(19)
(11) EP 1 023 236 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
04.02.2004 Bulletin 2004/06

(21) Application number: 99936066.2

(22) Date of filing: 19.02.1999
(51) International Patent Classification (IPC)7B66B 7/06, D07B 1/22
(86) International application number:
PCT/US1999/003643
(87) International publication number:
WO 1999/043590 (02.09.1999 Gazette 1999/35)

(54)

TRACTION ELEVATOR SYSTEM USING A FLEXIBLE, FLAT ROPE AND A PERMANENT MAGNET MACHINE

TREIBSCHEIBENAUFZUGSYSTEM MIT FLEXIBLEM FLACHSEIL UND PERMANENTMAGNET-ANTRIEB

SYSTEME D'ASCENSEUR A TRACTION DANS LEQUEL UN CABLE PLAT ET SOUPLE AINSI QU'UNE MACHINERIE A AIMANTS PERMANENTS SONT UTILISES


(84) Designated Contracting States:
DE ES FR IT PT

(30) Priority: 26.02.1998 US 31108
09.10.1998 US 169415
22.12.1998 US 218990

(43) Date of publication of application:
02.08.2000 Bulletin 2000/31

(60) Divisional application:
03024661.5

(73) Proprietor: OTIS ELEVATOR COMPANY
Farmington, CT 06032 (US)

(72) Inventors:
  • ADIFON, Leandre
    Farmington, CT 06032 (US)
  • BARANDA, Pedro. S.
    Farmington, CT 06032 (US)

(74) Representative: Leckey, David Herbert 
Frank B. Dehn & Co., European Patent Attorneys, 179 Queen Victoria Street
London EC4V 4EL
London EC4V 4EL (GB)


(56) References cited: : 
EP-A- 0 688 735
US-A- 5 566 786
DE-A- 2 307 104
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to elevator systems, and more particularly to elevator systems that use machines with rotors having permanent magnets.

    [0002] A typical traction elevator system includes a car and a counterweight disposed in a hoistway, a plurality of ropes that interconnect the car and counterweight, and a machine having a traction sheave engaged with the ropes. The ropes, and thereby the car and counterweight, are driven by rotation of the traction sheave. The machine, and its associated electronic equipment, along with peripheral elevator components, such as a governor, are housed in a machineroom located above the hoistway.

    [0003] A recent trend in the elevator industry is to eliminate the machineroom and locate the various elevator equipment and components in the hoistway. An example is JP 4-50297, which discloses the use of a machine located between the car travel space and a wall of the hoistway. Another example is US Patent 5, 429,211, which discloses the use of a machine located in the same position but having a motor with a disc-type rotor. This configuration makes use of the flatness of such a machine to minimize the space needed for the machine in the hoistway. This machine disclosed also makes use of permanent magnets in the rotor in order to improve the efficiency of the machine. These types of machines, however, are limited to relatively low duties and low speeds.

    [0004] One possible solution to apply such machines to higher duty load elevator systems or higher speed systems is to increase the diameter of the rotor. This solution is not practical, however, due to the space constraints of the hoistway. Another solution, disclosed in PCT Application PCT/FI98/00056 (WO98/32685) is to use a machine with two motors and a traction sheave sandwiched between the two motors. This solution, however, also exceeds the space limitations of the hoistway and requires the provision of a separate machineroom above the hoistway to house the machine.

    [0005] WO-A-9943602, which forms prior art under Art. 54(3) EPC, discloses a belt climbing elevator.

    [0006] Another elevator system is also known from EP-A- 0 688 735.

    [0007] The above art notwithstanding, scientists and engineers under the direction of the Applicant are working to develop elevator systems that efficiently utilize the available space and meet the duty load and speed requirements over a broad range of elevator applications.

    [0008] According to a first aspect of the present invention, there is provided an elevator system as claimed in claim 1.

    [0009] From a second aspect, the invention provides an elevator system as claimed in claim 8.

    [0010] Thus an elevator system in accordance with one aspect of the invention includes a machine having a rotor including permanent magnets and a flat rope engaged with the machine.

    [0011] Flat rope, as used herein, is defined to include ropes having an aspect ratio, defined as the ratio of width w relative to thickness t, greater than one. A more detailed description of an example of such ropes is included in commonly owned co-pending US Patent Application Serial Number 09/031,108, entitled "Tension Member for an Elevator", filed February 2, 1998, issued as US 6,401,871).

    [0012] An advantage of the present invention is the size of the machine required to meet duty load and speed requirements. The combination of the improved efficiency of the machine and the torque reduction provided by the flat rope result in a very compact machine that can be fit within the space constraints of a hoistway without adversely affecting the performance of the elevator system. This permits the machine to be located in positions that were previously impractical.

    [0013] Another advantage is a reduction in the energy consumption of the elevator system using the present invention. The flat rope results in an engagement surface, defined by the width dimension, that is optimized to distribute the rope pressure. Therefore, the maximum pressure is minimized within the rope. In addition, by increasing the aspect ratio relative to a round rope, which has an aspect ratio substantially equal to one, the thickness of the rope may be reduced while maintaining a constant cross-sectional area of the rope. Minimizing the thickness of the rope results in a smaller diameter traction sheave, which in turn reduces the torque on the machine decreases the size of the motor and may eliminate the need for gearing. In addition, the smaller diameter of the sheave results in an increased rotational speed of the motor, which further increases the efficiency of the machine.

    [0014] In a particular embodiment, the permanent magnet machine is combined with a flat rope that includes a plurality of load-carrying members and a sheath that surrounds the load-carrying members and is formed from polyurethane. In one configuration, the load-carrying members are formed from an aramid material that produces a high strength, lightweight rope with enhanced flexibility, as compared to conventional round steel ropes. In another configuration, the load-carrying members are steel cords formed from very thin wires, with the wires having diameter of .25 mm or less. The use of a sheath formed from polyurethane permits the outer surface of the rope to be optimized for traction.

    [0015] An advantage of this particular embodiment is the minimal risk of heat damage to the sheath and the load-carrying members of the rope due to use of a machine having a rotor with permanent magnets. In a conventional induction motor, much of the heat losses are in the rotor. This heat loss is conducted directly to the ropes through the sheave. For ropes formed from materials other than steel, which are more temperature sensitive, exposure to such a heat source may lead to degradation of the rope. By using a machine having a rotor with permanent magnets, however, the principle source of heat loss is through the stator and not through the rotor. Therefore, since there is no direct path between the stator and the ropes, the ropes are not exposed to the primary source of heat and the risk of heat related degradation of the materials of the rope is minimized. In addition, the increased efficiency of the permanent magnet machine reduces the total heat generated and therefore further reduces the heating of the ropes.

    [0016] The foregoing and other features and advantages of the present invention become more apparent in light of the following detailed description of the exemplary embodiments thereof, as illustrated in the accompanying drawings, in which:

    Figure 1 is a perspective view of an elevator system according to the present invention.

    Figure 2 is a perspective view of an alternate embodiment of the present invention.

    Figure 3 is a sectioned side view of a machine and ropes used in the embodiments of Figures 1 and 2.

    Figure 4 is an illustration of another embodiment of the present invention.

    Figure 5 is a sectioned top view of a machine used in the embodiment of Figure 4.



    [0017] Illustrated in Figure 1 is an elevator system 10 according to the present invention. The elevator system 10 includes a car 12, a pair of car guide rails 14, a counterweight 16, a pair of counterweight guide rails 18, a plurality of ropes 20 interconnecting the car 12 and counterweight, and a traction machine 22 engaged with the ropes 20. The car 12 and counterweight 16 are interconnected to move concurrently and in opposite directions within a hoistway 23.

    [0018] The car 12 includes a frame 24 and a pair of diverter sheaves 26 (only one of which is shown in Figure 1) disposed on opposite sides of the underside of the car frame 24. The diverter sheaves 26 define an engagement means between the car 12 and ropes 20 and permit the ropes 20 to pass underneath the car 12 such that the car 12 is underslung.

    [0019] The counterweight 16 includes a diverter sheave 28 disposed on the top of the counterweight 16. This diverter sheave 28 defines an engagement means between the counterweight 16 and ropes 20. As a result of the roping arrangement shown in Figure 1, both the car 12 and counterweight 16 are roped in a 2:1 arrangement relative to the machine 22.

    [0020] The machine 22 is located between the travel path of the car 12 and a wall 30 of the hoistway 23. The machine 22 is illustrated in more detail in Figure 3. The machine 22 includes a motor 32 having a shaft 34 and a traction sheave 36. The motor 32 includes a frame 38, bearings 40, a stator 42 and a rotor 44. The traction sheave 36 is disposed on the end of the shaft 34 and defines an engagement surface 46 for the ropes 20. The rotor 44 is disposed in a fixed relationship to the shaft 34 and includes a plurality of permanent magnets 48 disposed radially inward of the stator 42 such that a radial air gap 50 is defined between the rotor 44 and stator 42. The use of permanent magnets 48 increases the efficiency and minimizes the size of the motor 32.

    [0021] The ropes 20 interconnecting the car 12 and counterweight 16 are flexible flat ropes. As shown in Figure 3, there are three separate flat ropes 20 engaged with the machine 22. Each flat rope 20 includes a plurality of load-carrying members 52 encompassed by a sheath 54. The plurality of load-carrying members 52 support the tension loads in the ropes 20. The sheath 54 provides a retention layer for the load-carrying members 52 while also defining an engagement surface 56 for the flat rope 20. Traction between the flat rope 20 and the machine 22 is the result of the interaction between the engagement surface 56 of the ropes 20 and the complementary engagement surface 46 of the machine 22. Although shown in Figure 3 as having three flat ropes 20, each having four load-carrying members 52, it should be noted that different numbers of flat ropes and different numbers of load-carrying members within each rope may be used, such as an embodiment having a single flat rope or a flat rope having a single load-carrying member.

    [0022] A suggested material for the load-carrying members is an aramid material, such as that sold by DuPont under the name of KEVLAR®. Such materials provide the advantages of having high tensile strength and being lightweight relative to conventional materials, such as steel. As an alternative, the load-carrying member may be formed from steel cord. In order to provide sufficient flexibility in the rope, it is suggested to form the cord from steel wires or fibers having diameters of .025 mm or less.

    [0023] A suggested material for the sheath is polyurethane. Polyurethane provides the durability required while also enhancing the traction between the flat rope and the machine. Although this material is suggested, other materials may also be used. For instance, a sheath formed from neoprene or rubber may be used.

    [0024] The use of flexible, flat ropes 20 minimizes the size of the traction sheave 36 and thereby minimizes the torque on the motor 32 and increases the rotational speed of the motor 32. By combining these characteristics of the flat ropes 20 with the characteristics of the permanent magnet machine 22, the motor 32 size is further reduced and the machine 22 can be fit within the space available between the car 12 and hoistway wall 30. Another advantage is that the higher rotational speeds further increases the efficiency of the motor 32 and may eliminate the need for a gear box.

    [0025] The use of a rotor 44 having permanent magnets 48 also reduces the amount of heat loss through the rotor 44 as compared to conventional induction motors. As shown in Figure 3, the rotor 44, traction sheave 36 and ropes 20 are in direct contact. This direct contact results in heat generated in the rotor 44 being conducted to the ropes 20. For conventional induction motors, the rotor accounts for approximately one-third of the heat loss. However, for rotors using permanent magnets, the heat loss through the rotor is minimal and the primary source of heat loss in such motors is through the stator. As shown in Figure 3, in embodiments according to the present invention there is no direct path between the stator 42 and the ropes 20. Therefore, the effects on the ropes 20 of the heat loss of the motor 22 is minimized. This is especially significant for ropes having a sheath formed from non-metallic materials, such as polyurethane, that are more susceptible to heat degradation than steel.

    [0026] The elevator system 10 illustrated in Figure 1 includes an underslung car 12. Figure 2 illustrates another embodiment. In this embodiment, a car 57 includes a pair of diverter sheaves 58 located on the top of the car 57 in a manner known as overslung. In conventional elevator systems, overslung roping arrangements are less desirable in some applications due to the need to provide additional overhead space for the elevator system. This is especially significant if the machine is located in the hoistway. In the configuration shown in Figure 2, however, the effects of an overslung car 57 are minimized as a result of the small machine and small sheaves that may be used with the present invention. Therefore, an overslung car 57 using Applicants' invention requires less overhead space and is more practical.

    [0027] In another alternative (not shown), the car may be directly roped to the machine such that no sheaves are required on the car. In addition, although it is not illustrated, the machine may be located above the car travel path. Although in this particular embodiment an allowance will have to be made for the space required in the overhead for the machine, the combination of a permanent magnet machine and flexible flat ropes will minimize this space allowance.

    [0028] Although illustrated in Figures 1-3 as an elevator system having a cylindrically shaped machine having a radially oriented air gap, other types of machines may also be used with the present invention. One such embodiment is illustrated in Figures 4 and 5. In this embodiment, the elevator system 70 includes a car 72, a counterweight 74, a pair of guide rails 76 for the car 72 and counterweight 74, a machine 78 disposed between the car 72 and a wall 80 of the hoistway, and a plurality of flat ropes 82 interconnecting the car 72 and counterweight 74.

    [0029] The machine 78 and ropes 82 are illustrated in more detail in Figure 5. The machine 78 includes a motor 84 and a traction sheave 86. The motor 84 includes a frame 88, a stator 90 and a rotor 92. The rotor 92 is a disc-type rotor 92 that produces a relatively flat machine 78. A plurality of permanent magnets 94 are circumferentially spaced about the axis 96 of the machine 78 and axially spaced from the stator 90 such that an axial air gap 98 between the rotor 92 and stator 90 is defined. The traction sheave 86 is integral to the rotor 92 and includes an engagement surface 100 for the plurality of ropes 82. The plurality of ropes 82 are similar to those described with respect to the embodiment of Figures 1-3.

    [0030] The embodiment of Figures 4 and 5 has the same advantages as discussed previously for the embodiment of Figures 1-3. In addition, the application of flat ropes 82 to the disc-type machine 78 of Figure 5 will result in minimizing the diameter of the rotor 92 and stator 90, thereby making this configuration applicable to a wider range of elevator applications.

    [0031] The embodiments illustrated in Figures 1-5 were all elevator systems having gearless machines. Although the invention is particularly advantageous in that it extends the range of usefulness of gearless machines, it should be noted that the invention may also be used with geared machines in particular applications. In addition, although shown in figure 3 as having a rotor radially inward of the stator, it should be apparent to those skilled in the art that the relative positions of the rotor and stator may be switched.

    [0032] Although the invention has been shown and described with respect to exemplary embodiments thereof, it should be understood by those skilled in the art that various changes, omissions, and additions may be made thereto, without departing from the scope of the invention as defined in the claims.


    Claims

    1. An elevator system (10) having a car (12;72) disposed within a hoistway (23), the elevator system including:

    a rope (20;82) engaged with the car (12;72), the rope having a width w, a thickness t measured in the bending direction, and an aspect ratio, defined as the ratio of width w relative to thickness t, greater than one; and

    a machine (22;78) engaged with the rope (20;82) to drive the rope through traction between the rope and machine, and thereby drive the car (12;72) through the hoistway (23), wherein the machine (22;78) includes a rotor (44;92) formed in part from permanent magnets (48;94).


     
    2. The elevator system (10) according to Claim 1, wherein the rotor (44) is cylindrically shaped.
     
    3. The elevator system (10) according to Claim 1 or 2, wherein the machine (22) includes a motor having the rotor (44) and a stator (42), and further including an air gap (50) between the rotor and stator, and wherein the rotor is radially spaced from the stator.
     
    4. The elevator system (10) according to Claim 3, wherein the rotor (44) is spaced radially inward of the stator.
     
    5. The elevator system (10) according to Claim 1, wherein the rotor (92) is flat.
     
    6. The elevator system (10) according to Claim 1 or 5, wherein the machine (78) includes a motor having the rotor (92) and a stator (90), and further including an air gap (98) between the rotor and stator, and wherein the rotor is axially spaced from the stator.
     
    7. The elevator system (10) according to any preceding Claim, wherein the machine (22;78) further includes a traction sheave (36;86), and wherein the rope (20, 82) further includes a plurality of individual load carrying members (52) encased within a sheath (54), wherein the sheath defines the engagement surface (56) for engaging the traction sheave.
     
    8. An elevator system (10) having a car (12;72) disposed within a hoistway (23), the elevator system including:

    a rope (20;82) engaged with the car, the rope including a load-carrying member (52) and a sheath (54), wherein the sheath is formed from a non-metallic material; and

    a machine (78;22) including a traction sheave (36;86) and a rotor (44;92), the traction sheave (36;86) being directly connected with the rotor (44;92) for concurrent rotation and engaged with the rope (20;82) to drive the rope through traction between the rope and traction sheave, and thereby drive the car (12) through the hoistway (23), wherein the rotor (44;92) is formed in part from permanent magnets (48;94),

       wherein the rope (20;82) has a width w, a thickness t measured in the bending direction, and an aspect ratio, defined as the ratio of width w relative to thickness t, greater than one.
     
    9. The elevator system (10) according to any of Claims 1 to 7, wherein the rope includes a sheath (54) formed from a non-metallic material.
     
    10. The elevator system (10) according to Claim 8 or 9, wherein the sheath (54) is formed from a polyurethane material.
     
    11. The elevator system according to any preceding Claim, wherein the rope includes one or more load-carrying members (52), and wherein the load-carrying members are formed from a non-metallic material.
     
    12. The elevator system according to Claim 11, wherein the load-carrying members (52) are formed from aramid material.
     
    13. The elevator system according to any of Claims 1 to 10, wherein the rope (20;82) includes one or more load-carrying members, and wherein the load-carrying members (52) are formed from steel.
     
    14. The elevator system according to Claim 13, wherein the load-carrying members (52) are formed from steel wires having a diameter of 0.25 mm or less.
     
    15. The elevator system (10) according to any preceding Claim, wherein the machine (22;78) is gearless.
     
    16. The elevator system (10) according to any preceding Claim, wherein the machine (22) is disposed between the travel space of the car (12) and a wall of the hoistway (30).
     
    17. The elevator system (10) according to any preceding Claim, wherein the rope (20;82) is engaged with a pair of sheaves (26) disposed on the car (12) such that the rope (20;82) passes underneath the car.
     
    18. The elevator system (10) according to any of Claims 1 to 16, wherein the rope (20;82) is engaged with a sheave (58) disposed on the top of the car.
     


    Ansprüche

    1. Aufzugsystem (10) mit einer Kabine (12; 72), die in einem Aufzugschacht (23) angeordnet ist, wobei das Aufzugsystem aufweist:

    ein Seil (20; 82), das mit der Kabine (12; 72) zusammenwirkt, wobei das Seil eine Breite w, eine in der Biegerichtung gemessene Dicke t und ein Seitenverhältnis, das als das Verhältnis der Breite w relativ zu der Dicke t definiert ist, größer als 1 aufweist; und

    eine Maschine (22; 78), die mit dem Seil (20; 82) zusammenwirkt, um das Seil durch Traktion zwischen dem Seil und der Maschine anzutreiben und so die Kabine (12; 72) im Aufzugschacht (23) zu verfahren, wobei die Maschine (22; 78) einen Rotor (44; 92) aufweist, der teilweise aus Permanentmagneten (48; 94) gebildet ist.


     
    2. Aufzugsystem (10) nach Anspruch 1, wobei der Rotor (44) zylinderförmig geformt ist.
     
    3. Aufzugsystem (10) nach Anspruch 1 oder 2, wobei die Maschine (22) einen Motor aufweist, der den Rotor (44) und einen Stator (42) aufweist und ferner einen Luftspalt (50) zwischen dem Rotor und dem Stator aufweist, und wobei der Rotor radial von dem Stator beabstandet ist.
     
    4. Aufzugsystem (10) nach Anspruch 3, wobei der Rotor (44) von dem Stator radial nach innen beabstandet ist.
     
    5. Aufzugsystem (10) nach Anspruch 1, wobei der Rotor (92) flach ist.
     
    6. Aufzugsystem (10) nach Anspruch 1 oder 5, wobei die Maschine (78) einen Motor aufweist, der den Rotor (92) und einen Stator (90) aufweist und ferner einen Luftspalt (98) zwischen dem Rotor und dem Stator aufweist, und wobei der Rotor axial von dem Stator beabstandet ist.
     
    7. Aufzugsystem (10) nach einem der vorangehenden Ansprüche, wobei die Maschine (22; 78) ferner eine Treibscheibe (36; 86) aufweist und wobei das Seil (20; 82) ferner eine Mehrzahl von einzelnen lasttragenden Elementen (52) aufweist, die in einer Ummantelung (54) eingeschlossen sind, wobei die Ummantelung die Kontaktfläche (56) zum Zusammenwirken mit der Treibscheibe definiert.
     
    8. Aufzugsystem (10) mit einer Kabine (12; 72), die in einem Aufzugschacht (23) angeordnet ist, wobei das Aufzugsystem aufweist:

    ein Seil (20; 82), das mit der Kabine zusammenwirkt, wobei das Seil ein lasttragendes Element (52) und eine Ummantelung (54) aufweist, wobei die Ummantelung aus einem nicht-metallischen Material gebildet ist; und

    eine Maschine (78; 22), die eine Treibscheibe (36; 86) und einen Rotor (44; 92) aufweist, wobei die Treibscheibe (36, 86) mit dem Rotor (44; 92) zum gemeinsamen Drehen direkt verbunden ist und mit dem Seil (20; 82) zusammenwirkt, um das Seil durch Traktion zwischen dem Seil und der Treibscheibe anzutreiben und so die Kabine (12) im Aufzugschacht (23) zu verfahren, wobei der Rotor (44; 92) teilweise aus Permanentmagneten (48; 94) gebildet ist,

    wobei das Seil (20; 82) eine Breite w, eine in der Biegerichtung gemessene Dicke t und ein Seitenverhältnis, das als das Verhältnis der Breite w relativ zu der Dicke t definiert ist, größer als 1 aufweist.
     
    9. Aufzugsystem (10) nach einem der Ansprüche 1 bis 7, wobei das Seil eine Ummantelung (54) aufweist, die aus einem nicht-metallischen Material gebildet ist.
     
    10. Aufzugsystem (10) nach Anspruch 8 oder 9, wobei die Ummantelung (54) aus einem Polyurethanmaterial gebildet ist.
     
    11. Aufzugsystem nach einem der vorangehenden Ansprüche, wobei das Seil ein oder mehrere lasttragende Elemente (52) aufweist und wobei die lasttragenden Elemente aus einem nicht-metallischen Material gebildet sind.
     
    12. Aufzugsystem nach Anspruch 11, wobei die lasttragenden Elemente (52) aus einem Aramidmaterial gebildet sind.
     
    13. Aufzugsystem nach einem der Ansprüche 1 bis 10, wobei das Seil (20; 82) ein oder mehrere lasttragende Elemente aufweist und wobei die lasttragenden Elemente (52) aus Stahl gebildet sind.
     
    14. Aufzugsystem nach Anspruch 13, wobei die lasttragenden Elemente (52) aus Stahldrähten mit einem Durchmesser von 0,25 mm oder weniger gebildet sind.
     
    15. Aufzugsystem (10) nach einem der vorangehenden Ansprüche, wobei die Maschine (22; 78) getriebelos ist.
     
    16. Aufzugsystem (10) nach einem der vorangehenden Ansprüche, wobei die Maschine (22) zwischen dem Verfahrbereich der Kabine (12) und einer Wand des Aufzugschachts (30) angeordnet ist.
     
    17. Aufzugsystem (10) nach einem der vorangehenden Ansprüche, wobei das Seil (20; 82) mit einem Paar von Seilscheiben (26) zusammenwirkt, die an der Kabine (12) derart angeordnet sind, dass das Seil (20; 82) unter der Kabine verläuft.
     
    18. Aufzugsystem (10) nach einem der Ansprüche 1 bis 16, wobei das Seil (20; 82) mit einer Seilscheibe (58) zusammenwirkt, die oben auf der Kabine angeordnet ist.
     


    Revendications

    1. Système d'ascenseur (10) ayant une cabine (12, 72) disposée à l'intérieùr d'une cage d'ascenseur (23), le système d'ascenseur comprenant :

    un câble (20, 82) en prise avec la cabine (12, 72), le câble ayant une largeur w, une épaisseur t mesurée dans le sens de déformation, et un rapport d'aspect défini comme le rapport de la largeur w par rapport à l'épaisseur t, supérieur à un ; et

    une machinerie (22, 78) en prise avec le câble (20, 82) pour entraîner le câble via une traction entre le câble et la machinerie, et par conséquent entraîner la cabine (12, 72) à travers la cage d'ascenseur (23), dans lequel la machinerie (22, 78) comprend un rotor (44, 92) en partie constitué d'aimants permanents (48, 94).


     
    2. Système d'ascenseur (10) selon la revendication 1, dans lequel le rotor (44) a une forme cylindrique.
     
    3. Système d'ascenseur (10) selon la revendication 1 ou 2, dans lequel la machinerie (22) comprend un moteur comprenant le rotor (44) et un stator (42), et comprenant en outre un espace d'air (50) entre le rotor et le stator, et dans lequel le rotor est espacé de manière radiale par rapport au stator.
     
    4. Système d'ascenseur (10) selon la revendication 3, dans lequel le rotor (44) est espacé de manière radiale vers l'intérieur du stator.
     
    5. Système d'ascenseur (10) selon la revendication 1, dans lequel le rotor (92) est plat.
     
    6. Système d'ascenseur (10) selon la revendication 1 ou 5, dans lequel la machinerie (78) comprend un moteur comprenant le rotor (92) et un stator (90), et comprenant en outre un espace d'air (98) entre le rotor et le stator, et dans lequel le rotor est espacé de manière axiale par rapport au stator.
     
    7. Système d'ascenseur (10) selon l'une quelconque des revendications précédentes, dans lequel la machinerie (22, 78) comprend en outre une poulie de traction (36, 86), et dans lequel le câble (20, 82) comprend en outre une pluralité d'éléments individuels porteurs de charge (52) insérés dans une gaine (54), dans lequel la gaine définit la surface d'engagement (56) pour engager la poulie de traction.
     
    8. Système d'ascenseur (10) ayant une cabine (12, 72) disposée à l'intérieur d'une cage d'ascenseur (23), le système d'ascenseur comprenant :

    un câble (20, 82) en prise avec la cabine, le câble comprenant un élément porteur de charge (52) et une gaine (54), dans lequel la gaine est faite d'un matériau non métallique ; et

    une machinerie (78, 22) comprenant une poulie de traction (36, 86) et un rotor (44, 92), la poulie de traction (36, 86) étant directement connectée au rotor (44, 92) pour une rotation concourante et engagée avec le câble (20, 82) pour entraîner le câble via une traction entre le câble et la poulie de traction, et par conséquent entraîner la cabine (12) à travers la cage d'ascenseur (23), dans laquelle le rotor (44, 92) est en partie constitué d'aimants permanents (48, 94), dans laquelle le câble (20, 82) a une largeur w, une épaisseur t mesurée dans le sens de déformation, et un rapport d'aspect défini comme le rapport de la largeur w à l'épaisseur t, supérieur à un.


     
    9. Système d'ascenseur (10) selon l'une quelconque des revendications 1 à 7, dans lequel le câble comprend une gaine (54) faite d'un matériau non métallique.
     
    10. Système d'ascenseur (10) selon la revendication 8 ou 9, dans lequel la gaine (54) est faite d'un matériau à base de polyuréthane.
     
    11. Système d'ascenseur selon l'une quelconque des revendications précédentes, dans lequel le câble comprend un ou plusieurs éléments porteurs de charge (52), et dans lequel les éléments porteurs de charge sont faits d'un matériau non métallique.
     
    12. Système d'ascenseur selon la revendication 11, dans lequel les éléments porteurs de charge (52) sont faits d'un matériau à base d'aramide.
     
    13. Système d'ascenseur selon l'une quelconque des revendications 1 à 10, dans lequel le câble (20, 82) comprend un ou plusieurs éléments porteurs de charge, et dans lequel les éléments porteurs de charge (52) sont faits d'acier.
     
    14. Système d'ascenseur selon la revendication 13, dans lequel les éléments porteurs de charge (52) sont faits de fils d'acier ayant un diamètre égal ou inférieur à 0,25 mm.
     
    15. Système d'ascenseur (10) selon l'une quelconque des revendications précédentes, dans lequel la machinerie (22, 78) est sans engrenage.
     
    16. Système d'ascenseur (10) selon l'une quelconque des revendications précédentes, dans lequel la machinerie (22) est disposée entre l'espace de course de la cabine (12) et une paroi de la cage d'ascenseur (30).
     
    17. Système d'ascenseur (10) selon l'une quelconque des revendications précédentes, dans lequel le câble (20, 82) est engagé avec une paire de poulies (26) disposées sur la cabine (12) de sorte que le câble (20, 82) passe sous la cabine.
     
    18. Système d'ascenseur (10) selon l'une quelconque des revendications 1 à 16, dans lequel le câble (20, 82) est engagé avec une poulie (58) disposée au-dessus de la cabine.
     




    Drawing