[0001] The present invention relates to an abrasive blasting apparatus and in particular
to a wet abrasive blasting apparatus.
[0002] An abrasive blasting apparatus in accordance with the precharacterising portion of
claim 1 is e.g. known from US 5 201 150.
[0003] In wet abrasive blasting, an abrasive, such as sand, is entrained in a pressurized
liquid flow or gaseous-entrained liquid flow and is directed against the surface to
be treated by a controllable nozzle.
[0004] In a conventional apparatus, a dry abrasive is entrained into a gaseous stream and
liquid is then added to wet the abrasive prior to its egress from the nozzle. In this
way, dust generation at the work area is reduced. Such an arrangement, however, requires
a separate pump to be used to deliver the liquid into the abrasive and gaseous stream,
which makes the cost of the blasting apparatus more expensive than is desirable and
renders the blasting apparatus more prone to breakdown.
[0005] In WO 88/07915 is described an apparatus which overcomes the aforementioned problems
by entraining separately contained liquid and an abrasive/liquid mixture in a flow
of pressurized fluid whilst simultaneously applying the pressurized fluid to the receptacles
containing the liquid and the abrasive/liquid medium in order to balance the fluid
pressure between the receptacles themselves and the receptacles and the delivery line.
This has the advantage of requiring only a single pressurized fluid source and therefore
of reducing the cost of the apparatus.
[0006] In FR-A-1 121 042 is described an apparatus in which pressurized air is air introduced
into the bottom of a vessel containing a mixture of sand and water in order to agitate
it and thus produce a homogeneous mixture. The air then flows through conduit out
of the top of the vessel and is then used to entrain the-sand and water flowing through
an orifice at the bottom of the vessel.
[0007] These conventional apparatus were primarily designed for blasting silica sand, which
has several disadvantages. First and foremost, when silica sand is blasted against
a hard surface free silica is released, which is now considered environmentally damaging.
Second, sand is too abrasive for use when removing soiling, rust, oxidations, efflorescences
and the like where it is not wished to distort or scratch the underlying substrate.
Sand may also become embedded in the substrate.
[0008] More modern blasting media comprise fine particles of calcium carbonate, calcium
magnesium carbonate, calcium oxide, calcium bicarbonate, calcium magnesium carbonate,
magnesium oxide, magnesium sulphate and soda ash which overcome the aforementioned
disadvantages. However, when these fine particles are mixed with a blasting liquid
such as water, they tend to produce a lumpy slurry or sludge which will not flow and
which is difficult to entrain in a flow of pressurized fluid for even blasting. They
are therefore difficult if not impossible to use with many conventional forms of blasting
apparatus.
[0009] US 5,531,634 describes a method of blasting using calcium carbonate particles wherein
a blast pot is partially filed with the calcium carbonate and is pressurized by air
that is also used to entrain a flow of the calcium particles from an outlet at the
bottom of the pot. Water is not added to the calcium carbonate in the blast pot but
is injected later into a blasting nozzle immediately prior to the egress of the air
entraining the calcium carbonate from the nozzle.
[0010] It will be appreciated that one disadvantage of this arrangement is, as mentioned
above, that a separate pump is required to deliver the water into the abrasive and
gaseous. stream. This makes the cost of the blasting apparatus more expensive than
is desirable and renders the blasting apparatus more prone to breakdown.
[0011] The object of the present invention is therefore to provide a versatile wet abrasive
blasting apparatus which overcomes the aforementioned problems and which can be used
to blast the aforementioned fine particles in addition to conventional abrasive materials
such as various sands and grit, when required.
[0012] According to the present invention there is provided a blasting apparatus comprising
a vessel adapted to contain a particulate blasting medium and a liquid and including
an inlet and a bottom outlet;
a delivery line along which an entraining pressurized fluid can be fed from a source
and with which the interior of the vessel communicates through the outlet whereby
a flow of pressurized fluid along the delivery -line can entrain the contents of the
vessel for dispersal into the fluid flow in the delivery line for blasting;
a pressurizing means to direct pressurized fluid from the source into the vessel
behind its contents in terms of its contents' outflow from the vessel through the
bottom outlet;
an injection means is provided for injecting pressurized fluid into the lower portion
of the vessel into the contents of the vessel to agitate the contents; and
a control means is provided to control the pressure within the vessel and to ensure
that during blasting the pressure of the pressurized fluid entering the vessel through
the injection means is always maintained at a higher level than the pressure of the
pressurized fluid directed into the vessel by the pressurizing means; and
characterised in that
the pressurizing means comprises a control valve defining a first outlet port through
which the pressurized fluid can flow into the delivery line and a second outlet port
through which the pressurized fluid can flow into the vessel to pressurize the interior
of the vessel, the first and second outlet ports being connected by a conduit whereby
during blasting if the pressure within the vessel exceeds the pressure of the pressurizing
fluid flowing through the second outlet port, the flow of pressurizing fluid can reverse
and pass from the interior of the vessel, through the conduit and into the flow of
pressurized fluid egressing from the first outlet port into the delivery line.
[0013] Preferably, the control means comprises a manostat which is connected to the control
valve and to the injection means and which enables a predetermined pressure difference
to be maintained between the pressure of the pressurized fluid entering the vessel
through the injection means and the pressure of the pressurized fluid directed into
the vessel by the pressurizing means.
[0014] Preferably also, the delivery line terminates in a blasting nozzle with a control
handle which is supplied with pressurized fluid from the source and which is connected'to
the control means and to the control valve whereby an operative can open the control
valve and thereafter control the flow of pressurized fluid through the nozzle by varying
the flow of pressurized fluid through the control handle.
[0015] Preferably also, the inlet in the vessel is provided with an air lock valve which
is closed by the application of pressurized fluid thereto from within the vessel by
the pressurizing means; and the outlet in the vessel is provided with a valve means
which-is connected to the air lock valve such that closure of the air lock valve causes
the valve means at the outlet of the vessel to open and vice versa.
[0016] Preferably also, the outlet from the vessel comprises an orifice and the valve means
for the outlet comprises a spigot which is inserted into the orifice, the tip of the
spigot remaining within the orifice when the valve means is opened to permit outflow
of the contents of the vessel.
[0017] Preferably also, the valve means for the outlet is connected to the air lock valve
by a flexible coupling whereby, when the valve means is open, agitation of the contents
of the vessel causes agitation of the tip of the spigot within the orifice.
[0018] Preferably also, the injection means comprises a non-return valve connected to an
egress means located within the vessel in proximity to the outlet of the vessel.
[0019] Preferably also, the egress means comprises a perferated coil looped around the outlet
of the vessel.
[0020] Preferably also, the delivery line is connected to a liquid supply upstream of the
outlet from the vessel but downstream of the pressurizing means whereby liquid can
be injected into the flow of entraining fluid passing down the delivery line.
[0021] Also according to the present invention there is provided the use of the blasting
apparatus to blast a mixture of a particulate blasting medium and a liquid by entraining
the mixture in a flow of pressurized fluid in the delivery line whilst simultaneously
pressurizing the interior of the vessel by directing a flow of the pressurized fluid
from the source into the vessel behind its contents in terms of its contents' outflow
from the vessel; injecting a flow of pressurized fluid into the contents of the vessel
to agitate the contents; controlling the pressure within the vessel by ensuring that
during blasting the pressure of the pressurized fluid injected into the contents of
the vessel is always maintained at a higher level than the pressure of the pressurized
fluid directed into the vessel behind its contents; and characterised in that if the
pressure within the vessel exceeds the pressure of the pressurizing fluid, the flow
of pressurizing fluid into the vessel can reverse and pass from the interior of the
vessel through a conduit and into the flow of pressurized fluid in the delivery line.
[0022] The present invention will now be described by way of example with reference to the
accompanying drawings, in which:-
Fig. 1 is a part sectional elevation of an apparatus for wet abrasive blasting according
to the present invention;
Fig. 2 shows schematically a pressurized fluid control circuit for the apparatus;
Fig. 3 is a cross sectional plan view of the lower portion of the vessel along the
line III-III in Fig. 1; and
Fig. 4 is a part section view, to an enlarged scale, of a flow control device which
can be employed at the outlet of the vessel.
[0023] The apparatus comprises a pressure vessel 1 which is adapted to contain up to a level
2 a blasting mixture 3 of a particulate material and a liquid, typically water or
a water based blasting solution, such as a rust inhibiting solution. The vessel 1
is provided with an inlet 4, which is defined centrally at the base of a filling hopper
5 located at the top of the vessel 1, and with an outlet 6, which is disposed at the
central portion of the bottom of the vessel 1. In order to assist in the egress of
the blasting mixture 3 out of the vessel through the outlet 6 and to discourage the
particulate material from settling out of the liquid, the wall of the lower portion
7 of the vessel 1 can either be dished, as shown in Fig. 1, or made conical dependent
on the particulate material which is to be used therewith. A dished shape is preferable
when using fine particulate materials whereas a conical shape is better for use with
coarser or denser media such as sand and grit.
[0024] The inlet 4 of the vessel 1 can be closed by an air lock valve 8, for example a mushroom-type
valve, which is closed on the application thereto of pressurized air. The outlet 6
is also provided with a valve 9 located outside the vessel 1.
[0025] A liquid inlet 10 located above the level 2, is provided in the vessel 1 and is closable
by a valve 11, and a liquid outlet 12, located below the level 2 and closable by a
valve 13, is also provided.
[0026] The apparatus is provided with pressurized air as its operational or motive fluid
from a pressurized air source, such as an air compressor (not shown), via a control
circuit, which is shown in detail in Fig. 2. Air under pressure is delivered from
the source to a single air inlet 14 for the system and thence to an inlet port of
a control valve 15. The control valve 15 comprises two outlet ports, the outflows
from which are connected by a conduit 15a, which may comprise an external connection,
as shown in Fig. 1 in hidden detail, or be within the body of the valve 15. When the
valve 15 is open, the pressurized air from the source can flow through a first outlet
port via a pipe 16 into the interior of the vessel 1 and through a second outlet port
into a delivery line 17. The pipe 16 delivers the pressurized air into the vessel
1 immediately below the air lock valve 8 whereby the valve 8 is closed and the vessel
1 is then pressurized by the air flow. It will be appreciated that the pipe 16 delivers
the pressurized air into the vessel above the level 2 of the blasting mixture 3, which
is behind the mixture 3 in terms of its outflow from the vessel 1 through the bottom
outlet 6.
[0027] The delivery line 17 comprises a further valve 18 and is connected to an abrasive
blasting hose 19 and nozzle 20 by a bayonet joint connection as indicated at 21. The
outlet 6 of the vessel 1 communicates with the delivery line 17 via the valve 9 whereby
when the valve 9 is open and pressurized air is passing along the delivery line 17,
the blasting mixture 3 within the vessel 1 is entrained by the air flowing along the
line 17 and dispersed into the fluid flow for blasting through the nozzle 20.
[0028] If necessary during a blasting operation, further liquid can be injected from a supply
pipe 22 into the delivery line 17 through a valve 23 connected to an injection port
24 located slightly upstream of the outlet valve 6. The port 24 projects forward into
the delivery line 17 so that a degree of suction is created to prevent back-flow down
the pipe 22. This means that a mains water supply could be connected to the pipe 22
without danger of contamination occurring to the supply.
[0029] A dead-man's control handle 25 is preferably connected to the delivery nozzle 20,
but could be located elsewhere such as attached to an operative's body, and is separately
supplied with pressurized air from the air inlet 14. The control handle 25 is operationally
linked to the control valve 15 so that release of the handle 25 closes the control
valve 15 to halt the blasting operation whereas squeezing the handle signals the control
valve 15 to open, as is described below. With particular reference to Fig. 2, it can
be seen that the control handle 25 is supplied with pressurized air via the inlet
14 from the source along a supply line 26 via a water filter 27, a control valve 28,
which comprises the main on/off air control for the apparatus, a flow regulator 29
and a pressure regulator 30.
[0030] Pressurized air is also injected into the lower portion of the vessel 1 to agitate
the blasting mixture 2 by an injection means 31 comprising a non-return valve 32 and
an egress means such as an agitation coil 33, as shown in Figs. 1 and 3, or a nozzle.
A metering flow valve (not shown) could also be included between the non-return valve
32 and the egress means.
[0031] The purpose of the injection means 31 is to agitate the blasting mixture 3 to keep
the particulate material in suspension in the liquid. However, it is important that
this agitation takes place without creating turbulence in the vessel 1 which would
inhibit the smooth flow of blasting mixture 3 out of the outlet 6 and into the entraining
fluid in the delivery line 17. Hence, the agitation coil 33 or nozzle can be specifically
adapted according to the type of particulate material to be used. If fine particulate
materials with diameters from 150 microns down to 5 microns are used then an agitation
coil 33 similar to the one shown in Figs. 1 and 3 can be used. The coil 33 is looped
around the outlet 6 at the base of the vessel 1 and is provided with a series of spaced
output ports 34 through which the pressurized air supplied to the coil 33 is injected
into the vessel 1. The ports 34 can be provided with air outlet nozzles (not shown).
[0032] The agitation caused in the blasting mixture 2 by the air egressing from the ports
34 in the coil 33 produces an even mix of the particulate material with the liquid
wherein the particles form a suspension in the liquid and each individual particle
is enveloped in a coating of liquid. Preferably, the agitation created is sufficient
for the blasting mixture 3 to be fluidized so that it flows smoothly through the outlet
6 and the outlet valve 9 into the entraining flow in the delivery line 17. An even
mix is also important to provide a smooth and even delivery of the blasting material
to the work surface, which is important from the point of view of achieving an even
finish.
[0033] In order to prevent the particulate material from being deposited around the outlet
6 and clogging it, which can happen when a blasting operation stops, the outlet 6
is provided with an automatic valve arrangement, as indicated generally at 35 in Fig.
1. The valve arrangement 35 comprises an upper first rod 36 which is connected at
its upper end to the air lock valve 8 and at its lower end to a flexible connector
37, such as a piece of rubber or the like. A lower second rod 38 is connected at its
upper end to the connector 37 and at its lower end to a bush 39 which forms a valve
member that can obturate the outlet 6. The outlet 6 itself comprises a seating 40,
which may be made of plastics or of metal, against which the bush 39 can seat, and
which defines a cylindrical orifice 41 therethrough that communicates with the valve
9. Attached to the bush 39 is a spigot 42, which may comprise the tip of the rod 36
and which penetrates the orifice 41 without closing it.
[0034] When the vessel 1 is pressurized by the passage of air along the pipe 16, the air
lock valve 8 is raised to close the inlet 4. Raising of the valve 8 also causes the
upper rod 36 to be raised and thereby the lower rod 38 to be raised, lifting the bush
39 off the seating 40 to open the outlet 6. However, the tip of the spigot 42 remains
within the inner end of the orifice 41. Thereafter, when pressurized air is injected
into the blasting mixture through the agitation coil 33, the agitation of the mixture
causes vibration of the lower rod 38, which can move from side to side independently
of the upper rod 36 by virtue of the flexible connector 37. The spigot 42 thereby
also vibrates within the orifice 41 and this prevents the particulate material from
being deposited out of the liquid around and in the orifice 41 and ensures that it
stays well mixed with the liquid as it egresses from the outlet 6. In addition, on
depressurization of the vessel 1, the air lock valve 8 falls, opening the inlet 4
and lowering the rods 36 and 38 so that the bush 39 contacts the seating 40, closing
the outlet 6. This then prevents the orifice 41 from becoming plugged with particulate
material.
[0035] In an alternative arrangement, the tip of the lower rod 38 can be tapered so that
in the lower position of the valve arrangement 35 it acts as a stopper in the orifice
41, the bush 39 being omitted from the arrangement 35, and in the upper position of
the arrangement 35 just penetrates the orifice 41 without closing it.
[0036] Air is supplied to the non-return valve 32 of the injection means 31 from the source
via the inlet 14 through the water filter 27 and a bias controller or manostat 43.
As is described below, the function of the manostat 43 is most important as it must
ensure that the pressure of the pressurized fluid entering the vessel 1 through the
injection means 31 is always maintained at a predetermined higher level than the pressure
of the pressurized fluid directed into the vessel 1 through the pipe 16. To this end,
the manostat 43 is connected via a sensing line 44 to the control valve 15 and to
the delivery line 26 for the control handle 25 and can adjust the pressure of the
air output to the pipe 16 and the delivery line 17 by the control valve 15.
[0037] In use, prior to commencing a blasting operation, the on/off valve 28 and the valves
15, 18 and 23 are closed and the liquid inlet and outlet valves 11 and 13 are opened.
A water or another liquid supply is connected to the inlet 10 and the vessel 1 is
then filled with liquid until liquid emanates from the outlet 12. The valves 11 and
13 are then closed. The source of pressurized fluid, typically air, is then connected
to the air inlet 14 of the apparatus. This air will pass through the water filter
27 and the manostat 43 into the injection means 31 and thence into the base of the
vessel where it will emanate into the liquid therein through the agitation coil 33.
A predetermined quantity of particulate blasting medium is then introduced into the
vessel 1 via the hopper 5 through the inlet 4. The level of the blasting mixture 3
within the vessel 1 is then raised typically to the level 2, which is below the bottom
of the air lock valve 8. As air is being injected into the liquid through the agitation
coil 33 whilst the particulate medium is introduced into the vessel 1, the particulate
material is well mixed with the liquid and the resulting mixture is constantly agitated
by the inflowing air.
[0038] Once the vessel 1 has been filled with water and the particulate medium, the main
on/off valve 28 is opened by being switched to the "on" position. This allows pressurized
air to move through the flow regulator 29, the pressure regulator 30 and then along
the supply line 26 to exit from the operative's control handle 25. Valves 9 and 18
are then opened.
[0039] When the operative wishes to commence blasting, he closes or partially closes the
control handle 25 and as a result increases the air pressure in the sensing line 44.
This causes the control valve 15 to open thus pressurizing the pipe 16 and the main
delivery line 17 through valve 18. Air is now being blasted through the nozzle 20.
The air pressure in the pipe 16 causes the air lock valve 8 to close to that it seals
the inlet 4. The interior of the vessel 1 then becomes pressurized by the air flowing
out of the pipe 16. At the same time, the bush 39 is raised from its seating 40 to
open the outlet 6 and permit the blasting mixture to flow out of the vessel 1 and
be entrained in the air flow along the hose 19.
[0040] The increased air pressure in the sensing line 44 is also detected by the manostat
43 which controls the air pressures to ensure that air entering the vessel 1 via the
non-return valve 32 of the injection means 31 is always kept at a higher pressure
than the air entering the vessel 1 through the pressurizing pipe 16. This ensures
that pressurized air continues to enter the vessel 1 through the agitation coil 33
via the non-return valve 32 to keep the blasting mixture 3 in constant agitation.
This air bubbles up through the blasting mixture and collects at the top of the vessel
1. However, because the pressure of this air is greater than that of the air in the
pipe 16, the air entering the vessel 1 in this way will then travel down the pipe
16, through the conduit 15a and into the delivery line 17, thus reversing the initial
flow of air through the pipe 16.
[0041] Hence, the constant flow of pressurized air into the vessel is disposed of in a highly
efficient and cost effective way without the need for pressure-reducing or blowoff
valves to be employed.
[0042] It will be appreciated that the greater the pressure difference between the air injected
into the vessel 1 by the agitation coil 33 and the air in the pipe 16, the greater
the agitation of the blasting mixture that can be achieved. However, despite this
it is desirable to keep the pressure difference as low as possible as the upper of
the two pressures cannot be greater than the air pressure received from the source
and every bar of difference reduces the working pressure of the blasting process itself.
The manostat 43 is therefore set to maintain a fairly low pressure difference of approximately
0.3 bar (approximately 34.5 x 103 pascals or 5 psi), or lower, if possible.
[0043] During the blasting operation, the effect of the air emanating from the agitation
coil 33, which mixes the blasting mixture 3 under pressure, is to coat each particle
of the particulate medium with a film of liquid. This in itself has a beneficial effect
on the blasting process as the momentum of each coated particle blasted from the nozzle
20 is thereby increased and results in a more efficient cleaning action. With fine
particulate materials, such as the calcium carbonate particles and the like as mentioned
above, it is believed that the film of water coating each particle enables the particle
to roll over the surface being blasted to create a light scouring action. The surface
deposits are therefore lifted from the substrate before breaking up and being washed
away by the liquid in the blast stream. Such particles typically have a rounded appearance,
which aids the surface action, and a hardness of between 2.5 and 3.5 mohs in order
to prevent damage to the underlying substrate. For comparison, silica sand has a hardness
of 6 mohs.
[0044] However, if abrasion of the substrate surface during blasting is required, for example
when cleaning steel surfaces it is often necessary to produce a suitable anchor pattern
for subsequent paint coatings, then particulates which produce more of a cutting action
than a scouring action are required. Grit-like materials such as special dolomites,
garnets, or olivine sands, which do not-release free silica on blasting, can be employed.
Again, the effectiveness has been found to be increased by the coating of water that
they receive by the apparatus of the present invention.
[0045] In both of the above cases, the increased efficiency of the blasting process owing
to the coating of the particulate material with a water film means that far less particulate
material is required than would be the case in a conventional blasting process. For
example it is estimated that with grit-like materials, a reduction of between 12%
and 48% with the norm in the upper half of the range, i.e. between 30% and 45%, can
be achieved. This means that a blasting operation can be carried out costing less
than would otherwise be the case and also means that afterwards less clearing up of
the used particulate material is necessary, again saving money.
[0046] The agitation produced in the blasting mixture 3 in the vessel 1 also causes the
lower rod 38 of the automatic valve arrangement 35 to vibrate. As a result, the spigot
42 which remains partially in the orifice 41 also vibrates and assists with the mixing
of the liquid and the particulate medium at this point. This has the benefits of preventing
dewatering or settling of the particulate medium inside the orifice 41 and of assisting
with a smooth flow of the blasting mixture 3 down into the entraining fluid.
[0047] During blasting, further blasting liquid, such as water, can be introduced into the
blasting operation by opening valve 23, as determined by the operative.
[0048] When it is desired to stop blasting, the operative releases the handle 25, which
allows pressurized air to escape along the line 26 through the -control handle 25,
reduces the pressure in the sensing line 44 and thereby causes the control valve 15
to shut off the main air flow from the source 14. The pressurized air within the vessel
1 is then vented through the valve 15 and the air lock valve 8 falls, at the same
time shutting off the flow of blasting mixture 3 through the outlet 6 by means of
the valve arrangement 35. A wash-down operation can now be initiated by closing valve
9, opening valve 23 and then closing the control handle 25. This causes the control
valve 15 to allow pressurized air again to pass through into the delivery line 17,
which sucks water in through the valve 23 and blasts it out through the nozzle 20.
The object of the blasting operation is thereby cleaned of any remaining particulate
material and blasting liquid, if not water, and the delivery line beneath the vessel
1 and the blasting nozzle 20 are flushed out.
[0049] Once the wash-down operation has been completed, the handle 25 can again be released,
which will cause valve 15 to close to shut of the air flow through the nozzle 20 once
more and the whole apparatus can then be closed down by switching the on/off valve
28 to the "off" position and closing the valve 23.
[0050] It will be appreciated that various modifications can be made to the apparatus. In
particular, the pressurized fluid control circuit shown in Fig. 2. can be varied by,
for example, replacing the single line feed 26 to the control handle 25 by a twin
line with a bleed-off point to line 44 to allow correct sensing.
[0051] various factors such as the length of the line 26, will affect the efficiency of
the operation of the control circuit and each circuit will operate most successfully
when it has been tuned to the actual operating parameters. This ensures that maximum
air pressure is available for the blasting process whilst at the same time allowing
the vessel 1 to depressurize when the handle 25 is released.
[0052] Tuning the control circuit is accomplished as follows. First, the air regulator 29
should be fully opened to allow excess air into the line 26. The control handle 25
should then be fully opened to simulate a "close down" situation. The vessel 1 will
not exhaust at this point because the control handle 25 will not allow sufficient
air to escape so as to reduce the pressure in the line 44 to activate the control
valve 15. However, by then gradually closing the air flow regulator 29 until the quantity
of air passing through is reduced to a level at which it is all dissipated through
the control handle 25, the pressure in the line 44 is reduced. This is sensed by the
control valve 15, which in turn causes the vessel 1 to be exhausted.
1. A blasting apparatus comprising
a vessel (1) adapted to contain a particulate blasting medium and a liquid and
including an inlet (4) and a bottom outlet (6);
a delivery line (17) along which an entraining pressurized fluid can be fed from
a source and with which the interior of the vessel (1) communicates through the outlet
(6) whereby a flow of pressurized fluid along the delivery line (17) can entrain the
contents (3) of the vessel (1) for dispersal into the fluid flow in the delivery line
(17) for blasting;
a pressurizing means (15, 16) to direct pressurized fluid from the source into
the vessel (1) behind its contents (3) in terms of its contents' outflow from the
vessel (1) through the bottom outlet (6);
an injection means (31, 32, 33, 34) for injecting pressurized fluid into the lower
portion (7) of the vessel (1) into the contents (3) of the vessel (1) to agitate the
contents (3); and
a control means (43) to control the pressure within the vessel (1) and to ensure
that during blasting the pressure of the pressurized fluid entering the vessel (1)
through the injection means (31, 32, 33, 34) is always maintained at a higher level
than the pressure of the pressurized fluid directed into the vessel (1) by the pressurizing
means (15, 16); and
characterised in that
the pressurizing means (15, 16) comprises a control valve (15) defining a first
outlet port through which the pressurized fluid can flow into the delivery line (17)
and a second outlet port through which the pressurized fluid can flow into the vessel
(1) to pressurize the interior of the vessel (1), the first and second outlet ports
being connected by a conduit (15a) whereby during blasting if the pressure within
the vessel (1) exceeds the pressure of the pressurizing fluid flowing through the
second outlet port, the flow of pressurizing fluid can reverse and pass from the interior
of the vessel (1), through the conduit (15a) and into the flow of pressurized fluid
egressing from the first outlet port into the delivery line (17).
2. An apparatus as claimed in Claim 1, characterised in that the control means (43) comprises a manostat which is connected to the control valve
(15) and to the injection means (31, 32, 33, 34) and which enables a predetermined
pressure difference to be maintained between the pressure of the pressurized fluid
entering the vessel (1) through the injection means (31, 32, 33, 34) and the pressure
of the pressurized fluid directed into the vessel (1) by the pressurizing means (15,
16).
3. An apparatus as claimed in Claim 1 or Claim 2, characterised in that the delivery line (17) terminates in a blasting nozzle (20) with a control handle
(25) which is supplied with pressurized fluid from the source and which is connected
to the control means (43) and to the control valve (15) whereby an operative can open
the control valve (15) and thereafter control the flow of pressurized fluid through
the nozzle (20) by varying the flow of pressurized fluid through the control handle
(25).
4. An apparatus as claimed in any one of Claims 1 to 3, wherein the inlet (4) in the
vessel (1) is provided with an air lock valve (8) which is closed by the application
of pressurized fluid thereto from within the vessel (1) by the pressurizing means
(15, 16) and is characterised in that the outlet (6) in the vessel (1) is provided with a valve means (35) which is connected
to the air lock valve (8) such that closure of the air lock valve (8) causes the valve
means (35) at the outlet of the vessel (1) to open and vice versa.
5. An apparatus as claimed in Claim 4, characterised in that the outlet (6) from the vessel (1) comprises an orifice (41) and the valve means
(35) for the outlet (6) comprises a spigot (42) which is inserted into the orifice
(41), the tip of the spigot (42) remaining within the orifice (41) when the valve
means (35) is opened to permit outflow of the contents (3) of the vessel (1).
6. An apparatus as claimed in Claim 4 or Claim 5, characterised in that the valve means (35) for the outlet (6) is connected to the air lock valve (8) by
a flexible coupling (37) whereby, when the valve means (35) is open, agitation of
the contents (3) of the vessel (1) causes agitation of the tip of the spigot (42)
within the orifice (41).
7. An apparatus as claimed in any one of Claims 1 to 6, characterised in that the injection means (31, 32, 33, 34) comprises a non-return valve (32) connected
to an egress means (33, 34) located within the vessel (1) in proximity to the outlet
(6) of the vessel (1).
8. An apparatus as claimed in Claim 7, characterised in that the egress means (33, 34) comprises a perforated coil looped around the outlet (6)
of the vessel (1).
9. An apparatus as claimed in any one of Claims 1 to 8, characterised in that the delivery line (17) is connected to a liquid supply (22) upstream of the outlet
(6) from the vessel but downstream of the pressurizing means (15, 16) whereby liquid
can be injected into the flow of entraining fluid passing down the delivery line (17).
10. The use of a blasting apparatus as claimed in Claim 1 to blast a mixture of a particulate
blasting medium and a liquid by
entraining the mixture in a flow of pressurized fluid in the delivery line (17)
whilst simultaneously pressurizing the interior of the vessel (1) by directing a flow
of the pressurized fluid from the source into the vessel (1) behind its contents (3)
in terms of its contents' outflow from the vessel (1);
injecting a flow of pressurized fluid into the contents (3) of the vessel (1) to
agitate the contents (3);
controlling the pressure within the vessel (1) by ensuring that during blasting
the pressure of the pressurized fluid injected into the contents (3) of the vessel
(1) is always maintained at a higher level than the pressure of the pressurized fluid
directed into the vessel (1) behind its contents (3); and
characterised in that
if the pressure within the vessel (1) exceeds the pressure of the pressurizing
fluid, the flow of pressurizing fluid into the vessel can reverse and pass from the
interior of the vessel (1) through a conduit (15a) and into the flow of pressurized
fluid in the delivery line (17).
11. The use of a blasting apparatus as claimed in Claim 10, characterised in that the particulate medium comprises a medium which substantially comprises at least
one of calcium carbonate, calcium magnesium carbonate, calcium oxide, calcium bicarbonate,
calcium magnesium carbonate, magnesium oxide and magnesium sulphate, or comprises
soda ash, an olivine sand or garnet.
1. Schleuderstrahleinrichtung umfassend:
einen Behälter (1), der adaptiert, ist ein partikuläres Schleuderstrahlmedium und
eine Flüssigkeit zu beinhalten und der einen Einlass (4) und einen unteren Auslass
(6) einschließt;
eine Förderleitung (17), entlang der eine mitreißende Druckflüssigkeit ab einer Quelle
gespeist werden kann und mit der die Innenseite des Behälters (1) durch den Auslass
(6) kommuniziert, mit dessen Hilfe ein Druckflüssigkeitsstrom entlang der Förderleitung
(17) den Inhalt (3) des Behälters (1) zur Feinverteilung in den Flüssigkeitsstrom
in die Förderleitung (17) zum Strahlen mitreißen kann;
ein Druckbeaufschlagungsmittel (15, 16), um Druckflüssigkeit ab der Quelle in den
Behälter (1) hinter seinen Inhalt (3) hinsichtlich seines Inhaltsausflusses aus dem
Behälter (1) durch den unteren Auslass (6) zu lenken;
ein Einspritzmittel (31,32,33,34) zum Einspritzen von Druckflüssigkeit in den unteren
Teil (7) des Behälters (1) in den Inhalt (3) des Behälters (1), um den Inhalt (3)
zu durchrühren; und
ein Steuermittel (43), um den Druck im Behälter (1) zu steuern und sicherzustellen,
dass während des Schleuderstrahlvorgangs der Druck der in den Behälter (1) durch die
Einspritzmittel (31,32,33,34) eintretenden Druckflüssigkeit immer auf einem höheren
Niveau als der Druck der durch das Druckbeaufschlagungsmittel (15,16) in den Behälter
(1) geleiteten Druckflüssigkeit gehalten wird; und
dadurch gekennzeichnet, dass
das Druckbeaufschlagungsmittel (15,16) ein Steuerventil (15) aufweist, das eine
erste Auslassöffnung, durch welche die Druckflüssigkeit in die Förderleitung (17)
fließen kann, und eine zweite Auslassöffnung definiert, durch welche die Druckflüssigkeit
in den Behälter (1) fließen kann, um das Innere des Behälters (1) unter Druck zu setzen,
wobei die ersten und zweiten Auslassöffnungen durch eine Leitung (15a) verbunden sind,
mit deren Hilfe während des Schleuderstrahlvorgangs, falls der Druck innerhalb des
Behälters (1) den Druck der durch die zweite Auslassöffnung fließenden Druckflüssigkeit
übersteigt, der Druckflüssigkeitsstrom umkehren und aus dem Inneren des Behälters
(1) durch die Leitung (15a) und in den Strom der aus der ersten Auslassöffnung austretenden
Druckflüssigkeit in die Förderleitung (17) gelangen kann.
2. Schleuderstrahleinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Steuermittel (43) ein "Manostat" aufweist, das an das Steuerventil (15) und an
die Einspritzmittel (31,32,33,34) angeschlossen ist, und das ermöglicht, eine vorbestimmte
Druckdifferenz zwischen der in den Behälter (1) durch die Einspritzmittel (31,32,33,34)
eintretenden Druckflüssigkeit und dem Druck der durch das Druckbeaufschlagungsmittel
(15, 16) in den Behälter (1) geleiteten Druckflüssigkeit beizubehalten.
3. Schleuderstrahleinrichtung nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die Förderleitung (17) in einer Strahldüse (20) mit einem Steuergriff (25) endet,
die mit Druckflüssigkeit ab der Quelle versorgt wird und die mit dem Steuermittel
(43) und dem Steuerventil (15) verbunden ist, mit dessen Hilfe ein Bediener das Steuerventil
öffnen und danach den Strom der Druckflüssigkeit durch die Düse (20) durch Variieren
des Stroms der Druckflüssigkeit durch den Steuergriff (25) regeln kann.
4. Schleuderstrahleinrichtung nach einem der Ansprüche 1 bis 3, wobei der Einlass (4)
in den Behälter (1) mit einem Druckluft-Halteventil (8) versehen ist, das durch die
Zufuhr von Druckflüssigkeit darauf von innerhalb des Behälters (1) durch das Druckbeaufschlagungsmittel
(15,16) geschlossen wird und dadurch gekennzeichnet ist, dass der Auslass (6) im Behälter (1) mit einem Ventilmittel (35) versehen ist, das mit
dem Druckluft-Halteventil (8) so verbunden ist, dass das Schließen des Druckluft-Halteventils
(8) das Öffnen des Ventilmittels (35) am Auslass des Behälters (1) und umgekehrt bewirkt.
5. Schleuderstrahleinrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Auslass (6) aus dem Behälter (1) eine Öffnung (41) umfasst und das Ventilmittel
(35) für den Auslass (6) einen Zapfen (42) umfasst, der in die Öffnung (41) eingeschoben
wird, wobei die Spitze des Zapfens (42) innerhalb der Öffnung (41) verbleibt, wenn
das Ventilmittel (35) geöffnet wird, um den Ausfluss des Inhalts (3) des Behälters
(1) zu gestatten.
6. Schleuderstrahleinrichtung nach Anspruch 4 oder Anspruch 5, dadurch gekennzeichnet, dass das Ventilmittel (35) für den Auslass (6) durch eine elastische Kupplung (37) mit
dem Druckluft-Halteventil (8) verbunden ist, mit deren Hilfe, wenn das Ventilmittel
(35) geöffnet ist, das Bewegen des Inhalts (3) des Behälters (1) das Bewegen der Spitze
des Zapfen (42) innerhalb der Öffnung (41) bewirkt.
7. Schleuderstrahleinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Einspritzmittel (31, 32, 33, 34) ein Rückschlagventil (32) umfasst, das an ein
Ausgangsmittel (33,34) angeschlossen ist, das sich innerhalb des Behälters (1) in
der Nähe des Auslasses (6) des Behälters (1) befindet.
8. Schleuderstrahleinrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das Ausgangsmittel (33,34) eine perforierte Schlange umfasst, die um den Auslass
(6) des Behälters (1) gewickelt ist.
9. Schleuderstrahleinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Förderleitung (17) mit einer Flüssigkeitszufuhr (22) stromaufwärts des Auslasses
(6) vom Behälter, aber stromabwärts des Druckbeaufschlagungsmittels (15,16) verbunden
ist, mit deren Hilfe sich Flüssigkeit in den Strom der mitreißenden Flüssigkeit injizieren
lässt, welche die Förderleitung (17) hinunterströmt.
10. Verwendung einer Schleuderstrahleinrichtung nach Anspruch 1 zum Strahlen einer Mischung
eines partikulären Strahlmediums und einer Flüssigkeit durch
Mitreißen der Mischung in einem Strom von Druckflüssigkeit in die Förderleitung
(17) bei gleichzeitiger Druckbeaufschlagung des Inneren des Behälters (1), indem ein
Strom der Druckflüssigkeit ab der Quelle in den Behälter (1) hinter seinen Inhalt
(3) hinsichtlich seines Inhaltsausflusses aus dem Behälter (1) geleitet wird;
Einspritzen eines Stroms von Druckflüssigkeit in den Inhalt (3) des Behälters (1),
um den Inhalt (3) zu bewegen;
Steuern des Drucks innerhalb des Behälters (1) durch Sicherstellen, dass während
des Schleuderstrahlvorgangs der Druck der in den Inhalt (3) des Behälters (1) eingespritzten
Druckflüssigkeit immer auf einem höheren Niveau als der Druck der Druckflüssigkeit
gehalten wird, die in den Behälter (1) hinter seinen Inhalt (3) geleitet wird; und
dadurch gekennzeichnet, dass,
wenn der Druck innerhalb des Behälters (1) den Druck der Druckflüssigkeit übersteigt,
sich der Strom der Druckflüssigkeit in den Behälter umkehren lässt und aus dem Innern
des Behälters (1) durch eine Leitung (15a) und in den Strom der Druckflüssigkeit in
der Förderleitung (17) geleitet wird.
11. Verwendung einer Schleuderstrahleinrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das partikuläre Medium ein Medium umfasst, das im wesentlichen wenigstens eins aus
Calciumcarbonat, Calcium-Magnesiumcarbonat, Calciumoxid, Calciumhydrogencarbonat,
Calcium-Magnesiumcarbonat, Magnesiumoxid und Magnesiumsulfat, oder kalzinierte Soda,
einen Olivinsand oder Granat umfasst.
1. Un appareil de grenaillage comprenant
un récipient (1) adapté pour pouvoir contenir un matériau de grenaillage à particules
et un liquide et comprenant un orifice d'entrée (4) et un orifice de sortie dans le
fond (6);
un tuyau de refoulement (17) dans lequel un fluide de transport pressurisé peut
être alimenté à partir d'une source et avec laquelle l'intérieur du récipient (1)
communique via l'orifice de sortie (6) par lequel un flux de fluide pressurisé circulant
dans le tuyau de refoulement (17) peut entraîner le contenu (3) du récipient (1) en
le dispersant dans le flux du fluide du tuyau de refoulement (17) pour le grenaillage;
un dispositif de pressurisation (15, 16) pour diriger le fluide pressurisé depuis
la source dans le récipient (1) derrière son contenu (3) par rapport au flux de sortie
du contenu du récipient (1) par l'orifice de sortie du fond (6);
un dispositif d'injection (31, 32, 33, 34) pour injecter le fluide pressurisé dans
la partie inférieure (7) du récipient (1) dans le contenu (3) du récipient (1) pour
en agiter le contenu (3); et
un dispositif de contrôle (43) pour contrôler la pression à l'intérieur du récipient
(1) et s'assurer que pendant le grenaillage la pression du fluide pressurisé pénétrant
dans le récipient (1) par le dispositif d'injection (31,32,33,34) soit toujours maintenue
à un niveau plus élevé que la pression du fluide pressurisé dirigé dans le récipient
(1) par le dispositif de pressurisation (15, 16); et
caractérisé en ce que
le dispositif de pressurisation (15, 16) comporte une soupape de contrôle (15)
contrôlant un premier orifice de sortie par lequel le fluide pressurisé peut passer
dans le tuyau de refoulement (17) et un second orifice de sortie par lequel le fluide
pressurisé peut s'écouler dans le récipient (1) pour pressuriser l'intérieur du récipient
(1), le premier et le second orifice de sortie étant raccordés par un conduit (15a)
par lequel, pendant le grenaillage, si la pression à l'intérieur du récipient (1)
excède la pression du fluide pressurisant s'écoulant par le second orifice de sortie,
le flux du fluide pressurisant peut s'inverser et passer de l'intérieur du récipient
(1), par le conduit (15a), dans le flux du fluide pressurisé sortant du premier orifice
de sortie dans le tuyau de refoulement. (17).
2. Un appareil tel que décrit dans la revendication 1, caractérisé en ce que le dispositif de contrôle (43) comporte un manostat qui est raccordé à la soupape
de contrôle (15) et au dispositif d'injection (31,32,33,34) et qui permet le maintien
d'une différence de pression prédéterminée entre la pression du fluide pressurisé
pénétrant dans le récipient (1) par le dispositif d'injection (31, 32, 33, 34) et
la pression du fluide pressurisé dirigé dans le récipient (1) par le dispositif de
pressurisation (15, 16).
3. Un appareil tel que décrit dans les revendications 1 et 2, caractérisé en ce que le tuyau de refoulement (17) se termine par une tuyère de grenaillage (20) avec une
poignée de commande (25) qui est alimentée par le fluide pressurisé de la source et
qui est raccordée au dispositif de contrôle (43) et à la soupape de contrôle (15)
et par laquelle un opérateur peut ouvrir la soupape de contrôle (15) et ensuite contrôler
le flux de fluide pressurisé passant dans la tuyère (20) en faisant varier le flux
de fluide pressurisé via la poignée de commande (25).
4. Un appareil tel que décrit dans n'importe laquelle des revendications 1 à 3, dans
lequel l'orifice d'entrée (4) du récipient (1) est pourvue d'une soupape à sas à air
(8) qui se ferme par l'application sur celle-ci du fluide pressurisé depuis l'intérieur
du récipient (1) par le dispositif de pressurisation (15, 16) et est caractérisé en ce que la sortie (6) du récipient (1) est pourvue d'un système de soupape (35) qui est raccordé
à la soupape à sas à air (8) de telle sorte que la fermeture de la soupape à sas à
air (8) provoque l'ouverture du système de soupape (35) à la sortie du récipient (1)
et vice versa.
5. Un appareil tel que décrit dans la revendication 4, caractérisé en ce que l'orifice de sortie (6) du récipient (1) comporte un orifice (41) et le système de
soupape (35) pour la sortie (6) comporte un ergot (42) qui s'insère dans l'orifice
(41), la pointe de l'ergot (42) restant dans l'orifice (41) lorsque le système de
soupape (35) s'ouvre pour laisser sortir le contenu (3) du récipient (1).
6. Un appareil tel que décrit dans la revendication 4 ou la revendication 5, caractérisé en ce que le système de soupape (35) pour la sortie (6) est raccordé à la soupape à sas à air
(8) par un accouplement souple (37) par lequel, lorsque le système de soupape (35)
s'ouvre, l'agitation du contenu (3) du récipient (1) provoque l'agitation de la pointe
de l'ergot (42) à l'intérieur de l'orifice (41).
7. Un appareil tel que décrit dans n'importe laquelle des revendications 1 à 6, caractérisé en ce que le dispositif d'injection (31,32,33,34) comporte un clapet antiretour (32) raccordé
à un dispositif de sortie (33, 34) situé au sein du récipient (1) à proximité de la
sortie (6) du récipient (1).
8. Un appareil tel que décrit dans la revendication 7, caractérisé en ce que le dispositif de sortie (33, 34) comporte un serpentin perforé formant une boucle
autour de la sortie (6) du récipient (1).
9. Un appareil tel que décrit dans n'importe laquelle des revendications 1 à 8, caractérisé en ce que le tuyau de refoulement (17) est raccordé à une alimentation liquide (22) en amont
de la sortie (6) du récipient mais en aval du dispositif de pressurisation (15, 16)
par lequel le liquide peut être injecté dans le flux du fluide de transport descendant
dans le tuyau de refoulement (17).
10. L'utilisation d'un appareil de grenaillage tel que décrit dans la revendication 1
pour propulser un mélange de médium de grenaillage à particules et d'un liquide en
transportant le mélange dans un flux de fluide pressurisé dans le tuyau de refoulement
(17) tout en pressurisant en même temps l'intérieur du récipient (1) en dirigeant
un flux du fluide pressurisé de la source dans le récipient (1) derrière son contenu
(3) par rapport au flux de sortie du contenu du récipient (1);
injectant un flux de fluide pressurisé dans le contenu (3) du récipient (1) pour
agiter son contenu (3);
contrôlant la pression au sein du récipient (1) en s'assurant que pendant le grenaillage
la pression du fluide pressurisé injecté dans le contenu (3) du récipient (1) soit
toujours maintenue à un niveau plus élevé que la pression du fluide pressurisé dirigé
dans le récipient (1) derrière son contenu (3); et
caractérisé en ce que
si la pression au sein du récipient (1) excède la pression du fluide pressurisant,
le flux du fluide pressurisant entrant dans le récipient peut s'inverser et passer
de l'intérieur du récipient (1), par le conduit (15a) et dans le flux du fluide pressurisé
dans le tuyau de refoulement. (17).
11. L'utilisation d'un appareil de grenaillage tel que décrit dans la revendication 10,
caractérisé en ce que le médium à particules comporte un médium qui comprend en grande partie au moins
l'un des produits suivants: carbonate de calcium, carbonate de magnésium calcium,
oxyde de calcium, bicarbonate de calcium, carbonate de magnésium calcium, oxyde de
magnésium et sulfate de magnésium, ou comprend de la cendre de soude, du sable ou
grenat d'olivine.