 degrees Fahrenheit (93.3 °C) at all times. Thus, regardless of the type of flow
control valves employed in the vehicle's engine, coolant temperatures will exceed
the optimal range in hot weather conditions.
[0176] In very cold ambient temperatures such as sub-zero temperatures, the coolant temperature
in the prior art system will be below the desired range and will continue to decrease
with decreasing ambient air temperatures. This will cause a significant decrease in
fuel economy and a significant increase in exhaust emissions for all of the reasons
discussed above. Sludge formation will also be a significant problem.
[0177] The system employing the EETC valve and restrictor/shutoff valves shows an improved
TCF temperature curve because it maintains the TCF temperature more closely to the
optimum range throughout a greater ambient temperature range. When the ambient air
temperature is very hot (e.g., 100 degrees Fahrenheit (37.8 °C)) and full flow through
the radiator has begun, the TCF temperature will be slightly less than the coolant
temperature in the prior art system, mainly as a result of the greater flow allowed
through the EETC valve, as compared to the prior art wax pellet type thermostat. However,
the cooling capability of the system in the invention will still be limited by the
fixed capacity of the radiator.
[0178] In cold ambient air temperatures, especially sub-zero temperatures, the system in
the invention maintains the TCF temperature at values significantly higher than the
coolant temperature in the prior art system. This is because the restrictor/shutoff
valves have been placed in the state where they restrict or shut off a portion of
flow through the engine block. This flow restriction reduces the heat energy loss
from the engine block, thereby allowing the limited amount of flowing TCF to reach
a greater temperature. The engine block heat energy loss is reduced in at least two
ways. First, less mass of TCF flows through the water jacket so less heat energy is
transferred to the TCF where it is lost to the atmosphere. Second, the restricted
and/or trapped TCF acts as an insulator around portions of the engine block. Since
the limited amount of flowing TCF is at a greater temperature than the prior art coolant,
the TCF improves the operating capability of the vehicle interior heater and defroster.
Furthermore, since the engine operates at a hotter temperature, engine out exhaust
emissions are lower, fuel economy is greater than in the prior art system. Also, sludge
is less likely to form in the engine.
[0179] Instead of controlling the state of the EETC valve and restrictor/shutoff valves
in accordance with the curve shown in Fig. 22A, the EETC valve and restrictor/shutoff
valves can be controlled according to separate curves, as shown in Fig. 22B. By employing
separate curves, the flow of TCF can be more precisely tailored to achieve a more
optimum actual TCF temperature in Fig. 23. At very high ambient air temperatures,
the EETC valve should normally be fully open and the restrictor/shutoff valves should
normally be fully unrestricted/unblocked. At very low ambient air temperatures, the
EETC valve should normally be fully closed and the restrictor/shutoff valves should
normally be fully restricted/blocked. However, it may be more desirable for ideal
engine operating conditions to keep one or both of the restrictor/shutoff valves open
in mid-temperature ranges, even after the EETC valve has closed. Fig. 22B shows a
region 3 wherein these dual states are achieved. In one embodiment , a TCF temperature
differential of about 15 degrees (8.3 °C) is employed.
[0180] A system employing the curves shown in Fig. 22B will allow the restrictor/shutoff
valve(s) to open or unblock the TCF passageway shortly before the EETC valve opens
flow to the radiator at a given ambient air temperature. One advantage of this system
is that the temperature of the TCF circulating through the engine block's water jacket
will become more homogeneous by opening the restrictor/shutoff valves before the EETC
valve is opened, thereby improving the overall accuracy of the system in determining
when to open the EETC valve. This is because the total TCF mass will be heated to
the desired programmed temperature (as determined by the EETC valve curve) before
TCF flow is introduced to the radiator. Time delays can be incorporated to prevent
the EETC and/or restrictor valve from oscillating between open and closed positions.
Alternately, additional curves could be utilized as will be discussed below.
[0181] When the restrictor/shutoff valves are in their restricted or blocked position, the
temperature TCF in different portions of the engine block can vary significantly.
For example, if the fluid in the outer water jacket passageways is dead headed, it
will be colder than the fluid in the inner water jacket passageways. When the restrictor/shutoff
valves are opened, the hotter and colder fluids immediately begin to mix, thereby
reducing the variation in temperature of the TCF in different portions of the water
jacket. Thus, as the TCF continues to heat up, the measured TCF temperature, which
determines when to open the EETC valve, will be more accurate.
[0182] Some engines, like the GM 3800 V-6 engine, utilize a random pattern of openings to
connect the waterjackets between the engine block and the cylinder head. Accordingly,
the restrictor/shutoff flow control valves must be properly located so as to restrict
or block the continuous flow path between the block and the cylinder head so as to
maintain a mass of TCF in the block for faster warm up. Alternately, the engine waterjackets
themselves could be designed to operate with the EETC valve to provide additional
efficiency. An example of such an embodiment is illustrated in Figures 44A and 44B,
and designated generally as
1400, wherein two individual waterjacket flow paths are incorporated into the engine,
1402 and
1404, respectively. The waterjackets are schematically shown external to the associated
engine components for sake of clarity. However, it should be understood that the waterjackets
are, preferably, integral with the engine components. One flow path
1402 would be the normal waterjacket path from the water pump
1406 through the engine block
1408 into the cylinder head
1410 and intake manifold
1412. The second waterjacket
1404 would flow from the water pump
1406 directly to the cylinder head
1410, intake manifold
1412, heater/defroster circuit (not shown), and engine oil pan
1414, by-passing the engine block
1408. An EETC valve as described hereinabove or, alternately, a rotary valve
1416 would be incorporated to direct the TCF between the two waterjackets depending on
the operational state of the engine. Fig. 44A illustrates the novel system during
engine warm-up. The EETC valve
100 is in its closed position, inhibiting TCF flow to the radiator. Hence. substantially
all the TCF is directed to the intake manifold and the oil pan
1414 where it exchanges heat with the oil. The TCF is then directed through the water
pump
1406 to a second control valve
1416. Control valve
1416, during warm-up, is in a state wherein preferably all the TCF is directed along the
by-pass waterjacket
1404 into the cylinder head
1410 and intake manifold. Waterjacket
1402 is, effectively, blocked, thereby trapping a mass of TCF within the engine block.
The TCF flowing through the by-pass waterjacket
1404 into the cylinder head will quickly increase in temperature since there is less mass
being exposed to the heat of the cylinder heads. Meanwhile, the TCF trapped in the
engine block
1408 will function as an insulator, preventing unneeded heat loss and, consequently, resulting
in lower exhaust emissions, better fuel economy and quicker heater/defroster capabilities.
Restrictor valves may be incorporated between the cylinder head
1410 and the intake manifold
1412 (similar to Figs. 14E and 14F). These valves may be actuated to prevent or reduce
TCF flow therethrough when the TCF reaches a predetermined temperature which may have
an adverse effect on the combustion of the fuel, as described above. Alternately,
and more preferably, the EETC valve
100 controls the TCF flow into the intake manifold, as well as, the oil pan.
[0183] Restrictor valves (not shown) may also be incorporated between the engine block
1408 and the cylinder head
1410 to inhibit the flow of TCF between the two during warm-up. However, the continuous
flow of the TCF through the by-pass water jacket
1404 will obstruct the passage of TCF from engine block
1408 to the cylinder head
1410. Accordingly, depending on the design of the waterjacket, restrictor valves may not
be required.
[0184] The last portion of the Background of the Invention describes that the prior art
technique of controlling internal engine temperature solely by controlling engine
coolant temperature is crude and inaccurate. The Background of the Invention also
describes how this technique often causes overheating or overcooling of the engine,
even when the coolant temperature is maintained at a predesired level. The invention
described in Figs. 19-23 significantly reduces the amount of engine overheating and
overcooling.
[0185] In accordance with the present invention, to even more accurately control the internal
engine temperature, the system described in Figs. 19-23 is modified to employ two
or more different curves for controlling the state of the EETC valve and the restrictor/shutoff
valves. The appropriate curve is selected by comparing the actual engine oil temperature
to a preselected engine oil temperature value. In the preferred embodiment of the
invention. the preselected value is a temperature associated with optimum internal
engine performance (e.g., the temperature which maximizes fuel economy and minimizes
engine out exhaust emissions). In one embodiment of the invention, this value may
be fixed. However, in the preferred embodiment of the invention, this value is related
to the current ambient air temperature.
[0186] Selecting between different curves further improves the performance of the engine
temperature control system because the state of the EETC valve and restrictor/shutoff
valves becomes more responsive to the actual internal engine temperature (as measured
by engine oil temperature) rather than when only a single curve is employed for controlling
each of the valves.
[0187] Fig. 24 is generally similar to Fig. 20, except that Fig. 24 shows three EETC valve
curves, a solid line "Normal Curve", a dotted "High Load Curve", and an Xed line "Extreme
High Load Curve." The "Normal Curve" is generally similar to the curve shown in Fig.
20. However, the curves in Fig. 24 are based upon empirical data for the GM 3800 transverse
engine. Thus, the "Normal Curve" in Fig. 24 differs slightly from the curve shown
in Fig. 20, which is not necessarily optimized for that engine. To simplify the explanation
of the multiple curve embodiments, the valve states and regions are not labelled in
the multiple curve figures.) The state of the EETC valve is controlled in accordance
with the "Normal Curve" whenever the actual engine oil temperature is at or below
a preselected engine oil temperature. The state of the EETC valve is controlled in
accordance with the heavy load or "High Load Curve" whenever the actual engine oil
temperature exceeds the preselected engine oil temperature. The state of the EETC
valve is controlled in accordance with the "Extreme High Load Curve" whenever there
is a frequent rate of shifting between the "Normal Curve" and the "High Load Curve."
Such frequent shifting indicates that the EETC valve is closing too often to maintain
the desired engine oil temperature, as further explained below.
[0188] The "Normal Curve" will typically be employed when the vehicle is driven under light
load conditions. This will occur approximately 80% of the time. The "High Load Curve"
will typically be employed during the remaining time. Heavy load conditions may occur
when a vehicle is driven at high speed, when the vehicle is fully loaded or pulling
a trailer, or while climbing a mountain in hot ambient air temperatures.
[0189] The "High Load Curve" may have the same overall general appearance as the "Normal
Curve," except that the "High Load Curve" is shifted down from the "Normal Curve"
by about 50 degrees Fahrenheit (27.8 °C). Likewise, the "Extreme High Load Curve"
may have the same overall general appearance as the "High Load Curve," except that
the "Extreme High Load Curve" is shifted down from the "High Load Curve" by about
20 degrees Fahrenheit (11.1 °C).
[0190] The preselected engine oil temperature is a value associated with the preferred operating
temperature of the engine. Each engine has an optimum operating temperature for maximizing
performance (i.e., horsepower output), maximizing fuel economy and minimizing engine
out exhaust emissions. The optimum operating temperature may be different for each
of these parameters, although the optimum temperature for maximizing fuel economy
tends to be similar to that for minimizing emissions. The examples described herein
focus primarily on fuel economy and emissions, not engine performance. Thus, the preselected
value described herein is one which optimizes internal engine performance as defined
by fuel economy and engine out exhaust emissions. However, at low temperatures, a
system with the EETC valve and restrictors should also generate increased engine horsepower.
[0191] In one embodiment of the invention, this value is fixed. That is, a single optimum
engine oil temperature is selected which results in the greatest fuel economy and
the lowest engine out exhaust emissions for the most frequently encountered ambient
air temperature. In this embodiment, the actual engine oil temperature (as measured
in the oil pan) is compared to the preselected optimum value. The result of the comparison
is employed to select the appropriate curve, as described above.
[0192] In the preferred embodiment of the invention, the preselected value is not fixed.
Instead, it is dependent upon the current ambient air temperature. The Background
of the Invention explains that as the ambient air temperature declines, the internal
engine components lose heat more rapidly to the environment. Also, there is an increased
cooling effect on the internal engine components from induction air. To counter these
effects and thus maintain the internal engine components at the optimum operating
temperature, the engine oil should be hotter in cold ambient air temperatures than
in hot ambient air temperatures. The optimum engine oil temperature can be plotted
against the ambient air temperature based on empirical data and known engine specifications.
To determine the preselected optimum value for use in the comparison, the current
ambient air temperature is measured and the optimum engine oil temperature is selected
based on the value indicated on the plot.
[0193] Fig. 25 shows one such empirically determined plot for a GM 3800 transverse engine.
The plot shows that the optimum engine oil temperature increases as the ambient air
temperature decreases. The plot in Fig. 25 may be shifted upwards or downwards when
the vehicle is operating in high or low altitudes. Empirical testing of each engine
in high and low altitude conditions is required to determine whether the plot will
be shifted upwards or downwards. Of course, the plot will be slightly different if
a specific parameter is more important (e.g., fuel economy, engine out exhaust emissions,
engine performance). Hence, it is possible to vary the curve shown in Figure 25 during
a typical engine operation. For example, the ECU could receive signals indicating
that a large sudden increase in acceleration has been commanded, e.g., significant
depression of gas pedal on entering a highway. Accordingly, the curve could be altered
or changed to a curve which provides higher performance with less emphasis on fuel
economy. Those skilled in the art would readily appreciate the variations to the system
that could be practiced within the scope of this invention.
[0194] As noted in the Background of the Invention, engine coolant temperature rises more
rapidly than the internal engine temperature during engine start-up or warm-up. Since
the prior art thermostat is actuated by coolant temperature, it often opens before
the internal engine temperature has reached its optimum value, thereby causing coolant
in the water jacket to prematurely cool the engine. As described above, exhaust emissions
from cold running engines are a major source of air pollution. For example, a delivery
truck or taxi operating in a city environment during the cold weather season ordinarily
covers short distances at slow speed and makes frequent stops. Accordingly, the engine
seldom gets hot enough to drive the water and vapor out of the crankcase resulting
in the formation of sludge. In order to prevent the sludge from forming in the oil
it is desirable to maintain the engine oil at an elevated temperature. However, prior
art thermostats are set to open at about 195 degrees Fahrenheit (90.6 °C) which, during
start-up, corresponds to an engine oil temperature which is considerably below the
desirable temperature for preventing sludge. Furthermore, opening the thermostat and
permitting low temperature coolant to flow into the engine block slows the heating
of the oil. This results in a "slowing" effect in obtaining the optimum engine oil
temperature value.
[0195] By employing the novel EETC valve and a special curve during engine start-up, the
optimum engine oil temperature value is reached sooner than with a prior art thermostatic
system. As a result, the engine oil operates at or near its optimum temperature value
for a longer period of time during engine operation. Moreover, the maintenance of
engine oil at a higher temperature for a longer period of engine operation, almost
entirely prevents the formation of sludge in the crankcase and oil pan. The quicker
heat-up of the oil also provides improved engine out exhaust emissions during warm-up
and in cold environments thereby providing significant environmental benefits. As
an added benefit, the quicker heat-up of the engine greatly improves the vehicle heater/defroster
responsiveness and effectiveness. An engine operating at or near optimum temperature
will also have better fuel economy when compared with a cold running engine. Hence,
the EETC and restrictor valves, in combination with the operational curves, provide
an optimum system for controlling engine performance. Whenever the engine is started,
no heat will escape through the radiator until the TCF temperature reaches its maximum
operational level (e.g., approximately 240°F to 250°F range (115.6°C to 121.1 °C))
and remains at that temperature level until the engine oil, preferably as measured
in the oil pan, reaches and sustains its optimum running temperature.
[0196] Fig. 26 shows two EETC valve curves, a "Normal Curve" similar to that shown in Fig.
24, and a "Start-Up/Warm-Up Curve." The "Start-Up/Warm-Up Curve" is generally similar
to the "Normal Curve," except that the "Start-Up/Warm-Up Curve" has a "bump-up" region
from about 110 degrees Fahrenheit to about 20 degrees Fahrenheit (about 43.3 °C to
about -6.7 °C). The bump-up region has a maximum bump-up of about 100 degrees Fahrenheit
(36.1 °C) when the ambient air temperature is about 85 degrees Fahrenheit (29.4 °C).
The bump-up becomes smaller as the ambient air temperature approaches about 20 degrees
Fahrenheit (-6.7 °C). The maximum bump-up is about 50 degrees Fahrenheit (27.8 °C)
compared to the prior art thermostat.
[0197] During engine start-up or warm-up, the engine oil will almost always be colder than
the optimum temperature. Thus, in most situations, the "Start-Up/Warm-Up Curve" will
be employed during initial vehicle operation. Once the engine oil reaches its optimum
temperature, as determined by Fig. 25, the system switches to the "Normal Curve."
In rare instances, the initial engine oil temperature will be at or greater than the
optimum temperature during engine start-up. This may occur if the engine is only shut
off for a few seconds, or if the engine is started shortly after a period of heavy
loading. In these instances, the EETC valve is operated according to the "Normal Curve",
instead of the "Start-Up/Warm-Up Curve".
[0198] The inventions illustrated in Figs. 24 and 26 are preferably employed in the same
system. Thus, the EETC valve actually follows at least three curves during vehicle
operation, one curve during warm-up/start-up, one curve during normal operation subsequent
to warm-up/start-up, and one curve during high load conditions subsequent to warm-up/start-up.
A fourth curve for extreme high load conditions may be included, if desired.
[0199] Although Figs. 24 and 26 illustrate the operation of an EETC valve, the restrictor/shutoff
valves may also be controlled in a similar manner. Preferably, the restrictor/shutoff
valves follow their own curves, as shown in Fig. 22B. These curves are shifted down
versions of the EETC valve curve. If this feature was shown in Fig. 24, there would
be a total of four curves. The extra curve would represent the normal curve for the
restrictor/shutoff valves. (There will be no high load curve for the restrictor/shutoff
valves because in a high load condition, the restrictor/shutoff valves should be fully
retracted.) Fig. 26 would show a total of four curves (excluding the prior art curve).
The two extra curves in that figure would represent the normal curve and the start-up/warm-up
curve for the restrictor/shutoff valves. For simplicity, this feature is merely described,
but not illustrated.
[0200] Fig. 27 is a flowchart of the system for employing the start-up/warm-up curve, normal
curve and high load curve of Figs. 24 and 26. The steps in the flowchart are fully
explained in the discussion above.
[0201] Fig. 28 shows a block diagram circuit of the connections to and from ECU
900 for controlling the state or position of the EETC valve. Fig. 28 is generally similar
to Fig. 17, except that the ECU
900 in Fig. 28 processes the received sensor output signals according to the flowchart
in Fig. 27. The ECU
900 may also receive an altitude signal for shifting the plot in Fig. 25 upwards or downwards
when the vehicle is operating in a high altitude. Fig. 28 does not show the hydraulic
fluid pressure signals and engine oil fluid pressure signal in Fig. 17. However, these
features may be optionally included in a full operating embodiment of Fig. 28.
[0202] The ECU
900 in Fig. 28 preferably receives sensor output signals from at least the following
sources:
1. an ambient air sensor in an air cleaner (clean side) or other suitable location;
2. a temperature sensor at the end of the engine block's temperature control fluid
water jacket, or other suitable location;
3. an oil temperature sensor in the engine oil pan or a temperature indicative of
the engine block or engine oil temperature;
4. an altitude sensor; and
5. an optional "High Engine Load" sensor.
[0203] The ECU
900 utilizes some or all of those sensor signals to generate open/close command signals
for the fluid injectors of the EETC valve. Although Figs. 27 and 28 do not describe
the operation of the restrictor/shutoff valves, it should be understood that these
valves are also operated in accordance with the same principles as the EETC valve.
[0204] An added benefit of a system utilizing the multiple curves discussed above is that
the time between oil changes can be increased. Frequent oil changes become necessary
when the internal engine temperature is not maintained at its optimum value during
a significant percentage of driving time. The multiple curve system reduces this percentage,
thereby prolonging the life of the oil.
[0205] Fig. 29 graphically shows the benefit of operating an engine in accordance with multiple
curves. Fig. 29 shows a solid line plot of the optimum engine oil temperature at selected
ambient air temperatures. (This is the same plot shown in Fig. 25.) Fig. 29 also shows
a dashed line plot of the actual temperature of the engine lubrication oil measured
in the oil pan of a GM 3800 transverse engine equipped with an EETC valve when the
state of the EETC valve is controlled according to the curves shown in Figs. 24 and
26. (No "Extreme High Load Curve" is employed in the system which generates the plots
in Fig. 29.) For comparison, Fig. 29 also shows a dashed/dotted plot of the actual
temperature of the engine lubrication oil when coolant flow to the radiator is controlled
by a prior art thermostat calibrated to open at about 195 degrees Fahrenheit (90.6
°C).
[0206] When the ambient air temperature is less than about 60 degrees Fahrenheit (15.6 °C),
the EETC valve system significantly outperforms the prior art thermostat. That is,
the EETC valve system maintains the actual engine oil temperature closer to the optimum
value. When the ambient air temperature is greater than about 70 degrees Fahrenheit
(21.1 °C), the capacity of the radiator limits the ability of the cooling system to
maintain the engine oil temperature at its optimum value. Thus, no matter what kind
of flow control valve is employed, the engine oil will run hotter than desired. However,
as is shown in Fig. 29, an engine incorporating the present invention will still operate
closer to the optimum engine curve at higher temperatures compared to the prior art
thermostatic system. This is due to the better flow capacity provided by the EETC
valve, i.e., 50% more flow capacity than a restrictive thermostat. The EETC valve
of the present invention also opens up sooner when operating in hotter temperatures
than the thermostatic system and, therefore, maintains the engine at the coolest possible
operating temperature (as shown in Fig. 24).
[0207] When the ambient air temperature is in a sub-zero degree Fahrenheit (-17.8 °C) range,
a prior art thermostat allows engine oil temperature to dip into a sludge forming
range of temperatures. This occurs because the coolant temperature may reach a level
sufficient to cause the prior art thermostat to open, even when the internal engine
temperature is significantly below its optimum operating value.
[0208] Fig. 29 also shows an Xed line plot which represents actual engine oil temperature
in a system employing an EETC valve, restrictor/shutoff valves and an oil pan tube
for delivering heat to the engine oil. Such a system maintains actual engine oil temperature
very close to the optimum value, even in sub-zero Fahrenheit (-17.8 °C) ambient air
temperatures. In ambient air temperatures above about zero degrees Fahrenheit (17.8
°C), the plot of such a system generally follows the plot of a system employing only
the EETC valve.
[0209] Fig. 30 shows a trend line of TCF temperature and oil temperature during vehicle
operation (and after engine start-up/warm-up). In this example, the ambient air temperature
is about 40 degrees Fahrenheit (4.4 °C). According to the Fig. 25 plot, the optimum
engine oil temperature at this temperature is about 240 degrees Fahrenheit (115.6
°C).
[0210] From time
t0 to
t1, the engine is operating under low load conditions and thus is following the "Normal
Curve" in Fig. 24. The actual TCF temperature is about 220 degrees Fahrenheit (104.4
°C). The EETC valve is closed, as dictated by the "Normal Curve." The actual engine
oil temperature is about 238 degrees Fahrenheit (114.4 °C), as expected from Fig.
29.
[0211] At time
t1, the vehicle engine begins to experience high load conditions. Almost immediately,
the engine oil heats up and exceeds the optimum value in Fig. 25. Accordingly, the
system shifts to the "High Load Curve" in Fig. 24. This causes the EETC valve to open,
thereby allowing the TCF to flow to the radiator. Between times
t1 and
t2, the TCF temperature drops quickly and stabilizes at a lower value of about 180 degrees
Fahrenheit (82.2 °C). During this time period, the lower TCF temperature causes the
engine oil temperature to slowly drop after its quick rise. At time
t2, the engine oil temperature returns to 238 degrees Fahrenheit (114.4 °C) and the
system shifts back to the "Normal Curve." This causes the EETC valve to close. Between
times
t2 and
t3, the TCF temperature rises slowly. Between times
t2 and
t3, the engine oil temperature may continue to drop slowly and then rise due to a lag
time until the warmer TCF begins to heat the oil. Eventually, the engine oil temperature
stabilizes at 238 degrees Fahrenheit (114.4 °C).
[0212] After time
t3, the trend lines repeat themselves so long as the high load condition is still present.
Thus, the system cycles between the "Normal Curve" and the "High Load Curve." If the
system is equipped with the optional "Extreme High Load Curve," the frequency of cycling
is tracked. If the frequency is too high, the system begins to switch between the
"Normal Curve" and the "Extreme High Load Curve," and ignores the "High Load Curve."
If the high load condition ceases, the system returns to the "Normal Curve" and the
engine oil and TCF temperatures stabilize at the time
t0 values.
[0213] Although the multiple curve embodiments rely on engine oil temperature to determine
when to switch curves, other internal engine temperature parameters may be employed
instead and are within the scope of the invention. For example, a thermistor embedded
in the engine block can be employed to obtain a more accurate reading of the actual
engine operating temperature.
[0214] Figs. 31A and 31B illustrates a novel optional oil heating feature for the system
described in Figs. 24-30. Fig. 31A is an idealized diagrammatic view of the TCF circulation
flow path through a GM 3800 V6 transverse engine equipped with an EETC valve in the
closed state. Fig. 31A is similar to prior art Fig. 40, except that the prior art
thermostat
1200 in Fig. 40 is replaced with EETC valve
100. Also, in Fig. 31A, the outlet of the water jacket
1202 does not flow directly into the inlet of the water pump
1206, as in Fig. 40. Instead, the outlet of the water jacket
1202 flows into TCF flow path
1300. This configuration was previously discussed with respect to Figs. 14A through 14F.
Hence, TCF flow path 1300 corresponds to passageway 216 in those figures. The TCF
flow path
1300 flows through oil pan
1302 and into the inlet of the water pump
1206 in a series manner. Thus, preferably all of the TCF which leaves the water jacket
1202 flows through the oil pan
1302 before it is returned to the water pump
1206 for recirculation. The TCF flow path
130 includes heat conductive tube
1304 which is similar to the heat conductive tube
220 shown in Fig. 18. For illustration purposes only, Fig. 31 exaggerates the length
of the conductive tube
1304 and the size of the oil pan
1302.
[0215] In operation, preferably all of the TCF at the outlet of the water jacket
1202 flows through the heat conductive tube
1304 whenever the EETC valve
100 is closed. During engine start-up/warm-up, the EETC valve
100 is usually closed and the internal engine temperature is most likely colder than
the optimum value. Since the TCF temperature in the water jacket
1202 rises more rapidly than engine oil temperature during engine start-up/warm-up, heat
energy from the hotter TCF in the conductive tube
1304 is transferred to the engine oil in the oil pan
1302, thereby promoting faster engine warm-up.
[0216] Fig. 31B illustrates the temperature control system of Fig 31A when the EETC valve
100 is in the open position. Substantially all of the TCF is transferred through the
valve to the radiator
208. However, a small amount of TCF may still transfer through the intake manifold to
the oil pan if the EETC valve is designed so that it does not completely block the
flow therethrough.
[0217] Figs. 32A and 32B illustrate an alternate embodiment of the temperature control system
wherein the TCF can be utilized to cool the engine oil. Fig. 32A is an idealized diagrammatic
view of the TCF circulation flow path through a GM 3800 V6 engine equipped with an
EETC valve in the closed state and is similar to Fig. 31A. Fig. 32B illustrates the
valve in its open state which completely obstructs the passage of the TCF into the
intake manifold and the oil pan. Accordingly, all of the TCF will flow through the
radiator 208 in this state.
[0218] Turning again to Fig. 30, when the engine experiences high load conditions and the
engine oil exceeds its optimum value, the system shifts to the "High Load Curve."
If the EETC valve
100 is not already open, it will most likely open, resulting in a relatively quick and
sharp drop in the TCF temperature. If the TCF in the TCF flow path
1300 is cooler than the engine oil, the TCF circulating through the conductive tube
1304 will draw heat away from the engine oil, promoting engine oil cooling. This will
shorten the time period between
t1 and
t2 in Fig. 30.
[0219] There may be instances when the EETC valve
100 is open and the engine oil temperature is already at or near the optimum value. In
this instance, flow through the flow path
1300 is not desirable because it will cause unnecessary cooling of the engine oil. Although
the flow path
1300 in Fig. 32A does not include a flow control valve, such a valve may be employed to
ensure that flow only occurs when the engine oil temperature exceeds the optimum value.
[0220] An added benefit of the extra flow path
1300 is that the heat energy in the TCF transfers to the oil pan
1302 when the engine is off. This helps to keep oil temperatures above sludge forming
conditions when the vehicle is not in use. The system shown in Figs. 32A and 32B also
will result in a more uniform temperature differential throughout the entire system,
thereby resulting in a lower temperature of the TCF than the oil.
[0221] The EETC valve described herein can be employed with one or more restrictor/shutoff
flow control valves to improve the temperature control function of the system over
that which would be achieved when employing only the EETC valve, with or without its
optional oil pan heating feature. As noted above, the restrictor/shutoff flow control
valves
300 and
400 shown in Fig. 14A can be any type suitable for the task. One type of novel restrictor/shutoff
flow control valve particularly suitable for this task is shown in Figs. 33-39 and
disclosed in U.S. Patent 5,458,096.
[0222] The restrictor/shutoff valves can be employed in an anticipatory mode to lessen the
sudden engine block temperature peaks caused when a turbocharger or supercharged is
activated, in the same manner as the anticipatory mode described above with respect
to the EETC valves. When the turbocharger or supercharger is activated, a signal can
be immediately delivered to the restrictor/shutoff valves to cause the valves to be
placed in their unrestricted/unblocked state, if they are not already in that state.
A short time after the turbocharger or supercharger is deactivated, the valves can
then be returned to the state dictated by the ECU.
[0223] In extremely hot ambient air conditions, a system wherein the states of the EETC
valve and restrictor/shutoff valves are controlled according to one or more of the
curves will perform better upon engine start-up than a cooling system having a thermostat
controlled solely by coolant temperature. This is because the curves allow the designer
to anticipate expected engine operating conditions based on the present TCF and ambient
air temperature. Accordingly, the EETC valve can be immediately opened and the restrictor/shutoff
valves can be immediately placed in an unblocked/unrestricted state in anticipation
of an expected engine operating condition that would call for such states.
[0224] Consider, for example, a prior art vehicle which has been sitting in the sunlight
when the ambient air temperature is 100 degrees Fahrenheit (37.8 °C). In such an environment,
the underhood and vehicle interior is likely to be at least 120 degrees Fahrenheit
(48.9°C). The coolant temperature will likely be at least 100 degrees Fahrenheit (37.8
°C). When the driver enters the vehicle and starts the engine, the air conditioning
is typically immediately turned on to its maximum setting. Due to the hot conditions
and the extra stress on the engine due to the air conditioning system, the coolant
temperature quickly rises. Although it is virtually certain that the coolant will
need to flow to the radiator to keep the engine block at an optimal operating temperature,
the thermostat must nevertheless wait until the temperature has reached the appropriate
level before it opens to allow flow to the radiator. The result is that full engine
cooling is temporarily delayed. If the vehicle is equipped with a prior art wax pellet
type or bimetallic coil type thermostat, there will an even greater delay before the
coolant can flow to the radiator due to thermostat hysteresis. These delays may cause
a sudden engine block temperature peak which, in turn, may cause the coolant temperature
and engine oil temperature to temporarily reach levels which exceed the ideal range.
[0225] However, if the vehicle is equipped with a novel EETC valve and/or restrictor/shutoff
valves controlled by the programmed curve, all of the TCF will immediately flow through
the radiator upon engine start-up. Accordingly, the likelihood of a sudden engine
block temperature peak will be reduced. This is because the curves shown in Figs.
19, 20, 22A, 22B, 24 and 26 indicate that at an ambient temperature of 100 degrees
Fahrenheit (37.8 °C) and a TCF temperature above 100 degrees Fahrenheit (37.8 °C),
the EETC valve should be in the open state and the restrictor/shutoff valve should
be in the unblocked/unrestricted state. Of course, there will be a two or three second
delay before the valves can be placed in these states after starting the engine to
allow the hydraulic fluid system to reach proper operating pressure. This anticipatory
feature is an inherent benefit of controlling the state of a flow control valves according
to a programmed curve.
[0226] As discussed above, in one embodiment of the invention, the ECU receives signals
indicative of the ambient air temperature, the engine oil temperature, and the temperature
control fluid temperature. The ECU compares these signals to one or more temperature
control curves. In the preferred embodiment, the ECU compares the engine oil temperature
to an optimum engine oil temperature curve. The ECU determines the operating state
of the engine based on this comparison (e.g., normal, high or extremely high load).
The ECU then compares the actual temperatures of the ambient air and the temperature
control fluid to a curve or set of predetermined values for determining the desired
state or position of the flow control valves (e.g., EETC valve, restrictor valves).
The set of predetermined values preferably defines a curve which is a function of
at least ambient air temperature and temperature control fluid temperature. A portion
of the preferred curve has a non-zero slope. The ECU sends control signals to the
solenoids to open and close the hydraulic fluid injectors. This, in turn, causes the
opening and closing of the flow control valves as required.
[0227] In an alternate embodiment of the invention, the ECU compares the actual oil temperature
against an optimum engine oil temperature value or series of values defining a curve.
If the actual oil temperature is above the optimum or desired engine oil temperature
value, then the ECU adjusts the Normal temperature control curve instead of switching
to a High Load curve. Specifically, the ECU shifts the Normal temperature curve downward
a predetermined amount so as to reduce the temperature of the temperature control
fluid which causes actuation of the valves between their states or positions. In one
embodiment of the invention, for every one degree Fahrenheit (.56 °C) that the actual
engine oil temperature is above the optimum engine oil temperature there is a corresponding
two degree Fahrenheit (1.1 °C) decrease in the temperature control fluid temperature
component which produces actuation of the valves. This effectively results in a downward
shifting of the temperature control curve. Different engine configurations will, of
course, result in different amounts that the temperature control fluid temperature
component is shifted downward for a one degree rise in actual engine oil temperature.
For example, a one degree rise in actual oil temperature above the optimum oil temperature
value may produce a decrease in the actuation temperature of the temperature control
fluid within a range of between about one and ten degrees. Furthermore, it is contemplated
that the amount of downward shifting of the temperature component may not be constant
(e.g., the amount of downward shifting may increase as the difference between the
actual oil temperature and the optimum oil temperature increases).
[0228] In yet another embodiment, the amount of downward shifting of the temperature control
fluid temperature component may also vary with changes in arnbient temperature. For
example, at 0 degrees Fahrenheit (-17.8 °C) ambient air temperature, every one degree
that the actual oil temperature is above the optimum oil temperature produces a one
degree decrease in the temperature control fluid temperature component. At 50 degrees
Fahrenheit (10 °C) ambient air temperature, every one degree that the actual oil temperature
is above the optimum oil temperature produces a two degree decrease in the temperature
control fluid temperature component. At 80 degrees Fahrenheit (26.7 °C) ambient air
temperature, every one degree that the actual oil temperature is above the optimum
oil temperature produces a three degree decrease in the temperature control fluid
temperature component. This embodiment of the invention may be graphically illustrated
as shown in Figure 45A wherein a control curve is selected by the ECU depending on
the sensed ambient temperature. A plurality of control curves could be plotted representing
a range of ambient temperatures. For example, control curves could be plotted from
about -60 degrees Fahrenheit (-51.1 °C) to about 110 degrees Fahrenheit (43.3 °C),
each having an associated adjustment factor for adjusting the temperature control
fluid temperature component and/or for shifting the set of predetermined values. The
adjustment factors may vary. The ECU may also be configured to interpolate between
designated curves of providing an accurate adjustment factor. Although linear curves
are illustrated in the exemplary embodiment, it should be understood that alternate
non-linear curves may be incorporated for each ambient temperature. It is also contemplated
that a single curve may be utilized for shifting the temperature control curve. One
axis of the plot would represent the sensed ambient temperature. The second axis would
represent the ratio of a one degree increase in engine oil over the corresponding
downward shifting of the temperature control curve (e.g., 1/1, 1/2 or 1/3).
[0229] Alternately, it may be preferable to wait until the actual engine oil temperature
exceeds the optimum engine oil temperature value by a set amount before altering the
temperature control curve. For example, for every 3 or 5 degree increase in the actual
engine oil temperature above the optimum oil temperature value there is a corresponding
decrease in the set point temperature of the temperature control fluid which directs
actuation of the valve. Figure 45B graphically illustrates this aspect of the invention.
A series of identical temperature control curves are shown for a plurality of actual
sensed engine oil temperatures. Each dashed line (NC') represents a shifted-down version
of the solid "normal" temperature control curve (NC). It should be readily apparent
that only one particular curve or value would be utilized for a given sensed engine
oil temperature. In an alternate arrangement, an equation and/or scaling factor instead
of a separate curve may be utilized to alter the value at which actuation occurs according
to the normal curve.
[0230] In many instances, altering the temperature control fluid component based only on
the amount that the actual engine oil temperature exceeds the optimum engine oil value
would be sufficient. However, in the preferred embodiment, it is also desirable to
monitor the engine load to determine how much altering of the temperature control
curves is required to maintain the actual engine oil temperature at or near the optimum
oil temperature.
[0231] One method for varying or altering the temperature control curve as a function of
engine load is by monitoring the rate of change of the actual engine oil temperature.
Referring to Figure 45C, an exemplary curve is illustrated which depicts the rate
of change of the actual engine oil temperature versus the scaling or adjustment factor
for the temperature control fluid temperature component and/or for determining the
downward shifting of the set of predetermined values. If the detected rate of change
of the actual oil temperature is relatively low (R
1), the downward shifting of the temperature control curves is also small (S
1). If, on the other hand, the detected rate of change of actual oil temperature is
large (R
2) which is indicative of a high loading condition, then the downward shifting of the
temperature control curve is also relatively large (S
2). Although the exemplary curve depicts a linear curve other curve shapes, such as
exponential, logarithmic, curvilinear, etc., may be substituted therefor. Furthermore,
a step function may instead be utilized which provides a different amount of downward
shifting of the temperature control curve for different detected rates of change of
the actual engine oil.
[0232] During use, when the engine computer detects that the actual sensed oil temperature
exceeds the optimum oil temperature, the computer then determines rate of change of
the actual engine oil temperature. The engine computer determines a scaling or adjustment
factor from this rate of change. The adjustment factor is then applied to the normal
temperature curve to shift the curve downward. The engine computer continues to monitor
the rate of change in the actual oil temperature and shifts the temperature control
curve accordingly. Delays can be incorporated into the system to minimize the amount
of shifting of the temperature control curve that occurs.
[0233] An analytically determined curve illustrating the effect of the above embodiment
is shown in Figure 46. The curve shown is for a constant ambient temperature of 60°F
(15.6°C). From time t
0 to time t
1, the engine computer controls the opening and closing of the EETC valve and restrictor
valves according to a normal temperature control curve (level 1). At time t
1, the engine computer detects an increase in the actual oil temperature above the
optimum engine oil temperature value (approximately 235°F (112.8°C) in the illustrated
embodiment) which is preferably determined from an optimum engine oil temperature
curve similar to the one shown in Figure 25. The engine computer either applies a
predetermined factor for downward shifting of the temperature control curve (e.g.,
2 degree drop in TCF for each 1 degree rise in engine oil temperature) or, more preferably,
the engine computer determines a rate of change of the engine oil temperature and
from that rate calculates the amount of downward shifting of the temperature control
curve required.
[0234] The EETC valve is opened according to the new shifted temperature control curve (level
2), causing the immediate drop in the temperature control fluid as shown between time
t
1 and t
2. The engine oil however, will continue to rise until the cooling effect of the temperature
control fluid begins to cool the engine oil.
[0235] The engine computer continues to monitor the actual engine oil temperature. At time
t
2, the temperature of the temperature control fluid stabilizes at the new shifted temperature
control fluid valve. If the actual engine oil is still above the optimum engine oil
temperature, the engine computer determines the rate of change of engine oil temperature
between time t
1 and t
2. The high rate of change indicates a continued high engine load condition. Accordingly,
based on this determined rate, the engine computer determines an additional amount
of downward shifting of the temperature control curve that is required. The flow control
valve or valves are then controlled based on the this second shifted temperature control
curve (level 3).
[0236] At time t
3 the engine computer determines a rate of change of the engine oil temperature between
time t
2 and t
3. Since the new rate of change in the illustrated example is less than the previous
rate of change, the engine computer does not shift the temperature control curve downward.
Instead, the engine computer continues to control the flow control valve or valves
based on the level 3 temperature control curve.
[0237] At time t
5 the engine computer determines a rate of change of the engine oil temperature between
time t
4 and t
5. Since the new rate of change in the illustrated example is decreasing, the engine
computer shifts the temperature control curve upward back toward the first or normal
level. As a result, the temperature control fluid temperature continues to heat up
while the engine oil decreases in temperature and begins to return to its optimal
operating temperature.
[0238] Since the reheating of the temperature control fluid is a slow process, as illustrated
by the time period between time t
5 and t
6, it is important not to drop the temperature control fluid to an unnecessarily low
temperature so as to maintain the engine oil as close to the optimum engine oil as
possible.
[0239] It should be understood that the sensed ambient air temperature will affect rate
or slope of the temperature control fluid temperature curve in Figure 46. For example,
at hot ambient temperatures, the temperature slope of the temperature control fluid
between time t
5 and t
6 will be steeper than at low ambient temperatures. This is due to the fact that at
lower temperatures (e.g., zero degrees ambient) it is more preferable that the engine
oil remains at a higher temperature for a longer period of time to increase heater
and defroster capabilities. The cold ambient temperature reduces the likelihood that
the engine oil will become excessively hot. In warmer ambient temperatures, it is
desirable to maintain the engine oil closer to its optimum valve so as to prevent
overheating. The temperature slope of the temperature control fluid is, thus, steeper
at these warmer temperatures.
[0240] An alternate method for determining the engine load is by monitoring the intake manifold
vacuum pressure. The sensed intake manifold pressure generally provides an accurate
indication of the current engine load. For example, if the sensed intake manifold
vacuum pressure is less than about 4 inches Hg (13.5 kPa), the engine is operating
under a high load condition. Accordingly, a first predetermined adjustment factor
or curve can be selected for reducing or replacing the temperature control curve.
If, however, the intake manifold vacuum pressure is less than about 2 inches Hg (6.77
kPa), then the engine is operating under an extremely load condition. In this case,
a second adjustment factor is selected for varying the normal temperature control
curve.
[0241] Yet another method for determining engine load is through the monitoring of the commanded
engine acceleration. For example, a high commanded engine acceleration is indicative
of a high engine load condition. The amount of engine acceleration can be determined
from a variety of methods, such as the accelerator pedal displacement, a signal from
the fuel injection system, etc. Depending on the commanded acceleration, a predetermined
factor and/or curve is selected for varying the normal temperature control curve.
[0242] In both the commanded engine acceleration method and the intake manifold vacuum pressure
method, a rate monitoring system similar to the one discussed above with respect to
the engine oil temperature could also be incorporated to further optimize these methods.
[0243] Figure 47 is an actual plot of the present invention incorporated into a GM 3800
V6 engine. The data was recorded as the vehicle was being driven up a very steep incline.
The data which is shown is the engine oil temperature (curve A), the temperature of
the temperature control fluid (curve B), the temperature of ambient air (curve C),
the speed of the vehicle (curve D) and the vacuum pressure (curve E). The X axis represents
a time period of several minutes. At point Z
1, an acceleration was commanded by the vehicle, increasing its speed from approximately
55 miles per hour to over 90 miles per hour (88 km/h - 145 km/h). The increase in
engine speed and acceleration results in a corresponding decrease in vacuum pressure
and an increase in the temperature of the engine oil. The temperature control system
detects the increase in engine oil temperature and, accordingly, reduces the temperature
of the temperature control fluid. At point Z
2, the lower temperature of the temperature control fluid begins to reduce the temperature
of the engine oil. Figure 47 clearly illustrates the interrelationship between detected
engine load conditions (acceleration, velocity, and/or vacuum pressure) and the engine
oil and temperature control fluid temperatures.
[0244] Based on the above discussion, those skilled in the art would readily understand
and appreciate that various modifications can be made to the exemplary embodiments
disclosed and are well within the scope of this invention. For example, the temperature
control curves themselves may be replaced by one or more equations for controlling
the actuation of the valves. In yet another embodiment, fuzzy logic controllers could
be implemented for controlling the actuation of the valves and/or varying of the temperature
control curves.
[0245] The varying or downward shifting of the temperature control curves as discussed above
is preferably limited to between approximately 50°F - 70°F (27.8°C - 38.8°C). This
is intended to prevent substantial degradation in the capabilities of the heater/defroster
systems by maintaining the temperature control fluid at a reasonably high temperature.
[0246] The above methods for adjusting the temperature control curves can also be utilized
in the start up/warm up phase. For example, if the actual engine oil temperature is
below the desired or optimum engine oil temperature by a predetermined amount, an
adjustment factor can be applied to the temperature control curve to shift it upward
a preset amount. Preferably, the amount of adjustment would also vary with the ambient
air temperature such that the shifted temperature control curve would be similar to
the start-up/warm-up curve shown in Figure 26.
[0247] The above discussion has been directed toward a temperature control system which
controls engine oil temperature so as to maintain it at or near its optimum temperature.
However, it is contemplated that, in certain cases, optimal control may not be necessary.
In light of this, another embodiment of the present invention is disclosed which does
not utilize curves that vary with ambient temperature for controlling actuation of
the valves. Instead, one or more predetermined engine oil and/or temperature control
fluid temperature values are utilized for controlling the valves regardless of ambient
air temperature. The predetermined engine oil and temperature control fluid temperatures
are preferably chosen so as to provide an acceptable temperature state for the engine
over a wide range of ambient temperatures. For example, an average engine oil temperature
value of approximately 260°F (126.7°C) may be utilized as the predetermined value.
[0248] Referring to Figure 48, a graphical illustration of this embodiment of the invention
is shown. In this embodiment, the temperature control system is operated so as to
maintain the engine oil at or near at least one engine oil temperature value (designated
by the letter 'A'). The operation of the system is as follows. A sensor within the
engine detects a temperature indicative of the temperature of the engine oil. This
may be accomplished, for example, by directly sensing the temperature of the oil within
the oil pan, or by sensing the temperature of the engine block or the oil pan itself.
This signal is sent to the engine computer. The engine computer compares the signal
to a predetermined engine oil temperature value. If the sensed oil temperature signal
is less than the predetermined engine oil temperature value, the engine oil is in
a relatively cold state. In this state, it is not desirable to circulate a flow of
temperature control fluid. The engine computer may be utilized to determine the position
of the valve controlling the flow of temperature control fluid between the radiator
and the engine (e.g., EETC valve). The engine computer can determine the position
of the valve many different ways. One way involves providing signals from the valve
which indicate its position. If the valve is in its open position (allowing flow of
temperature control fluid between the radiator and the engine) then it is desirable
for engine computer to send signals to cause the valve to close (inhibiting flow of
temperature control fluid from the radiator).
[0249] In the above discussion, the engine computer determines the position of the valve
and automatically closes the valve based on only the temperature of the engine oil.
However, it is contemplated that the engine computer may also utilize the temperature
of the temperature control fluid for controlling the opening and closing of the valve.
By utilizing the temperature of the temperature control fluid the system can more
readily account for the lag time involved in heating the oil (i.e., engine heats up
quicker than engine oil) In this embodiment, a signal indicative of the actual or
sensed temperature of the temperature control fluid is sent to the engine computer.
The engine computer compares this signal (or temperature) against at least one predetermined
temperature control fluid temperature value. If the actual sensed temperature is below
the predetermined temperature control fluid temperature value then the valve is likely
in its closed position inhibiting flow between the radiator and the engine. By leaving
the valve is its closed position, the temperature of the engine oil will rise since
there is no cooling being provided by fluid from the radiator.
[0250] If, on the other hand, the sensed temperature of the temperature control fluid is
greater than the predetermined temperature control fluid temperature value, then the
valve be in its open position allowing temperature control fluid to circulate from
the radiator into the engine. However, since the temperature of the engine oil is
relatively cold, it si desirable that the valve be placed in its closed position.
In order to close the valve (if it is not already in its closed position), the engine
computer shifts the predetermined temperature control fluid temperature value upward
a prescribed amount. This is equivalent to adjusting or increasing the predetermined
temperature value. The amount of shifting or adjusting may depend on various factors.
Preferably, the amount of upward shifting is a function of the amount that the actual
engine oil temperature is below the predetermined engine oil temperature value. A
detailed discussion has already been provided hereinabove on shifting or adjusting
predetermined temperature values or components.
[0251] It may instead be desirable to adjust or increase the predetermined temperature control
fluid temperature value an amount that will automatically place it above the actual
temperature control fluid temperature, regardless of the comparison of the actual
engine oil temperature to the predetermined engine oil temperature value. The engine
computer would then maintain the predetermined temperature control fluid value at
that temperature (or above) until the actual engine oil temperature reaches the predetermined
engine oil temperature value. In another embodiment, the engine computer does not
adjust the predetermined temperature control fluid temperature value but simply maintains
the valve in the closed position until the actual engine oil temperature reaches the
predetermined engine oil temperature value.
[0252] When the engine computer receives an engine oil temperature signal which is above
the predetermined engine oil temperature value, then engine is in a relatively hot
state. In this state it is desirable to circulate cool temperature control fluid from
the radiator through the water jackets surrounding the engine. As discussed above,
the engine computer may be utilized to determine the position of the valve and then
automatically place the valve in a desired position (e.g., open). However, in one
preferred embodiment, the engine computer also utilizes the actual or sensed temperature
of the temperature control fluid. The engine computer compares the temperature of
the temperature control fluid to at least one predetermined temperature control fluid
temperature value. If the actual sensed temperature is above the predetermined temperature
control fluid temperature value, then the valve should already be in its open position
allowing temperature control fluid flow between the radiator and the engine. However,
if the sensed temperature of the temperature control fluid is less than the predetermined
temperature control fluid temperature value, then the valve is likely to be in its
closed position. It is therefore desirable to open the valve so as to cool the engine.
In order to do so, the engine computer shifts or adjusts the predetermined temperature
control fluid temperature value downward a prescribed amount in a similar manner as
described above. When the actual temperature of the temperature control fluid exceeds
the shifted or adjusted predetermined temperature control value, the valve will open.
[0253] Figure 48 also illustrates upper and lower temperature control fluid temperature
limits (letters 'C' and 'D'). These temperature limits prevent the temperature control
system from significantly reducing the effectiveness of the heater/defrost system.
[0254] The preferred temperature control system utilizes the engine computer to continuously
shift or adjust the predetermined temperature control temperature value based on the
comparison of the actual engine oil temperature value to the predetermined engine
oil temperature value. Thus, the shifted or adjusted predetermined temperature control
value may not necessarily cause immediate actuation of the valve. Instead, the new
shifted value may simply be closer, temperature-wise, to the actual temperature resulting
in quicker actuation of the valve. In an alternate, but not preferred embodiment,
the predetermined temperature control fluid temperature value is not adjusted. Instead,
the sensed or actual temperature control fluid temperature is adjusted and then compared
against the predetermined temperature control fluid temperature value. Those skilled
in the art would readily be capable of practicing alternate methods for controlling
the temperature control system based on the engine oil temperature. These alternate
methods are well within the purview of the claims.
[0255] In operation, the above system functions as follows. During initial start-up, if
the engine computer senses that the engine oil temperature is less than approximately
230°F (110°C), the engine computer raises or sets the predetermined temperature control
fluid temperature value to approximately 240°F (115.6°C) until the engine computer
detects that the engine oil temperature is at or near approximately 230°F (110°C)
which is its normal operating temperature.
[0256] If the engine computer subsequently determines that the engine oil temperature is
greater than approximately 230°F (110°C), the computer shifts the predetermined temperature
control fluid temperature value from its normal operational value (e.g., approximately
200°F (93.3°F)) to a lower value. The shifting is achieved by decreasing the predetermined
temperature control fluid temperature value 2 ° F (1.1°C) for every 1 °F (0.56°C)
that the actual engine oil temperature exceeds the predetermined engine oil temperature
value. The downward shifting of the predetermined temperature control fluid temperature
value is limited to approximately 170°F (76.7°C).
[0257] If after reaching the normal engine oil operating temperature, the engine computer
subsequently determines that the engine oil temperature is less than approximately
230°F (110°C), the computer shifts the predetermined temperature control fluid temperature
value from its normal operational value (e.g., approximately 200°F (93.3°C)) to a
higher value. The shifting is achieved by increasing the predetermined temperature
control fluid temperature value 2°F (1.1°C) for every 1°F (0.56°C) that the actual
engine oil temperature is below the predetermined engine oil temperature. The upward
shifting of the predetermined temperature control fluid temperature value is limited
to approximately 240°F (115.6°C).
[0258] It is also contemplated that the control logic for the temperature control system
may be incorporated into computer chips or processors mounted directly in the valve
instead of in the engine computer. Hence, while the above discussion has concentrated
on utilizing an engine computer for controlling the valves, it is also contemplated
that other electronic control mechanisms may be utilized in its stead.
[0259] Although the EETC valves disclose fluid injectors which are integrated into the valve
housing, the scope of the invention includes an embodiment wherein the fluid injectors
are physically separated from the reciprocating EETC valve components and connected
by fluid lines therebetween. Likewise, the fluid injectors associated with the restrictor/shutoff
valves can be either integrated into the valve housing as shown in Fig. 38, or can
be physically separated from the reciprocating valve components as shown in Figs.
33 and 34. Alternatively, fluid injectors associated with an integrated valve such
as shown in Fig. 38 can control the state of other restrictor/shutoff valves which
do not have their own fluid injectors.
[0260] While the preferred embodiment utilizes an ECU to provide pressurized hydraulic oil
to the EETC valve for actuating the valve member
146, a simpler and less precise means for providing the pressurized fluid is by mounting
a thermostat-type device within the hydraulic fluid lines leading to and from the
EETC. The thermostat would provide pressurized hydraulic fluid when the oil in the
line or in the pan exceeds a prescribed temperature which, in the preferred embodiment,
is chosen to be indicative of the engine oil temperature. A drawback to this type
of a system is that a mechanism must be added to the system which removes or release
the oil in the EETC valve when it is desired to close the valve, i.e., depressurize
the diaphragm.
[0261] As stated above, the preferred valve in the present invention is operated through
the use of hydraulic fluid. However, other types of valves may also be utilized within
the scope of this invention. For example, referring to Fig. 49, an electronically
assisted thermostat
950 is illustrated which can be utilized in one embodiment of the present invention.
The electronically assisted thermostat
950, to an extent, is configured and operates similar to a conventional thermostat. The
conventional portion of the electronically assisted thermostat
950 includes an outer housing
952, a valve member
954, a wax pellet
956, and a return spring
958. The wax pellet
956 is designed to maintain the valve member
954 in a closed position when the wax pellet
956 is solidified. The return spring
958 is configured to bias the valve member
954 into an open position when the wax pellet
956 is melted. The details of the configuration and operation of conventional thermostats
is well known to those skilled in the art.
[0262] The electronically assisted thermostat
950 also includes a heating element
960, such as a coil, which extends around or through the wax pellet
956. The heating element
960 is electrically connected to a power source (not shown) through an electrical cable
962. A computer, such as the ECU
900, controls the transmission of electric current along the cable
962 to the heating element
960. The heating element
960 is designed to heat up to an elevated temperature when current is supplied to it.
The heat from the heating element
960 exposes the wax pellet
956 to an approximately 80 degree Fahrenheit (44.4 °C) temperature increase. This assists
in melting the wax pellet
956 sooner than it would otherwise melt. Heating elements, such as dielectric heaters
and resistance heaters, are well known in the art and, thus, no further details are
required.
[0263] In order to operate more efficiently in the present system, the wax pellet
956 is calibrated to begin to open between 220°F and 226°F (104.4°C and 107.8°C) and
to be fully open at a fluid temperature between 236°F and 240°F (113.3°C and 115.6°C).
These temperatures are higher than current thermostat designs (e.g., approximately
180°F (82.2°C)). However, maintaining the temperature control system as a closed circuit
(i.e., no radiator) until the temperature control fluid reaches 220°F (104.4°C) produces
increased pressure (approximately 7 psi (48.263 kPa)) in the system. To accommodate
this increased pressure, the wax pellet
956 is preferably manufactured slightly larger then conventional pellets. A larger return
spring
958 and housing
952 may also be necessary.
[0264] The ability of the heating element
960 to melt the wax pellet
956 80°F (44.4°C) before it would normally melt permits control over the temperature
control fluid flow for a variety of temperature control fluid temperatures. The 80°F
(44.4°C) temperature limit on the heating element
960 provides the lower limit at which the valve member
954 can be opened (e.g., lower temperature limit of 160°F (71.1°C)). This helps prevent
loss of the heater and defrost capabilities of the system. The upper temperature limit
is maintained at 240°F (115.6°C) by the melt temperature of the wax pellet
956 itself.
[0265] The operation of one preferred embodiment of the electronically assisted thermostat
950 will now be discussed. The ECU
900 receives a signal indicative of the actual engine oil or block temperature. If actual
engine temperature is less than a predetermined engine temperature value (e.g., the
desired engine oil temperature value for a given sensed ambient air temperature),
the thermostat operates in a conventional manner (e.g., initial opening when the temperature
control fluid reaches 220°F/226°F (104.4°C/107.8°C). If, however, the actual engine
temperature is greater than the predetermined engine temperature value, the ECU
900 controls the transmission of current along the cable
962. The current results in heating of the heating element
960 which, in turn, causes the wax pellet
956 to begin to melt, thereby initiating opening of the thermostat.
[0266] The electronically assisted thermostat
950 described above provides a simple, lightweight device for efficiently controlling
the flow of temperature control fluid.
[0267] The inlet hydraulic fluid injector employed in the novel EETC and restrictor/shutoff
valves must tap into a source of pressurized hydraulic fluid to fill the respective
valve chambers. Typical valves will tap into that source for about six seconds to
fully change state. A slightly longer time period may be required for systems where
a single injector fills the chambers of multiple restrictor/shutoff valves. These
time periods are very short compared to the average length of a vehicle trip. Since
valve states are unlikely to be changed more than a few times during a normal vehicle
trip, the percentage of time that the pressurized source is tapped is anticipated
to be very small, typically under one minute for every hour of driving, or less than
2%. Accordingly, there should be little, if any, effect on the normal functioning
of the hydraulic fluid system. Thus, if the engine lubrication oil pump outlet lines
are the source of the hydraulic fluid, the operation of the novel valves should not
have any significant effect on the normal operation of the lubrication system. Nor
should it be necessary to modify existing oil pumps or lubrication systems to accommodate
the novel valves. The lines may tap off of the cylinder head or the block itself if
desired, thus, requiring very little change to the existing engine envelope.
[0268] The preferred novel EETC and restrictor/shutoff valves described above reciprocate
between a first position for allowing unrestricted flow of fluid through at least
one passageway and a second position for restricting the flow through the passageway.
The flow restriction is either partial or complete (i.e., 100 percent). Each of the
valves are biased in one of the positions by a biasing spring and placed in the other
position by hydraulic fluid pressure pushing against a piston member. In the EETC
valves, the piston member is, preferably, either a diaphragm or a piston shaft. In
the restrictor/shutoff valve, the piston member comprises a combination of a separate
piston and shaft.
[0269] Although the EETC and restrictor/shutoff valves are shown as having a first position
associated with a pressurized, fully filled chamber and a second position associated
with an unpressurized, empty chamber, each of the valves can be designed to operate
in reverse. That is, the position of the chambers and biasing springs can be reversed
so that the valve is in a first position when the chamber is unpressurized and empty
and is in a second position when the chamber is pressurized and fully filled. The
scope of the invention includes such reversed configurations.
[0270] Likewise, the scope of the invention includes embodiments wherein the EETC and restrictor/shutoff
valves are placed in positions between the first and second positions by only partially
filling and pressurizing the respective chambers. To achieve a desired mid-position
for a particular valve, chamber pressure values and/or filling or emptying time periods
must be empirically determined for that valve. For example, if a particular EETC valve
is fully opened by pressurizing the chamber to 25 psi (172 kPa) and continuing to
pressurize for two seconds after the chamber reaches 25 psi (172 kPa), a procedure
of pressurizing until the chamber reaches 15 psi (103 kPa) might place the valve in
the desired mid-position. Alternatively, if it is desired to move an open EETC valve
to a mid-position, partial chamber depressurization could be employed. Again, the
particular pressure values and additional time periods must be empirically determined
for a given novel valve. Once those values are determined, the ECU can be pre-programmed
with the values to achieve the desired mid-position(s). Alternatively, a feedback
control system employing valve position transducers connected to the ECU could be
employed.
[0271] While the temperature control system of the present invention has been described
as replacing the thermostat of an internal combustion engine, the system can also
be utilized in conjunction with the a standard thermostat. An embodiment of this type
would, preferably, incorporate a EETC valve in series with the thermostat. That is,
the fluid line to the radiator would have both a standard thermostat mounted thereon,
as well as an EETC valve. An ECU would determine when the EETC valve will have control
over the fluid flow. Preferably, the EETC valve would control the initial start-up/warm-up
mode of the engine, which is when the thermostat does not operate efficiently. In
this mode, a means for inhibiting the thermostat would have to be incorporated to
prevent the thermostat from opening the line to the radiator before the engine approaches
its optimum temperature. For example, a pin could be actuated to lock the valve of
the thermostat in the closed position. The actuation of the pin would be controlled
by the ECU based on one or more of the valve control curves discussed above. Accordingly,
the EETC valve would be in control of the system until the TCF fluid reaches its normal
operating temperature whereupon the EETC valve would be inhibited from further control
and the thermostat would be released to control the system as is commonly performed.
The thermostat could also be locked out when the ambient temperature falls below a
predetermined temperature, such as zero degrees Fahrenheit (-17.8 °C).
[0272] It is envisioned that this embodiment would be utilized in situations where retrofitting
of an existing engine is more desirable then fully implementing the disclosed temperature
control system. Since the temperature control system disclosed provides significant
benefits during start-up/warm-up and at low temperatures, the modified embodiment
discussed above has advantages over a standard thermostatic system.
[0273] Another feature of the present invention is the ability to control various other
engine parameters in combination with the control of the TCF. For example, it is possible
to control the electric fan which provides cooling for the radiator. When the temperature
of the TCF measured at the outlet of the radiator is approximately between about 150
degrees and 160 degrees Fahrenheit (65.6 °C - 71.1 °C), and the vehicle speed is less
than about 35 miles per hour (56.3 km/h), the fan is designed be operative. This corresponds
to the operational state wherein the car is moving relatively slowly and the TCF is
being to become hot car. It is typically in this operational state where most overheating
will occur. When the car is traveling above 35 miles per hour (56.3 km/h), the air
flowing through the radiator and around the engine block will function to reduce the
TCF temperature. Variations on the control of the fan are also possible. The ECU can
be programmed to provide the fan control or, instead, a separate fan control unit
may be utilized.
[0274] It is also possible to control the spark generated by the spark plug utilizing signals
from the ECU. For example, the temperature of the TCF in the radiator and the ambient
air temperature can be monitored to determine how much spark is required to produce
the optimum combustion of the fuel. It is preferable to utilize the TCF temperature
in the radiator since this valve should be relatively stable as compared with the
TCF temperature out of the engine block which may vary significantly. Those skilled
in the art would readily understand that other modifications can be made to the operational
state of the internal combustion engine when utilizing the novel system disclosed.
[0275] The temperature control system of the present invention provides additional consequential
benefits. By providing the means to increase the actual temperature of the TCF fluid
in cold temperature environments (see Fig. 23), the physical size of the heater can
be decreased. This is because the hotter the temperature of the TCF, the less heater
core surface area required to extract the necessary amounts of heat energy from the
TCF to warm the vehicle's passenger compartment.
[0276] An engine employing the EETC valve and one or more restrictor/shutoff valves will
have less engine out exhaust emissions and greater fuel economy than a prior art engine
cooling system employing only a prior art thermostat. Since the reduction in emissions
and improvement in fuel economy will be greatest in cold temperature environments
and during engine start-up, the invention offers the possibility to significantly
reduce vehicle exhaust pollution levels. An engine incorporating the novel EETC and
restrictor valves should also produce increased horsepower at lower temperatures.
[0277] Currently, the United States Environmental Protection Agency conducts its emissions
testing in relatively warm ambient air temperatures. Testing in these warm temperatures
does not expose the actual polluting effects of vehicles when they are started and
operated in cold temperature climates. For example, the current testing procedure
requires that a vehicle "cold soak" in an ambient air temperature of 68 to 80 degrees
Fahrenheit (20 °C - 26.7 °C) for 12 hours. That is, the vehicle must sit unused for
12 hours in this temperature environment so that the engine parts stabilize to that
ambient air temperature. Then, the engine is started and emissions are measured to
verify that they are within acceptable limits. Since the ambient air temperature is
relatively warm. the engine and catalytic converter quickly heat up to an efficient
operating temperature. Most vehicles today would fail the current emissions standards
if the "cold soak" test was required to be performed in significantly lower ambient
air temperatures, such as 28 to 40 degrees Fahrenheit (-2.2 °C to 4.4 °C). An engine
employing the EETC valve along with restrictor/shutoff valves or the engine block
by-pass system illustrated in Figs. 44A and 44B, will show a substantial improvement
over current systems towards meeting current emissions standards under a "cold soak"
test at such lower ambient air temperatures.
[0278] The inventions disclosed above provide an effective way to harness the underestimated
one-third of heat energy handled by a vehicle's cooling system (see the excerpt in
the Background of the Invention from page 169 of the
Goodheart-Willcox Automotive Encyclopedia). The EETC valve, the restrictor/shutoff valve, and the use of programmed curves
for determining their states are the basic building blocks for an engine temperature
control system that effectively tailors the performance of the engine cooling system
with the overall needs of the vehicle.
[0279] The present invention may be embodied in other specific forms without departing from
the spirit or essential attributes thereof and, accordingly, reference should be made
to the appended claims, rather than to the foregoing specification, as indicating
the scope of the invention.
1. A temperature control system in a liquid cooled internal combustion engine equipped
with a radiator and an engine, the system comprising:
a flow control valve for controlling flow of a temperature control fluid along a passageway
which is in communication with the radiator, the flow control valve having a first
state for inhibiting said flow and a second state for allowing said flow;
a first sensor for sensing a temperature indicative of engine oil temperature and
for providing an engine oil temperature signal;
a second sensor for sensing a temperature indicative of the temperature control fluid
temperature and for providing a temperature control fluid temperature signal; and
an engine computer for receiving the engine oil temperature signal and the temperature
control fluid temperature signal, characterized by:
the engine computer comparing the engine oil temperature signal to a predetermined
engine oil temperature value, the engine computer determining a temperature control
fluid temperature value as a function of at least the comparison of the engine oil
temperature signal to the predetermined engine oil temperature value, the engine computer
comparing the temperature control fluid temperature signal to the temperature control
fluid temperature value to determine a desired valve state, the engine computer providing
signals for controlling the actuation of the flow control valve between its first
and second states as a function of at least the comparison of the temperature control
fluid temperature signal to the temperature control fluid temperature value.
2. A temperature control system according to claim 1 wherein the engine computer controls
the flow control valve so that the valve is in its first state when the engine oil
temperature signal is less than the predetermined engine oil temperature value and
in its second state when the engine oil temperature signal is greater than the predetermined
engine oil temperature value and the temperature control fluid temperature signal
is greater than the temperature control fluid temperature value.
3. A temperature control system according to claim 1 or 2 further comprising:
a sensor for sensing ambient air temperature and for providing an ambient air temperature
signal indicative thereof; and
the engine computer receiving the ambient air temperature signal, the engine computer
determining the predetermined engine oil temperature value by comparing the ambient
air temperature signal to a set of engine oil temperature values which vary as a function
of ambient air temperature.
4. A temperature control system according to claim 1, 2 or 3
wherein the engine computer determines the temperature control fluid temperature
value by adjusting a predetermined temperature control fluid temperature value based
on the comparison of the engine oil temperature signal to the predetermined engine
oil temperature value.
5. A temperature control system according to claim 1 further comprising:
a sensor for measuring ambient air temperature and for providing a signal indicative
thereof;
wherein the engine computer determines the temperature control fluid temperature
value by selecting a temperature control curve based on the comparison of the engine
oil temperature signal to the predetermined engine oil temperature value, the temperature
control curve being defined by a set of points having an ambient air temperature component
and a temperature control fluid temperature component, a first curve being selected
when the engine oil temperature signal is at or below the predetermined engine oil
temperature value, and a second curve being selected when the engine oil temperature
signal is above the predetermined engine oil temperature value, the engine computer
comparing the ambient air temperature signal and the temperature control fluid temperature
signal to the selected curve to determine the desired valve state.
6. A temperature control system according to claim 5 wherein the second curve is generally
a shifted down version of the first curve when ambient air temperature is plotted
on an x-axis and temperature control fluid is plotted on a y-axis.
7. A temperature control system according to claim 5 wherein at least a portion of the
first and second curves have a generally non-zero slope in an area defined by a temperature
control fluid temperature range from about 100 degrees Fahrenheit (37.8°C) to about
260 degrees Fahrenheit (126.7°C) and an ambient air temperature range from about 100
degrees Fahrenheit (37.8°C) to about zero degrees Fahrenheit (-17.8°C).
8. A temperature control system according to claim 5 wherein at least a portion of the
first and second curves have a generally zero slope in an area where ambient air temperature
is generally less than zero degrees Fahrenheit (-17.8°C).
9. A temperature control system according to claim 5 wherein the first curve is generally
similar to the second curve, except for a bump-up region in the first curve in a selected
range of ambient air temperatures when ambient air temperature is plotted on the x-axis
and temperature control fluid is plotted on the y-axis.
10. A temperature control system according to claim 3 further comprising:
means for storing the set of engine oil temperature values for a range of ambient
air temperatures.
11. A temperature control system according to claim 5 further comprising:
a second flow control valve for controlling flow of the temperature control fluid
through a second passageway, the second flow control valve having a first state for
restricting said flow and a second state for allowing unrestricted flow, and
wherein the engine computer sends control signals to place the second valve in
the first state when the ambient air temperature signal and the temperature control
fluid temperature signal define a point located above the selected curve, and sends
said control signals to place the valve in the second state when the measured temperature
signals define a point located below the selected curve.
12. A temperature control system according to claim 6 wherein the second curve is shifted
down from the first curve by about 50 degrees Fahrenheit (27.8°C).
13. A temperature control system according to claim 9 wherein the bump-up region is from
about 110 degrees Fahrenheit (43.3°C) to about 20 degrees Fahrenheit (-6.7°C).
14. A temperature control system according to claim 9 wherein the bump-up region has a
maximum bump-up of about 65 degrees Fahrenheit (36.1°C) and becomes smaller as the
ambient air temperature decreases.
15. A temperature control system according to claim 13 wherein the bump-up region has
a maximum bump-up of about 65 degrees Fahrenheit (36.1°C) at an ambient temperature
of about 85 degrees Fahrenheit (29.4°C) and becomes smaller as the ambient air temperature
approaches 20 degrees Fahrenheit (-6.7°C).
16. A temperature control system according to claim 1 wherein the engine computer places
the valve in its second state when the engine oil temperature is above the predetermined
engine oil temperature value and the temperature control fluid temperature is greater
than a first temperature limit.
17. A temperature control system according to claim 5 further comprising:
means for storing engine oil temperature values for a range of ambient air temperatures
and outputting a selected engine oil temperature value for the measured ambient air
temperature, wherein the predetermined engine oil temperature value is the selected
engine oil temperature value at the current measured ambient air temperature.
18. A temperature control system according to claim 16 wherein the first temperature limit
is about 170°F (76.67°C).
19. A temperature control system according to claim 3 wherein the temperature control
fluid temperature value varies as a function of ambient air temperature, and wherein
the engine computer determines the temperature control fluid temperature value based
upon the ambient air temperature signal and the comparison of the engine oil temperature
signal to the predetermined engine oil temperature value.
20. A temperature control system according to claim 1 wherein if the engine oil temperature
is less than the predetermined engine oil temperature value, the engine maintains
the valve in its first state until the engine oil temperature reaches the predetermined
engine oil temperature value and while the temperature control fluid temperature is
less than a second temperature limit.
21. A temperature control system according to claim 1 wherein said flow control valve
controls temperature control fluid flow between the engine and the radiator.
22. A temperature control system according to claim 1, 3, 4, 5 or 19 further comprising:
a heat exchanger in an oil pan, the heat exchanger having an inlet and an outlet;
a conduit connected to the inlet of the heat exchanger and communicates with the passageway;
and
a water pump having an inlet connected to the radiator and the outlet of the heat
exchanger, and an outlet connected to the passageway,
wherein at least one state of the flow control valve enables flow of at least
a portion of the temperature control fluid to the heat exchanger.
23. A temperature control system according to claim 22 wherein the heat exchanger is a
heat conductive tube.
24. A temperature control system according to claim 1, 3, 4, 5, 10, 17 or 19 further comprising
an altitude sensor and means for adjusting the predetermined engine oil temperature
value in accordance with the altitude.
25. A temperature control system according to claim 1, 2, 3, 4, 5, 10, 17 or 19 wherein
the temperature indicative of the engine oil temperature is the temperature of the
engine oil.
26. A temperature control system according to claim 20 wherein the second temperature
limit is about 240°F (115.6°C).
27. A temperature control system according to claim 25 wherein the engine includes an
oil pan, and wherein the engine oil temperature is the oil temperature in the oil
pan.
28. A temperature control system according to claim 1, 2, 3, 4, 5, 10, 17 or 19 wherein
the engine also includes an engine block, and wherein the temperature indicative of
the engine oil temperature is the temperature of the engine block.
29. A temperature control system according to any of claims 1, 2, 3, 4, 5, 10, 16 to 20,
25, 26 and 27 wherein the flow control valve is a hydraulically controlled diaphragm
valve.
30. A temperature control system according to any of claims 1, 2, 3, 4, 5, 10, 16 to 20,
25, 26 and 27 wherein the flow control valve is an electronically assisted thermostat.
31. A temperature control system according to claim 30 wherein the electronically assisted
thermostat includes
a housing;
a valve member reciprocatable within the housing between the open state and the
closed state;
a return spring for biasing the valve member into the open state;
a wax pellet attached to the valve member and having a solid state and a liquid
state, the wax pellet maintaining the valve member in its closed state when the wax
pellet is in its solid state, and the wax pellet allowing the return spring to bias
the valve member into its open position when the wax pellet is in its liquid state;
a heating element mounted within the housing and adapted to transfer heat to wax
pellet, the heating element receiving an electrical transmission for producing heating
of the heating element; and
wherein the signals from the engine computer control the electrical transmission
to the heating element.
32. A temperature control system according to claim 31 wherein the heating element is
a heating coil looped around the wax pellet.
33. A temperature control system according to claim 31 wherein the heating element is
disposed within the wax pellet.
34. A temperature control system according to claim 31 wherein the wax pellet has a melting
point of approximately 220°F (104.4 °C).
35. A temperature control system according to claim 31 wherein the engine computer controls
the electrical transmission so as to produce heating of the heating element when the
engine oil temperature signal is greater than the predetermined engine oil temperature
value.
36. A temperature control system according to claim 4 wherein the engine computer determines
an amount that the engine oil temperature signal exceeds the predetermined engine
oil temperature value and wherein the engine computer adjusts the predetermined temperature
control fluid temperature value as a function of the amount of said excess.
37. A temperature control system according to claim 4 wherein the engine computer adjusts
the predetermined temperature control fluid temperature value downward a preset amount
for each one degree that the engine oil temperature signal exceeds the predetermined
engine oil temperature value.
38. A temperature control system according to claim 37 wherein the preset amount of adjustment
is a value within a range of between about one degree Fahrenheit (0.56 °C) and about
ten degrees Fahrenheit (5.6 °C).
39. A temperature control system according to claim 1 further comprising:
a sensor for sensing an actual ambient air temperature and for providing a signal
indicative thereof; and
wherein the engine computer receives the actual ambient air temperature signal,
the engine computer determining the predetermined engine oil temperature value based
on the ambient air temperature signal, the predetermined engine oil temperature value
varying as a function of the actual ambient air temperature, the engine computer adjusting
a set of predetermined values based on the comparison of the engine oil temperature
signal to the predetermined engine oil temperature value, the set of predetermined
values having a temperature control fluid temperature component and an ambient air
temperature component, the set of predetermined values defining a curve which determines
the state of the flow control valve, and wherein the engine computer determines the
temperature control fluid temperature value by comparison of the ambient air temperature
signal to the adjusted set of predetermined values the flow control valve being in
the first state when the temperature control fluid temperature signal is less than
the temperature control fluid temperature value, and the flow control valve being
in the second state when the temperature control fluid temperature signal is greater
than the temperature control fluid temperature value.
40. A temperature control system according to claim 39 wherein the engine computer determines
an engine load condition based on a comparison of the engine oil temperature signal
to the predetermined engine oil temperature value, and wherein the engine computer
adjusts the temperature control fluid temperature component of the set of predetermined
values as a function of the load condition.
41. A temperature control system according to claim 39 wherein the engine computer determines
an amount that the engine oil temperature signal exceeds the predetermined engine
oil temperature value and wherein the engine computer adjusts the temperature control
fluid temperature component of the set of predetermined values as a function of the
amount of said excess.
42. A temperature control system according to claim 39 wherein the engine computer adjusts
the temperature control fluid temperature component of the set of predetermined values
downward a preset amount for each one degree that the engine oil temperature signal
exceeds the predetermined engine oil temperature value.
43. A temperature control system according to claim 39 wherein the engine computer adjusts
the temperature control fluid temperature component of the set of predetermined values
downward a preset amount for each three degrees Fahrenheit (1.67°C) that the engine
oil temperature signal exceeds the predetermined engine oil temperature value.
44. A temperature control system according to claim 39 wherein the engine computer adjusts
the temperature control fluid temperature component of the set of predetermined values
downward a preset amount for each five degrees Fahrenheit (2.78°C) that the engine
oil temperature signal exceeds the predetermined engine oil temperature value.
45. A temperature control system according to claim 39 wherein the engine computer determines
a rate of change of the engine oil temperature signal and wherein the engine computer
adjusts the temperature control fluid temperature component of the set of predetermined
values as a function of the rate of change.
46. A temperature control system according to claim 39 wherein the engine computer determines
an adjustment factor for adjusting the temperature control fluid temperature component
of the set of predetermined values, the adjustment factor varying as a function of
ambient air temperature, and wherein the engine computer adjusts the temperature control
fluid temperature component of the set of predetermined values according to the adjustment
factor.
47. A temperature control system according to claim 39 wherein the engine includes an
intake manifold and wherein the engine computer receives signals from the intake manifold
indicative of an intake manifold vacuum pressure, and wherein the engine computer
determines an engine load condition based on the intake manifold vacuum pressure and
adjusts the temperature control fluid temperature component of the set of predetermined
values in accordance with the load condition.
48. A temperature control system according to claim 42 wherein the preset amount of adjustment
is a value within a range of between about one degree Fahrenheit (0.56°C) and about
ten degrees Fahrenheit (5.6°C).
49. A temperature control system according to claim 45 wherein the adjusting of the temperature
control fluid temperature component of the set of predetermined values varies linearly
with the rate of change of the actual engine oil temperature.
50. A temperature control system according to claim 45 wherein the adjusting of the temperature
control fluid temperature component of the set of predetermined values varies nonlinearly
with the rate of change of the actual engine oil temperature.
51. A temperature control system according to claim 46 wherein the adjustment factor varies
linearly with ambient air temperature.
52. A temperature control system according to claim 46 wherein the adjustment factor varies
nonlinearly with ambient air temperature.
53. A temperature control system according to claim 47 wherein the engine load condition
is a high load condition when the intake manifold vacuum pressure is less than about
4 inches Hg (13.55 kPa) and wherein the engine computer adjusts the temperature control
fluid temperature component of the set of predetermined values downward a first preset
amount.
54. A temperature control system according to claim 47 wherein the engine load condition
is an extremely high load condition when the intake manifold vacuum pressure is less
than about 2 inches Hg (6.77 kPa) and wherein the engine computer adjusts the temperature
control fluid temperature component of the set of predetermined values downward a
second preset amount.
55. A temperature control system according to claim 48 wherein the preset amount of adjustment
is about three degrees Fahrenheit (1.67°C).
56. A temperature control system according to claim 55 wherein the preset amount of adjustment
is about two degrees Fahrenheit (1.22°C).
57. A temperature control system according to claim 56 wherein the preset amount of adjustment
is one degree Fahrenheit (0.56°C).
58. A temperature control system according to claim 1 wherein the passageway communicates
with a cylinder head and an intake manifold and wherein said flow control valve controls
flow at least between the cylinder head and the intake manifold.
59. A method for controlling the state of a flow control valve in an internal combustion
engine, the flow control valve controlling flow of temperature control fluid through
a passageway and having a first state for inhibiting the flow of temperature control
fluid through the passageway and a second state for allowing the flow of temperature
control fluid through the passageway, the method comprising the steps of:
receiving a temperature signal indicative of an engine oil temperature;
receiving a temperature control fluid temperature signal indicative of a temperature
control fluid temperature; characterized by the steps of:
comparing the engine oil temperature signal to a predetermined engine oil temperature
value;
determining a temperature control fluid temperature value based at least on the comparison
of the engine oil temperature signal to the predetermined engine oil temperature value;
comparing the temperature control fluid temperature signal to the temperature control
fluid temperature value; and
actuating the flow control valve between its first and second states based on at least
the comparison of the temperature control fluid temperature signal to the temperature
control fluid temperature value.
60. A method according to claim 59 further comprising the step of providing signals for
actuating the flow control valve.
61. A method according to claim 59 wherein the engine oil signal is maintained substantially
at the predetermined engine oil temperature value by actuating the flow control valve
into its second state when the temperature control fluid temperature signal is greater
than the temperature control fluid temperature value and by actuating the flow control
valve into its first state when the temperature control fluid temperature signal is
less than the temperature control fluid temperature value.
62. A method according to claim 59 wherein the temperature control fluid value is determined
so as to drive the engine oil temperature toward the predetermined engine oil temperature
value.
63. A method according to claim 59 further comprising the step of receiving a temperature
signal indicative of the ambient air temperature, and wherein the step of determining
the temperature control fluid temperature value also involves comparing the ambient
air temperature signal to a temperature control curve having an ambient air temperature
component and a temperature control fluid temperature component.
64. A method according to claim 63 wherein at least a portion of the temperature control
curve has a generally non-zero slope at least a portion of which is in an area defined
by a temperature control fluid temperature range from about 100 degrees Fahrenheit
(37.8°C) to about 260 degrees Fahrenheit (126.7°C) and an ambient air temperature
range from about 100 degrees Fahrenheit (37.8°C) to about zero degrees Fahrenheit
(-17.8°C).
65. A method according to claim 63 wherein at least a portion of the temperature control
curve has a generally zero slope a portion of which is in an area where ambient air
temperature is generally less than zero degrees Fahrenheit (-17.8°C).
66. A method according to claim 63 wherein there are at least two temperature control
curves, the second curve being generally a shifted down version of the first curve
when ambient air temperature is plotted on the x-axis and temperature control fluid
temperature is plotted on the y-axis.
67. A method according to claim 66 wherein the first curve is generally similar to the
second curve, except for a bump-up region in the first curve in a selected range of
ambient air temperatures when ambient air temperature is plotted on the x-axis and
temperature control fluid is plotted on the y-axis.
68. A method according to claim 67 wherein the bump-up region is from about 110 degrees
Fahrenheit (43.3°C) to about 20 degrees Fahrenheit (-6.7°C).
69. A method according to claim 67 wherein the bump-up region has a maximum bump-up of
about 65 degrees Fahrenheit (36.1°C) and becomes smaller as the ambient air temperature
decreases.
70. A method according to claim 68 wherein the bump-up region has a maximum bump-up of
about 65 degrees Fahrenheit (36.1°C) at an ambient temperature of about 85 degrees
Fahrenheit (29.4°C) and becomes smaller as the ambient air temperature approaches
20 degrees Fahrenheit (-6.7°C).
71. A method according to claim 59 further comprising the step of
maintaining the valve in the first state at engine start-up until the engine oil
temperature signal reaches the predetermined engine oil temperature value, regardless
of the temperature of the temperature control fluid, the engine computer causing the
valve to actuate into the second state when the engine oil temperature signal reaches
the predetermined engine oil temperature value.
72. A method according to claim 59 or 71 further comprising the steps of:
storing the optimum engine oil temperatures for a range of ambient air temperatures;
and
measuring the ambient air temperature with a sensor and determining the optimum engine
oil temperature for the measured ambient air temperature, wherein the predetermined
engine oil temperature value is the optimum engine oil temperature at the current
measured ambient air temperature.
73. A method according to claim 59 further comprising the steps of:
receiving an ambient air temperature signal; and
determining a predetermined engine oil temperature value for the ambient air temperature
signal, said predetermined engine oil temperature value varying as a function of the
ambient air temperature.
74. A method according to claim 73 wherein actuation of the valve into the first state
inhibits fluid flow to a radiator and permits flow to an oil pan.
75. A method according to claim 73 wherein actuation of the valve into the first state
permits flow to an intake manifold.
76. A method according to claim 59 further comprising the step of:
receiving a temperature signal indicative of the ambient air temperature;
wherein the temperature control fluid temperature value varies as a function of
the ambient air temperature, and wherein the step of determining a temperature control
fluid temperature value includes determining the temperature control fluid value corresponding
to the ambient air temperature signal.
77. A method according to claim 59 wherein the valve is actuated to permit flow of the
temperature control fluid through a cylinder head water jacket and an oil pan water
jacket and prevent flow through a radiator when the engine oil temperature signal
is less than the predetermined engine oil temperature value, whereby heat from the
cylinder head is transferred to oil pan by the temperature control fluid, and
wherein the valve is actuated to permit flow of the temperature control fluid through
an engine block water jacket and the cylinder head water jacket when the engine oil
temperature signal is greater than the predetermined engine oil temperature value.
78. A method according to claim 77 wherein the engine furthermore includes a water jacket
in an intake manifold, the method further comprising the step of permitting flow of
the temperature control fluid through the intake manifold when the engine oil temperature
signal is less than the predetermined engine oil temperature value.
79. A method according to claim 59 further comprising the steps of:
receiving a signal indicative of the temperature of the ambient air;
comparing the ambient air temperature signal to a set of predetermined engine oil
temperature values which vary as a function of the ambient air temperature; and
determining a predetermined engine oil temperature value which corresponds to the
received ambient air temperature signal.
80. A method according to claim 59, 61, 62, 73, 76, 77 or 79 wherein the temperature indicative
of the engine oil is the engine oil temperature.
81. A method according to claim 80 wherein the engine oil temperature is the oil temperature
in an oil pan.
82. A method according to claim 59, 61, 62, 72, 73, 76, 77 or 79 further comprising the
steps:
measuring the altitude with an altitude sensor; and
adjusting the predetermined engine oil temperature value in accordance with the sensed
altitude.
83. A method according to claim 59, 61, 62, 72, 73, 76, or 79 wherein the engine is further
equipped with a heat exchanger in an oil pan, the heat exchanger having an inlet and
an outlet; a water jacket having an outlet connected to the inlet of the heat exchanger;
and a water pump having an inlet connected to the outlet of the radiator and the outlet
of the heat exchanger, and an outlet connected to the inlet of the water jacket, the
method further comprising the step of
channeling at least a portion of the temperature control fluid flow from the water
jacket through the heat exchanger when the engine oil temperature signal is less than
the predetermined engine oil temperature value.
84. A method according to claim 59 wherein the step of determining a temperature control
fluid temperature value comprises the steps of:
providing a predetermined temperature control fluid temperature value; and
adjusting the predetermined temperature control fluid temperature value based on the
comparison of the engine oil temperature signal to the predetermined engine oil temperature
value.
85. A method according to claim 84 wherein the predetermined temperature control fluid
temperature value is selected from a plurality of predetermined temperature control
fluid temperature values.
86. A method according to claim 84 wherein the adjusting of the predetermined temperature
control fluid temperature value comprises the steps of:
determining the amount that the engine oil temperature signal exceeds the predetermined
engine oil temperature value;
determining an adjustment factor for adjusting the predetermined temperature control
fluid temperature value based on the amount of said excess; and
combining the adjustment factor and the predetermined temperature control fluid temperature
value to form an adjusted temperature control fluid temperature value.
87. A method according to any of claims 59 to 79 and 84 to 86 wherein the flow control
valve is an electronically assisted thermostat and wherein the step of actuating the
flow control valve involves sending an electrical transmission to a heating element
so as to produce heating of the element, melting a wax pellet by exposing it to the
heated element, the melting of the wax producing actuation of the valve.
88. A method according to claim 87 wherein the electrical transmission to the heating
element is calibrated to begin to open the valve at a temperature of about 220°F (104.4°C).
89. A method according to claim 84 wherein said first state inhibits fluid flow to the
radiator.
90. A method according to claim 84 wherein said first state permits flow to the intake
manifold.
91. A method according to claim 88 wherein the valve is completely open at a temperature
of about 240°F (115.6°C).
92. A method according to claim 84 wherein the adjusting of the predetermined temperature
control fluid temperature value comprises the steps of:
determining a rate of change of the engine oil temperature signal with respect to
the predetermined engine oil temperature value;
determining an adjustment factor for adjusting the predetermined temperature control
fluid temperature value based on the rate of change of the engine oil temperature
signal; and
combining the adjustment factor and the predetermined temperature control fluid temperature
value to form the adjusted temperature control fluid temperature value.
93. A method according to claim 84 wherein the adjusting of the predetermined temperature
control fluid temperature value comprises the steps of:
determining an adjustment factor for adjusting the predetermined temperature control
fluid temperature value based on the ambient air temperature signal, the adjustment
factor varying as a function of at least ambient air temperature; and
combining the adjustment factor and the predetermined temperature control fluid temperature
value to form the adjusted temperature control fluid temperature value.
94. A method according to claim 59 wherein the predetermined engine oil temperature value
is selected from a set of predetermined engine oil temperature values.
95. A method according to claim 94 wherein the set of predetermined values defines a curve,
at least a portion of the curve having a non-zero slope.
96. A method according to claim 87 wherein the heating element is controlled so as to
open the valve at a temperature control fluid temperature above 160°F (71.1°C)).
97. A method according to claim 84 wherein the determination of the adjustment factor
further comprises the steps of:
determining the amount that the actual engine oil temperature exceeds the desired
engine oil temperature; and
determining an adjustment factor based on the amount of excess.
98. A method according to claim 59 wherein before actuating the flow control valve, the
method comprises the step of comparing the temperature control fluid temperature signal
to an upper temperature limit, and wherein the flow control valve is actuated into
the first state when the engine oil temperature signal is below the predetermined
engine oil temperature value and the temperature control fluid temperature signal
is above the temperature control fluid temperature value and below the upper temperature
limit.
99. A method according to claim 59 wherein before actuating the flow control valve, the
method comprises the step of comparing the temperature control fluid temperature signal
to a lower temperature limit, and wherein the flow control valve is actuated into
the second state when the engine oil temperature signal is above the predetermined
engine oil temperature value and the temperature control fluid temperature signal
is above the lower temperature limit.
1. Temperatur-Steuersystem in einem flüssigkeitsgekühlten Innenverbrennungsmotor, der
mit einem Kühler und einem Motor ausgestattet ist, wobei das System aufweist: ein
Durchfluss-Steuerventil zur Steuerung des Durchflusses eines Temperatursteuerfluids
durch einen Durchgang, der mit dem Kühler in Verbindung steht, wobei das Durchfluss-Steuerventil
einen ersten Zustand zur Verhinderung des Durchflusses und einen zweiten Zustand zur
Zulassung des Durchflusses hat;
einen ersten Sensor zum Erfassen einer Temperatur, die auf eine Motoröltemperatur
hinweist, und zum Bereitstellen eines Signales der Motoröltemperatur;
einen zweiten Sensor zum Erfassen einer Temperatur, die auf die Temperatur des
Temperatursteuerfluids hinweist, und zum Bereitstellen eines Temperatursignales des
Temperatursteuerfluids; und
einem Motorcomputer zum Empfang des Signales der Motoröltemperatur und des Temperatursignales
des Temperatursteuerfluids,
dadurch gekennzeichnet dass:
der Motorcomputer, der das Signal der Motoröltemperatur mit einem vorbestimmten Wert
der Motoröltemperatur vergleicht, dass der Motorcomputer einen Temperaturwert des
Temperatursteuerfluids als Funktion von zumindest dem Vergleich des Signals von der
Motoröltemperatur mit dem vorbestimmten Wert der Motoröltemperatur bestimmt, dass
der Motorcomputer das Temperatursignal des Temperatursteuerfluids mit dem Temperaturwert
des Temperatursteuerfluids vergleicht, um einen gewünschten Ventilzustand zu bestimmen,
dass der Motorcomputer Signale zur Steuerung der Betätigung des Durchfluss-Steuerventiles
zwischen seinem ersten und zweiten Zustand als Funktion von mindestens dem Vergleich
des Temperatursignales des Temperatursteuerfluids mit dem Temperaturwert des Temperatursteuerfluids
bereitstellt.
2. Temperatur-Steuersystem nach Anspruch 1, wobei der Motorcomputer das Durchfluss-Steuerventil
so steuert, dass sich das Ventil in seinem ersten Zustand befindet, wenn das Signal
der Motoröltemperatur kleiner als der vorbestimmte Wert der Motoröltemperatur ist,
und dass sich das Ventil in seinem zweiten Zustand befindet, wenn das Signal der Motoröltemperatur
größer als der vorbestimmte Wert der Motoröltemperatur ist und das Temperatursignal
des Temperatursteuerfluids größer als der Temperaturwert des Temperatursteuerfluids
ist.
3. Temperatur-Steuersystem nach Anspruch 1 oder 2, das weiterhin aufweist:
einen Sensor, um die Umgebungstemperatur zu erfassen und um ein Signal, das auf die
Umgebungslufttemperatur hinweist, bereitzustellen ; und
den Motorcomputer, der das Signal der Umgebungslufttemperatur aufnimmt, und wobei
der Motorcomputer den vorbestimmten Wert der Motoröltemperatur durch Vergleichen des
Signals der Umgebungslufttemperatur mit einem Satz von Werten der Motoröltemperatur
bestimmt, welche sich als eine Funktion der Umgebungslufttemperatur verändern.
4. Temperatur-Steuersystem nach Anspruch 1, 2 oder 3, wobei der Motorcomputer einen Temperaturwert
des Temperatursteuerfluids durch Einstellen eines vorbestimmten Temperaturwertes des
Temperatursteuerfluids basierend auf dem Vergleich des Signals von der Motoröltemperatur
mit dem vorbestimmten Wert der Motoröltemperatur bestimmt.
5. Temperatur-Steuersystem nach Anspruch 1, das weiterhin aufweist:
einen Sensor zur Messung der Umgebungstemperatur und zum Bereitstellen eines auf diese
hinweisenden Signales;
wobei der Motorcomputer den Temperaturwert des Temperatursteuerfluids durch Auswählen
einer Temperatursteuerkurve basierend auf dem Vergleich des Signales der Motoröltemperatur
mit einem vorbestimmten Wert der Motoröltemperatur bestimmt, wobei die Temperatursteuerkurve
durch einen Satz von Punkten definiert wird, der eine Temperaturkomponente der Umgebungsluft
und eine Temperaturkomponente des Temperatursteuerfluids aufweist, wobei eine erste
Kurve ausgewählt wird, wenn das Signal der Motoröltemperatur an oder unterhalb eines
vorbestimmten Wertes der Motoröltemperatur ist, und eine zweite Kurve ausgewählt wird,
wenn das Signal der Motoröltemperatur oberhalb eines vorbestimmten Wertes der Motoröltemperatur
ist, wobei der Motorcomputer das Signal der Umgebungslufttemperatur und das Temperatursignal
des Temperatursteuerfluids mit der ausgewählten Kurve vergleicht, um den gewünschten
Ventilzustand zu bestimmen.
6. Temperatur-Steuersystem nach Anspruch 5, wobei die zweite Kurve im Allgemeinen eine
nach unten verschobene Version der ersten Kurve ist, wenn die Umgebungslufttemperatur
auf der X-Achse und das Temperatursteuerfluid auf der Y-Achse aufgetragen ist.
7. Temperatur-Steuersystem nach Anspruch 5, wobei mindestens ein Teil der ersten und
der zweiten Kurve eine Steigung von im Allgemeinen ungleich Null in einem Gebiet aufweist,
das durch einen Temperaturbereich des Temperatursteuerfluids von ungefähr 100 Grad
Fahrenheit (37,8°C) bis ungefähr 260 Grad Fahrenheit (126,7°C) sowie durch einen Bereich
der Umgebungslufttemperatur von ungefähr 100 Grad Fahrenheit (37,8°C) bis ungefähr
Null Grad Fahrenheit (-17,8°C) gekennzeichnet ist.
8. Temperatur-Steuersystem nach Anspruch 5, wobei mindestens ein Teil der ersten und
der zweiten Kurve eine Steigung von im Allgemeinen gleich Null in einem Gebiet aufweist,
wo die Umgebungslufttemperatur im Allgemeinen kleiner als Null Grad Fahrenheit (-17,8°C)
ist.
9. Temperatur-Steuersystem nach Anspruch 5, wobei die erste Kurve bis auf eine Erhöhungs-Region
in der ersten Kurve in einem ausgewählten Bereich der Umgebungslufttemperaturen im
Allgemeinen ähnlich der zweiten Kurve ist, wenn die Umgebungslufttemperatur auf der
X-Achse und das Temperatursteuerfluid auf der Y-Achse aufgetragen ist.
10. Temperatur-Steuersystem nach Anspruch 3, das weiterhin aufweist:
Mittel zum Speichern des Satzes von Motoröltemperaturwerten für einen Bereich von
Umgebungslufttemperaturen.
11. Temperatur-Steuersystem nach Anspruch 5, das weiterhin aufweist:
ein zweites Durchfluss-Steuerventil zum Steuern des Durchflusses von Temperatursteuerfluid
durch einen zweiten Durchgang, wobei das zweite Durchfluss-Steuerventil einen ersten
Zustand zur Begrenzung des Durchflusses und einen zweiten Zustand zum Zulassen eines
uneingeschränkten Zuflusses aufweist, und
wobei der Motorcomputer Steuersignale sendet, um das zweite Ventil in den ersten
Zustand zu versetzen, wenn das Signal der Umgebungslufttemperatur und das Temperatursignal
des Temperatursteuerfluids einen Punkt definieren, der oberhalb der ausgewählten Kurve
liegt, und das Steuersignal sendet, um das Ventil in den zweiten Zustand zu versetzen,
wenn die gemessenen Temperatursignale einen Punkt definieren, der unterhalb der ausgewählten
Kurve liegt.
12. Temperatur-Steuersystem nach Anspruch 6, wobei die zweite Kurve gegenüber der ersten
Kurve um etwa 50 Grad Fahrenheit (27,8° C) nach unten verschoben ist.
13. Temperatur-Steuersystem nach Anspruch 9, wobei sich die Erhöhungs-Region von ungefähr
110 Grad Fahrenheit (43,3° C) bis ungefähr 20 Grad Fahrenheit (-6,7° C) erstreckt.
14. Temperatur-Steuersystem nach Anspruch 9, wobei die Erhöhungs-Region eine maximale
Erhöhung von ungefähr 65 Grad Fahrenheit (36,1° C) aufweist und kleiner wird, wenn
die Umgebungslufttemperatur sinkt.
15. Temperatur-Steuersystem nach Anspruch 13, wobei die Erhöhungs-Region eine maximale
Erhöhung von ungefähr 65 Grad Fahrenheit (36,1° C) bei einer Umgebungstemperatur von
ungefähr 85 Grad Fahrenheit (29,4° C) aufweist und kleiner wird, wenn sich die Umgebungslufttemperatur
an 20 Grad Fahrenheit (-6,7° C) annähert.
16. Temperatur-Steuersystem nach Anspruch 1, wobei der Motorcomputer das Ventil in seinen
zweiten Zustand versetzt, wenn die Motoröltemperatur oberhalb des vorbestimmten Wertes
der Motoröltemperatur ist und die Temperatur des Temperatursteuerfluids größer als
eine erste Temperaturgrenze ist.
17. Temperatur-Steuersystem nach Anspruch 5, das weiterhin aufweist:
Mittel zum Speichern von Motoröltemperaturwerten für einen Bereich von Umgebungslufttemperaturen
und zum Ausgeben eines ausgewählten Motoröltemperaturwertes für die gemessene Umgebungslufttemperatur,
wobei der vorbestimmte Motoröltemperaturwert der ausgewählte Motoröltemperaturwert
bei der gegenwärtig gemessenen Umgebungslufttemperatur ist.
18. Temperatur-Steuersystem nach Anspruch 16, wobei die erste Temperaturgrenze etwa 170
Grad Fahrenheit (76,67° C) beträgt.
19. Temperatur-Steuersystem nach Anspruch 3, wobei sich der Temperaturwert des Temperatursteuerfluids
als eine Funktion der Umgebungslufttemperatur ändert und wobei der Motorcomputer den
Temperaturwert des Temperatursteuerfluids basierend auf dem Signal der Umgebungslufttemperatur
und auf dem Vergleich des Signals von der Motoröltemperatur mit dem vorbestimmten
Wert der Motoröltemperatur bestimmt.
20. Temperatur-Steuersystem nach Anspruch 1, wobei, wenn die Motoröltemperatur geringer
als der vorbestimmte Motoröltemperaturwert ist, der Motor das Ventil in seinem ersten
Zustand hält, bis die Motoröltemperatur den vorbestimmten Motoröltemperaturwert erreicht
und während die Temperatur des Temperatursteuerfluids kleiner als eine zweite Temperaturgrenze
ist.
21. Temperatur-Steuersystem nach Anspruch 1, wobei das Durchfluss-Steuerventil den Durchfluss
des Temperatursteuerfluids zwischen dem Motor und dem Kühler steuert.
22. Temperatur-Steuersystem nach den Ansprüchen 1, 3, 4, 5 oder 19, das weiterhin aufweist:
einen Wärmetauscher in einer Ölwanne, wobei der Wärmetauscher einen Einlass und einen
Auslass aufweist;
eine Rohrleitung, die mit dem Einlass des Wärmetauschers verbunden ist und mit dem
Durchgang in Verbindung steht; und
eine Wasserpumpe, die einen Einlass, der mit dem Kühler und dem Auslass des Wärmetauschers
verbunden ist, und einen Auslass aufweist, der mit dem Durchgang verbunden ist,
wobei mindestens ein Zustand des Durchfluss-Steuerventiles einen Durchfluss mindestens
eines Teils des Temperatursteuerfluids zu dem Wärmetauscher ermöglicht.
23. Temperatur-Steuersystem nach Anspruch 22, wobei der Wärmetauscher eine wärmeleitfähige
Röhre ist.
24. Temperatur-Steuersystem nach Anspruch 1, 3, 4, 5, 10, 17 oder 19, das weiterhin einen
Höhensensor und Mittel zum Einstellen des vorbestimmten Motoröltemperaturwertes in
Übereinstimmung mit der Höhe aufweist.
25. Temperatur-Steuersystem nach Anspruch 1, 2, 3, 4, 5, 10, 17 oder 19, wobei die auf
die Motoröltemperatur hinweisende Temperatur die Temperatur des Motoröls ist.
26. Temperatur-Steuersystem nach Anspruch 20, wobei die zweite Temperaturgrenze ungefähr
240 Grad Fahrenheit (115,6° C) beträgt.
27. Temperatur-Steuersystem nach Anspruch 25, wobei der Motor eine Ölwanne enthält, und
wobei die Motoröltemperatur die Öltemperatur in der Ölwanne ist.
28. Temperatur-Steuersystem nach Anspruch 1, 2, 3, 4, 5, 10, 17 oder 19, wobei der Motor
ebenfalls einen Motorblock enthält und wobei die Temperatur, die auf die Motoröltemperatur
hinweist, die Temperatur des Motorblocks ist.
29. Temperatur-Steuersystem nach einem der Ansprüche 1, 2, 3, 4, 5, 10, 16 bis 20, 25,
26 und 27, wobei das Durchfluss-Steuerventil ein hydraulisch das Durchfluss-Steuerventil
ein hydraulisch gesteuertes Membranventil ist.
30. Temperatur-Steuersystem nach einem der Ansprüche 1, 2, 3, 4, 5, 10, 16 bis 20, 25,
26 und 27, wobei das Durchfluss-Steuerventil ein elektronisch unterstütztes Thermostat
ist.
31. Temperatur-Steuersystem nach Anspruch 30, wobei das elektronisch unterstützte Thermostat
enthält:
ein Gehäuse;
ein Ventilbauteil, das innerhalb des Gehäuses zwischen dem offenen und dem geschlossenen
Zustand hin und her bewegbar ist;
eine Rückholfeder zum Vorspannen des Ventilbauteiles in den offenen Zustand;
ein Wachskügelchen, das an dem Ventilbauteil angebracht ist und einen festen und einen
flüssigen Zustand aufweist, wobei das Wachskügelchen das Ventilbauteil in seinem geschlossenen
Zustand hält, wenn sich das Wachskügelchen in seinem festen Zustand befindet, und
das Wachskügelchen die Rückholfeder das Ventilbauteil in seine offene Position vorspannen
lässt, wenn sich das Wachskügelchen in seinem flüssigen Zustand befindet;
ein Heizelement, das innerhalb des Gehäuses befestigt und ausgelegt ist, um Wärme
zum Wachskügelchen zu übertragen, wobei das Heizelement eine elektrische Übertragung
zur Erzeugung von Wärme des Heizelementes erhält; und
wobei die Signale von dem Motorcomputer die elektrische Übertragung zu dem Heizelement
steuern.
32. Temperatur-Steuersystem nach Anspruch 31, wobei das Heizelement eine Heizspule ist,
die sich um das Wachskügelchen herum windet.
33. Temperatur-Steuersystem nach Anspruch 31, wobei das Heizelement innerhalb des Wachskügelchens
angeordnet ist.
34. Temperatur-Steuersystem nach Anspruch 31, wobei das Wachskügelchen einen Schmelzpunkt
von angenähert 220 Grad Fahrenheit (104,4° C) aufweist.
35. Temperatur-Steuersystem nach Anspruch 31, wobei der Motorcomputer die elektrische
Übertragung steuert, um ein Aufheizen des Heizelementes hervorzurufen, wenn das Signal
der Motoröltemperatur größer als der vorbestimmte Motoröltemperaturwert ist.
36. Temperatur-Steuersystem nach Anspruch 4, wobei der Motorcomputer einen Betrag bestimmt,
um den das Signal der Motoröltemperatur den vorbestimmten Motoröltemperaturwert übersteigt,
und wobei der Motorcomputer den vorbestimmten Temperaturwert des Temperatursteuerfluids
als Funktion der Höhe des Überschusses abstimmt.
37. Temperatur-Steuersystem nach Anspruch 4, wobei der Motorcomputer den vorbestimmten
Temperaturwert des Temperatursteuerfluids um eine voreingestellte Höhe für jedes einzelne
Grad nach unten abstimmt, mit dem das Signal der Motoröltemperatur den vorbestimmten
Motoröltemperaturwert überschreitet.
38. Temperatur-Steuersystem nach Anspruch 37, wobei die voreingestellte Höhe der Abstimmung
einen Wert innerhalb eines Bereiches von zwischen ungefähr ein Grad Fahrenheit (0,56°
C) und ungefähr zehn Grad Fahrenheit (5,6° C) ist.
39. Temperatur-Steuersystem nach Anspruch 1, das weiterhin aufweist:
einen Sensor zum Erfassen einer aktuellen Umgebungstemperatur und zum Bereitstellen
eines darauf hinweisenden Signales; und
wobei der Motorcomputer das Signal der aktuellen Umgebungslufttemperatur erhält,
wobei der Motorcomputer den vorbestimmten Motoröltemperaturwert basierend auf dem
Signal der Umgebungslufttemperatur bestimmt, der vorbestimmte Motoröltemperaturwert
sich als eine Funktion der aktuellen Umgebungslufttemperatur ändert, der Motorcomputer
einen Satz vorbestimmter Werten basierend auf dem Vergleich von dem Signal der Motoröltemperatur
zu dem vorbestimmten Motoröltemperaturwert abstimmt, der Satz vorbestimmter Werte
eine Temperaturkomponente des Temperatursteuerfluids und eine Umgebungslufttemperaturkomponente
aufweist, der Satz vorbestimmter Werten eine Kurve bestimmt, die den Zustand des Durchfluss-Steuerventiles
definiert, und wobei der Motorcomputer den Temperaturwert des Temperatursteuerfluids
durch Vergleich des Signales der Umgebungslufttemperatur mit dem abgestimmten Satz
vorbestimmter Werte bestimmt, wobei sich das Durchfluss-Steuerventil in dem ersten
Zustand befindet, wenn das Temperatursignal des Temperatursteuerfluids geringer als
der Temperaturwert des Temperatursteuerfluids ist, und sich das Durchfluss-Steuerventil
in dem zweiten Zustand befindet, wenn Temperatursignal des Temperatursteuerfluids
größer als der Temperaturwert des Temperatursteuerfluids ist.
40. Temperatur-Steuersystem nach Anspruch 39, wobei der Motorcomputer eine Motorlastbedingung
basierend auf einem Vergleich des Signals von der Motoröltemperatur mit dem vorbestimmten
Motoröltemperaturwert bestimmt, und wobei der Motorcomputer die Temperaturkomponente
des Temperatursteuerfluids des Satzes vorbestimmter Werte als eine Funktion der Lastbedingung
abstimmt.
41. Temperatur-Steuersystem nach Anspruch 39, wobei der Motorcomputer eine Höhe bestimmt,
um die das Signal der Motoröltemperatur einen vorbestimmten Motoröltemperaturwert
übersteigt, und wobei der Motorcomputer die Temperaturkomponente des Temperatursteuerfluids
des Satzes vorbestimmter Werte als eine Funktion der Höhe des Überschusses abstimmt.
42. Temperatur-Steuersystem nach Anspruch 39, wobei der Motorcomputer die Temperaturkomponente
des Temperatursteuerfluids des Satzes vorbestimmter Werte nach unten mit einer voreingestellten
Höhe für jedes einzelne Grad abstimmt, um das das Signal der Motoröltemperatur den
vorbestimmten Motoröltemperaturwert überschreitet.
43. Temperatur-Steuersystem nach Anspruch 39, wobei der Motorcomputer die Temperaturkomponente
des Temperatursteuerfluids des Satzes vorbestimmter Werte herab mit einer voreingestellten
Höhe für jede drei Grad Fahrenheit (1,67°C) abstimmt, um die das Signal der Motoröltemperatur
den vorbestimmten Motoröltemperaturwert überschreitet.
44. Temperatur-Steuersystem nach Anspruch 39, wobei der Motorcomputer die Temperaturkomponente
des Temperatursteuerfluids des Satzes vorbestimmter Werte herab mit einer voreingestellten
Höhe für jede fünf Grad Fahrenheit (2,78°C) abstimmt, um die das Signal der Motoröltemperatur
den vorbestimmten Motoröltemperaturwert überschreitet.
45. Temperatur-Steuersystem nach Anspruch 39, wobei der Motorcomputer eine Änderungsgeschwindigkeit
des Signales der Motoröltemperatur bestimmt und wobei der Motorcomputer die Temperaturkomponente
des Temperatursteuerfluids des Satzes vorbestimmter Werte als eine Funktion der Änderungsgeschwindigkeit
abstimmt.
46. Temperatur-Steuersystem nach Anspruch 39, wobei der Motorcomputer einen Abstimmungsfaktor
zum Abstimmen der Temperaturkomponente des Temperatursteuerfluids des Satzes vorbestimmter
Werte bestimmt, wobei sich der Abstimmungsfaktor als eine Funktion der Umgebungslufttemperatur
verändert, und wobei der Motorcomputer die Temperaturkomponente des Temperatursteuerfluids
des Satzes vorbestimmter Werte gemäß dem Abstimmungsfaktor abstimmt.
47. Temperatur-Steuersystem nach Anspruch 39, wobei der Motor eine Ansaugleitung enthält
und wobei der Motorcomputer Signale von der Ansaugleitung erhält, die auf einen Unterdruck
in der Ansaugleitung hinweisen, und wobei der Motorcomputer eine Motorlastbedingung
basierend auf dem Unterdruck in der Ansaugleitung bestimmt und die Temperaturkomponente
des Temperatursteuerfluids des Satzes vorbestimmter Werte in Übereinstimmung mit der
Lastbedingung abstimmt.
48. Temperatur-Steuersystem nach Anspruch 42, wobei die festgesetzte Höhe der Abstimmung
ein Wert innerhalb eines Bereiches zwischen ungefähr ein Grad Fahrenheit (0,56°C)
und ungefähr zehn Grad Fahrenheit (5,6°C) ist.
49. Temperatur-Steuersystem nach Anspruch 45, wobei sich die Abstimmung der Temperaturkomponente
des Temperatursteuerfluids des Satzes vorbestimmter Werte linear mit der Änderungsgeschwindigkeit
der aktuellen Motoröltemperatur ändert.
50. Temperatur-Steuersystem nach Anspruch 45, wobei sich die Abstimmung der Temperaturkomponente
des Temperatursteuerfluids des Satzes vorbestimmter Werte nichtlinear mit der Änderungsgeschwindigkeit
der aktuellen Motoröltemperatur ändert.
51. Temperatur-Steuersystem nach Anspruch 46, wobei sich der Abstimmungsfaktor linear
mit der Umgebungslufttemperatur ändert.
52. Temperatur-Steuersystem nach Anspruch 46, wobei sich der Abstimmungsfaktor nichtlinear
mit der Umgebungslufttemperatur ändert.
53. Temperatur-Steuersystem nach Anspruch 47, wobei die Motorlastbedingung eine Hochlastbedingung
ist, wenn der Unterdruck in der Ansaugleitung geringer als ungefähr 4 Inches Hg (13,55
kPa) ist, und wobei der Motorcomputer die Temperaturkomponente des Temperatursteuerfluids
des Satzes vorbestimmter Werte herab mit einer ersten voreingestellten Höhe abstimmt.
54. Temperatur-Steuersystem nach Anspruch 47, wobei die Motorlastbedingung eine Extremhochlastbedingung
ist, wenn der Unterdruck in der Ansaugleitung geringer als ungefähr 2 Inches Hg (6,77
kPa) ist, und wobei der Motorcomputer die Temperaturkomponente des Temperatursteuerfluids
des Satzes vorbestimmter Werte mit einer zweiten voreingestellten Höhe herab abstimmt.
55. Temperatur-Steuersystem nach Anspruch 48, wobei die voreingestellte Höhe der Abstimmung
ungefähr drei Grad Fahrenheit (1,67°C) beträgt.
56. Temperatur-Steuersystem nach Anspruch 55, wobei die voreingestellte Höhe der Abstimmung
ungefähr zwei Grad Fahrenheit (1,22°C) beträgt.
57. Temperatur-Steuersystem nach Anspruch 56, wobei die voreingestellte Höhe der Abstimmung
ein Grad Fahrenheit (0,56°C) beträgt.
58. Temperatur-Steuersystem nach Anspruch 1, wobei der Durchgang mit einem Zylinderkopf
und einer Ansaugleitung in Verbindung steht und wobei das Durchflusssteuerventil einen
Durchfluss zumindest zwischen dem Zylinderkopf und der Ansaugleitung steuert.
59. Ein Verfahren zum Steuern des Zustandes eines Durchfluss-Steuerventiles in einem Innenverbrennungsmotor,
wobei das Durchfluss-Steuerventil einen Durchfluss von Temperatursteuerfluid durch
einen Durchgang steuert und einen ersten Zustand zur Verhinderung des Durchflusses
von Temperatursteuerfluid durch den Durchgang und einen zweiten Zustand zur Zulassung
des Durchflusses von Temperatursteuerfluid durch den Durchgang aufweist, mit den Verfahrensschritten:
Empfangen eines Temperatursignales, das auf eine Motoröltemperatur hinweist;
Empfangen eines Temperatursignales des Temperatursteuerfluids, das auf eine Temperatur
des Temperatursteuerfluids hinweist; gekennzeichnet durch die Schritte:
Vergleichen des Signales der Motoröltemperatur mit einem vorbestimmten Motoröltemperaturwert;
Bestimmten eines Temperaturwertes des Temperatursteuerfluid basierend zumindest auf
dem Vergleich des Signales der Motoröltemperatur mit einem vorbestimmten Motoröltemperaturwert;
Vergleichen des Temperatursignales des Temperatursteuerfluids mit dem Temperaturwert
des Temperatursteuerfluid; und
Betätigen des Durchfluss-Steuerventils zwischen seinem ersten und seinem zweiten Zustand
basierend auf zumindest dem Vergleich des Temperatursignales des Temperatursteuerfluids
mit dem Temperaturwert des Temperatursteuerfluid basiert.
60. Verfahren nach Anspruch 59, die weiterhin den Schritt des Bereitstellens von Signalen
zum Betätigen des Durchfluss-Steuerventils aufweist.
61. Verfahren nach Anspruch 59, wobei das Motorölsignal im Wesentlichen bei einem vorbestimmten
Motoröltemperaturwert durch Betätigung des Durchfluss-Steuerventiles in seinen zweiten
Zustand gehalten wird, wenn das Temperatursignal des Temperatursteuerfluids größer
als der Temperaturwert des Temperatursteuerfluids ist, und durch Betätigung des Durchfluss-Steuerventils
in seinen ersten Zustand, wenn das Temperatursignal des Temperatursteuerfluids kleiner
als der Temperaturwert des Temperatursteuerfluids ist.
62. Verfahren nach Anspruch 59, wobei der Wert des Temperatursteuerfluids bestimmt wird,
um die Motoröltemperatur gegen den vorbestimmten Motoröltemperaturwert zu fahren.
63. Verfahren nach Anspruch 59, das weiterhin den Schritt des Aufnehmens eines Temperatursignals
aufweist, das auf die Umgebungslufttemperatur hinweist, und wobei der Schritt der
Bestimmung des Temperaturwertes des Temperatursteuerfluids auch ein Vergleichen des
Signals der Umgebungslufttemperatur mit einer Temperatursteuerkurve einschließt, die
eine Umgebungslufttemperaturkomponente und eine Temperaturkomponente des Temperatursteuerfluids
aufweist.
64. Verfahren nach Anspruch 63, wobei mindestens ein Teil der Temperatursteuerkurve eine
Steigung von im Allgemeinen ungleich Null aufweist, wobei sich mindestens ein Teil
von ihr in einem Gebiet befindet, das durch einen Temperaturbereich des Temperatursteuerfluids
von ungefähr 100 Grad Fahrenheit (37,8° C) bis ungefähr 260 Grad Fahrenheit (126,7°
C) und einen Bereich der Umgebungslufttemperatur von ungefähr 100 Grad Fahrenheit
(37,8° C) bis ungefähr Null Grad Fahrenheit (-17,8° C) definiert ist.
65. Verfahren nach Anspruch 63, wobei mindestens ein Teil der Temperaturkontrollkurve
eine Steigung von im Allgemeinen gleich Null aufweist, wobei sich ein Teil von ihr
in einem Gebiet befindet, wo eine Umgebungslufttemperatur im Allgemeinen geringer
als Null Grad Fahrenheit (-17,8° C) ist.
66. Verfahren nach Anspruch 63, wobei es mindestens zwei Temperatursteuerkurven gibt,
wobei die zweite Kurve im Allgemeinen eine nach unten verschobene Version der ersten
Kurve ist, wenn die Umgebungslufttemperatur auf der x-Achse und die Temperatur des
Temperatursteuerfluids auf der y-Achse aufgetragen ist.
67. Verfahren nach Anspruch 66, wobei die erste Kurve im Allgemeinen ähnlich der zweiten
Kurve ist, ausgenommen für eine Erhöhungs-Region der ersten Kurve in einem ausgewählten
Bereich von Umgebungslufttemperaturen, wenn die Umgebungslufttemperatur auf der x-Achse
und das Temperatursteuerfluid auf der y-Achse aufgetragen ist.
68. Verfahren nach Anspruch 67, wobei die Erhöhungs-Region von ungefähr 110 Grad Fahrenheit
(43,3°C) bis ungefähr 20 Grad Fahrenheit (-6,7°C) reicht.
69. Verfahren nach Anspruch 67, wobei die Erhöhungs-Region eine maximale Erhöhung von
ungefähr 65 Grad Fahrenheit (36,1°C) aufweist und kleiner wird, wenn die Umgebungslufttemperatur
absinkt.
70. Verfahren nach Anspruch 68, wobei die Erhöhungs-Region eine maximale Erhöhung von
ungefähr 65 Grad Fahrenheit (36,1°C) bei einer Umgebungstemperatur von ungefähr 85
Grad Fahrenheit (29,4°C) aufweist und kleiner wird, wenn sich die Umgebungslufttemperatur
an 20 Grad Fahrenheit (-6,7°C) annähert.
71. Verfahren nach Anspruch 59, das weiterhin den Schritt aufweist:
Halten des Ventils in dem ersten Zustand beim Motoranlaufen bis das Signal der Motoröltemperatur
den vorbestimmten Motoröltemperaturwert erreicht, wobei, ungeachtet der Temperatur
des Temperatursteuerfluids, der Motorcomputer das Ventil in den zweiten Zustand betätigen
lässt, wenn das Signal der Motoröltemperatur den vorbestimmten Motoröltemperaturwert
erreicht.
72. Verfahren nach Anspruch 59 oder 71, das weiterhin die Schritte aufweist:
Speichern der optimalen Motoröltemperaturen für einen Bereich von Umgebungslufttemperaturen;
und
Messen der Umgebungslufttemperatur mit einem Sensor und Bestimmung der optimalen Motoröltemperatur
für die gemessene Umgebungslufttemperatur, wobei der vorbestimmte Motoröltemperaturwert
die optimale Motoröltemperatur bei der gegenwärtig gemessenen Umgebungslufttemperatur
ist.
73. Verfahren nach Anspruch 59, das weiterhin die Schritte aufweist:
Empfangen eines Signales von der Umgebungslufttemperatur; und
Bestimmung eines vorbestimmten Motoröltemperaturwertes für das Signal der Umgebungslufttemperatur,
wobei der vorbestimmte Motoröltemperaturwert sich als eine Funktion der Umgebungslufttemperatur
ändert.
74. Verfahren nach Anspruch 73, wobei die Betätigung des Ventils in den ersten Zustand
einen Durchfluss zu einem Kühler verhindert und einen Durchfluss zu einer Ölwanne
zulässt.
75. Verfahren nach Anspruch 73, wobei die Betätigung des Ventils in den ersten Zustand
einen Durchfluss zu einer Ansaugleitung zulässt.
76. Verfahren nach Anspruch 59, das weiterhin den Schritt aufweist:
Empfangen eines Temperatursignales, das auf die Umgebungslufttemperatur hinweist;
wobei der Temperaturwert des Temperatursteuerfluids sich als eine Funktion der
Umgebungslufttemperatur ändert und wobei der Schritt der Bestimmung eines Temperaturwertes
des Temperatursteuerfluid ein Bestimmen des mit dem Signal der Umgebungslufttemperatur
korrespondierenden Wertes des Temperatursteuerfluid einschließt.
77. Verfahren nach Anspruch 59, wobei das Ventil betätigt wird, um einen Durchfluss von
Temperatursteuerfluid durch einen Wasser-Kühlmantel des Zylinderkopfes und einen Wasser-Kühlmantel
der Ölwanne zuzulassen, und um einen Durchfluss durch einen Kühler zuzulassen, wenn
das Signal der Motoröltemperatur geringer ist als der vorbestimmte Wert der Motoröltemperatur,
wodurch Wärme durch das Temperatursteuerfluid von dem Zylinderkopf in die Ölwanne
übertragen wird, und
wobei das Ventil betätigt wird, um einen Fluss des Temperatursteuerfluids durch
einen Wasser-Kühlmantel des Motorblocks und den Wasser-Kühlmantel des Zylinderkopfes
zuzulassen, wenn das Signal der Motoröltemperatur größer als der vorbestimmte Wert
der Motoröltemperatur ist.
78. Verfahren nach Anspruch 77, wobei der Motor weiterhin einen Wasser-Kühlmantel in einer
Ansaugleitung enthält, wobei das Verfahren weiter den Schritt des Zulassens eines
Durchflusses des Temperatursteuerfluids durch die Ansaugleitung aufweist, wenn das
Signal der Motoröltemperatur geringer als der vorbestimmte Wert der Motoröltemperatur
ist.
79. Verfahren nach Anspruch 59, das weiterhin die Schritte aufweist:
Empfangen eines Signales, das auf die Temperatur der Umgebungsluft hinweist;
Vergleichen des Signales von der Umgebungslufttemperatur mit einem Satz vorbestimmter
Werte der Motoröltemperatur, welche sich als Funktion der Umgebungslufttemperatur
ändern; und
Bestimmen eines vorbestimmten Wertes der Motoröltemperatur, der mit dem empfangenen
Signal der Umgebungslufttemperatur korrespondiert.
80. Verfahren nach Anspruch 59, 61, 62, 73, 76, 77 oder 79, wobei die Temperatur, die
auf das Motoröl hinweist, die Motoröltemperatur ist.
81. Verfahren nach Anspruch 80, wobei die Motoröltemperatur die Öltemperatur in einer
Ölwanne ist.
82. Verfahren nach Anspruch 59, 61, 62, 72, 73, 76, 77 oder 79, das weiterhin die Schritte
aufweist:
Messen der Höhe mit einem Höhensensor; und
Abstimmen des vorbestimmten Wertes der Motoröltemperatur in Übereinstimmung mit der
erfassten Höhe.
83. Verfahren nach Anspruch 59, 61, 62, 72, 73, 76 oder 79, wobei der Motor weiterhin
mit einem Wärmetauscher in einer Ölwanne ausgestattet ist, wobei der Wärmetauscher
einen Einlass und einen Auslass aufweist; ein Wasser-Kühlmantel einen Auslass aufweist,
der mit dem Einlass des Wärmetauschers verbunden ist; und wobei eine Wasserpumpe einen
Einlass, der mit dem Auslass des Kühlers und dem Auslass des Wärmetauschers verbunden
ist, sowie einen Auslass aufweist, der mit dem Einlass des Wassermantels verbunden
ist, wobei das Verfahren weiterhin aufweist den Schritt des
Leitens mindestens eines Teiles des Durchflusses des Temperatursteuerfluids von
dem Wasser-Kühlmantel durch den Wärmetauscher, wenn das Signal der Motoröltemperatur
kleiner ist als der vorbestimmte Motoröltemperaturwert.
84. Verfahren nach Anspruch 59, wobei der Schritt des Bestimmens eines Temperaturwertes
des Temperatursteuerfluids die Schritte aufweist:
Bereitstellen eines vorbestimmten Temperaturwertes des Temperatursteuerfluids; und
Abstimmen des vorbestimmten Temperaturwertes des Temperatursteuerfluids basierend
auf dem Vergleich des Motorölsignals mit dem vorbestimmten Motoröltemperaturwert basiert.
85. Verfahren nach Anspruch 84, wobei der vorbestimmte Temperaturwert des Temperatursteuerfluids
aus einer Vielzahl von vorbestimmten Temperaturwerten des Temperatursteuerfluids ausgewählt
wird.
86. Verfahren nach Anspruch 84, wobei das Abstimmen des vorbestimmten Temperaturwertes
des Temperatursteuerfluids die Schritte aufweist:
Bestimmen der Höhe, um die das Signal der Motoröltemperatur den vorbestimmten Motoröltemperaturwert
übersteigt;
Bestimmen eines Abstimmungsfaktors zum Abstimmen des vorbestimmten Temperaturwertes
des Temperatursteuerfluids basierend auf diesem Überschussbetrag; und
Kombinierung des Abstimmungsfaktors und des vorbestimmten Temperaturwertes des Temperatursteuerfluids,
um einen abgestimmten Temperaturwert des Temperatursteuerfluids zu bilden.
87. Verfahren nach einem der Ansprüche 59 bis 79 und 84 bis 86, wobei das Durchfluss-Steuerventil
ein elektronisch unterstütztes Thermostat ist und wobei der Schritt des Betätigens
des Durchfluss-Steuerventils ein Senden einer elektrischen Übertragung an ein Heizelement
einschließt, um ein Aufheizen des Elementes und ein Aufschmelzen eines Wachskügelchens,
indem es dem erhitzten Element ausgesetzt wird, hervorzurufen, wobei das Schmelzen
des Wachskügelchens eine Betätigung des Ventiles hervorruft.
88. Verfahren nach Anspruch 87, wobei die elektrische Übertragung zu dem Heizelement geeicht
ist, um zu beginnen, das Ventil bei einer Temperatur von ungefähr 220° Fahrenheit
(104,4° C) zu öffnen.
89. Verfahren nach Anspruch 84, wobei der erste Zustand einen Fluiddurchfluss zu dem Kühler
verhindert.
90. Verfahren nach Anspruch 84, wobei der erste Zustand einen Durchfluss zu der Ansaugleitung
zulässt.
91. Verfahren nach Anspruch 88, wobei das Ventil bei einer Temperatur von ungefähr 240°F
(115,6°C) vollständig offen ist.
92. Verfahren nach Anspruch 84, wobei das Abstimmen des vorbestimmten Temperaturwertes
des Temperatursteuerfluids die Schritte aufweist:
Bestimmen einer Änderungsgeschwindigkeit des Signales der Motoröltemperatur in Hinsicht
auf den vorbestimmten Motoröltemperaturwert;
Bestimmen eines Abstimmungsfaktors zum Abstimmen des vorbestimmten Temperaturwertes
des Temperatursteuerfluids basierend auf der Änderungsgeschwindigkeit des Signales
der Motoröltemperatur; und
Kombinierung des Abstimmungsfaktors und des vorbestimmten Temperaturwertes des Temperatursteuerfluids,
um den abgestimmten Temperaturwert des Temperatursteuerfluids zu bilden.
93. Verfahren nach Anspruch 84, wobei die Abstimmung des vorbestimmten Temperaturwertes
des Temperatursteuerfluids die Schritte aufweist:
Bestimmen eines Abstimmungsfaktors zum Abstimmen des vorbestimmten Temperaturwertes
des Temperatursteuerfluids basierend auf dem Signal der Umgebungslufttemperatur basiert,
wobei sich der Abstimmungsfaktor als eine Funktion von mindestens einer Umgebungslufttemperatur
ändert; und
Kombinierung des Abstimmungsfaktors und des vorbestimmten Temperaturwertes des Temperatursteuerfluids,
um den abgestimmten Temperaturwert des Temperatursteuerfluids zu bilden.
94. Verfahren nach Anspruch 59, wobei der vorbestimmte Wert der Motoröltemperatur aus
einem Satz vorbestimmter Motoröltemperaturwerte ausgewählt wird.
95. Verfahren nach Anspruch 94, wobei der Satz vorbestimmter Werte eine Kurve definiert,
wobei mindestens ein Teil der Kurve eine Steigung ungleich Null aufweist.
96. Verfahren nach Anspruch 87, wobei das Heizelement gesteuert wird, um das Ventil bei
einer Temperatur des Temperatursteuerfluids oberhalb von 160°F (71,1°C) zu öffnen.
97. Verfahren nach Anspruch 84, wobei die Bestimmung des Abstimmungsfaktors weiterhin
die Schritte aufweist:
Bestimmen der Höhe, um den die aktuelle Motoröltemperatur die gewünschte Motoröltemperatur
übersteigt; und
Bestimmen eines Abstimmungsfaktors basierend auf der Überschusshöhe.
98. Verfahren nach Anspruch 59, wobei das Verfahren vor Betätigung des Durchfluss-Steuerventiles
den Schritt des Vergleichens des Temperatursignales des Temperatursteuerfluids mit
einer oberen Temperaturgrenze aufweist und wobei das Durchfluss-Steuerventil in den
ersten Zustand betätigt wird, wenn das Signal der Motoröltemperatur unterhalb eines
vorbestimmten Motoröltemperaturwertes ist und das Temperatursignal des Temperatursteuerfluids
oberhalb des Temperaturwertes des Temperatursteuerfluids und unterhalb der oberen
Temperaturgrenze ist.
99. Verfahren nach Anspruch 59, wobei das Verfahren vor Betätigung des Durchfluss-Steuerventiles
den Schritt des Vergleichens des Temperatursignales des Temperatursteuerfluids mit
einer unteren Temperaturgrenze aufweist und wobei das Durchfluss-Steuerventil in den
zweiten Zustand betätigt wird, wenn das Signal der Motoröltemperatur oberhalb des
vorbestimmten Motoröltemperaturwertes ist und das Temperatursignal des Temperatursteuerfluids
oberhalb der oberen Temperaturgrenze ist.
1. Système de régulation de température dans un moteur à combustion interne refroidi
par un liquide, équipé d'un radiateur et d'un moteur, ce système comprenant :
une soupape de commande d'écoulement pour commander l'écoulement d'un fluide de régulation
thermique le long d'un passage en communication avec le radiateur, la soupape de commande
d'écoulement présentant un premier état destiné à empêcher l'écoulement et un second
état destiné à permettre l'écoulement ;
un premier capteur pour détecter une température indicative de la température d'huile
du moteur, et pour fournir un signal de température d'huile moteur ;
un second capteur pour détecter une température indicative de la température du fluide
de régulation thermique, et pour fournir un signal de température de fluide de régulation
thermique ; et
un ordinateur moteur destiné à recevoir le signal de température d'huile moteur et
le signal de température de fluide de régulation thermique ;
caractérisé en ce que
l'ordinateur moteur compare le signal de température d'huile moteur à une valeur de
température d'huile moteur prédéterminée, l'ordinateur moteur déterminant une valeur
de température de fluide de régulation thermique en fonction d'au moins la comparaison
du signal de température d'huile moteur, à la valeur de température d'huile moteur
prédéterminée, l'ordinateur moteur comparant le signal de température du fluide de
régulation thermique, à la valeur de température de fluide de régulation thermique,
pour déterminer un état voulu de la soupape, l'ordinateur moteur fournissant des signaux
destinés à commander l'actionnement de la soupape de commande d'écoulement entre son
premier état et son second état, en fonction d'au moins la comparaison du signal de
température de fluide de régulation thermique, à la valeur de température du fluide
de régulation thermique.
2. Système de régulation de température selon la revendication 1,
dans lequel
l'ordinateur moteur commande la soupape de commande d'écoulement de façon que cette
soupape se trouve dans son premier état lorsque le signal de température d'huile moteur
est inférieur à la valeur de température d'huile moteur prédéterminée, et se trouve
dans son second état lorsque le signal de température d'huile moteur est supérieur
à la valeur de température d'huile moteur prédéterminée, et lorsque le signal de température
du fluide de régulation thermique est supérieur à la valeur de température du fluide
de régulation thermique.
3. Système de régulation de température selon la revendication 1 ou 2, comprenant en
outre :
un capteur pour détecter la température d'air ambiante et pour fournir un signal de
température d'air ambiante indicatif de celle-ci ; et
l'ordinateur moteur recevant le signal de température d'air ambiante, et
cet ordinateur moteur déterminant la valeur de température d'huile moteur prédéterminée
en comparant le signal de température d'air ambiante à un ensemble de valeurs de température
d'huile moteur qui varient en fonction de la température d'air ambiante.
4. Système de régulation de température selon la revendication 1, 2 ou 3,
dans lequel
l'ordinateur moteur détermine la valeur de température du fluide de régulation thermique
en réglant la valeur de température de fluide de régulation thermique prédéterminée
sur la base de la comparaison du signal de température d'huile moteur à la valeur
de température d'huile moteur prédéterminée.
5. Système de régulation de température selon la revendication 1, comprenant en outre
un capteur pour mesurer la température d'air ambiante et pour fournir un signal indicatif
de celle-ci ;
dans lequel
l'ordinateur moteur détermine la valeur de température du fluide de régulation thermique
en sélectionnant une courbe de régulation thermique sur la base de la comparaison
du signal de température d'huile moteur, à la valeur de température d'huile moteur
prédéterminée, la courbe de régulation thermique étant définie par un ensemble de
points ayant une composante de température d'air ambiante et une composante de température
de fluide de régulation thermique, une première courbe étant sélectionnée lorsque
le signal de température d'huile moteur est au niveau ou au-dessous de la valeur de
température d'huile moteur prédéterminée, et une seconde courbe étant sélectionnée
lorsque le signal de température d'huile moteur est au-dessus de la valeur de température
d'huile moteur prédéterminée, l'ordinateur moteur comparant le signal de température
d'air ambiante et le signal de température de fluide de régulation thermique, à la
courbe sélectionnée, de manière à déterminer l'état de soupape voulu.
6. Système de régulation de température selon la revendication 5,
dans lequel
la seconde courbe est généralement une version déplacée vers le bas de la première
courbe lorsque la température d'air ambiante est portée sur l'axe x et lorsque la
température du fluide de régulation thermique est portée sur l'axe y.
7. Système de régulation de température selon la revendication 5,
dans lequel
une partie au moins de la première courbe et de la seconde courbe présente une pente
généralement non nulle dans une zone définie par une plage de températures de fluide
de régulation thermique allant d'environ 100 degrés Fahrenheit (37,8°C) à environ
260° Fahrenheit (126,7°C), et une plage de température d'air ambiante allant d'environ
100 degrés Fahrenheit (37,8°C) à environ 0° Fahrenheit (-17,8°C).
8. Système de régulation de température selon la revendication 5,
dans lequel
une partie au moins de la première courbe et de la seconde courbe présente une pente
généralement nulle dans une zone dans laquelle la température d'air ambiante est généralement
inférieure à zéro degré Fahrenheit (-17,8°C).
9. Système de régulation de température selon la revendication 5,
dans lequel
la première courbe est généralement analogue à la seconde courbe, sauf pour une zone
de saut de la première courbe dans une plage sélectionnée de températures d'air ambiantes,
lorsque la température d'air ambiante est portée sur l'axe x tandis que la température
du fluide de régulation thermique est portée sur l'axe y.
10. Système de régulation de température selon la revendication 3, comprenant en outre
des moyens pour stocker l'ensemble des valeurs de température d'huile moteur pour
une plage de températures d'air ambiantes.
11. Système de régulation de température selon la revendication 5, comprenant en outre
une seconde soupape de commande d'écoulement pour commander l'écoulement du fluide
de régulation thermique à travers un second passage, la seconde soupape de commande
d'écoulement présentant un premier état pour limiter l'écoulement, et un second état
pour permettre un écoulement non limité, et
dans lequel l'ordinateur moteur émet des signaux de commande pour placer la seconde
soupape dans le premier état lorsque le signal de température d'air ambiante et le
signal de température de fluide de régulation thermique, définissent un point situé
au-dessus de la courbe sélectionnée, et émet ces signaux de commande pour placer la
soupape dans le second état lorsque les signaux de température mesurée définissent
un point situé au-dessous de la courbe sélectionnée.
12. Système de régulation de température selon la revendication 6,
dans lequel
la seconde courbe est déplacée vers le bas d'environ 50° Fahrenheit (27,8°C) par rapport
à la première courbe.
13. Système de régulation de température selon la revendication 9,
dans lequel
la zone de saut est comprise entre environ 110 degrés Fahrenheit (43,3°C) et environ
20 degrés Fahrenheit (-6,7°C).
14. Système de régulation de température selon la revendication 9,
dans lequel
la zone de saut comporte un saut maximum d'environ 65 degrés Fahrenheit (36,1°C) et
devient plus petite lorsque la température d'air ambiante diminue.
15. Système de régulation de température selon la revendication 13,
dans lequel
la zone de saut comporte un saut maximum d'environ 65 degrés Fahrenheit (36,1°C) à
une température ambiante d'environ 85 degrés Fahrenheit (29,4°C), et devient plus
petite lorsque la température d'air ambiante s'approche de 20 degrés Fahrenheit (-6,7°C).
16. Système de régulation de température selon la revendication 1,
dans lequel
l'ordinateur moteur place la soupape dans son second état lorsque la température d'huile
moteur est au-dessus de la valeur de température d'huile moteur prédéterminée et lorsque
la température du fluide de régulation thermique est supérieure à une première limite
de température.
17. Système de régulation de température selon la revendication 5, comprenant en outre
des moyens pour stocker des valeurs de température d'huile moteur pour une plage de
températures d'air ambiantes, et pour fournir en sortie une valeur de température
d'huile moteur sélectionnée pour la température d'air ambiante mesurée, la valeur
de température d'huile moteur prédéterminée étant la valeur de température d'huile
moteur sélectionnée pour la température d'air ambiante mesurée courante.
18. Système de régulation de température selon la revendication 16,
dans lequel
la première limite de température est d'environ 170°F (76,67°C).
19. Système de régulation de température selon la revendication 3,
dans lequel
la valeur de température du fluide de régulation thermique varie en fonction de la
température d'air ambiante, et
l'ordinateur moteur détermine la valeur de température du fluide de régulation thermique
sur la base du signal de température d'air ambiante, et de la comparaison du signal
de température d'huile moteur à la valeur de température d'huile moteur prédéterminée.
20. Système de régulation de température selon la revendication 1,
dans lequel
si la température d'huile moteur est inférieure à la valeur de température d'huile
moteur prédéterminée, l'ordinateur moteur maintient la soupape dans son premier état
jusqu'à ce que la température d'huile moteur atteigne la valeur de température d'huile
moteur prédéterminée tandis que la température du fluide de régulation thermique est
inférieure à une seconde limite de température.
21. Système de régulation de température selon la revendication 1,
dans lequel
la soupape de commande d'écoulement commande l'écoulement du fluide de régulation
thermique entre le moteur et le radiateur.
22. Système de régulation de température selon l'une des revendications 1, 3, 4, 5 ou
19,
comprenant en outre :
un échangeur de chaleur dans un réservoir d'huile, cet échangeur de chaleur ayant
une entrée et une sortie ;
un conduit connecté à l'entrée de l'échangeur de chaleur et communiquant avec le passage
; et
une pompe à eau comportant une entrée connectée au radiateur et à la sortie de l'échangeur
de chaleur, ainsi qu'une sortie connectée au passage,
au moins un état de la soupape de commande d'écoulement permettant l'écoulement d'une
partie au moins du fluide de régulation thermique vers l'échangeur de chaleur.
23. Système de régulation de température selon la revendication 22,
dans lequel
l'échangeur de chaleur est un tube conducteur de la chaleur.
24. Système de régulation de température selon l'une des revendications 1, 3, 4, 5, 10,
17 ou 19,
comprenant en outre
un détecteur d'altitude et des moyens pour régler la valeur de température d'huile
moteur prédéterminée suivant l'altitude.
25. Système de régulation de température selon l'une des revendications 1, 2, 3, 4, 5,
10, 17 ou 19,
dans lequel
la température indicative de la température d'huile moteur est la température de l'huile
moteur.
26. Système de régulation de température selon la revendication 20,
dans lequel
la seconde limite de température est d'environ 240°F (115,6°C).
27. Système de régulation de température selon la revendication 25,
dans lequel
le moteur comprend un réservoir d'huile, et
la température d'huile moteur est la température de l'huile contenue dans le réservoir
d'huile.
28. Système de régulation de température selon l'une quelconque des revendications 1,
2, 3, 4, 5, 10, 17 ou 19,
dans lequel
le moteur comprend également un bloc moteur, et
la température indicative de la température d'huile moteur est la température du bloc
moteur.
29. Système de régulation de température selon l'une quelconque des revendications 1,
2, 3, 4, 5, 10, 16 à 20, 25, 26 et 27,
dans lequel
la soupape de commande d'écoulement est une soupape à diaphragme à commande hydraulique.
30. Système de régulation de température selon l'une quelconque des revendications 1,
2, 3, 4, 5, 10, 16 à 20, 25, 26 et 27,
dans lequel
la soupape de commande d'écoulement est un thermostat à assistance électronique.
31. Système de régulation de température selon la revendication 30,
dans lequel
le thermostat à assistance électronique comprend :
un carter ;
un élément de soupape pouvant aller et venir à l'intérieur du carter entre l'état
d'ouverture et l'état de fermeture ;
un ressort de rappel pour pousser l'élément de soupape dans l'état d'ouverture ;
une boulette de cire attachée à l'élément de soupape et comportant un état solide
et un état liquide, la boulette de cire maintenant l'élément de soupape dans son état
de fermeture lorsque la boulette de cire se trouve dans son état solide, et la boulette
de cire permettant au ressort de rappel de pousser l'élément de soupape vers sa position
d'ouverture lorsque la boulette de cire se trouve dans son état liquide ;
un élément chauffant monté à l'intérieur du carter et destiné à transmettre de la
chaleur à la boulette de cire, cet élément chauffant recevant une émission électrique
pour produire le chauffage de celui-ci ; et
les signaux provenant de l'ordinateur moteur commandent l'émission électrique vers
l'élément chauffant.
32. Système de régulation de température selon la revendication 31,
dans lequel
l'élément chauffant est une bobine de chauffage formant une boucle autour de la boulette
de cire.
33. Système de régulation de température selon la revendication 31,
dans lequel
l'élément chauffant est disposé à l'intérieur de la boulette de cire.
34. Système de régulation de température selon la revendication 31,
dans lequel
la boulette de cire présente un point de fusion d'environ 220°F (104,4°C).
35. Système de régulation de température selon la revendication 31,
dans lequel
l'ordinateur moteur commande l'émission électrique de manière à produire le chauffage
de l'élément chauffant lorsque le signal de température d'huile moteur est supérieur
à la valeur de température d'huile moteur prédéterminée.
36. Système de régulation de température selon la revendication 4,
dans lequel
l'ordinateur moteur détermine la quantité dont le signal de température d'huile moteur
dépasse la valeur de température d'huile moteur prédéterminée, et
l'ordinateur moteur règle la valeur de température prédéterminée du fluide de régulation
thermique en fonction de la grandeur de ce dépassement.
37. Système de régulation de température selon la revendication 4,
dans lequel
l'ordinateur moteur règle la valeur de température prédéterminée du fluide de régulation
thermique pour la diminuer d'une quantité préréglée pour chaque degré dont le signal
de température d'huile moteur dépasse la valeur de température d'huile moteur prédéterminée.
38. Système de régulation de température selon la revendication 37,
dans lequel
la quantité préréglée de réglage est une valeur se situant à l'intérieur d'une plage
comprise entre environ un degré F (0,56°C) et environ dix degrés F (5,6°C).
39. Système de régulation de température selon la revendication 1,
comprenant en outre :
un capteur pour détecter une température d'air ambiante réelle et pour fournir un
signal indicatif de celle-ci ; et
dans lequel
l'ordinateur moteur reçoit le signal de température d'air ambiante réelle et détermine
la valeur de température d'huile moteur prédéterminée sur la base du signal de température
d'air ambiante, la valeur de température d'huile moteur prédéterminée variant en fonction
de la température d'air ambiante réelle, l'ordinateur moteur réglant un ensemble de
valeurs prédéterminées sur la base de la comparaison du signal de température d'huile
moteur, à la valeur de température d'huile moteur prédéterminée ; l'ensemble de valeurs
prédéterminées comportant une composante de température de fluide de régulation thermique
et une composante de température d'air ambiante, l'ensemble de valeurs prédéterminées
définissant une courbe qui détermine l'état de la soupape de commande d'écoulement
; et
l'ordinateur moteur détermine la valeur de la température du fluide de régulation
thermique par comparaison du signal de température d'air ambiante, à l'ensemble réglé
de valeurs prédéterminées, la soupape de commande d'écoulement se trouvant dans le
premier état lorsque le signal de température du fluide de régulation thermique est
inférieur à la valeur de la température du fluide de régulation thermique, et la soupape
de commande d'écoulement se trouvant dans le second état lorsque le signal de température
du fluide de régulation thermique est supérieur à la valeur de température du fluide
de régulation thermique.
40. Système de régulation de température selon la revendication 39,
dans lequel
l'ordinateur moteur détermine une condition de charge du moteur basée sur la comparaison
du signal de température d'huile moteur à la valeur de température d'huile moteur
prédéterminée, et
l'ordinateur moteur règle la composante de température du fluide de régulation thermique
de l'ensemble de valeurs prédéterminées, en fonction de la condition de charge.
41. Système de régulation de température selon la revendication 39,
dans lequel
l'ordinateur moteur détermine la quantité dont le signal de température d'huile moteur
dépasse la valeur de température d'huile moteur prédéterminée, et
l'ordinateur moteur règle la composante de température du fluide de régulation thermique
de l'ensemble de valeurs prédéterminées, en fonction de la grandeur de ce dépassement.
42. Système de régulation de température selon la revendication 39,
dans lequel
l'ordinateur moteur règle la composante de température du fluide de régulation thermique
de l'ensemble de valeurs prédéterminées, pour la diminuer d'une quantité préréglée
pour chaque degré dont le signal de température d'huile moteur dépasse la valeur de
température d'huile moteur prédéterminée.
43. Système de régulation de température selon la revendication 39,
dans lequel
l'ordinateur moteur règle la composante de température du fluide de régulation thermique
de l'ensemble de valeurs prédéterminées, pour la diminuer d'une quantité préréglée
pour chaque valeur de trois degrés F (1,67°C) dont le signal de température d'huile
moteur dépasse la valeur de température d'huile moteur prédéterminée.
44. Système de régulation de température selon la revendication 39,
dans lequel
l'ordinateur moteur règle la composante de température du fluide de régulation thermique
de l'ensemble de valeurs prédéterminées, pour la diminuer d'une quantité préréglée
pour chaque valeur de cinq degrés F (2,78°C) dont le signal de température d'huile
moteur dépasse la valeur de température d'huile moteur prédéterminée.
45. Système de régulation de température selon la revendication 39,
dans lequel
l'ordinateur moteur détermine un taux de variation du signal de température moteur,
et
l'ordinateur moteur règle la composante de température du fluide de régulation thermique
de l'ensemble de valeurs prédéterminées, en fonction du taux de variation.
46. Système de régulation de température selon la revendication 39,
dans lequel
l'ordinateur moteur détermine un facteur de réglage pour régler la composante de température
du fluide de régulation thermique de l'ensemble de valeurs prédéterminées, le facteur
de réglage variant en fonction de la température d'air ambiante, et
l'ordinateur moteur règle la composante de température du fluide de régulation thermique
de l'ensemble de valeurs prédéterminées, suivant le facteur de réglage.
47. Système de régulation de température selon la revendication 39,
dans lequel
le moteur comprend une tubulure d'entrée,
l'ordinateur moteur reçoit des signaux de la tubulure d'entrée, ces signaux indiquant
une pression de vide de la tubulure d'entrée, et
l'ordinateur moteur détermine la condition de charge du moteur sur la base de la pression
de vide de la tubulure d'entrée, et règle la composante de température du fluide de
régulation thermique de l'ensemble de valeurs prédéterminées, suivant la condition
de charge.
48. Système de régulation de température selon la revendication 42,
dans lequel
la quantité de réglage préréglée est une valeur se situant dans une plage comprise
entre environ un degré F (0,56°C) et environ dix degrés F (5,6°C).
49. Système de régulation de température selon la revendication 45,
dans lequel
le réglage de la composante de température du fluide de régulation thermique de l'ensemble
de valeurs prédéterminées, varie linéairement avec le taux de variation de la température
d'huile moteur réelle.
50. Système de régulation de température selon la revendication 45,
dans lequel
le réglage de la composante de température du fluide de régulation thermique de l'ensemble
de valeurs prédéterminées, varie non linéairement avec le taux de variation de la
température d'huile moteur réelle.
51. Système de régulation de température selon la revendication 46,
dans lequel
le facteur de réglage varie linéairement avec la température d'air ambiante.
52. Système de régulation de température selon la revendication 46,
dans lequel
le facteur de réglage varie non linéairement avec la température d'air ambiante.
53. Système de régulation de température selon la revendication 47,
dans lequel
la condition de charge du moteur est une condition de charge élevée lorsque la pression
de vide de la tubulure d'entrée est inférieure à environ 4 pouces Hg (13,55 kPa),
et
l'ordinateur moteur règle la composante de température du fluide de régulation thermique
de l'ensemble de valeurs prédéterminées, pour la diminuer d'une première quantité
préréglée.
54. Système de régulation de température selon la revendication 47,
dans lequel
la condition de charge du moteur est une condition de charge extrêmement élevée lorsque
la pression de vide de la tubulure d'entrée est inférieure à environ 2 pouces Hg (6,77
kPa), et
l'ordinateur moteur règle la composante de température du fluide de régulation thermique
de l'ensemble de valeurs prédéterminées, pour la diminuer d'une seconde quantité préréglée.
55. Système de régulation de température selon la revendication 48,
dans lequel
la quantité de réglage préréglée est d'environ trois degrés F (1,67°C).
56. Système de régulation de température selon la revendication 55,
dans lequel
la quantité de réglage préréglée est d'environ deux degrés F (1,22°C).
57. Système de régulation de température selon la revendication 56,
dans lequel
la quantité de réglage préréglée est de un degré F (0,56°C).
58. Système de régulation de température selon la revendication 1,
dans lequel
le passage communique avec une culasse et une tubulure d'entrée, et
la soupape de commande d'écoulement commande l'écoulement au moins entre la culasse
et la tubulure d'entrée.
59. Procédé de régulation de l'état d'une soupape de commande d'écoulement dans un moteur
à combustion interne, la soupape de commande d'écoulement commandant l'écoulement
d'un fluide de régulation thermique à travers un passage, cette soupape de commande
d'écoulement présentant un premier état destiné à empêcher l'écoulement du fluide
de régulation thermique à travers le passage, et un second état destiné à permettre
l'écoulement du fluide de régulation thermique à travers le passage, le procédé comprenant
les étapes consistant à :
recevoir un signal de température indicatif de la température d'huile moteur ;
recevoir un signal de température du fluide de régulation thermique, indicatif de
la température de ce fluide de régulation thermique ;
caractérisé par
les étapes consistant à :
comparer le signal de température d'huile moteur à une valeur de température d'huile
moteur prédéterminée ;
déterminer une valeur de température du fluide de régulation thermique sur la base
d'au moins la comparaison du signal de température d'huile moteur à la valeur de température
d'huile moteur prédéterminée ;
comparer le signal de température du fluide de régulation thermique à la valeur de
température de ce fluide de régulation thermique ; et
actionner la soupape de commande d'écoulement entre son premier état et son second
état, sur la base d'au moins la comparaison du signal de température du fluide de
régulation thermique, à la valeur de température de ce fluide de régulation thermique.
60. Procédé selon la revendication 59,
comprenant en outre
l'étape consistant à fournir des signaux pour actionner la soupape de commande d'écoulement.
61. Procédé selon la revendication 59,
dans lequel
on maintient le signal de température d'huile moteur essentiellement à la valeur de
température d'huile moteur prédéterminée, en actionnant la soupape de commande d'écoulement
pour l'amener dans son second état lorsque le signal de température du fluide de régulation
thermique est supérieur à la valeur de température de ce fluide de régulation thermique,
et en actionnant la soupape de commande d'écoulement pour la faire passer dans son
premier état lorsque le signal de température du fluide de régulation thermique est
inférieur à la valeur de température de ce fluide de régulation thermique.
62. Procédé selon la revendication 59,
dans lequel
la valeur du fluide de régulation thermique est déterminée de manière à commander
la température d'huile moteur pour l'amener à la valeur de température d'huile moteur
prédéterminée.
63. Procédé selon la revendication 59,
comprenant en outre
l'étape consistant à recevoir un signal de température indicatif de la température
d'air ambiante, et dans lequel l'étape de détermination de la valeur de température
du fluide de régulation thermique met en oeuvre également la comparaison du signal
de température d'air ambiante, à une courbe de commande de température comportant
une composante de température d'air ambiante et une composante de température de fluide
de régulation thermique.
64. Procédé selon la revendication 63,
dans lequel
une partie au moins de la courbe de commande de température présente une pente généralement
non nulle dont une partie au moins se situe dans une zone définie par une plage de
températures du fluide de régulation thermique allant d'environ 100 degrés F (37,8°C)
à environ 260 degrés F (126,7°C), et une plage de températures d'air ambiantes allant
d'environ 100 degrés F (37,8°C) à environ zéro degré F (-17,8°C).
65. Procédé selon la revendication 63,
dans lequel
une partie au moins de la courbe de commande de température présente une pente généralement
nulle dont une partie se situe dans une zone dans laquelle la température d'air ambiante
est généralement inférieure à zéro degré F (-17,8°C).
66. Procédé selon la revendication 63,
dans lequel
on a au moins deux courbes de commande de température, la seconde courbe étant une
version généralement décalée vers le bas de la première courbe lorsque la température
d'air ambiante est portée sur l'axe x tandis que la température du fluide de régulation
thermique est portée sur l'axe y.
67. Procédé selon la revendication 66,
dans lequel
la première courbe est généralement analogue à la seconde courbe, sauf pour une zone
de saut de la première courbe dans une plage sélectionnée de températures d'air ambiantes
lorsque la température d'air ambiante est portée sur l'axe x tandis que la température
du fluide de régulation thermique est portée sur l'axe y.
68. Procédé selon la revendication 67,
dans lequel
la zone de saut est comprise entre environ 110 degrés F (43,3°C) et environ 20 degrés
F (-6,7°C).
69. Procédé selon la revendication 67,
dans lequel
la zone de saut comporte un saut maximum d'environ 65 degrés F (36,1°C) et devient
plus petite lorsque la température d'air ambiante diminue.
70. Procédé selon la revendication 68,
dans lequel
la zone de saut comporte un saut maximum d'environ 65 degrés F (36,1°C) pour une température
ambiante d'environ 85 degrés F (29,4°C) et devient plus petite lorsque la température
d'air ambiante s'approche de 20 degrés F (-6,7°C).
71. Procédé selon la revendication 59,
comprenant en outre l'étape consistant à :
maintenir la soupape dans le premier état au démarrage du moteur, jusqu'à ce que le
signal de température d'huile moteur atteigne la valeur de température d'huile moteur
prédéterminée, indépendamment de la température du fluide de régulation thermique,
l'ordinateur moteur amenant la soupape à passer dans le second état lorsque le signal
de température d'huile moteur atteint la valeur de température d'huile moteur prédéterminée.
72. Procédé selon la revendication 59 ou 71,
comprenant en outre les étapes consistant à :
stocker les températures d'huile moteur optimales pour une plage de températures d'air
ambiantes ; et
mesurer la température d'air ambiante au moyen d'un capteur et déterminer la température
d'huile moteur optimale pour la température d'air ambiante mesurée, la valeur de température
d'huile moteur prédéterminée étant la température d'huile moteur optimale pour la
température d'air ambiante mesurée courante.
73. Procédé selon la revendication 59,
comprenant en outre les étapes consistant à :
recevoir un signal de température d'air ambiante ; et
déterminer une valeur de température d'huile moteur prédéterminée pour le signal de
température d'air ambiante, cette valeur de température d'huile moteur prédéterminée
variant en fonction de la température d'air ambiante.
74. Procédé selon la revendication 73,
dans lequel
l'actionnement de la soupape pour la faire passer dans le premier état empêche le
fluide de s'écouler vers un radiateur et permet au fluide de s'écouler vers un réservoir
d'huile.
75. Procédé selon la revendication 73,
dans lequel
l'actionnement de la soupape pour la faire passer dans le premier état permet au fluide
de s'écouler vers une tubulure d'entrée.
76. Procédé selon la revendication 59,
comprenant en outre l'étape consistant à :
recevoir un signal de température indicatif de la température d'air ambiante ;
la valeur de température du fluide de régulation thermique variant en fonction de
la température d'air ambiante, et l'étape de détermination d'une valeur de température
du fluide de régulation thermique comprenant la détermination de la valeur de température
du fluide de régulation thermique correspondant au signal de température d'air ambiante.
77. Procédé selon la revendication 59,
dans lequel
la soupape est actionnée pour permettre l'écoulement du fluide de régulation thermique
à travers une chemise à eau de culasse et une chemise à eau de réservoir d'huile,
et pour empêcher l'écoulement du fluide à travers un radiateur lorsque le signal de
température d'huile moteur est inférieur à la valeur de température d'huile moteur
prédéterminée, de façon que la chaleur provenant de la culasse soit transmise au réservoir
d'huile par le fluide de régulation thermique ; et
la soupape est actionnée pour permettre l'écoulement du fluide de régulation thermique
à travers une chemise à eau de bloc moteur et la chemise à eau de culasse lorsque
le signal de température d'huile du moteur est supérieur à la valeur de température
d'huile moteur prédéterminée.
78. Procédé selon la revendication 77,
dans lequel
le moteur comprend en outre une chemise à eau dans une tubulure d'entrée, le procédé
comprenant en outre l'étape consistant à permettre l'écoulement du fluide de régulation
thermique à travers la tubulure d'entrée lorsque le signal de température d'huile
moteur est inférieur à la valeur de température d'huile moteur prédéterminée.
79. Procédé selon la revendication 59,
comprenant en outre les étapes consistant à :
recevoir un signal indicatif de la température d'air ambiante ;
comparer le signal de température d'air ambiante à un ensemble de valeurs de température
d'huile moteur prédéterminées qui varient en fonction de la température d'air ambiante
; et
déterminer une valeur de température d'huile moteur prédéterminée qui correspond au
signal de température d'air ambiante reçu.
80. Procédé selon la revendication 59, 61, 62, 73, 76, 77 ou 79,
dans lequel
la température indicative de l'huile moteur est la température d'huile du moteur.
81. Procédé selon la revendication 80,
dans lequel
la température d'huile moteur est la température de l'huile contenue dans un réservoir
d'huile.
82. Procédé selon la revendication 59, 61, 62, 72, 73, 76, 77 ou 79,
comprenant en outre les étapes consistant à :
mesurer l'altitude au moyen d'un détecteur d'altitude ; et
régler la valeur de température d'huile moteur prédéterminée suivant l'altitude détectée.
83. Procédé selon la revendication 59, 61, 62, 72, 73, 76, ou 79,
dans lequel
le moteur est en outre équipé par un échangeur de chaleur placé dans un réservoir
d'huile, l'échangeur de chaleur comportant une entrée et une sortie; une chemise à
eau comportant une sortie connectée à l'entrée de l'échangeur de chaleur ; et une
pompe à eau comportant une entrée reliée à la sortie du radiateur et à la sortie de
l'échangeur de chaleur, ainsi qu'une sortie connectée à l'entrée de la chemise à eau,
le procédé comprenant en outre l'étape consistant à :
canaliser une partie au moins du fluide de régulation thermique s'écoulant de la chemise
à eau et passant à travers l'échangeur de chaleur, lorsque le signal de température
d'huile moteur est inférieur à la valeur de température d'huile moteur prédéterminée.
84. Procédé selon la revendication 59,
dans lequel
l'étape de détermination de la valeur de température du fluide de régulation thermique
comprend les étapes consistant à :
prévoir une valeur de température de fluide de régulation thermique prédéterminée
; et
régler la valeur de température de fluide de régulation thermique prédéterminée sur
la base de la comparaison du signal de température d'huile moteur à la valeur de température
d'huile moteur prédéterminée.
85. Procédé selon la revendication 84,
dans lequel
la valeur de température de fluide de régulation thermique prédéterminée est sélectionnée
parmi un certain nombre de valeurs de température de fluide de régulation thermique
prédéterminées.
86. Procédé selon la revendication 84,
dans lequel
le réglage de la valeur de température de fluide de régulation thermique prédéterminée
comprend les étapes consistant à :
déterminer la quantité dont le signal de température d'huile moteur dépasse la valeur
de température d'huile moteur prédéterminée ;
déterminer un facteur de réglage pour régler la valeur de température de fluide de
régulation thermique prédéterminée sur la base de la grandeur de ce dépassement ;
et
combiner le facteur de réglage avec la valeur de température de fluide de régulation
thermique prédéterminée, pour former une valeur de température de fluide de régulation
thermique réglée.
87. Procédé selon l'une quelconque des revendications 59, à 79 et 84 à 86,
dans lequel
la soupape de commande d'écoulement est un thermostat à assistance électronique ;
et
l'étape consistant à actionner la soupape de commande d'écoulement comprend l'envoi
d'énergie électrique à un élément chauffant pour produire le chauffage de cet élément
chauffant et la fusion d'une boulette de cire par exposition de cette boulette à l'élément
chauffé, la fusion de la cire produisant l'actionnement de la soupape.
88. Procédé selon la revendication 87,
dans lequel
l'envoi d'énergie électrique à l'élément chauffant est étalonné pour commencer à ouvrir
la soupape à une température d'environ 220°F (104,4°C).
89. Procédé selon la revendication 84,
dans lequel
le premier état empêche l'écoulement du fluide vers le radiateur.
90. Procédé selon la revendication 84,
dans lequel
le premier état permet l'écoulement vers la tubulure d'entrée.
91. Procédé selon la revendication 88,
dans lequel
la soupape est complètement ouverte à une température d'environ 240°F (115,6°C).
92. Procédé selon la revendication 84,
dans lequel
le réglage de la valeur de température de fluide de régulation thermique prédéterminée
comprend les étapes consistant à :
déterminer un taux de variation du signal de température d'huile moteur par rapport
à la valeur de température d'huile moteur prédéterminée ;
déterminer un facteur de réglage pour régler la valeur de température de fluide de
régulation thermique prédéterminée sur la base du taux de variation du signal de température
d'huile moteur ; et
combiner le facteur de réglage et la valeur de température de fluide de régulation
thermique prédéterminée pour former la valeur de température de fluide de régulation
thermique réglée.
93. Procédé selon la revendication 84,
dans lequel
le réglage de la valeur de température de fluide de régulation thermique prédéterminée
comprend les étapes consistant à :
déterminer un facteur de réglage pour régler la valeur de température d'huile moteur
prédéterminée ;
déterminer un facteur de réglage pour régler la valeur de température de fluide de
régulation thermique prédéterminée sur la base du signal de température d'air ambiante,
le facteur de réglage variant en fonction d'au moins la température d'air ambiante
; et
combiner le facteur de réglage avec la valeur de température de fluide de régulation
thermique prédéterminée pour former la valeur de température de fluide de régulation
thermique réglée.
94. Procédé selon la revendication 59,
dans lequel
la valeur de température d'huile moteur prédéterminée est sélectionnée parmi un ensemble
de valeurs de température d'huile moteur prédéterminées.
95. Procédé selon la revendication 94,
dans lequel
l'ensemble de valeurs prédéterminées définit une courbe dont une partie au moins présente
une pente non nulle.
96. Procédé selon la revendication 87,
dans lequel
l'élément chauffant est commandé de manière à ouvrir la soupape à une température
du fluide de régulation thermique supérieure à 160°F
(71,1°C).
97. Procédé selon la revendication 84,
dans lequel
la détermination du facteur de réglage comprend en outre les étapes consistant à :
déterminer la quantité dont la température d'huile moteur réelle dépasse la température
d'huile moteur voulue ; et
déterminer le facteur de réglage sur la base de la grandeur de ce dépassement.
98. Procédé selon la revendication 59,
dans lequel
avant l'étape d'actionnement de la soupape de commande d'écoulement, le procédé comprend
l'étape de comparaison du signal de température du fluide de régulation thermique,
à une limite de température supérieure ; et
la soupape de commande d'écoulement est actionnée pour passer dans le premier état
lorsque le signal de température d'huile moteur est au-dessous de la valeur de température
d'huile moteur prédéterminée et lorsque le signal de température du fluide de régulation
thermique est au-dessus de la valeur de température de fluide de régulation thermique
et au-dessous de la limite de température supérieure.
99. Procédé selon la revendication 59,
dans lequel
avant l'actionnement de la soupape de commande d'écoulement, le procédé comprend l'étape
de comparaison du signal de température du fluide de régulation thermique, à une limite
de température inférieure ; et
la soupape de commande d'écoulement est actionnée pour passer dans le second état
lorsque le signal de température d'huile moteur est au-dessus de la valeur de température
d'huile moteur prédéterminée et lorsque le signal de température du fluide de régulation
thermique est au-dessus de la limite de température inférieure.