(19)
(11) EP 1 306 606 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
02.05.2003 Bulletin 2003/18

(21) Application number: 02005373.2

(22) Date of filing: 15.03.2002
(51) International Patent Classification (IPC)7F21S 11/00, E04D 13/03
(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 29.10.2001 IT MI012272

(71) Applicant: Energo Project s.r.l.
21034 Cocquio Trevisago (Prov. of Varese) (IT)

(72) Inventor:
  • Bracale, Gennaro
    21027 Ispra, Varese (IT)

(74) Representative: Modiano, Guido, Dr.-Ing. et al
Modiano & Associati SpA Via Meravigli, 16
20123 Milano
20123 Milano (IT)

   


(54) Tubular skylight


(57) A tubular skylight for lighting rooms with natural light, comprising a tubular body (2) with a reflective inner surface which leads into a room and has, at its external end, a natural light collector assembly (3) and, at its internal end, a light diffuser (30). The collector assembly (3) comprises, inside an optically transparent dome (4) arranged so as to close the tubular body (2), a mirror-finished body (10) which is substantially shaped like a cylindrical band with mirror-finished inner and outer surfaces (10a, 10b). The axial width of the band-like body varies gradually from a minimum-width point to a maximum-width point, which lie diametrically to each other. It is also possible to provide a cylindrical refracting body (20) that surrounds said mirror (10).




Description


[0001] The present invention relates to a tubular skylight for lighting rooms with natural light.

[0002] It is known that tubular skylights for lighting rooms with natural light are already commercially available which generally have a tubular body with a reflective internal surface which has, at its upper end, a natural light collector assembly, which is generally constituted by an optically transparent dome-like body which internally encloses a mirror arranged so as to optimize sunlight collection.

[0003] The mirror that is currently used has a prism-like shape and is capable of reflecting rays that arrive from a single direction, since the mirror is arranged proximate to one edge of the tubular element. Moreover, in order to increase the incoming light, prism-like surfaces are formed on the dome which facilitate the redirection of the rays that otherwise would not enter the tubular element.

[0004] The constructive solutions that are adopted currently do not allow to obtain prisms with a correct angle, since said prisms are provided directly on the surface of the dome, which is usually inclined, and therefore the function of currently provided refracting prisms is reduced significantly with respect to the potential of the rays that can be collected.

[0005] The aim of the present invention is to eliminate the above mentioned drawbacks, by providing a tubular skylight for lighting rooms with natural light that allows to optimize sunlight collection, particularly as regards the rays reflected by the mirror-finished surface.

[0006] Within this aim, a particular object of the invention is to provide a skylight in which it is possible to increase significantly the quantity of rays diverted by refraction, by way of the possibility to optimize the shape of the prisms with respect to the source of the rays and the shape of the tubular element.

[0007] Another object of the present invention is to provide a tubular element that can be easily coupled to the light diffuser arranged inside the room, thus optimizing the quantity of rays that is introduced and also simplifying all production work.

[0008] Another object of the present invention is to provide a tubular skylight which thanks to its particular constructive characteristics is capable of giving the greatest assurances of reliability and safety in use and is further competitive from a merely economical standpoint.

[0009] This aim and these and other objects that will become better apparent hereinafter are achieved by a tubular skylight for lighting rooms with natural light, according to the invention, which comprises a tubular body with a reflective inner surface which leads into a room and has, at its external end, a natural light collector assembly and, at its internal end, a light diffuser, characterized in that said collector assembly comprises, inside an optically transparent dome arranged so as to close said tubular element, a mirror-finished body which is substantially shaped like a cylindrical band with mirror-finished inner and outer surfaces.

[0010] Further characteristics and advantages will become better apparent from the description of a preferred but not exclusive embodiment of a tubular skylight for lighting rooms with natural light, illustrated only by way of non-limitative example in the accompanying drawings, wherein:

Figure 1 is a schematic exploded perspective view of the tubular skylight;

Figure 2 is an exploded perspective view of the collector assembly;

Figure 3 is a diametrical sectional view of the collector assembly;

Figure 4 is a partially cutout perspective view of a detail of the collector assembly;

Figure 5 is a sectional view of the light diffuser;

Figure 6 is a partially exploded view of an embodiment in which the collector assembly is provided by means of an annular refracting body;

Figure 7 is a diametrical sectional view of the embodiment of Figure 6.



[0011] With reference to the figures, the tubular skylight for lighting rooms with natural light according to the invention, generally designated by the reference numeral 1, comprises a tubular body 2 with a reflective internal surface, which is provided so as to lead, at its lower end, into the room to be lit and has, at its other end or external end, a collector assembly generally designated by the reference numeral 3.

[0012] The collector assembly, as shown more clearly in Figure 2, has an optically transparent dome 4, which is arranged so as to close the upper end of the tubular element 2 and internally encloses a mirror-finished body 10, which is advantageously formed by a cylindrical band in which the inner surface 10a and the outer surface 10b are both mirror-finished.

[0013] Advantageously, the body 10 has an axial width that can vary gradually from a point of minimum width to a point of maximum width, which are arranged at right angles to each other.

[0014] The mirror-finished body 10 is supported coaxially inside the upper end of the tubular body 2 by means of brackets 11 which are provided with spokes 12 connected to the rim of the tubular element and have a central portion 13 for connection to the mirror-finished body 10.

[0015] With the described arrangement, therefore, the mirror-finished body is capable of reflecting toward the inner wall of the tubular body 2 rays that arrive from all directions and with any inclination.

[0016] Moreover, the shape in which the end is in practice cut obliquely owing to the width that can vary from a maximum to a minimum that are arranged diametrically optimizes light ray collection by arranging the internal surface of the wider point so that it faces south.

[0017] In order to collect rays with various inclinations, there is a refracting body 20, which is constituted by a cylindrical body with an outer surface 21 formed by prisms, of the Fresnel-lens type, designed to redirect the incoming rays in a more favorable direction.

[0018] The refracting body 20 is applied coaxially externally with respect to the mirror-finished body 10 and is advantageously supported by the spokes 12 of the brackets 11, which have notches 22 for the coupling of the cylindrical body.

[0019] The refracting body might also be used without the presence of the mirror and can be obtained by means of prisms that have particular shapes. Moreover, the refracting body, when used in combination with the mirror, can have a missing circumferential portion.

[0020] As shown in Figures 6 and 7, the collector assembly can have an annular refracting body 50, which has a microcorrugated outer surface obtained by means of prisms that are mutually parallel and have a variable apex angle.

[0021] The annular body has a smooth inner surface in order to be substantially reflective for the light that is incident thereon.

[0022] Advantageously, the annular refracting body can have a discontinuity 51 of a few tens of degrees in the south-facing part.

[0023] It should be added to the above that the refracting body 50 can be supported by the bend 52 arranged at the end of a hook-like element 53 that supports the tubular body 2, engaging in slots 54 formed therein. At the other end, the hook-like element 53 forms an engagement bend 55, which overlaps the supporting structure 56.

[0024] In order to improve the seal, there is an upper gasket 57, which is superimposed on the supporting structure 56 and acts as a support for recesses 58 formed on the rim 59 of the dome 4 in order to provide circumferential slots for the passage of any condensation, which flows from the internal surface of the dome toward the peripheral region of the dome, entering the interspace 60 formed between the rim 59 and the supporting structure 56.

[0025] The interspace 60 is closed by a brush-type gasket 61, which facilitates outward drainage of condensation.

[0026] There is also an airtight gasket 62 between the structure 56 and the tubular body 2.

[0027] In a downward region, the tubular element is connected to a diffuser, generally designated by the reference numeral 30, which has a frame-like body 31 with flanges 32 that allows connection to the roof or ceiling by passing within the roof members.

[0028] The flange 32 can have a rim 33 with rounded corners, which has the same perimetric extension with respect to the circumference of the tubular element and can thus mate, assuming a square shape as shown schematically in Figure 1.

[0029] Optionally, inside the flange 32 it is possible to provide a conventional box-like body 35 with a circular inlet 36 for the connection of the tubular element.

[0030] The frame-like body 31 supports a plate 40, made of translucent material, which acts as a trimming element and is supported by conventional locking elements 41 accommodated in the perimetric profile 42 of the plate of opalescent material in order to allow quick and easy coupling and uncoupling of the plate with respect to the frame-like body 31.

[0031] With the above described arrangement it is therefore evident that the invention achieves the intended aim and objects, and in particular the fact is stressed that a tubular skylight is provided in which the adoption of a mirror-finished body having a particular shape allows to increase significantly the quantity of collected and reflected rays, both by means of the increase in surface and by way of the fact that the mirror-finished body has mirror-finished surfaces on its inner face and on its outer face.

[0032] Further, the provision of a refracting body such as the cylindrical element separated from the dome allows first of all to provide prism-like lenses with an optimum angle and secondly allows to simplify considerably the steps of production, since the prism-like cylindrical body can be obtained simply with a band-like element that is folded during installation.

[0033] The invention thus conceived is susceptible of numerous modifications and variations, all of which are within the scope of the inventive concept.

[0034] All the details may further be replaced with other technically equivalent elements.

[0035] In practice, the materials used, as well as the contingent shapes and dimensions, may be any according to requirements.

[0036] The disclosures in Italian Patent Application No. MI2001A002272, from which this application claims priority, are incorporated herein by reference.

[0037] Where technical features mentioned in any claim are followed by reference signs, those reference signs have been included for the sole purpose of increasing the intelligibility of the claims and accordingly such reference signs do not have any limiting effect on the scope of each element identified by way of example by such reference signs.


Claims

1. A tubular skylight for lighting rooms with natural light, comprising a tubular body (2) with a reflective inner surface which leads into a room and has, at its external end, a natural light collector assembly (3) and, at its internal end, a light diffuser (30), characterized in that said collector assembly (3) comprises, inside an optically transparent dome (4) arranged so as to close said tubular body (2), a mirror-finished body (10) which is substantially shaped like a cylindrical band with mirror-finished inner and outer surfaces (10a, 10b).
 
2. A tubular skylight for lighting rooms with natural light, comprising a tubular body (2) with a reflective inner surface which leads into a room and has, at its external end, a natural light collector assembly (3) and, at its internal end, a light diffuser (30), characterized in that said collector assembly (3) comprises, internally and separately with respect to an optically transparent dome (4) arranged so as to close said tubular body (2), a refracting body (20).
 
3. A tubular skylight for lighting rooms with natural light, comprising a tubular body (2) with a reflective inner surface which leads into a room and has, at its external end, a natural light collector assembly (3) and, at its internal end, a light diffuser (30), characterized in that said collector assembly (3) comprises, inside an optically transparent dome (4) arranged so as to close said tubular body (2), a mirror-finished body (10) which is substantially shaped like a cylindrical band with mirror-finished inner and outer surfaces (10a, 10b), a refracting body (20) being further provided which is separate from said dome (4).
 
4. The tubular skylight according to one or more of the preceding claims, characterized in that said mirror-finished body (10) shaped like a cylindrical band with mirror-finished inner and outer surfaces has an axial width that can vary gradually from a point of minimum width to a point of maximum width which are arranged diametrically with respect to each other.
 
5. The tubular skylight according to one or more of the preceding claims, characterized in that said refracting body (20) surrounds said mirror-finished body (10).
 
6. The tubular skylight according to one or more of the preceding claims, characterized in that said refracting body (20) comprises a cylindrical body with an outer surface (21) that forms prisms.
 
7. The tubular skylight according to one or more of the preceding claims, characterized in that at least one portion of the surface of said cylindrical body (21) is omitted.
 
8. The tubular skylight according to one or more of the preceding claims, characterized in that said refracting body (20) is arranged coaxially outside said mirror-finished body (10).
 
9. The tubular element according to one or more of the preceding claims, characterized in that the prisms (21) of said outer surface of said cylindrical body are shaped according to the installation conditions.
 
10. The tubular skylight according to one or more of the preceding claims, characterized in that said mirror-finished body (10) and said refracting body (20) are arranged coaxially with respect to said tubular body (2).
 
11. The tubular skylight according to one or more of the preceding claims, characterized in that it comprises brackets (11) for supporting said mirror-finished body (10) which are provided with spokes (12) which are arranged radially and are provided with notches (22) for coupling to said refracting body (20).
 
12. The tubular skylight according to one or more of the preceding claims, characterized in that said diffuser (30) has a frame-like body (31) with a flange (32), on which there is a rim (33) with rounded corners that has the same perimetric shape as the circumference of said tubular element (2) for the coupling of the end of said tubular element (2) inside said rim (33).
 
13. The tubular skylight according to one or more of the preceding claims, characterized in that said frame-like body (31) supports a plate (40) made of translucent material which is supported by means of locking elements (41) which are slidingly accommodated within the perimetric profile (42) of said plate of translucent material (40) and can be removably inserted in said frame-like body (31).
 
14. The tubular skylight according to one or more of the preceding claims, characterized in that it comprises hook-like elements (53) which form, at one end, a bend (52) for supporting said refracting body (50), and, at the other end, an engagement bend (55) which is superimposed on a supporting structure (56), said hook-like element (53) being inserted in slots (54) provided in said tubular body (2) for supporting it.
 
15. The tubular skylight according to one or more of the preceding claims, characterized in that it comprises an upper gasket (57) superimposed on said supporting structure (56).
 
16. The tubular skylight according to one or more of the preceding claims, characterized in that it comprises recesses (58) on the rim (59) of said dome (4) in order to form condensate discharge slots.
 
17. The tubular skylight according to one or more of the preceding claims, characterized in that it comprises a brush-type gasket (61) between said rim (59) and said supporting structure (56).
 
18. The tubular skylight according to one or more of the preceding claims, characterized in that it comprises an airtight gasket (62) between said tubular body (2) and said supporting structure (56).
 




Drawing



















Search report