| (19) |
 |
|
(11) |
EP 0 928 834 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
16.07.2003 Bulletin 2003/29 |
| (22) |
Date of filing: 04.01.1999 |
|
| (51) |
International Patent Classification (IPC)7: C21D 1/76 |
|
| (54) |
Method and apparatus for controlling a furnace atmosphere dew point
Verfahren und Vorrichtung zum Kontrollieren des Taupunktes einer Ofenatmosphäre
Procédé et dispositif pour contrôler le point de rosée de l'atmosphère d'un four
|
| (84) |
Designated Contracting States: |
|
DE FR GB |
| (30) |
Priority: |
12.01.1998 GB 9800528
|
| (43) |
Date of publication of application: |
|
14.07.1999 Bulletin 1999/28 |
| (73) |
Proprietor: The BOC Group plc |
|
Windlesham
Surrey GU20 6HJ (GB) |
|
| (72) |
Inventors: |
|
- Stratton, Paul Francis
Huddersfield,
West Yorkshire HD2 1QH (GB)
- Morris, John
Eckington,
Sheffield (GB)
|
| (74) |
Representative: MacLean, Martin David et al |
|
The BOC Group plc,
Chertsey Road Windlesham,
Surrey GU20 6HJ Windlesham,
Surrey GU20 6HJ (GB) |
| (56) |
References cited: :
EP-A- 0 046 567 US-A- 4 744 837
|
DE-C- 3 526 055
|
|
| |
|
|
- PATENT ABSTRACTS OF JAPAN vol. 007, no. 235 (C-191), 19 October 1983 & JP 58 126930
A (KAWASAKI SEITETSU KK), 28 July 1983
- KIRNER J F ET AL: "THERMODYNAMIC CONTROL OF H2-N2 BRIGHT ANNEALING ATMOSPHERES TO
INHIBIT NITROGEN UPTAKE BY STAINLESS STEEL" JOURNAL OF HEAT TREATING, vol. 7, no.
1, 1989, pages 27-33, XP000026509
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to the control of the dew point in a protective atmosphere
within a furnace, and in particular a furnace atmosphere containing hydrogen.
[0002] It is common for furnaces to be provided with a protective atmosphere, for example
to prevent oxidation adversely affecting the processes within the furnace. For example,
a Vertical Bright Annealer (VBA) furnace, used to anneal stainless steel sheet or
strip, operates with a protective atmosphere having a composition of about 75% hydrogen
and 25% nitrogen. Such an atmosphere is highly reducing and very dry. In fact, the
furnace dew point can attain minus 70°C or even drier. At such dryness levels there
is a strong tendency toward the formation of a white powder deposit, particularly
in the cooler regions of the furnace (for example the jet coolers), and these deposits
inhibit the operating efficiency of the furnace, In order to remove the powder build-up
it is usually necessary to shut down the furnace, which is time consuming and inefficient.
[0003] It has been discovered that the problem of powder deposition can be alleviated by
controlling the furnace dew point. In particular, in a VBA furnace such as that described
above, maintaining the hot zone dew point between about minus 40°C and minus 55°C
has been shown to minimise the formation and deposition of white powder. The volume
of water typically required to promote a dew point change from minus 70°C to minus
55°C is 1.3ml per 100m
3 of total furnace atmosphere flow. A method of humidifying the furnace atmosphere,
to effect the necessary increase in furnace dew point, employs the introduction of
water mist, or vapour, into the protective atmosphere gas stream supplied to the furnace.
Such an arrangement has been reasonably successful in curbing an excessively low dew
point, but is inaccurate and unable to maintain a controlled dew point. In practice,
a lubrication misting unit having a water-filled reservoir is employed, the water
mist being introduced from the unit into the furnace atmosphere gas stream. Such arrangements
are also dependent on the operator remembering to refill the unit with water.
[0004] According to the invention, an improved method of controlling a furnace atmosphere
dew point (wherein, in use, the furnace is supplied with an atmosphere consisting
at least in part of hydrogen) comprises withdrawing at least part of the flow of hydrogen
being supplied to the furnace, reacting the withdrawn hydrogen with an oxygen-containing
gas so as to produce a gas mixture consisting of an oxygen-free product gas, residual
hydrogen and water, and directing the gas mixture into the atmosphere supplied to
the furnace so as to maintain the water vapour content of the furnace atmosphere within
a predetermined range.
[0005] Such an arrangement enables the provision of a controllable, automatic method of
dew point adjustment of the furnace atmosphere, and enables the dew point to be accurately
controlled and maintained within a given range.
[0006] The water vapour-containing gas mixture may be directed in to the flow of hydrogen
prior to its introduction in to the furnace or, more preferably, may be directed in
to the hot zone(s) of the furnace. In either case, the water vapour content can be
accurately controlled, however the latter arrangement advantageously humidifies only
a proportion of the total atmosphere flow in to the furnace and hence is inherently
more efficient than the prior art methods in which the total atmosphere flow in to
the furnace is humidified.
[0007] In the manufacture of industrial gases it is common to use catalytic gas deoxygenation
("deoxo") units. In operation, such units cause any oxygen present in the feed gas
to react with hydrogen to form water; the resulting output from such a deoxo unit
is a combination of oxygen-free product gas, residual hydrogen and water. Such deoxo
units can profitably be used in the present invention to humidify a furnace atmosphere,
being employed primarily as "water generators". These deoxo units are highly efficient,
and therefore water output can be precisely controlled; accordingly, the installation
of a catalytic deoxo unit in the hydrogen pipeline serving the furnace enables the
provision of a highly controllable method of dew point adjustment of the furnace atmosphere.
Those skilled in the art will appreciate that the addition of a dew point sensing
means and a suitable control device, such as a suitably programmed microprocessor,
will produce a simple, inexpensive yet effective automatic dew point control system.
Commercial deoxo units are also advantageous as they are completely self-contained,
and do not require any external services or attention for their operation.
[0008] The invention further relates to an apparatus, as defined in claim 7, for controlling
a furnace atmosphere dew point.
[0009] The invention will now be described by way of example and with reference to the accompanying
drawing, Figure 1, which is a schematic diagram of an apparatus for humidifying the
atmosphere supplied to a VBA furnace, and thus for controlling the dew point thereof.
[0010] In the apparatus of Figure 1, a proportion of the hydrogen feed passing along supply
line 2 to the VBA furnace is diverted along line 4 leading to a catalytic gas deoxygenation
unit 6 thereto react with the oxygen in a supply of air passing along line 8 (the
air typically being provided by a compressed air system, as cylinder gas or from a
small compressor). Flow meters 10 measure the flows of hydrogen and air into the deoxo
unit 6, these flows being controlled by regulator valves 12. Check valves 14 prevent
back flows. A valved off-take 16 is provided for sampling the gas supplied by the
deoxo unit 6 for measuring the dew point.
[0011] In practice, hydrogen is supplied to the furnace atmosphere control system at high
pressure (about 8bar) and the hydrogen withdrawn along line 4 is regulated to a lower
pressure before passage through the deoxo unit 6. Passage through the deoxo unit results
in a chemical combination of a proportion of the hydrogen and all of the oxygen in
the air supply to the deoxo unit 6 in the ratio 2 to 1 by volume to form water vapour.
The outlet gases (hydrogen, water vapour and a small amount of nitrogen) is reintroduced
back into the furnace atmosphere at a suitable low pressure (less than 8bar) location,
such as into the main hydrogen feed immediately prior to its ingress into the furnace,
or into the furnace itself.
[0012] The dew point "shift" necessary to obtain dew point temperature levels within the
range minus 40°C to minus 55°C is relatively minor. A water vapour content within
the above-mentioned VBA furnace atmosphere of 128ppm is equivalent to the higher dew
point condition while 22ppm represents the dryer condition. As the required water
vapour levels are so low it is possible to accomplish the necessary humidification
of the furnace atmosphere by treating only a small sidestream of the feed hydrogen
supply to the furnace. Accordingly, up to about 3m
3/hr of hydrogen (about 2.0% of the total hydrogen flow) is withdrawn for humidification.
[0013] As will be appreciated by those skilled in the art, the amount of water vapour produced
can be controlled with great accuracy because the input flow rates of both hydrogen
and air to the deoxo unit can be very accurately measured and controlled. Moreover,
deoxo units are highly efficient in operation, and the size and hence expense of deoxo
unit necessary could be reduced if it were desired to humidify the atmosphere in the
furnace hot zone(s) only.
1. A method of controlling a furnace atmosphere dew point wherein, in use, the furnace
is supplied with an atmosphere consisting at least in part of hydrogen, the method
comprising withdrawing at least part of the flow of hydrogen being supplied to the
furnace, reacting the withdrawn hydrogen with an oxygen-containing gas so as to produce
a gas mixture consisting of an oxygen-free product gas, residual hydrogen and water,
and directing the gas mixture into the atmosphere supplied to the furnace so as to
maintain the water vapour content of the furnace atmosphere within a predetermined
range.
2. A method as claimed in Claim 1 comprising controlling the amount of hydrogen withdrawn
and/or the amount of oxygen-containing gas reacted therewith in order to maintain
the predetermined water vapour content range between about 10ppm and about 200ppm,
preferably between about 22ppm and about 128ppm.
3. A method as claimed in Claim 2 comprising monitoring the temperature and/or dew point
of the furnace atmosphere and controlling the amount(s) of hydrogen withdrawn and/or
oxygen-rich gas supplied for reaction accordingly.
4. A method as claimed in Claim 1, Claim 2 or Claim 3 wherein the gas mixture is directed
into the flow of hydrogen prior to its introduction into the furnace.
5. A method as claimed in Claim 1, Claim 2 or Claim 3 wherein the gas mixture is directed
into the hot zone(s) of the furnace.
6. A method as claimed in any preceding Claim wherein the oxygen-containing gas is air.
7. Apparatus for controlling a furnace atmosphere dew point wherein, in use the furnace
is supplied with an atmosphere consisting at least in part of hydrogen, the apparatus
comprising means for withdrawing at least part of the flow of hydrogen being supplied
to the furnace, means for supplying an oxygen-containing gas, means for reacting the
withdrawn hydrogen with the oxygen-containing gas to produce a gas mixture comprising
oxygen-free product gas, residual hydrogen and water and means to direct the gas mixture
into the furnace, means being provided to control the amount(s) of hydrogen withdrawn
and/or of oxygen-containing gas so as to maintain the amount of water vapour produced,
and hence the water vapour content of the furnace atmosphere, within a predetermined
range.
8. Apparatus as claimed in Claim 7 wherein the reacting means comprises a catalytic gas
deoxygenation unit.
1. Verfahren zur Steuerung eines Ofenatmosphärentaupunkts, bei welchem im Gebrauch der
Ofen mit einer Atmosphäre beschickt wird, die mindestens teilweise aus Wasserstoff
besteht, wobei das Verfahren das Abziehen mindestens eines Teils der zum Ofen zugeführten
Wasserstoffströmung, das Reagieren des abgezogenen Wasserstoffs mit einem sauerstoffhaltigen
Gas, so daß ein aus einem sauerstofffreien Produktgas, restlichem Wasserstoff und
Wasser bestehendes Gasgemisch erzeugt wird, und das Leiten des Gasgemischs in die
zum Ofen zugeführte Atmosphäre umfasst, um den Wasserdampfgehalt der Ofenatmosphäre
innerhalb eines vorgegebenen Bereichs zu halten.
2. Verfahren nach Anspruch 1, welches das Steuern der Menge von abgezogenem Wasserstoff
und/oder der Menge von damit reagiertem sauerstoffhaltigem Gas umfasst, um den vorgegebenen
Wasserdampfgehaltsbereich zwischen etwa 10 ppm und etwa 200 ppm, vorzugsweise zwischen
etwa 22 ppm und etwa 128 ppm, zu halten.
3. Verfahren nach Anspruch 2, welches das Überwachen der Temperatur und/oder des Taupunkts
der Ofenatmosphäre und die Steuerung der Menge(n) des abgezogenen Wasserstoffs und/oder
des für die Reaktion zugeführten sauerstoffreichen Gases umfasst.
4. Verfahren nach Anspruch 1, 2 oder 3, wobei das Gasgemisch in die Wasserstoffströmung
vor deren Einleitung in den Ofen geleitet wird.
5. Verfahren nach Anspruch 1, 2 oder 3, wobei das Gasgemisch in die heiße Zone(n) des
Ofens eingeleitet wird.
6. Verfahren nach einem der Ansprüche der vorhergehenden Ansprüche, wobei das sauerstoffhaltige
Gas Luft ist.
7. Einrichtung zur Steuerung eines Ofenatmosphärentaupunkts, bei welcher im Gebrauch
der Ofen mit einer Atmosphäre beschickt wird, die mindestens teilweise aus Wasserstoff
besteht, wobei die Einrichtung Mittel zum Abziehen mindestens eines Teils der zum
Ofen zugeführten Wasserstoffströmung, Mittel zum Zuführen eines sauerstoffhaltigen
Gases, Mittel zum Reagieren des abgezogenen Wasserstoffs mit dem sauerstoffhaltigen
Gas zur Erzeugung eines Gasgemischs, das sauerstofffreies Produktgas, restlichen Wasserstoff
und Wasser enthält, und Mittel zum Leiten des Gasgemischs in den Ofen umfasst, und
wobei Mittel zur Steuerung der Menge(n) des abgezogenen Wasserstoffs und/oder des
sauerstoffhaltigen Gases vorgesehen sind, um die Menge des erzeugten Wasserdampfs
und folglich den Wasserdampfgehalt der Ofenatmosphäre innerhalb eines vorgegebenen
Bereichs zu halten.
8. Einrichtung nach Anspruch 7, wobei die Reaktionsmittel eine katalytische Gasdesoxiginierungseinheit
umfassen.
1. Procédé pour contrôler le point de rosée de l'atmosphère d'un four dans lequel, en
utilisation, le four est alimenté avec une atmosphère se composant au moins en partie
d'hydrogène, le procédé comprenant le prélèvement d'au moins une partie du flux d'hydrogène
qui est fourni au four, la mise en réaction de l'hydrogène prélevé avec un gaz contenant
de l'oxygène afin de produire un mélange gazeux se composant d'un gaz de production
exempt d'oxygène, d'hydrogène résiduel et d'eau, et l'envoi du mélange gazeux dans
l'atmosphère fournie au four de manière à maintenir la teneur en vapeur d'eau de l'atmosphère
du four dans une plage prédéterminée.
2. Procédé selon la Revendication 1, comprenant le contrôle de la quantité d'hydrogène
prélevée et/ou de la quantité de gaz contenant de l'oxygène mis à réagir avec celui-ci
de manière à maintenir la plage prédéterminée de teneur en vapeur d'eau entre environ
10 ppm et environ 200 ppm, et de manière préférée entre environ 22 ppm et environ
128 ppm.
3. Procédé selon la Revendication 2, comprenant la régulation de la température et/ou
du point de rosée de l'atmosphère du four et le contrôle correspondant de la (des)
quantité(s) d'hydrogène prélevée(s) et/ou de gaz riche en oxygène fournie(s) à la
réaction.
4. Procédé selon la Revendication 1, la Revendication 2 ou la Revendication 3, dans lequel
le mélange gazeux est envoyé dans le flux d'hydrogène avant son introduction dans
le four.
5. Procédé selon la Revendication 1, la Revendication 2 ou la Revendication 3, dans lequel
le mélange gazeux est envoyé dans la(les) zone(s) chaude(s) du four.
6. Procédé selon l'une quelconque des Revendications précédentes, dans lequel le gaz
contenant de l'oxygène est l'air.
7. Dispositif pour contrôler le point de rosée de l'atmosphère d'un four dans lequel,
en utilisation, le four est alimenté avec une atmosphère se composant au moins en
partie d'hydrogène, le dispositif comprenant des moyens de prélèvement d'au moins
une partie du flux d'hydrogène qui est fourni au four, des moyens d'alimentation d'un
gaz contenant de l'hydrogène, des moyens de mise en réaction de l'hydrogène prélevé
avec le gaz contenant de l'oxygène afin de produire un mélange gazeux se composant
d'un gaz de production exempt d'oxygène, d'hydrogène résiduel et d'eau, et des moyens
pour envoyer le mélange gazeux dans le four, des moyens étant prévus pour contrôler
la(les) quantité(s) d'hydrogène prélevée(s) et/ou de gaz contenant de l'oxygène afin
de maintenir la quantité de vapeur d'eau produite, et donc la teneur en vapeur d'eau
de l'atmosphère du four, dans une plage prédéterminée.
8. Dispositif selon la Revendication 7, dans lequel les moyens de mise en réaction comprennent
une unité de désoxygénation catalytique de gaz.
