(19) |
 |
|
(11) |
EP 1 066 602 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
20.08.2003 Bulletin 2003/34 |
(22) |
Date of filing: 19.03.1999 |
|
(51) |
International Patent Classification (IPC)7: G07D 7/00 |
(86) |
International application number: |
|
PCT/GB9900/877 |
(87) |
International publication number: |
|
WO 9905/0796 (07.10.1999 Gazette 1999/40) |
|
(54) |
METHODS AND APPARATUS FOR MONITORING ARTICLES
VERFAHREN UND VORRICHTUNG ZUR ÜBERWACHUNG VON ARTIKELN
PROCEDES ET APPAREIL PERMETTANT DE SURVEILLER DES ARTICLES
|
(84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
(30) |
Priority: |
31.03.1998 GB 9806914
|
(43) |
Date of publication of application: |
|
10.01.2001 Bulletin 2001/02 |
(73) |
Proprietor: De La Rue International Limited |
|
Basingstoke, Hampshire RG22 4BS (GB) |
|
(72) |
Inventors: |
|
- POTTER, Michael
Petersfield,
Hants GU31 5RS (GB)
- REEVES, David Charles
Waterlooville,
Hants PO8 8BG (GB)
|
(74) |
Representative: Skone James, Robert Edmund |
|
GILL JENNINGS & EVERY
Broadgate House
7 Eldon Street London EC2M 7LH London EC2M 7LH (GB) |
(56) |
References cited: :
WO-A-94/12951 US-A- 4 592 090 US-A- 5 304 813
|
US-A- 3 679 314 US-A- 4 723 072 US-A- 5 437 357
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The invention relates to methods and apparatus for monitoring articles, for example
documents of value such as banknotes.
[0002] The principle of using reflectance measurements to authenticate security documents
is well known. The characteristics of security paper are such that in some regions
of the spectrum (UV, visible and IR), the reflectivity is different from that of many
non-security papers used for producing counterfeit documents.
[0003] For example, a simple authentication system can be produced by illuminating a document
with UV light and measuring the intensity of the reflections. If this intensity exceeds
a predetermined threshold level, the document is deemed to be authentic. (Note, however,
that in specific situations, it may be the counterfeit document that has the higher
reflectivity.) It is possible to carry out a measurement of the natural UV-excited
fluorescence of the paper at the same time: most security papers have a low level
of natural fluorescence. This "UV Bright" measurement technique is also well known.
[0004] The simple techniques outlined above have several disadvantages in any practical
implementation. The two most important are:
- The intensity of the reflections from any given document is also dependent on the
characteristics of the measurement system, some of which can vary significantly. For
example, the output intensity of most UV sources varies with temperature, and as the
source ages. The characteristics of the optical components used (filters, windows,
lenses, etc.) can also change as they age. Dirt and dust build-up on the optical surfaces
during use reduce the measured intensity.
- The intensity of the reflections is dependent on the soiling of the document: the
dirtier the document, the lower the reflectivity.
[0005] Changes in the sensitivity of the measurement system may be reduced with an automatic
calibration system that continually monitors the signal level measured on a reference
surface, but there are difficulties and costs in providing a continuously clean reference
surface. Such a system cannot, of course, compensate any soiling of the documents.
[0006] The combined effect is to reduce the discrimination of the detection system. If the
detection threshold is set sufficiently high to detect the cleanest counterfeit with
a new, clean (high sensitivity) system, a relatively large fraction of dirty, genuine
notes will be falsely deemed counterfeit; this fraction will increase as the detection
system ages or becomes dirty. If the threshold is decreased so that only a small fraction
of genuine notes is falsely deemed counterfeit by an old, dirty (low sensitivity)
system, an unacceptably large fraction of counterfeits will be deemed to be genuine
by a clean system.
[0007] US-A-4723072 describes apparatus for measuring the soiling of banknotes, using one
or more sensors working in the same optical waveband. The present invention is not
concerned with measuring soiling.
[0008] US-A-3679314 describes apparatus for optically testing the genuineness of banknotes
by successively illuminating a selected portion of a note with lightbeams having different
spectral distributions and then detecting the light transmitted through or effected
by the illuminated portion. The problem with this approach is the need to scan a pair
of filters mechanically across the illumination beam in order to control the illumination
of the banknote.
[0009] In accordance with one aspect of the present invention, a method of monitoring articles
to determine the presence of an authenticity indicating characteristic comprises irradiating
an article with radiation in at least first and second wavebands; detecting first
radiation generated by the article in response to irradiation at the first waveband,
the first waveband being chosen such that the first radiation generated varies in
accordance with the presence or absence of the authenticity indicating characteristic
and in response to the presence of obscuring material on the article; detecting second
radiation generated by the article in response to irradiation at the second waveband,
the second waveband being chosen such that the second radiation generated by the article
varies with the degree of obscuring material on the article but is substantially independent
of the presence of the authenticity indicating characteristic; and comparing the detected
first and second radiation to determine whether or not the authenticity indicating
characteristic is present.
[0010] In accordance with a second aspect of the present invention, apparatus for monitoring
articles to determine the presence of an authenticity indicating characteristic comprises
at least one source for irradiating an article with radiation in at least first and
second wavebands; a first detector for detecting first radiation generated by the
article in response to irradiation at the first waveband, the first waveband being
chosen such that the first radiation generated varies in accordance with the presence
or absence of the authenticity indicating characteristic and in response to the presence
of obscuring material on the article; a second detector for detecting second radiation
generated by the article in response to irradiation at the second waveband, the second
waveband being chosen such that the second radiation generated by the article varies
with the degree of obscuring material on the article but is substantially independent
of the presence of the authenticity indicating characteristic; and comparison means
for comparing the detected first and second radiation to determine whether or not
the authenticity indicating characteristic is present.
[0011] We have found that it is possible to distinguish between authentic and non-authentic
articles even where these carry obscuring materials such as soiling by irradiating
the articles in at least two different wavebands which have the characteristics specified
above.
[0012] Typically, the first waveband will lie outside the visible wavelength range, for
example in the ultraviolet or infrared range. Indeed, in principle, the illumination
could be anywhere in the electro-magnetic spectrum. This is often important since
the authenticity characteristic will not generally be visible within the visible wavelength
range as it is a covert feature. However, the second waveband will often be in the
visible wavelength range since in this range it will not be substantially affected
by the authenticity characteristic. In some cases, however, both wavebands can lie
in or outside the visible wavelength band.
[0013] Provided the first and second wavebands are close together, soiling has substantially
the same effect on radiation in both wavebands. Thus, the relationship between the
first and second detected radiation will be substantially the same irrespective of
the degree of soiling (at least up to some limit). This then provides a very convenient
way of distinguishing between genuine and counterfeit banknotes, for example, where
the relationship between the first and second radiation will differ depending upon
the authenticity and not on the amount of soiling.
[0014] Although separate sources could be used, a particularly convenient aspect of the
invention is that it enables a single source to be used which generates radiation
in both or all wavebands. For example, some conventional UV sources generate radiation
in the UV waveband and also in the visible region. For simplicity, we will refer hereafter
to the use of UV radiation but it should be understood that other wavelengths, single
or multiple, could be used instead.
[0015] The irradiation at all wavebands and selective detection, rather than irradiating
at selected wavebands, avoids the need for mechanical scanning, reduces the susceptibility
to stray light, and simplifies processing. Conveniently, this is achieved by positioning
filters in front of the detectors.
[0016] Although it has been found that usually two first wavebands is sufficient, irradiation
at more than two wavebands could be carried out. In some cases, this will lead to
a more accurate determination of authenticity.
[0017] For example, in an embodiment where irradiation at three wavebands is used, two of
the three wavebands are normally selected so that they are at regions where the generated
radiations varies with the presence or otherwise of a respective one of two authenticity
indicating characteristics and with the degree of obscuring material. The third waveband
is at a region where the generated radiation varies with the degree of obscuring material,
but does not vary substantially with the presence or otherwise of the two authenticity
indicating characteristics.
[0018] Typically, the first and second detected radiation generated by the article will
comprise reflected radiation, the wavelengths of the reflected radiation depending
on the characteristics (print, paper, etc.) of the article. In some cases, the irradiation
will also cause the print or the paper of the article to luminesce. It would be possible
to distinguish between fluorescence and phosphorescence by suitably modulating the
irradiation in known manner. Modulation can also be used to eliminate the affects
of ambient light.
[0019] The first and second detected radiation will typically lie within the first and second
wavebands respectively. However, in some cases, one or both of the first and second
detected radiation may be offset in wavelength from the corresponding irradiation.
[0020] The relationship between the first and second detected radiation can be determined
in a variety of ways. In one approach, the ratio of the intensity of the first and
second detected radiation is determined. That ratio can then be compared with a predetermined
threshold to determine whether or not the article is genuine. In another approach,
a number of different characteristics of the first and second detected radiation can
be determined from which a measurement vector is constructed for comparison with one
or more measurement vectors corresponding to a genuine and/or known counterfeit article.
[0021] It will be appreciated that an important application of the invention is in the monitoring
of documents of value such as banknotes but the invention is also applicable to monitoring
other types of article, particularly those printed with inks which respond in both
the visible and non-visible wavebands.
[0022] Some examples of methods and apparatus according to the invention will now be described
with reference to the accompanying drawings, in which:-
Figure 1 is a schematic view of a first example of the apparatus;
Figure 2 is a block circuit diagram showing the lamp control circuit;
Figure 3 is a block diagram illustrating the processing circuit;
Figure 4 illustrates graphically the typical output spectrum of an unfiltered UV source;
Figure 5 illustrates graphically the characteristics of a pair of optical filters
that may be used to determine the characteristics of the two second wavebands. (It
should be recognised that this particular pair of filters is only given as an example,
and that other pairs or multiple filters may be more suited to some applications);
Figure 6 is a schematic block diagram of a second example of the apparatus; and,
Figure 7 illustrates the wavebands used with the apparatus of Figure 6.
[0023] The apparatus shown in Figure 1 comprises a pair of UV lamps 1,2 mounted at an angle
so that radiation generated by the lamps is directed to a region 3. The region 3 is
located in the path of banknotes 4 which are carried through the region 3 on a moving
conveyor 5 such as a belt. Each lamp generates a range of wavelengths typically as
shown in Figure 4. In particular, it will be noted that a relatively high intensity
radiation is generated within a first waveband - the UV band (wavelengths less than
about 380nm) and within a second waveband - the visible range (380-700nm). To a first
approximation, the overall shape of this spectrum will not change significantly with
temperature, or as the lamp ages, even if the total integrated output changes.
[0024] Radiation generated by the lamps 1,2 will be reflected by the banknote, the (first
and second) wavelengths of the reflected radiation being dependent on the inks on
the banknote and the banknote paper. The intensity of the reflected UV radiation responds
to the authenticity of the inks or the banknote paper, and to the degree of soiling.
The intensity of the reflected visible radiation is dependent substantially solely
on the degree of soiling. The radiation may also stimulate inks on the banknote 4
to luminesce. The reflected radiation and luminescence is received by a focusing and
detection system 6. The system 6 includes a tubular housing 7 at the leading end of
which is mounted an infrared stop filter 8 and a focusing lens 9 which focuses the
incoming radiation onto a UV pass filter 10 and a visible pass filter 11 whose characteristics
are shown in Figure 5. Respective sensors 12,13 are mounted behind the filters 10,11.
The sensor 12 thus provides an output indicative of the intensity of incident UV light
while the sensor 13 provides an output indicative of the intensity of incident visible
light.
[0025] In one preferred approach, the intensities of the detected radiation are simply compared,
for example by taking their ratio, and this ratio is then compared with a predetermined
threshold to determine whether or not the banknote is genuine. For example, a genuine
banknote may have a visible reflection which is high compared with the UV reflection
in contrast to a counterfeit in which the intensities at the two wavebands are similar.
If the ratio exceeds the threshold then this will be indicative of a genuine note,
i.e. a relatively large difference in intensity of reflection at the two wavebands.
[0026] As mentioned previously, certain inks can luminesce upon irradiation at one or both
of the wavebands. In addition, the sensors may receive and respond to ambient light.
In the preferred approach, therefore, the lamps 1,2 are modulated so that a distinction
can be made between ambient light on the one hand and light received in response to
irradiation on the other hand, although this is not an essential part of the invention.
[0027] Figure 2 illustrates a simple circuit for modulating the lamp output, the circuit
comprising a clock generator 20 which is connected to a lamp control circuit 21 which
in turn is connected to the lamps 1,2.
[0028] Each sensor 12,13 is coupled to a respective amplifier 30. The outputs of the two
amplifiers are fed to respective Signal Processing Circuits 31,32. These process the
signals to produce a number of Signal Measures, quantities related to different characteristics
of the amplifier outputs. The Signal Processing Circuits may include low-pass filters,
high-pass filters, demodulators, integrators, and other techniques well known to those
skilled in the art. The measures include differently filtered versions of the amplifier
outputs, etc. and combinations of these (sums, differences, quotients, etc.). In general,
these Signal Processing Circuits will have no storage capability, and the measures
will vary as the amplifier outputs vary, apart from the relatively short delays inherent
in the processing. Such signal processing may be carried out using analogue or digital
electronic hardware 33, or using software techniques, as is convenient.
[0029] Typical information which can be obtained from the sensors 12,13 includes:
(a) Level of modulation of detected UV light;
(b) Average, or DC, level of detected UV light;
(c) Level of modulation of detected visible light;
(d) Average, or DC, level of detected visible light.
[0030] These can be used to obtain certain measures.
[0031] Often the most important measure is the ratio (a) : (c), but (b) and (d) can also
provide some useful information. As the UV channel is sensitive to a range of wavelengths,
the output (b) can contain a contribution from any "long" UV wavelength phosphorescence
induced by the "short" UV wavelength illumination. The measure of this "UV phosphorescence"
is given by the difference between output (b) and output (a). Similarly, the difference
between outputs (d) and (c) is a measure of any visible phosphorescence.
[0032] The measures are fed to the Measure Analysis Circuitry 33, which also may have other
external signal inputs (threshold levels, positional information from the document
transport system, etc.). This circuitry processes the measurements individually or
in combination to produce a single output signal that indicates whether or not the
banknote is genuine.
[0033] The processing may be relatively simple, comprising comparisons of signal levels
with threshold levels, and a comparison of the measures representative of reflections
in the two second wavebands, as discussed above. In some cases it has been found that
more complex techniques, such as processing several measures together, treating them
as a single measurement vector rather than independent measurements, and using multi-dimensional
clustering techniques to define the characteristics of genuine and known counterfeit
notes can allow a high proportion of counterfeits to be identified. Such processing
is normally carried out using standard mathematical and software techniques, including
the use of Artificial Neural Nets.
[0034] These measurements may be made at one position on a document, or at a number of positions
as the document is passed through a transport system past the detector. Such techniques
are well known to those skilled in the art.
[0035] The response of the UV pass filter 10 is chosen so that measurements are made at
part of the UV spectrum where the difference of the reflectivities of genuine and
counterfeit documents are greatest. The response of the visible pass filter 11 is
chosen so that measurements are made at a region where there is a significant visible
output.
[0036] In the example described above, two wavebands were used. Figure 6 illustrates apparatus
in which radiation from the document in three wavebands is detected. The circuit shown
in Figure 6 is very similar to that shown in Figures 2 and 3 and this circuit would
be used with an arrangement similar to that shown in Figure 1. In this case, a pair
of lamps 101,102, typically in the form of discharge lamps containing gas such as
neon are used to irradiate the document. Each lamp generates radiation in a number
of narrow peaks at wavelengths from below 330nm to above 800nm although other wide
band sources could be used. The lamps are controlled by a lamp control circuit 103
coupled with a clock 104. Radiation from the document is passed to three photodiodes
105-107 via respective filters 108-110. The pass bands of these filters are shown
in Figure 7 where it will be seen that these pass bands are non-overlapping. The pass
band for the filter 108 is shown at 111, the pass band for the filter 109 is shown
at 112, and the pass band for the filter 110 is shown at 113.
[0037] The output signals from the photodiodes 105-107 are amplified by respective amplifiers
114-116 and passed to respective signal processing circuitry 117-119. The signals
are then passed to analysis circuitry 120 similar to the circuitry 33 shown in Figure
3.
[0038] When irradiation is measured in three (or more) wavebands, the simplest form of processing
is to calculate the ratios of the intensities in each of the wavebands 111-113 where
the generated radiation varies with the presence or otherwise of authenticity indicating
characteristics to the intensity in the waveband where the generated radiation varies
with the degree of obscuring material, but not substantially with the presence or
otherwise of the authenticity indicating characteristics. These ratios are then compared
to predetermined threshold values to determine whether the article is genuine. However,
it is usually more advantageous in this case to use a technique in which a measurement
vector is constructed from several different characteristics of the detected radiations,
and then this measurement vector is compared with one or more measurement vectors
corresponding to genuine and/or counterfeit articles.
[0039] The invention is applicable to many different forms of article monitoring system
including document sorters and acceptors, and cash handling equipment such as counters,
sorters, dispensers and acceptors. The invention is particularly suited to the monitoring
of banknotes.
1. A method of monitoring articles (4) to determine the presence of an authenticity indicating
characteristic comprises irradiating an article with radiation in at least first and
second wavebands; detecting first radiation generated by the article in response to
irradiation at the first waveband, the first waveband being chosen such that the first
radiation generated varies in accordance with the presence or absence of the authenticity
indicating characteristic and in response to the presence of obscuring material on
the article; detecting second radiation generated by the article in response to irradiation
at the second waveband; and comparing the detected first and second radiation to determine
whether or not the authenticity indicating characteristic is present, characterised in that the second waveband is chosen such that the second radiation generated by the article
varies with the degree of obscuring material on the article but is substantially independent
of the presence of the authenticity indicating characteristic.
2. A method according to claim 1, wherein the first waveband is outside the visible wavelength
region.
3. A method according to claim 1 or claim 2, wherein the second waveband is in the visible
wavelength range.
4. A method according to any of the preceding claims, wherein the first detected radiation
is outside the visible wavelength range.
5. A method according to any of the preceding claims, wherein the second waveband is
in the visible wavelength band.
6. A method according to any of the preceding claims, wherein the first radiation falls
substantially within the first wavelength band.
7. A method according to any of the preceding claims, wherein the second radiation falls
substantially within the second wavelength band.
8. A method according to any of the preceding claims, wherein the radiation in at least
one of the first and second wavebands is reflected by the article to constitute at
least part of the first and second detected radiation respectively.
9. A method according to any of the preceding claims, wherein the detected radiation
includes luminescence.
10. A method according to any of the preceding claims, further comprising modulating the
irradiating radiation and detecting radiation received with substantially no modulation
and/or with a similar modulation.
11. A method according to any of the preceding claims, wherein the comparison step comprises
determining the ratio between the intensities of the first and second detected radiation.
12. A method according to any of the preceding claims, further comprising determining
the relationship of the result of the comparison step with an expected relationship
corresponding to an acceptance condition.
13. A method according to claim 12, when dependent on claim 11, wherein the relationship
determining step comprises comparing the ratio with a threshold.
14. A method according to any of the preceding claims, wherein the irradiation is generated
from a single source.
15. A method according to any of the preceding claims, wherein radiation in at least three
wavebands is detected.
16. A method according to any of the preceding claims, wherein the article comprises a
sheet such as a document of value, for example a banknote.
17. Apparatus for monitoring articles (4) to determine the presence of an authenticity
indicating characteristic comprises at least one source (1, 2) for irradiating an
article with radiation in at least first and second wavebands; a first detector (12)
for detecting first radiation generated by the article in response to irradiation
at the first waveband, the first waveband being chosen such that the first radiation
generated varies in accordance with the presence or absence of the authenticity indicating
characteristic and in response to the presence of obscuring material on the article;
a second detector (13) for detecting second radiation generated by the article in
response to irradiation at the second waveband; and comparison means (33) for comparing
the detected first and second radiation to determine whether or not the authenticity
indicating characteristic is present, characterised in that the second waveband is chosen such that the second radiation generated by the article
varies with the degree of obscuring material on the article but is substantially independent
of the presence of the authenticity indicating characteristic.
18. Apparatus according to claim 17, wherein first and second sources (1, 2) are formed
by a common source.
19. Apparatus according to claim 17 or claim 18, adapted to carry out a method according
to any of claims 1 to 16.
1. Verfahren zur Überwachung von Artikeln (4), um das Vorhandensein eines die Authentizität
anzeigenden Zeichens festzustellen, bei dem ein Artikel mit einer in wenigstens einem
ersten und einem zweiten Wellenlängenbereich liegenden Strahlung bestrahlt wird; eine
erste Strahlung, die durch den Artikel als Antwort auf die Bestrahlung in dem ersten
Wellenlängenbereich erzeugt wird, detektiert wird; der erste Wellenlängenbereich so
gewählt wird, daß sich die erzeugte erste Strahlung in Abhängigkeit vom Vorhandensein
oder Fehlen des die Authentizität anzeigenden Zeichens und als Antwort auf das Vorhandensein
eines Abdeckmateriäls auf dem Artikel ändert; die durch den Artikel als Antwort auf
die Bestrahlung in dem zweiten Wellenlängenbereich erzeugte zweite Strahlung detektiert
wird und die detektierte erste und zweite Strahlung verglichen werden, um festzustellen,
ob das die Authentizität anzeigende Zeichen vorhanden ist oder nicht, dadurch gekennzeichnet, daß der zweite Wellenlängenbereich so gewählt wird, daß sich die durch den Artikel erzeugte
zweite Strahlung mit dem Ausmaß des Abdeckmaterials auf dem Artikel ändert, jedoch
weitgehend unabhängig vom Vorhandensein des die Authentizität anzeigenden Zeichens
ist.
2. Verfahren nach Anspruch 1, bei dem der erste Wellenlängenbereich außerhalb des sichtbaren
Wellenlängenbereichs liegt.
3. Verfahren nach Anspruch 1 oder Anspruch 2, bei dem der zweite Wellenlängenbereich
im sichtbaren Wellenlängenbereich liegt.
4. Verfahren nach einem der vorstehenden Ansprüche, bei dem die erste detektierte Strahlung
außerhalb des sichtbaren Wellenlängenbereichs liegt.
5. Verfahren nach einem der vorstehenden Ansprüche, bei dem der zweite Wellenlängenbereich
im sichtbaren Wellenlängenbereich liegt.
6. Verfahren nach einem der vorstehenden Ansprüche, bei dem die erste Strahlung weitgehend
im ersten Wellenlängenbereich liegt.
7. Verfahren nach einem der vorstehenden Ansprüche, bei dem die zweite Strahlung weitgehend
im zweiten Wellenlängenbereich liegt.
8. Verfahren nach einem der vorstehenden Ansprüche,. bei dem die in wenigstens dem ersten
oder zweiten Wellenlängenbereich liegende Strahlung durch den Artikel reflektiert
wird, um jeweils wenigstens einen Teil der ersten und zweiten detektierten Strahlung
zu bilden.
9. Verfahren nach einem der vorstehenden Ansprüche, bei dem die detektierte Strahlung
eine Lumineszenz einschließt.
10. Verfahren nach einem der vorstehenden Ansprüche, das ferner das Modulieren der abgestrahlten
Strahlung und das Detektieren einer empfangenen Strahlung, die im wesentlichen keine
Modulation und/oder eine ähnliche Modulation aufweist, umfaßt.
11. Verfahren nach einem der vorstehenden Ansprüche, bei dem das Vergleichen das Ermitteln
des Verhältnisses der Intensitäten der ersten und zweiten detektierten Strahlung umfaßt.
12. Verfahren nach einem der vorstehenden Ansprüche, das ferner das Ermitteln der Beziehung
des Ergebnisses des Vergleichs mit einer erwarteten Beziehung, die einer Akzeptanzbedingung
entspricht, umfaßt.
13. Verfahren nach Anspruch 12, zurückbezogen auf Anspruch 11, bei dem die Ermittlung
der Beziehung das Vergleichen des Verhältnisses mit-einem Schwellwert umfaßt.
14. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Strahlung aus einer einzigen
Quelle stammt.
15. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Strahlung in wenigstens
drei Wellenlängenbereichen detektiert wird.
16. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Artikel ein Blatt, z.B.
ein Wertdokument, z.B. eine Banknote, aufweist.
17. Vorrichtung zur Überwachung von Artikeln (4), um das Vorhandensein eines die Authentizität
des Artikels anzeigenden Zeichens festzustellen, die wenigstens eine Quelle (1, 2)
zum Bestrahlen eines Artikels mit einer in wenigstens einem ersten und einem zweiten
Wellenlängenbereich liegenden Strahlung; einen ersten Detektor (12) zum Detektieren
einer ersten Strahlung, die durch den Artikel als Antwort auf die Bestrahlung in dem.ersten
Wellenlängenbereich erzeugt wird, wobei der erste Wellenlängenbereich so gewählt ist,
daß sich die erzeugte erste Strahlung in Abhängigkeit von dem Vorhandensein oder dem
Fehlen des die Authentizität anzeigenden Zeichens und als Antwort auf das Vorhandensein
eines Abdeckmaterials auf dem Artikel ändert; einen zweiten Detektor (13) zum Detektieren
einer zweiten Strahlung, die durch den Artikel in Abhängigkeit von der Bestrahlung
in dem zweiten Wellenlängenbereich erzeugt wird; und ein Vergleichsmittel (33) zum
Vergleichen der detektierten ersten und zweiten Strahlung aufweist, um festzustellen,
ob das die Authentizität anzeigende Zeichen vorhanden ist oder nicht, dadurch gekennzeichnet, daß der zweite Wellenlängenbereich so gewählt ist, daß die durch den Artikel erzeugte
zweite Strahlung sich entsprechend dem Ausmaß des Abdeckmaterials auf dem Artikel
ändert, jedoch weitgehend unabhängig von dem Vorhandensein des die Authentizität anzeigenden
Zeichens ist.
18. Vorrichtung nach Anspruch 17, bei der eine erste und eine zweite Quelle (1, 2) durch
eine gemeinsame Quelle gebildet sind.
19. Vorrichtung nach Anspruch 17 oder Anspruch 18, die zur Durchführung des Verfahrens
nach einem der Ansprüche 1 bis 16 geeignet ist.
1. Procédé de contrôle d'articles (4) pour déterminer la présence d'une caractéristique
indiquant l'authenticité, comprenant les étapes consistant à irradier un article avec
un rayonnement dans au moins une première et une seconde gammes d'ondes; détecter
un premier rayonnement généré par l'article en réponse à une irradiation avec la première
gamme d'ondes, la première gamme d'ondes étant choisie de sorte que le premier rayonnement
généré varie en fonction de la présence ou de l'absence de la caractéristique indiquant
l'authenticité, et en réponse à la présence d'une matière d'assombrissement présente
sur l'article; détecter un second rayonnement généré par l'article en réponse à une
irradiation avec la seconde gamme d'ondes; et comparer le premier et le second rayonnements
détectés pour déterminer si oui ou non la caractéristique indiquant l'authenticité
est présente, caractérisé en ce que la seconde gamme d'ondes est choisie de sorte que le second rayonnement généré par
l'article varie avec le degré de la matière d'assombrissement présente sur l'article,
mais est essentiellement indépendant de la présence de la caractéristique indiquant
l'authenticité.
2. Procédé selon la revendication 1, dans lequel la première gamme d'ondes se situe en
dehors de la zone des longueurs d'ondes visibles.
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel la seconde gamme
d'ondes se situe dans la gamme des longueurs d'ondes visibles.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le premier
rayonnement détecté se situe en dehors de la gamme des longueurs d'ondes visibles.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel la seconde
gamme d'ondes se situe dans la gamme des longueurs d'ondes visibles.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le premier
rayonnement tombe essentiellement à l'intérieur de la première gamme de longueurs
d'ondes.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le second
rayonnement tombe essentiellement à l'intérieur de la seconde gamme de longueurs d'ondes.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel le rayonnement
dans au moins l'une parmi la première et la seconde gammes d'ondes est réfléchi par
l'article pour constituer au moins une partie, respectivement du premier et du second
rayonnements détectés.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le rayonnement
détecté comprend de la luminescence.
10. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
les étapes consistant à moduler le rayonnement irradiant, et à détecter le rayonnement
reçu, essentiellement en l'absence de modulation et/ou avec une modulation similaire.
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape
de comparaison comprend la détermination du rapport entre les intensités du premier
et du second rayonnements détectés.
12. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
la détermination de la relation du résultat de l'étape de comparaison avec une relation
attendue correspondant à une condition d'acceptation.
13. Procédé selon la revendication 12, lorsqu'elle dépend de la revendication 11, dans
lequel l'étape de détermination de la relation comprend la comparaison du rapport
avec un seuil.
14. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'irradiation
est générée à partir d'une seule source.
15. Procédé selon l'une quelconque des revendications précédentes, dans lequel un rayonnement
est détecté dans au moins trois gammes d'ondes.
16. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'article
comprend une feuille telle qu'un document de valeur, par exemple un billet de banque.
17. Dispositif pour le contrôle d'articles (4), pour déterminer la présence d'une caractéristique
indiquant l'authenticité, comprenant au moins une source (1,2) pour irradier un article
avec un rayonnement dans au moins une première et une seconde gammes d'ondes; un premier
détecteur (12) pour détecter un premier rayonnement généré par l'article en réponse
à une irradiation avec la première gamme d'ondes, la première gamme d'ondes étant
choisie de sorte que le premier rayonnement généré varie en fonction de la présence
ou de l'absence de la caractéristique indiquant l'authenticité, et en réponse à la
présence d'une matière d'assombrissement présente sur l'article; un second détecteur
(13) pour détecter un second rayonnement généré par l'article en réponse à une irradiation
avec la seconde gamme d'ondes; et un moyen de comparaison (33) pour comparer le premier
et le second rayonnements détectés, pour déterminer si oui ou non la caractéristique
indiquant l'authenticité est présente, caractérisé en ce que la seconde gamme d'ondes est choisie de sorte que le second rayonnement généré par
l'article varie avec le degré de la matière d'assombrissement présente sur l'article,
mais est essentiellement indépendant de la présence de la caractéristique indiquant
l'authenticité.
18. Dispositif selon la revendication 17, dans lequel la première et la seconde sources
(1,2) sont constituées par une source commune.
19. Dispositif selon la revendication 17 ou la revendication 18, adapté pour mettre en
oeuvre un procédé selon l'une quelconque des revendications 1 à 16.