[0001] This invention relates to a total knee replacement prosthesis. Total knee replacement
prostheses involve the surgical removal of the entire natural knee-bearing surfaces
and their replacement with artificial femoral and tibial components. The femoral component
includes condylar bearing surfaces which, to some extent, mimic the shape of the natural
condyles.
[0002] The present invention relates to total knee replacement (TKR) prostheses of the three
component type in which a floating meniscal component is interposed between the femoral
and tibial components. The use of a meniscal component extends the range of movements
that can be accommodated, including providing for a greater range of laxity of both
sliding and rotational movement
[0003] There are, however, several problems in designing a fully satisfactory TKR. One of
these is to provide a high degree of flexion since, otherwise, the pre-operative range
of flexion is not achieved and mobility is reduced. A high degree of flexion can be
achieved by providing for roll back at maximum flexion. However, this is often achieved
at the risk of reduced stability. It is also important to achieve stability in extension,
e.g. when the patient is standing. These requirements are difficult to achieve in
a three component TKR.
[0004] The document EP-A-381 352 discloses a prosthesis for total knee replacement which
comprises a femoral component having a pair of condylar-bearing surfaces and a tibial
component having a tibial platform with an upstanding abutment located between the
condylar-bearing surfaces, said femoral component having an inter condylar-projecting
surface adapted to contact the upstanding abutment at high degrees of flexion.
[0005] According to one aspect of the present invention there is provided a prosthesis for
total knee replacement which comprises:
(a) a femoral component having a pair of condylar-bearing surfaces,
(b) a tibial component having a tibial platform with an upstanding abutment located
between the condylar-bearing surfaces, and
(c) a meniscal component interposed between the condylar-bearing surface and the tibial
platform for sliding movement in the anterior-posterior direction, said femoral component
having an intercondylar projecting surface adapted to contact the upstanding abutment
at high degrees of flexion so as to influence the sliding movement of the meniscal
component in a posterior direction.
[0006] In one embodiment, the abutment may be a post extending upwardly through an aperture
in the meniscal component and having a surface adapted to engage the intercondylar
projecting surface at some point in its flexion.
[0007] The upstanding post or abutment may also serve to guide the plastic meniscal component
in the A-P direction.
[0008] In one embodiment, the post may extend through an aperture or space between the condylar
surfaces and engage the intercondylar projection only at high degrees of flexion,
e.g. at degrees of flexion of at least 60 or 70°. The post or abutment may also engage
with surfaces on the femoral component in extension so as to increase stability in
extension but not engage with surfaces on the femoral component or intercondylar projection
at degrees of flexion between extension and high degrees of flexion.
[0009] In another embodiment, the femoral component may have a substantially continuous
surface constituting the intercondylar surface, e.g. in the form of a housing. Such
a continuous surface may be in the form of a recess dividing the condylar bearing
surfaces and the upstanding post may be accommodated in such recess. Again, however,
the post and the intercondylar surface are preferably shaped and juxtaposed so that
the post contacts the intercondylar surface only at high degrees of flexion and optionally
also in extension. The reason for this is to avoid a situation where the joint is
in danger of 'locking up' because of continuous contact between several surfaces.
The Applicant has determined that additional stability is required essentially only
where the joint is at high flexion, particularly where the prosthesis incorporates
a highly conforming, congruent condylar component and meniscal component.
[0010] The intercondylar projection or surface may extend between the condyles and have
a surface which, together with the surface of the post, has a camming action influencing
the posterior movement of the meniscal component in high degrees of flexion.
[0011] One embodiment of the invention will now be described with reference to the accompanying
drawings, in which:-
Figure 1 shows a perspective view of the femoral component,
Figure 2 is a similar perspective view of the meniscal component drawn rectangularly
for simplicity and showing the guide post extending through the meniscal component
from the tibial base plate (not shown),
Figure 2A is a side elevation of the assembled TKR with the tibial base plate fixed
to a resected tibia,
Figure 2B is a front elevation of the femoral component about to be brought into contact
with the meniscal component,
Figure 2C is a plan view of the meniscal component,
Figures 3, 4, 5, 6, 7 and 8 are sectional elevations showing the femoral component
at various indicated angles of flexion,
Figure 9 is a side view of the femoral component,
Figure 10 is a similar side view, partly in section, showing the patella-bearing surfaces
and the intercondylar guide surface,
Figure 11 is an anterior view of the femoral component and meniscal component, but
not showing the post or abutment,
Figure 12 is a view, partly in section, of the tibial base plate showing the guide
post in detail,
Figures 13 and 14 are plan views showing the sliding movement of the meniscal component
or the tibial base plate,
Figures 15 and 16 are perspective views of a second embodiment in accordance with
the invention,
Figure 17 is a lateral, cross-sectional view of the assembled prosthesis shown in
Figures 15 and 16, and
Figure 18 is a cross-sectional view of the prosthesis shown in Figure 17 taken in
the anterior-posterior direction.
[0012] Referring to the drawings, the femoral component preferably has a high degree of
conformity with corresponding bearing surfaces on the meniscal component. The femoral
component may be substantially as described in our PCT Application No. PCT/GB94/01047
(WO 94/26212), and have a pair of condyles 10 and 12, which are shaped to correspond
closely in sagittal planes with corresponding meniscal bearing-surfaces 13 and 14,
formed in the upper surface of a meniscal component 15. The femoral component has
cut-away portions 16 which extend the degree of flexion over which the condyles 10
and 12 are in close contact with the corresponding meniscal-bearing surfaces.
[0013] As shown diagrammatically in Figure 2, a guide post 18 is attached to a tibial base
plate as shown, e.g. in Figures 3 to 8, and extends through a hole or slot 32 in the
meniscal component. This slot or hole is elongated in the anterior-posterior direction
and is generally closed at both ends. The femoral component has an intercondylar guide
surface 20 linking the two condyles 10 and 12. The interaction of the intercondylar
projection 20 with the plastic guide post 18 is illustrated in Figures 3 to 8.
[0014] As can be seen in Figure 3, the guide post 18 is secured to tibial base plate 22
which has a stud 24 for attachment to the resected tibia. Meniscal component 15 is
trapped between the tibial base plate and the femoral component but, as will be described
below, has a limited degree of freedom of movement. In the position shown in Figure
3, the guide post 18 links the three components loosely together and provides, together
with the anterior stop 26 on the tibial base plate, some stability in extension.
[0015] Plastic guide post 18 has a sloping surface 28 and intercondylar projection 20 has
a curved cam-like surface 30. Consequently, as the femoral component begins to pivot
on the meniscal component, the projection 20 moves closer to the sloping face 28 of
the guide post. When a degree of flexion of about 75° is reached (Figure 6), the intercondylar
projection 20 touches the surface 28 of the plastic guide post 18.
[0016] Because the surface of the condyles corresponds in close conformity with the meniscal-bearing
surfaces 13 and 14, the effect of the projection 20 touching and sliding over the
surface 28 is to cause the meniscal component to slide back on the tibial base plate
(see Figure 7). This movement has reached its maximum in Figure 8 where the meniscal
component has slid back until the end of the slot 32 through which the post extends
abuts against the back surface 34 of the post. This abutment of the post with the
end of the slot also prevents any tendency of the meniscal component to flip up from
contact with the tibial base plate.
[0017] Figures 13 and 14 show the corresponding movement of the meniscal component on the
tibial plate. In Figure 14, the meniscal component 15 is at its maximum movement in
the anterior direction and is in contact with the anterior stop 26. As can be seen,
the slot 32 is elongated, thus giving a significant degree of freedom of movement
to the meniscal component 15 in the A-P direction.
[0018] Figure 14 shows the meniscal component in a position corresponding with Figure 8,
in which the meniscal component has abutted the anterior face 34 of the post 18. As
can be seen from Figure 14, the meniscal component 15 has a degree of rotational freedom
of movement which is usually plus or minus 10-15°. This rotational freedom of movement
provides the desired degree of laxity in the rotational dimension. Additional guides
may be provided, e.g. on the tibial base plate, to assist the rotation of the meniscal
component as it slides back. Because the guide post is non-rotationally secured to
the tibial base plate, it provides a stable anchor point about which the meniscal
component can be guided. Rotational movement of the meniscal component on the tibial
base plate can be limited (e.g. to ± 10-15°) by impingement on the post and/or engagement
of the meniscal component with other guide surfaces on the tibial base plate.
[0019] As can be seen best in Figure 12, the guide post is preferably formed from an internal
metal post 40 which is sheathed with a plastic cap 42. This avoids the risk of metal
to metal contact between the intercondylar guide surface 30 and the sloping face 28
of the guide post. Alternatively, the post 18 may be wholly of metal and the intercondylar
guide may have a plastics surface. Suitable plastics materials for the sheath of the
guide post and the meniscal component may be ultra-high molecular weight polyethylene.
[0020] Figure 15 to 18 show a second embodiment in which the femoral component has a lower
surface which is continuous. The femoral component 110 is usually a metal casting
or forging and includes a pair of condylar portions 112 having curved bearing surfaces
113 shaped to cooperate with corresponding bearing surfaces 121 of a plastics meniscal
component 130. Pegs 120 serve to fix the femoral component into the resected femur.
Recesses 124 are provided to receive bone cement. A patella track is provided on the
anterior portion 118. Between the condylar portions 112 is located a box-like structure
134 having a downwardly open mouth for receiving an abutment or peg 119 (see Figures
16-18).
[0021] Peg 119 is fixed to a metal tibial base plate 201 having an anterior rim stop 202.
The peg 119 comprises a metal core 204 having a plastic sheath 205 projecting through
a slot 206 in the meniscal component 130. As can be seen in Figures 16 and 18, the
peg 119 has a sloping posterior face 127 which engages on a rounded face 126 in the
interior of the box structure 134.
[0022] When the prosthesis is in its extended position the tip of the peg 119 is located
within a recess 128 in the box-like structure. In this condition, the joint is stabilised
in an A-P direction by interaction of the anterior face of the peg and the anterior
wall 140 of the box-like structure. Also, the prosthesis is stabilised laterally by
the interaction between the slide faces of the peg with the lateral walls of the box-like
structure 134.
[0023] When the femoral component undergoes flexion, the curved interior surface 126 engages
the sloping face 127 of the peg which causes both the femoral component and the meniscal
component to roll back. Slot 206 limits the degree of posterior sliding movement of
the meniscal component.
[0024] The base plate 201 may be fitted with a downward peg or pegs, e.g. similar to peg
24 in Figure 3, to aid fixture to a resected tibia.
1. A prosthesis for total knee replacement (TKR) which comprises:
(a) a femoral component having a pair of condylar-bearing surfaces,
(b) a tibial component having a tibial platform (22) with an upstanding abutment located
between the condylar-bearing surfaces, and
(c) a meniscal component (15) interposed between the condylar-bearing surface and
the tibial platform for sliding movement in the anterior-posterior direction, said
femoral component having an intercondylar projecting surface (20) adapted to contact
the upstanding abutment at high degrees of flexion so as to influence the sliding
movement of the meniscal component (15) in a posterior direction.
2. A prosthesis as claimed in claim 1 wherein the abutment is a post (18) which extends
through an aperture (32) in the meniscal component (15).
3. A prosthesis as claimed in claim 2 wherein the aperture (32) in the meniscal component
(15) is elongated in the anterior-posterior (A-P) direction and provides with said
post (18) a means for guiding sliding movement of the meniscal component in the A-P
direction.
4. A prosthesis as claimed in claim 3 wherein the post (18) is rigidly fixed to the tibial
plate (22) whereby the meniscal component (15) has limited movement in the A-P direction
on said post (18) and in a rotational sense about the post.
5. A prosthesis as claimed in claim 4 wherein the tibial base plate (22) additionally
includes one or more stops (202) limiting A-P movement and/or rotational movement.
6. A prosthesis as claimed in any one of the preceding claims wherein the post (18) comprises
a plastics surface.
7. A prosthesis as claimed in any one of the preceding claims wherein the upstanding
abutment is spaced from the intercondylar projecting surface (20) and contacts said
surface only at high degrees of flexion and/or in extension.
8. A prosthesis as claimed in claim 7 wherein the intercondylar projecting surface (20)
comprises a member which bridges the condyles (10, 12) at a point remote from the
patella bearing surface.
9. A prosthesis as claimed in claim 7 wherein the intercondylar projecting surface (20)
comprises a housing located between the condyles (10, 12) and into which the abutment
projects.
1. Prothese zum Ersatz des gesamten Knies (TKR), die umfasst;
(a) eine femorale Komponente, die ein Paar von kondylären Lagerflächen aufweist,
(b) eine tibiale Komponente, die eine tibiale Plattform (22) mit einer nach oben stehenden
Stütze aufweist, die zwischen den kondylären Lagerflächen angeordnet ist, und
(c) eine Meniskuskomponente (15), die zwischen der kondylären Lagerfläche und der
tibialen Plattform zur gleitenden Bewegung in der anterior-posterior-Richtung angeordnet
ist, wobei die femorale Komponente eine interkondyläre Vorsprungsfläche (20) aufweist,
die dafür ausgebildet ist, mit der nach oben stehenden Stütze bei hohen Flexionsgraden
in Kontakt zu treten, um die gleitende Bewegung der Meniskuskomponente (15) in einer
posterioren Richtung zu beeinflussen.
2. Prothese nach Anspruch 1, wobei die Stütze ein Pfosten (18) ist, der durch eine Öffnung
(32) in der Meniskuskomponente (15) verläuft.
3. Prothese nach Anspruch 2, wobei die Öffnung (32) in der Meniskuskomponente (15) in
der anterior-posterior (A-P)-Richtung länglich ist und mit dem Pfosten (18) ein Mittel
zum Führen der gleitenden Bewegung der Meniskuskomponente in der A-P-Richtung vorsieht.
4. Prothese nach Anspruch 3, wobei der Pfosten (18) starr an der tibialen Platte (22)
befestigt ist, wodurch die Meniskuskompanente (15) eine begrenzte Bewegung in der
A-P Richtung auf dem Pfosten (18) und in einem Drehsinn um den Pfosten hat.
5. Prothese nach Anspruch 4, wobei die tibiale Basisplatte (22) zusätzlich einen oder
mehrere Anschläge (202) umfasst, die die A-P Bewegung und/oder die Drehbewegung begrenzen.
6. Prothese nach einem der vorangehenden Ansprüche, wobei der Pfosten (18) eine Kunststofffläche
umfasst.
7. Prothese nach einem der vorangehenden Ansprüche, wobei die nach oben stehende Stütze
von der interkondylären Vorsprungsfläche (20) beabstandet ist und mit der Fläche nur
bei hohen Flexionsgraden und/oder in Streckung in Kontakt kommt.
8. Prothese nach Anspruch 7, wobei interkondyläre Vorsprungsfläche (20) ein Element umfasst,
das die Kondylen (10, 12) an einem Punkt überbrückt, der von der Patellalagerfläche
entfernt ist.
9. Prothese nach Anspruch 7, wobei die interkondyläre Vorsprungsfläche (20) ein Gehäuse
umfasst, das zwischen den Kondylen (10, 12) angeordnet ist und in das die Stütze vorsteht.
1. Prothèse destinée au remplacement total d'un genou (TKR) qui comprend :
(a) un composant fémoral ayant une paire de surfaces d'appui condyliennes,
(b) un composant tibial ayant une plate-forme tibiale (22) ayant une butée droite
située entre les surfaces d'appui condyliennes, et
(c) un composant de ménisque (15) intercalé entre la surface d'appui condylienne et
la plate-forme tibiale en vue d'un mouvement glissant dans la direction antéro-postérieure,
ledit composant fémoral ayant une surface intercondylienne en saillie (20) conçue
pour entrer en contact avec la butée droite à des degrés élevés de flexion de façon
à influer sur le mouvement glissant des composants de ménisque (15) dans une direction
postérieure.
2. Prothèse selon la revendication 1, dans laquelle la butée est un tenon (18) qui s'étend
au travers d'une ouverture (32) dans le composant de ménisque (15).
3. Prothèse selon la revendication 2, dans laquelle l'ouverture (32) dans le composant
de ménisque (15) est allongée dans la direction antéro-postérieure (A-P) et donne
audit tenon (18) un moyen pour guider un mouvement glissant du composant de ménisque
dans la direction antéro-postérieure.
4. Prothèse selon la revendication 3, dans laquelle le tenon (18) est fixé de façon rigide
à la plaque tibiale (22) grâce à quoi le composant de ménisque (15) présente un mouvement
limité dans la direction antéro-postérieure sur ledit tenon (18) et du point de vue
de la rotation autour du tenon.
5. Prothèse selon la revendication 4, dans laquelle la plaque de base tibiale (22) comprend
en outre un ou plusieurs arrêts (202) limitant un mouvement antéro -postérieur et/ou
un mouvement de rotation.
6. Prothèse selon l'une quelconque des revendications précédentes, dans laquelle le tenon
(18) comprend une surface en matière plastique.
7. Prothèse selon l'une quelconque des revendications précédentes, dans laquelle la butée
droite est espacée de la surface intercondylienne en saillie (20) et entre en contact
avec ladite surface uniquement à des degrés élevés de flexion et/ou d'extension.
8. Prothèse selon la revendication 7, dans laquelle la surface intercondylienne en saillie
(20) comprend un élément qui relie les condyles (10, 12) en un point écarté de la
surface d'appui de la rotule.
9. Prothèse selon la revendication 7, dans laquelle la surface intercondylienne en saillie
(20) comprend un logement situé entre les condyles (10, 12) et dans lequel dépasse
la butée.