1. FIELD OF THE INVENTION
[0001] The present invention relates to aromatic organic compounds which are specific, potent
and safe inhibitors of the Ca
2+-activated potassium channel (Gardos channel) of erythrocytes and/or of mammalian
cell proliferation. The compounds can be used to reduce sickle erythrocyte dehydration
and/or delay the occurrence of erythrocyte sickling or deformation in situ as a therapeutic
approach towards the treatment or prevention of sickle cell disease. The compounds
can also be used to inhibit mammalian cell proliferation in situ as a therapeutic
approach towards the treatment or prevention of diseases characterized by abnormal
cell proliferation.
2. BACKGROUND OF THE INVENTION
[0002] Sickle cell disease has been recognized within West Africa for several centuries.
Sickle cell anemia and the existence of sickle hemoglobin (Hb S) was the first genetic
disease to be understood at the molecular level. It is recognized today as the morphological
and clinical result of a glycine to valine substitution at the No. 6 position of the
beta globin chain (Ingram, 1956,
Nature 178:792-794. The origin of the amino acid change and of the disease state is the consequence
of a single nucleotide substitution (Marotta
et al., 1977,
J. Biol. Chem. 252:5040-5053).
[0003] The major source of morbidity and mortality of patients suffering from sickle cell
disease is vascular occlusion caused by the sickled cells, which causes repeated episodes
of pain in both acute and chronic form and also causes ongoing organ damage with the
passage of time. It has long been recognized and accepted that the deformation and
distortion of sickle cell erythrocytes upon complete deoxygenation is caused by polymerization
and intracellular gelation of sickle hemoglobin, hemoglobin S (Hb S). The phenomenon
is well reviewed and discussed by Eaton and Hofrichter, 1987,
Blood 70:1245. The intracellular gelatin and polymerization of Hb S can occur at any time
during erythrocyte's journey through the vasculature. Thus, erythrocytes in patients
with sickle cell disease containing no polymerized hemoglobin S may pass through the
microcirculation and return to the lungs without sickling, may sickle in the veins
or may sickle in the capillaries.
[0004] The probability of each of these events is determined by the delay time for intracellular
gelation relative to the appropriate capillary transit time (Eaton et al., 1976,
Blood 47:621). In turn, the delay time is dependent upon the oxygenation state of the hemoglobin,
with deoxygenation shortening the delay time. Thus, if it is thermodynamically impossible
for intracellular gelation to take place, or if the delay time at venous oxygen pressures
is longer than about 15 seconds, cell sickling will not occur. Alternatively, if the
delay time is between about 1 and 15 seconds, the red cell will likely sickle in the
veins. However, if the delay time is less than about 1 second, red cells will sickle
within the capillaries.
[0005] For red cells that sickle within the capillaries, a number of possible consequent
events exist, ranging from no effect on transit time, to transient occlusion of the
capillary, to a more permanent blockage that may ultimately result in ischemia or
infarction of the surrounding cells, and in destruction of the red cell.
[0006] It has long been recognized that the cytoplasm of the normal erythrocyte comprises
approximately 70% water. Water crosses a normal erythrocyte membrane in milliseconds;
however, the loss of cell water causes an exponential increase in cytoplasmic viscosity
as the mean cell hemoglobin concentration (MCHC) rises above about 32 g/dl. Since
cytoplasmic viscosity is a major determinate of erythrocyte deformability and sickling,
the dehydration of the erythrocyte has substantial rheological and pathological consequences.
Thus, the physiological mechanisms that maintain the water content of normal erythrocytes
and the pathological concisions that cause loss of water from erythrocytes in the
blood circulation are critically important. Not surprisingly, regulation of erythrocyte
dehydration has been recognized as an important therapeutic approach towards the treatment
of sickle cell disease. Since cell water will follow any osmotic change in the intracellular
concentration of ions, the maintenance of the red cell's potassium concentration is
of particular importance (stuart and Ellory, 1988,
Brit J. Haematol. 69:1-4).
[0007] Many attempts and approaches to therapeutically treating dehydrated sickle cells
(and thus decreasing polymerization of hemoglobin S by lowering the osmolality of
plasma) have been tried with limited success, including the following approaches:
intravenous infusion of distilled water (Gye
et al., 1973,
Am. J. Med. Sci. 266:267-277); administration of the antidiuretic hormone vasopressin together with a
high fluid intake and salt restriction (Rosa
et al., 1980,
M. Eng. J. Med. 303:1138-1143; Charache and Walker, 1981,
Blood 58:892-896); the use of monensin to increase the cation content of the sickle cell (Clark
et al., 1982,
J. Clin. Invest. 70:1074-1080; Fahim and Pressman, 1981,
Life Sciences 29:1959-1966); intravenous administration of cetiedil citrate (Benjamin
et al., 1986,
Blood 67:1442-1447; Berkowitz and Orringer, 1984,
Am. J. Hematol. 17:217-223; Stuart
et al., 1987,
J. Clin. Pathol. 40:1182-1186); and the use of oxpentifylline (Stuart
et al., 1987,
J. Clin. Pathol. 40:1182-1186).
[0008] Another approach towards therapeutically treating dehydrated sickle cells involves
the administration of imidazole, nitroimidazole and triazole antimycotic agents such
as Clotrimazole (U.S. Patent No. 5,273,992 to Brugnara
et al.). Clotrimazole, an imidazole-containing antimycotic agent, has been shown to be
a specific, potent inhibitor of the Gardos channel of normal and sickle erythrocytes,
and prevents Ca
2+-dependent dehydration of sickle cells both
in vitro and
in vivo (Brugnara
et al., 1993,
J. Clin. Invest. 92:520-526; De Franceschi et al., 1994,
J. Clin. Invest. 93:1670-1676). When combined with a compound which stabilizes the oxyconformation of
Hb S, Clotrimazole induces an additive reduction in the clogging rate of a micropore
filter and may attenuate the formation of irreversibly sickled cells (Stuart
et al., 1994,
J. Haematol. 86:820-823). Other compounds that contain a heteroaryl imidazole-like moiety believed
to be useful in reducing sickle erythrocyte dehydration via Gardos channel inhibition
include miconazole, econazole, butoconazole, oxiconazole and sulconazole. Each of
these compounds is a known antimycotic. Other imidazole-containing compounds have
been found to be incapable of inhibiting the Gardos channel and preventing loss of
potassium.
[0009] As can be seen from the above discussion, reducing sickle erythrocyte dehydration
via blockade of the Gardos channel is a powerful therapeutic approach towards the
treatment and/or prevention of sickle cell disease. Compounds capable of inhibiting
the Gardos channel as a means of reducing sickle cell dehydration are highly desirable,
and are therefore an object of the present invention.
[0010] cell proliferation is a normal part of mammalian existence, necessary for life itself.
However, cell proliferation is not always desirable, and has recently been shown to
be the root of many life-threatening diseases such as cancer, certain skin disorders,
inflammatory diseases, fibrotic conditions and arteriosclerotic conditions.
[0011] Cell proliferation is critically dependent on the regulated movement of ions across
various cellular compartments, and is associated with the synthesis of DNA. Binding
of specific polypeptide growth factors to specific receptors in growth-arrested cells
triggers an array of early ionic signals that are critical in the cascade of mitogenic
events eventually leading to DNA synthesis (Rozengurt, 1986,
Science 234:161-164). These include (1) a rapid increase in cystolic Ca
2+, mostly due to rapid release of Ca
2+ from intracellular stores; (2) capacitative Ca
2+ influx in response to opening of ligand-bound and hyperpolarization-sensitive Ca
2+ channels in the plasma membrane that contribute further to increased intracellular
Ca
2+ concentration (Tsien and Tsien, 1990,
Annu. Rev. Cell Biol. 6:715-760; Peppelenbosch
et al., 1991,
J. Biol. Chem. 266:19938-19944); and (3) activation of Ca
2+-dependent K
+ channels in the plasma membrane with increased K
+ conductance and membrane hyperpolarization (Magni
et al., 1991,
J. Biol. Chem. 261:9321-9327). These mitogen-induced early ionic changes, considered critical events
in the signal transduction pathways, are powerful therapeutic targets for inhibition
of cell proliferation in normal and malignant cells.
[0012] One therapeutic approach towards the treatment of diseases characterized by unwanted
or abnormal cell proliferation via alteration of the ionic fluxes associated with
early mitogenic signals involves the administration of Clotrimazole. As discussed
above, Clotrimazole has been shown to inhibit the Ca
2+-activated potassium channel of erythrocytes. In addition, Clotrimazole inhibits voltage-
and ligand-stimulated Ca
2+ influx mechanisms in nucleated cells (Villalobos
et al., 1992,
FASEB J. 6:2742-2747; Montero et al., 1991,
Biochem. J. 277:73-79) and inhibits cell proliferation both in vitro and in vivo (Benzaquen
et al., 1995,
Nature Medicine 1:534-540). Recently, Clotrimazole and other imidazole-containing antimycotic agents
capable of inhibiting Ca
2+-activated potassium channels have been shown to be useful in the treatment of arteriosclerosis
(U.S. Patent No. 5,358,959 to Halperin
et al.), as well as other disorders characterized by unwanted or abnormal cell proliferation.
[0013] As can be seen from the above discussion, inhibiting mammalian cell proliferation
via alteration of ionic fluxes associated with early mitogenic signals is a powerful
therapeutic approach towards the treatment and/or prevention of diseases characterized
by unwanted or abnormal cell proliferation. Compounds capable of inhibiting mammalian
cell proliferation are highly desirable, and are therefore also an object of the present
invention.
[0014] Certain compounds that fall within the scope of structural formula (I) defined hereinbelow
are already disclosed
per se in the prior art. However, no biological activity has been reported for these compounds.
[0015] For example, Miller
et al (
J Am Chem Soc, 93 (3), 649-656 (1971)) have disclosed 3,3-diphenyl-1-indanone in studies relating to
the thermolysis of substituted indenes, and sigmatropic phenyl and hydrogen migrations.
Johnston
et al (
Tetrahedron.
30 4059-4064 (1974)) have disclosed 3,3-diphenyl-1-indanone in studies relating to aluminium
chloride-catalysed behavior of β-phenylpropionyl, β,β-diphenylpropionyl and β,β,β-triphenylpropionyl
chlorides in anisole and some other aromatic solvents. Manning
et al (
Chemical Abstracts 94:102538q (1981)) have disclosed 1,1-diphenylindene and 1(
p-substituted phenyl)-1-phenyl indene, wherein the
p-substituent is OMe or CN or Br, in studies relating to sigmatropic rearrangements
of 1,1-diphenylindenes and migratory aptitude of aryl migration in the ground and
excited states. Stranes
et al (
Chemical Abstracts 94:43555b (1968)) have disclosed the formation of 1,1-diphenylindane in studies relating
to lead tetra-acetate oxidation of 4,4,4-triphenyl-1-butanol. Koelsch
et al (
Chemical Abstracts 55 9360d and 9360e (1961)) have disclosed the formation of 3-(
p-methoxyphenyl)-3-phenyl-1-indanone, 3-(
p-hydroxyphenyl)-3-phenyl-1-indanone and ethyl-3-(
p-hydroxyphenyl)-3-phenyl-1-indanone-2-carboxylate in studies relating to electrophilic
properties of ethyl-3-phenylindone-2-carboxylate. U.S. patent specification no. 3
546 165 has disclosed the use of 1,1-bis(4-hydroxyphenyl)indane in the preparation
of polymers. 3,3-diphenylindoline has been disclosed by Isobe
et al (
Chemical Abstracts 81 77766j (1974)). in studies relating to the preparation of indolines by photochemical
desulphurisation of indone-2-thiones. As mentioned earlier, none of the above disclosed
compounds have been tested for biological activity.
3. SUMMARY OF THE INVENTION
[0016] These and other objects are provided by the present invention, which in one aspect
provides a class of organic compounds which are potent, selective and safe inhibitors
of the Ca
2+-activated potassium channel (Gardos channel) of erythrocytes, particularly sickle
erythrocytes, and/or of mammalian cell proliferation. The compounds are generally
substituted 3,3-diphenyl indanone, indane or (3-H) indole compounds, or analogues
thereof. In one illustrative embodiment, the compounds capable of inhibiting the Gardos
channel and/or mammalian cell proliferation according to the invention are compounds
having the structural formula (I). The invention therefore provides the use of a compound
of formula (I):

or pharmaceutically acceptable salts or hydrates thereof,
wherein:
m is 0, 1, 2, 3 or 4;
each n is independently 0, 1, 2, 3, 4 or 5;
X is C or N;
Y is absent, (C1-C6) alkyl, (C1-C6) alkenyl or (C1-C6) alkynyl;
R1 is absent, -OR, -SR, =O, =S, =N-OR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R, or when
taken together with R2 is a 3-8 membered hetercycloalkyl or a substituted 3-8 membered heterocycloalkyl;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8) cycloalkyl, 3-8 membered heterocycloalkyl, -C(O)R', -C(S)R', -C(O)OR', - C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2;
each R5, R6 and R7 is independently selected from the group consisting of -halogen, -R', -OR', -SR',
-NR'2, ONR'2, - SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', - C(S)OR', -CS(S)R', -C(O)NR2, -C(S)NR2, -C(O)NR'(OR), - C(S)NR'(OR'); -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, - CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR]2, - CH(C(O)SR']2, and -CH[C(S)SR']2;
each R is independently selected from the group consisting of -H, (C1-C6)alkyl, (C1-C6)alkenyl, (C1-C6)alkynyl, (C5-C20)aryl, substituted (C5-C20)aryl, (C6-C26)alkaryl and substituted (C6-C26) alkaryl;
the heterocycloalkyl substituents are each independently selected from the group consisting
of -CN, -NO2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', - C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR'2, - C(S)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6)alkyl, (C1-C6)alkenyl and (C1-C6)alkynyl; and
--- designates a single or double bond.
[0017] In another aspect, the present invention provides pharmaceutical compositions comprising
one or more compounds of formula (I) in admixture with a pharmaceutically acceptable
carrier, excipient or diluent. Such a composition can be prepared in the uses of the
invention.
[0018] In still another aspect, the invention provides the use of a compound of formula
(I) in the preparation of a medicament for reducing sickle erythrocyte dehydration
and/or delaying the occurrence of erythrocyte sickling or deformation
in situ. The medicament may then be indicated for use in a method involving contacting a
sickle erythrocyte in situ with an amount of at least one compound of formula (I),
or a pharmaceutical composition thereof, effective to reduce sickle erythrocyte dehydration
and/or delay the occurrence of erythrocyte sickling of deformation. In a preferred
embodiment, the sickle cell dehydration is reduced and erythrocyte deformation is
delayed in a sickle erythrocyte that is within the microcirculation vasculature of
a subject, thereby preventing or reducing the vaso-occlusion and consequent adverse
effects that are commonly caused by sickled cells.
[0019] In still another aspect, the invention provides the use of a compound of formula
(I) in the preparation of a medicament for the treatment and/or prevention of sickle
cell disease in a subject, such as a human. The medicament may then be indicated for
use in a method involving administering a prophylactically or therapeutically effective
amount of at least one compound of formula (I), or a pharmaceutical composition thereof,
to a patient suffering from sickle cell disease. The patient may be suffering from
either acute sickle crisis or chronic sickle cell episodes.
[0020] In yet another aspect, the invention provides the use of a compound of formula (I)
in the preparation of a medicament for inhibiting mammalian cell proliferation
in situ. The medicament may then be indicated for use in a method involving contacting a mammalian
cell in situ with an amount of at least one compound of formula (I), or a pharmaceutical
composition thereof, effective to inhibit cell proliferation. The compound or composition
may act either cytostatically, cytotoxically or by a combination of both mechanisms
to inhibit proliferation. Mammalian cells in this manner include vascular smooth muscle
cells, fibroblasts, endothelial cells, various types or pre-cancer cells and various
types of cancer cells.
[0021] In still another aspect, the invention provides the use of a compound of formula
(I) in the preparation of a medicament for treating and/or preventing unwanted or
abnormal cell proliferation in a subject, such as a human. The medicament may then
be indicated for use in a method involving at least one compound of formula (I), or
a pharmaceutical composition thereof, being administered to a subject in need of such
treatment in an amount effective to inhibit the unwanted or abnormal mammalian cell
proliferation. The compound and/or composition can be applied locally to the proliferating
cells, or can be administered to the subject systemically. Preferably, the compound
and/or composition is to be administered to a subject that has a disorder characterised
by unwanted or abnormal cell proliferation. Such disorders include, but are not limited
to, cancer, epithelial pre-cancerous lesions, non-cancerous angiogenic conditions
or arteriosclerosis.
[0022] In a final aspect, the invention provides the use of a compound of formula (I) in
the preparation of a medicament for the treatment and/or prevention of diseases that
are characterised by unwanted and/or abnormal mammalian cell proliferation. The medicament
may then be indicated for use in a method involving administering a prophylactically
or therapeutically effective amount of at least one compound of formula (I), or a
pharmaceutical composition thereof, to a subject in need of such treatment. Diseases
that are characterised by abnormal mammalian cell proliferation which can be treated
or prevented by way of the methods of the invention include, but are not limited to
cancer, blood vessel proliferative disorders, fibrotic disorders and arteriosclerotic
conditions.
[0023] The invention further provides a novel compound of formula (I), as defined above,
with the following exceptions:
when --- is single bond, X is C, R1 is -OH, R2 R3 and R4 are H, Y is absent, then at least one of R5, R6 and R7 are other than H; or
when --- is single bond, X is C, R1 and R2 taken together are =O, Y is absent, R3 and R4 are H, then at least one of R5, R6 and R7 are other than H; or
when --- is single bond, X is C, R1 and R2 taken together are =O, Y is absent, R3 and R4 are H, m = 0, n = 1 and R5 is H, then R6 is not Br (para) , or OMe (para) or OH (para) ; or
when --- is single bond, X is C, R1, R2, R3 and R4 are H, Y is absent, then (a) at least one of R5, R6 or R7 are other than H; and (b) if m = 0 and n is 1, then R5 and R6 are not both -NH2 (para) or -OH (para); or
when - - - is double bond, X is C, R1 and R4 are H, R2, R3 and Y are absent, then (a) at least one of R5, R6 or R7 are other than H; and (b) if m = 0, n = 1, and R5 is H, then R6 is not -OMe (para), or Br (para), or -CN (para); or
when - - - is single bond, X is C, R1 and R2 taken together are =O, Y is CH2, R3 and R4 are H, m = 0, and n = 1, then R5 and R6 are not both -OH (para); or
when - - - is single bond, X is C, R1 and R2 taken together are =O, Y is absent, R3 is H, R4 is -C(O)OEt, m = 0, n = 1, and R5 is H, then R6 is not -OH (para); or
when - - - is single bond, X is C, R1 is -OH, R2 R3 and R4 are H, Y is absent, m = 0, n = 1, and R5 is H, then R6 is not -Br at the para position; or
when - - - is single bond, X is C, R1 and R2 taken together are =N-OR, wherein R = H, Y is absent, and R3, R4, R5, R6 and R7 are H, then the salt can not be hydrochloric; or
when - - - is single bond, X is N, R1, R3 and R4 are H, Y and R2 are absent, then a) at least one of R5, R6 or R7 are other than H, and b) if n = 0 and m is 2, then the R7 substituents are not both Br at the 5 and 7 positions of the indole moiety; or
when - - - is single bond, X is N, R1, R3 and R4 are H, Y and R2 are absent, m = 0, n = 1, then R5 and R6 are not both NMe2 (para) or Me (para); or
when - - - is double bond, X is N, R1, R2, R3 and Y are absent, R4 is H, then a) at least one of R5, R6 or R7 are other than H; and b) if n = 0, and m = 2, then the R7 substituents are not both Br at the 5 and 7 positions of the indole moiety; or
when - - - is double bond, X is N, R1, R2, R3 and Y are absent, R4 is H, m = 0, n = 1, then R5 and R6 are not both Me (para);
when - - - is double bond, X is N, R1, R2, R3 and Y are absent, R4 is NH2 or OCH3, then at least one of R5, R6 or R7 are other than H;
each R is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, substituted (C5-C20) aryl, (C6-C26) alkaryl and substituted (C6-C26) alkaryl;
the heterocycloalkyl substituents are each independently selected from the group consisting
of -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR',
- C(O)SR', -C(S)SR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', -C(S)R', - C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR',
- C(O)NR'2, -C(S)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl and (C1-C6) alkynyl.
3.1 Definitions
[0024] As used herein, the following terms shall have the following meanings:
[0025] "Alkyl:" refers to a saturated branched, straight chain or cyclic hydrocarbon radical.
Typical alkyl groups include, but are not limited to methyl, ethyl, propyl, isopropyl,
butyl, isobutyl, t-butyl, pentyl, isopentyl, hexyl, and the like. In preferred embodiments,
the alkyl groups are (C
1-C
6) alkyl, with (C
1-C
3) being particularly preferred.
"Substituted Alkyl:" refers to an alkyl radical wherein one or more hydrogen atoms
are each independently replaced with other substituents.
"Heterocycloalkyl:" refers to a saturated cyclic hydrocarbon radical wherein one or
more of the carbon atoms are replaced with another atom such as Si, Ge, N, O, S or
P. Typical heterocycloalkyl groups include but are not limited to morpholino, thiolino,
piperidyl, pyrrolidinyl, piperazyl, pyrazolidyl and the like. Preferably, the heterocycloalkyl
group contains 3-8 atoms. In a particularly preferred embodiment the heteroatoms are
oxygen, and the heterocycloalkyl group is a 3-8 membered oxirane, preferably 2,3-oxirane
or a 5-8 membered dioxycycloalkyl, preferably 1,3-dioxolanyl.
"Substituted Heterocycloalkyl:" refers to a heterocycloalkyl group wherein one or more hydrogen atoms are each
independently replaced with other substituents.
"Alkenyl:" refers to an unsaturated branched, straight chain or cyclic hydrocarbon radical
having at least one carbon-carbon double bond. The radical may be in either the cis or trans conformation about the double bond(s). Typical alkenyl groups include, but
are not limited to, ethenyl, propenyl, isopropenyl, butenyl, isobutenyl, tert-butenyl, pentenyl, hexenyl and the like. In preferred embodiments, the alkenyl group
is (C1-C6) alkenyl, with (C1-C3) being particularly preferred.
"Substituted Alkenyl:" refers to an alkenyl radical wherein one or more hydrogen atoms are each independently
replaced with other substituents.
"Alkynyl:" refers to an unsaturated branched, straight chain or cyclic hydrocarbon radical
having at least one carbon-carbon triple bond. Typical alkynyl groups include, but
are not limited to, ethynyl, propynyl, butynyl, isobutynyl, pentynyl, hexynyl and
the like. In preferred embodiments, the alkynyl group is (C1-C6) alkynyl, with (C1-C3) being particularly preferred.
"Substituted Alkynyl:" refers to an alkynyl radical wherein one or more hydrogen atoms are each independently
replaced with other substituents.
"Alkoxy:" refers to an -OR radical, where R is alkyl, alkenyl or alkynyl, as defined above.
"Alksulfanyl:" refers to an -SR radical, where R is alkyl, alkenyl or alkynyl, as defined above.
"Aryl:" refers to an unsaturated cyclic hydrocarbon radical having a conjugated n electron
system. Typical aryl groups include, but are not limited to, penta-2,4-diene, phenyl,
naphthyl, anthracyl, azulenyl, indacenyl, and the like. In preferred embodiments,
the aryl group is (C5-C20) aryl, with (C5-C10) being particularly preferred.
"Substituted Aryl:" refers to an aryl radical wherein one or more hydrogen atoms are each independently
replaced with other substituents.
"Alkaryl:" refers to a straight-chain alkyl, alkenyl or alkynyl group wherein one of the hydrogen
atoms bonded to a terminal carbon is replaced with an aryl moiety. Typical alkaryl
groups include, but are not limited to, benzyl, benzylidene, benzylidyne, benzenobenzyl,
naphthenobenzyl and the like. In preferred embodiments, the alkaryl group is (C6-C26) alkaryl, i.e., the alkyl, alkenyl or alkynyl moiety of the alkaryl group is (C1-C6) and the aryl moiety is (C5-C20). In particularly preferred embodiments, the alkaryl group is (C6-C13) alkaryl, i.e., the alkyl, alkenyl or alkynyl moiety of the alkaryl group is (C1-C3) and the aryl moiety is (C5-C10).
"Substituted Alkaryl:" refers to an alkaryl radical wherein one or more hydrogen atoms on the aryl moiety
of the alkaryl group are each independently replaced with other substituents.
"In Situ:" refers to and includes the terms "in vivo," "ex vivo," and "in vitro" as these terms are commonly recognized and understood by persons ordinarily skilled
in the art. Moreover, the phrase "in situ" is employed herein in its broadest connotative
and denotative contexts to identify an entity, cell or tissue as found or in place,
without regard to its source or origin, its condition or status or its duration or
longevity at that location or position.
4. BRIEF DESCRIPTION OF THE DRAWINGS
[0026]
FIG. 1 is a general reaction scheme for synthesizing certain compounds according to
the invention; and
FIG. 2 is a general reaction scheme for synthesizing certain compounds according to
the invention.
5. DETAILED DESCRIPTION OF THE INVENTION
[0027] As discussed in the Background section, blockade of sickle dehydration via inhibition
of the Gardos channel is a powerful therapeutic approach towards the treatment and/or
prevention of sickle cell disease. In vitro studies have shown that Clotrimazole,
an imidazole-containing antimycotic agent, blocks Ca
2+-activated K
+ transport and cell dehydration in sickle erythrocytes (Brugnara
et al., 1993,
J. Clin. Invest. 92:520-526). Studies in a transgenic mouse model for sickle cell disease (SAD mouse,
Trudel
et al., 1991,
EMBO J. 11:3157-3165) show that oral administration of Clotrimazole leads to inhibition of the
red cell Gardos channel, increased red cell K
+ content, a decreased mean cell hemoglobin concentration (MCHC) and decreased cell
density (De Franceschi
et al., 1994,
J. Clin. Invest. 93:1670-1676). Moreover, therapy with oral Clotrimazole induces inhibition of the Gardos
channel and reduces erythrocyte dehydration in patients with sickle cell disease (Brugnara
et al., 1996,
J. Clin. Invest. 97:1227-1234). Other antimycotic agents which inhibit the Gardos channel in vitro include
miconazole, econazole, butoconazole, oxiconazole and sulconazole (U.S. Patent No.
5,273,992 to Brugnara et al.). All of these compounds contain an imidazole-like ring,
i.e., a heteroaryl ring containing two or more nitrogens.
[0028] Also as discussed in the Background section, the modulation of early ionic mitogenic
signals and inhibition of cell proliferation are powerful therapeutic approaches towards
the treatment and/or prevention of disorders characterised by abnormal cell proliferation.
It has been shown that Clotrimazole, in addition to inhibiting the Gardos channel
of erythrocytes, also modulates ionic mitogenic signals and inhibits cell proliferation
both
in vitro and
in vivo.
[0029] For example, Clotrimazole inhibits the rate of cell proliferation of normal and cancer
cell lines in a reversible and dose-dependent manner
in vitro (Benzaquen
et al ., 1995
Nature Medicine 1:534-540). Clotrimazole also depletes the intracellular Ca
2+ stores and prevents the rise in cystolic Ca
2+ that normally follows mitogenic stimulation. Moreover, in mice with severe combined
immunodeficiency disease (SCID) and inoculated with MM-RU human melanoma cells, daily
administration of Clotrimazole resulted in a significant reduction in the number of
lung metastases observed (Benzaquen
et al., supra).
[0030] It has now been discovered that substituted 3,3-diphenyl indanone, indane and (3-H)
indole compounds, as well as analogues of these classes of compounds, also inhibit
the Gardos channel or erythrocytes and/or mammalian cell proliferation. Thus, in one
aspect, the present invention provides the use of a class of organic compounds that
are capable of inhibiting the Ca
2+-activated potassium channel (Gardos channel) of erythrocytes, particularly sickle
erythrocytes and/or of inhibiting mammalian cell proliferation, particularly mitogen-induced
cell proliferation, in the preparation of a medicament, and pharmaceutical compositions
containing them.
[0031] The activities of these compounds are quite surprising. Significantly, the compounds
of the invention do not contain an imidazole or imidazole-like moiety. The imidazole
or imidazole-like moiety is well recognised as the essential functionality underlying
the antimycotic and other biological activities of Clotrimazole and the other above-mentioned
anti-mycotic agents.
[0032] In another aspect, the invention provides the use of a compound of formula (I) in
the preparation of a medicament for reducing sickle cell dehydration and/or delaying
the occurrence of erythrocyte sickling in situ as a therapeutic approach towards the
treatment of sickle cell disease. The medicament may then be indicated for use in
a method involving only a single step - the administration of at least one pharmacologically
active compound of formula (I), or a composition thereof, to a sickle erythrocyte
in situ in an amount effective to reduce dehydration and/or delay the occurrence of cell
sickling or deformation.
[0033] While not intending to be bound by any particular theory, it is believed that administration
of the active compounds described herein in appropriate amounts to sickle erythrocytes
in situ causes nearly complete inhibition of the Gardos channel of sickle cells and/or
delaying the occurrence of cell sickling or deformation. In a preferred embodiment,
the dehydration of a sickle cell is reduced and/or the occurrence of sickling is delayed
in a sickle cell that is within the microcirculation vasculature of the subject, thereby
reducing or eliminating the vaso-occlusion that is commonly caused by sickled cells.
[0034] Based in part on the surmised importance of the Gardos channel as a therapeutic target
in the treatment of sickle cell disease, the invention is also directed to the use
of a compound of formula (I) in the preparation of a medicament for treating or preventing
sickle cell disease. The medicament may then be indicated for use in a method involving
an effective amount of one or more compounds of formula (I) or a pharmaceutical composition
thereof, being administered to a patient suffering from sickle cell disease. The medicament
may be indicated for use to treat sickle cell disease prophylatically to decrease
intracellular Hb S concentration and/or polymerisation, and thus diminish the time
and duration of red cell sickling and vaso-occulsion in the blood circulation. The
medicament may also be indicated for therapeutical use in patients with acute sickle
cell crisis, and in patients suffering chronic sickle cell episodes to control both
the frequency and duration of the crises.
[0035] The compounds of the invention are also potent, specific inhibitors of mammalian
cell proliferation. Thus, in another aspect, the invention provides the use of a compound
of formula (I) in the preparation of a medicament for inhibiting mammalian cell proliferation
as a therapeutic approach towards the treatment or prevention of diseases characterised
by unwanted or abnormal cell proliferation. The medicament may then be indicated for
use in a method involving only a single step - the administration of an effective
amount of at least one pharmalogically active compound of formula (I) to a mammalian
cell in situ. The compound may act cytostatically, cytotoxically, or by a combination
of both mechanisms to inhibit cell proliferation. Mammalian cells treatable in this
manner include vascular smooth muscle cells, fibroblasts, endothelial cells, various
pre-cancer cells and various cancer cells. In a preferred embodiment, cell proliferation
is inhibited in a subject suffering from a disorder that is characterised by unwanted
or abnormal cell proliferation. Such diseases are described more fully below.
[0036] Based in part on the surmised role of mammalian cell proliferation in certain diseases,
the invention is also directed to the use of a compound of formula (I) in the preparation
of a medicament for treating or preventing diseases characterized by abnormal cell
proliferation. The medicament may then be indicated for use in a method involving
an effective amount of at least one compound of formula (I) or a pharmaceutical composition
thereof, being administered to a patient suffering from a disorder that is characterised
by abnormal cell proliferation. while not intending to be bound by any particular
theory, it is believed that administration of an appropriate amount of a compound
of formula (I) to a subject inhibits cell proliferation by altering the ionic fluxes
associated with early mitogenic signals. Such alteration of ionic fluxes is thought
to be due to the ability of the compounds of the invention to inhibit potassium channels
of cells, particularly Ca
2+-activated potassium channels. The medicament can be indicated for propylactional
use to prevent unwanted or abnormal cell proliferation, or may be used therapeutically
to reduce or arrest proliferation of abnormally proliferating cells. The compound,
or a pharmaceutical formulation thereof, can be applied locally to proliferating cells
to arrest or inhibit proliferation at a desired time, or may be administered to a
subject systemically to arrest or inhibit cell proliferation.
[0037] Diseases which are characterized by abnormal cell proliferation that can be treated
or prevented by means of the present invention include blood vessel proliferative
disorders, fibrotic disorders, arteriosclerotic disorders and various cancers.
[0038] Blood vessel proliferative disorders refer to angiogenic and vasculogenic disorders
generally resulting in abnormal proliferation of blood vessels. The formation and
spreading of blood vessels, or vasculogenesis and angiogenesis, respectively, play
important roles in a variety of physiological processes such as embryonic development,
corpus luteum formation, wound healing and organ regeneration. They also play a pivotal
role in cancer development. Other examples of blood vessel proliferative disorders
include arthritis, where new capillary blood vessels invade the joint and destroy
cartilage and ocular diseases such as diabetic retinopathy, where new capillaries
in the retina invade the vitreous, bleed and cause blindness and neovascular glaucoma.
[0039] Another example of abnormal neovascularization is that associated with solid tumors.
It is now established that unrestricted growth of tumors is dependent upon angiogenesis
and that induction of angiogenesis by liberation of angiogenic factors can be an important
step in carcinogenesis. For example, basic fibroblast growth factor (bFGF) is liberated
by several cancer cells and plays a crucial role in cancer angiogenesis. The demonstration
that certain animal tumors regress when angiogenesis is inhibited has provided the
most compelling evidence for the role of angiogenesis in tumor growth. Other cancers
that are associated with neovascularization include hemangioendotheliomas, hemangiomas
and Kaposi's sarcoma.
[0040] Proliferation of endothelial and vascular smooth muscle cells is the main feature
of neovascularization. The invention is useful in inhibiting such proliferation, and
therefore in inhibiting or arresting altogether the progression of the angiogenic
condition which depends in whole or in part upon such neovascularization. The invention
is particularly useful when the condition has an additional element of endothelial
or vascular smooth muscle cell proliferation that is not necessarily associated with
neovascularization. For example, psoriasis may additionally involve endothelial cell
proliferation that is independent of the endothelial cell proliferation associated
with neovascularization. Likewise, a solid tumor which requires neovascularization
for continued growth may also be a tumor of endothelial or vascular smooth muscle
cells. In this case, growth of the tumor cells themselves, as well as the neovascularization,
is inhibited by the compounds described herein.
[0041] The invention is also useful for the treatment of fibrotic disorders such as fibrosis
and other medical complications of fibrosis which result in whole or in part from
the proliferation of fibroblasts. Medical conditions involving fibrosis (other than
atherosclerosis, discussed below) include undesirable tissue adhesion resulting from
surgery or injury.
[0042] Other cell proliferative disorders which can be treated by means of the invention
include arteriosclerotic conditions. Arteriosclerosis is a term used to describe a
thickening and hardening of the arterial wall. An arteriosclerotic condition as used
herein means classical atherosclerosis, accelerated atherosclerosis, atherosclerotic
lesions and any other arteriosclerotic conditions characterized by undesirable endothelial
and/or vascular smooth muscle cell proliferation, including vascular complications
of diabetes.
[0043] Proliferation of vascular smooth muscle cells is a main pathological feature in classical
atherosclerosis. It is believed that liberation of growth factors from endothelial
cells stimulates the proliferation of subintimal smooth muscle which, in turn, reduces
the calibre and finally obstructs the artery. The invention is useful in inhibiting
such proliferation, and therefore in delaying the onset of, inhibiting the progression
of, or even halting the progression of such proliferation and the associated atherosclerotic
condition.
[0044] Proliferation of vascular smooth muscle cells produces accelerated atherosclerosis,
which is the main reason for failure of heart transplants that are not rejected. This
proliferation is also believed to be mediated by growth factors, and can ultimately
result in obstruction of the coronary arteries. The invention is useful in inhibiting
such obstruction and reducing the risk, of or even preventing, such failures.
[0045] Vascular injury can also result in endothelial and vascular smooth muscle cell proliferation.
The injury can be caused by any number of traumatic events or interventions, including
vascular surgery and balloon angioplasty. Restenosis is the main complication of successful
balloon angioplasty of the coronary arteries. It is believed to be caused by the release
of growth factors as a result of mechanical injury to the endothelial cells lining
the coronary arteries. Thus, by inhibiting unwanted endothelial and smooth muscle
cell proliferation, the compounds described herein can be used to delay, or even avoid,
the onset of restenosis.
[0046] Other atherosclerotic conditions which can be treated or prevented by means of the
present invention include diseases of the arterial walls that involve proliferation
of endothelial and/or vascular smooth muscle cells, such as complications of diabetes,
diabetic glomerulosclerosis and diabetic retinopathy.
[0047] The compounds described herein are also potent antineoplastic agents and are therefore
useful in the preparation of a medicament for treating or preventing various types
of neoplastic diseases. Neoplastic diseases which can be treated by means of the present
invention include, but are not limited to, biliary tract cancer; brain cancer, including
glioblastomas and medulloblastomas; breast cancer; cervical cancer; choriocarcinoma;
colon cancer, endometrial cancer, oesophageal cancer, gastric cancer, haematological
neoplasms, including acute and chronic lymphocytic and myelogenous leukaemia, multiple
myeloma, AIDS associated leukemias and adult T-cell leukaemia lymphoma; intra-epithelial
neoplasms, including Bowen's disease and Paget's disease; liver cancer; lung cancer;
lymphomas, including Hodgkin's disease and lymphocytic lymphomas; neuroblastomas;
oral cancer, including squamous cell carcinoma; ovarian cancer, including those arising
from epithelial cells, stromal cells, germ cells and mesenchymal cells; pancreas cancer;
prostate cancer; rectal cancer; sarcomas, including leiomyosarcoma, rhabdomyosarcoma,
liposarcoma, fibrosarcoma and osteosarcoma; skin cancer, including melanoma, Kaposi's
sarcoma, basocellular cancer and squamous cell cancer; testicular cancer, including
germinal tumours (seminoma, non-seminoma (teratomas, choriocarcinomas)), stromal tumours
and germ cell tumours; thyroid cancer, including thyroid adenocarcinoma and medullar
carcinoma; and renal cancer including adenocarcinoma and Wilms tumour.
[0048] The medicament preparable according to the invention are also useful with hormone
dependent and also with non-hormone dependent cancers. They are also useful with prostate
and breast cancers. They further are useful with multidrug resistant strains of cancer.
[0049] In addition to the particular disorders enumerated above, the invention is also useful
in treating or preventing dermatological diseases including keloids, hypertrophic
scars, seborrheic dermatosis, papilloma virus infection (eg producing verruca vulgaris,
verruca plantaris, verruca plan, condylomata, etc), eczema and epithelial pre-cancerous
lesions such as actinic keratosis; other inflammatory diseases including proliferative
glomerulonephritis; lupus erythematosus; scleroderma; temporal arthritis; thromboangiitis
obliterans; mucocutaneaous lymph node syndrome; and other pathologies mediated by
growth factors including uterine leiomyomas. The medicaments and compositions of the
invention provide myriad advantages over agents commonly used to treat sickle cell
disease and/or cell proliferation disorders. The medicaments and compositions of the
invention also provide myriad advantages over the treatment of sickle cell disease
and/or cell proliferative disorders with Clotrimazole or other antimycotic agents.
Most significantly, the compounds of formula (I) have reduced toxicity as compared
with Clotrimazole and other antimycotic agents, and therefore provide consequential
therapeutic benefits in clinical settings. For example, for clotrimazole, it is well-known
that the imidazole moiety is responsible for inhibiting a wide range of cytochrome
P-450 isozyme catalysed reactions, which constitutes their main toxicological effects
(Pappas and Franklin, 1993,
Toxicology 80:27-35; Matsuura
et al., 1991,
Biochemical Pharmacology 41:1949-1956). The compounds of the invention do not contain an imidazole or imidazole-like
moiety and therefore may not share Clotrimazole's known toxicities.
5.1 The Compounds
[0050] The compounds which are capable of inhibiting the Gardos channel and/or mammalian
cell proliferation according to the invention are generally substituted 3,3-diphenyl
indanone, indane and (3-H) indole compounds, as well as analogues of these classes
of compounds wherein the atoms at ring positions 1 and 2 are connected
via a double bond.
[0051] In one illustrative embodiment, the compounds capable of inhibiting the Gardos channel
and/or mammalian cell proliferation according to the use of the invention are compounds
having the structural formula (I):

or pharmaceutically acceptable salts or hydrates thereof, wherein:
m is 0, 1, 2, 3 or 4;
each n is independently 0, 1, 2, 3, 4 or 5;
X is C or N;
Y is absent, (C1-C6) alkyl, (C1-C6) alkenyl or (C1-C6) alkynyl;
R1 is absent, -OR, -SR, =O, =S, =N-OR, -O-C(O)R, -S-C(O)R, - O-C(S)R, -S-C(S)R, or when
taken together with R2 is a 3-8 membered heterocycloalkyl or a substituted 3-8 membered heterocycloalkyl;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8) cycloalkyl, 3-8 membered heterocycloalkyl, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2 or -C(S)NR'2;
each R5, R6 and R7 is independently selected from the group consisting of -halogen, -R', -OR', -SR',
-NR'2, -ONR'2, - SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'); -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR']2, -CH[C(O)SR']2 and -CH[C(S)SR']2;
each R is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, substituted (C5-C20) aryl, (C6-C26) alkaryl and substituted (C6-C26) alkaryl;
the heterocycloalkyl substituents are each independently selected from the group consisting
of -CN, -NO2, -NR'2, -OR', - C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', - C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR'2, - C(S)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl and (C1-C6) alkynyl; and
--- designates a single or double bond.
[0052] In the compounds of structural formula (I), the bond between the atoms at ring positions
1 and 2 (designated ---) can be either a single or double bond. It will be recognized
by those of skill in the art that when the bond is a double bond, certain of the substituents
must be absent. It will also be recognized that the identity of X also influences
the presence or absence of certain substituents. Thus, it is to be understood that
when X is N and --- is a double band, R
1, R
2 and R
3 are absent; when X is C and --- is a double bond, R
2 and R
3 are absent. When X is N and --- is a single bond, one of R
1 and R
2 is present and the other is absent and R
3 is present; when X is C and --- is a single bond, R
1, R
2 and R
3 are each present.
[0053] In a preferred embodiment of the invention, the chalcogens in the compounds of formula
(I) are each oxygen.
[0054] In another preferred embodiment of the invention, the compounds are those of structural
formula (I) wherein:
m is 0, 1, 2, 3 or 4;
each n is independently 0, 1, 2, 3, 4 or 5;
X is C or N;
Y is absent, (C1-C6) alkyl, (C1-C6) alkenyl or (C1-C6) alkynyl;
R1 is absent, -OR, =O, =N-OR, -O-C(O)R, or when taken together with R2 is a 3-8 membered oxirane or a substituted 3-8 membered oxirane;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR', -NR'2, -CN, -NO2, (C3-C8) cycloalkyl, 3-8 membered oxiranyl, 5-8 membered dioxycycloalkyl, -C(O)R', - C(O)OR'
or -C(O)NR'2;
each R5, R6 and R, is independently selected from the group consisting of -halogen, -R', -OR',
-NR'2, -ONR'2, -NO2, - CN, -C(O)R', -C(O)OR', -C(O)NR'2, -C(O)NR'(OR'), -CH(CN)2, - CH[C(O)R']2 and -CH[C(O)OR']2;
each R is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, substituted (C5-C20) aryl, (C6-C26) alkaryl and substituted (C6-C26) alkaryl;
the oxirane substituents are each independently selected from the group consisting
of -CN, -NO2, -NR'2, -OR', -C(O)NR'2, - C(O)OR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', - C(O)OR', -C(O)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl and (C1-C6) alkynyl; and/or
- -- designates a single or double bond.
[0055] In another preferred embodiment, the compounds are those of structural formula (I)
wherein:
m is 0 or 1;
each n is independently 0 or 1;
X is C or N;
Y is absent, (C1-C3) alkyl, (C1-C3) alkenyl or (C1-C3) alkynyl;
R1 is absent -H, -OR, =O, -NR2, =N-OR, -O-C(O)R, or when taken together with R2 is 3-5 membered oxirane or 3-5 membered substituted oxirane;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR, -NR2, -CN, -C(O)OR, -C(O)NR2 or 5-6 membered dioxoycycloalkyl;
each R5, R6 and R7 is independently selected from the group consisting of -R', -F, -Cl or -Br;
each R is independently selected from the group consisting of -H, (C1-C3) alkyl, (C1-C3) alkenyl, (C1-C3) alkynyl, (C5-C10) aryl, substituted (C5-C10) aryl, (C6-C13) alkaryl, substituted C6-C13) alkaryl;
the oxirane substituent is -CN, -NO2, -NR'2, -OR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of -F, -Cl, -Br, -CN, -NO2, - NR'2, -C(O)R', -C(O)OR' and trihalomethyl;
R' is -H, (C1-C3) alkyl, (C1-C3) alkenyl or (C1-C3) alkynyl; and/or
--- is a single or double bond.
[0056] In still another preferred embodiment, the compounds are those of structural formula
(I) wherein:
m is 0, 1, 2, 3 or 4;
each n is independently 0, 1, 2, 3, 4 or 5;
X is C or N;
Y is absent, (C1-C6) alkyl, (C1-C6) alkenyl or (C1-C6) alkynyl;
R1 is absent, -OR, -SR, =O, =S, =N-OR, -O-C(O)R, -S-C(O)R, - O-C(S)R, -S-C(S)R, or when
taken together with R2 is a 3-8 membered heterocycloalkyl or a substituted 3-8 membered heterocycloalkyl;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8) cycloalkyl, 3-8 membered heterocycloalkyl, -C(O)R', -C(S)R', -C(O)OR', - C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2 or -C(S)NR'2;
each R5, R6 and R7 is independently selected from the group consisting of -halogen, -R', -OR', -SR',
-NR'2, -ONR'2, - SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', - C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), - C(S)NR'(OR'); -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, - CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR']2, - CH[C(O)SR']2 and -CH[C(S)SR']2;
each R is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, substituted (C5-C20) aryl, (C6-C26) alkaryl and substituted (C6-C26) alkaryl;
the heterocycloalkyl substituents are each independently selected from the group consisting
of -CN, -NO2, -NR'2, -OR', - C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', - C(S)R', -C(O)OR'; -C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR'2, - C(S)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl and (C1-C6) alkynyl;
--- designates a single or double bond; and
wherein when X is C and R
1 is =O, =S or -OR', at least one of R
5, R
6 or R
7 is other than -R', preferably other than -H, or Y is present or R
4 is other than -H; and when X is N, --- is a double bond and R
1, R
2, R
3 and Y are absent, R
4 is other than -NR'
2, preferably other than -NH
2.
[0057] In still another preferred embodiment, the compounds are those of structural formula
(I) wherein:
m is 0, 1, 2, 3 or 4;
each n is independently 0, 1, 2, 3, 4 or 5;
X is C;
Y is absent, (C1-C6) alkyl, (C1-C6) alkenyl or (C1-C6) alkynyl;
R1 is absent, -OR, -SR, =O, =S, =N-OR, -O-C(O)R, -S-C(O)R, - O-C(S)R, -S-C(S)R, or when
taken together with R2 is a 3-8 membered heterocycloalkyl or a substituted 3-8 membered heterocycloalkyl;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8) cycloalkyl, 3-8 membered heterocycloalkyl, -C(O)R', -C(S)R', -C(O)OR', - C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2 or -C(S)NR'2;
each R5, R6 and R7 is independently selected from the group consisting of -halogen, -R', -OR', -SR',
-NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), - C(S)NR'(OR'); -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, - CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR']2, - CH[C(O)SR']2 and -CH[C(S)SR']2;
each R is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, substituted (C5-C20) aryl, (C6-C26) alkaryl and substituted (C6-C26) alkaryl;
the heterocycloalkyl substituents are each independently selected from the group consisting
of -CN, -NO2, -NR'2, -OR', - C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', - C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR'2, - C(S)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl and (C1-C6) alkynyl;
--- designates a single or double bond; and
wherein when R
1 is =O or -OH, at least one of R
5, R
6 or R
7 is other than -R', preferably other than -H, or Y is present or R
4 is other than -H.
[0059] In still another preferred embodiment, the compounds of structural formula (I) are
selected from the group consisting of Compounds
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and
20.
[0060] The chemical structural formulae referred to herein may exhibit the phenomena of
tautomerism, conformational isomerism, stereoisomerism or geometric isomerism. As
the structural formulae drawings within this specification can represent only one
of the possible tautomeric, conformational isomeric, enantiomeric or geometric isomeric
forms, it should be understood that the invention encompasses any tautomeric, conformational
isomeric, enantiomeric or geometric isomeric forms which exhibit biological or pharmacological
activity as described herein.
[0061] The compounds of the invention may be in the form of free acids, free bases or pharmaceutically
effective salts thereof. Such salts can be readily prepared by treating a compound
with an appropriate acid. Such acids include, by way of example and not limitation,
inorganic acids such as hydrohalic acids (hydrochloric, hydrobromic, etc.), sulfuric
acid, nitric acid, phosphoric acid, etc.; and organic acids such as acetic acid, propanoic
acid, 2-hydroxyacetic acid, 2-hydroxypropanoic acid, 2-oxopropanoic acid, propandioic
acid, butandioic acid, etc. Conversely, the salt can be converted into the free base
form by treatment with alkali.
[0062] In addition to the above-described compounds and their pharmaceutically acceptable
salts, the invention may employ, where applicable, solvated as well as unsolvated
forms of the compounds (
eg hydrated forms).
[0063] The compounds described herein may be prepared by any processes known to be applicable
to the preparation of chemical compounds. Suitable processes are well known in the
art. Preferred processes are illustrated by the representative examples. Necessary
starting materials may be obtained commercially or by standard procedures or organic
chemistry. Moreover, many of the compounds are commercially available.
[0064] An individual compound's relevant activity and potency as an agent to affect sickle
cell dehydration or deformation and/or mammalian cell proliferation may be determined
using standard techniques. Preferentially, a compound is subject to a series of screens
to determine its pharmacological activity.
[0065] In most cases, the active compounds of the invention exhibit two pharmacological
activities: inhibition of the Gardos channel of erythrocytes and inhibition of mammalian
cell proliferation. However, in some cases, the compounds of formula (I) may exhibit
only one of these pharmacological activities. Any uses and compositions relating to
a compound encompassed by structural formula (I) which exhibits at least one of these
pharmacological activities is considered to be within the scope of the present invention.
[0066] In general, the active compounds for use in the invention are those which induce
at least about 25% inhibition of the Gardos channel of erythrocytes (measured at about
10 µM) and/or about 25% inhibition of mammalian cell proliferation (measured at about
10 µM), as measured using
in vitro assays that are commonly known in the art (see,
eg, Brugnara
et al., 1993,
J. Biol Chem.
268(12):8760-8768; Benzaquen
et al., 1995,
Nature Medicine 1:534-540). Alternatively, or in addition, the active compounds for use in the invention
generally will have an IC
50 (concentration of compound that yields 50% inhibition) for inhibition of the Gardos
channel of less than about 10 µM and/or an IC
50 for inhibition of cell proliferation of less than about 10 µM, as measured using
in vitro assays that are commonly known in the art (see, eg Brugnara
et al., 1993,
J.
Biol.
Chem.
268(12):8760-8768; Benzaquen
et al., 1995,
Nature Medicine 1:534-540).
[0067] Representative active compounds for use according to the invention are Compounds
1 through 20, as illustrated above.
[0068] In certain embodiments of the invention, compounds which exhibit only one pharmacological
activity, or a higher degree of one activity, may be preferred. Thus, when the compound
is to be used in preparing a medicament to treat or prevent sickle cell disease, or
in compositions to reduce sickle cell dehydration and/or delay the occurrence of erythrocyte
sickling or deformation in situ, it is preferred that the compound exhibit at least
about 75% Gardos channel inhibition (measured at about 10 µM) and/or have an IC
50 of Gardos channel inhibition of less than about 1 µM, with at least about 90% inhibition
and/or an IC
50 of less than about 0.1 µM being particularly preferred.
[0069] Exemplary preferred compounds for use in medicaments for use in methods related to
Gardos channel inhibition and sickle cell disease include compounds numbers 1, 2,
3, 4, 7, 9, 12, 13 and 14.
[0070] When the compound is to be used in medicaments to treat or prevent disorders characterized
by abnormal cell proliferation or in methods to inhibit cell proliferation
in situ, it is preferable that the compound exhibit at least about 75% inhibition of mitogen-induced
cell proliferation (measured at about 10 µM) and/or have an IC
50 of cell proliferation of less than about 3.5 µM, with at least about 90% inhibition
and/or an IC
50 of less than about 1 µM being particularly preferred.
[0071] Exemplary preferred compounds for use in medicaments for inhibiting mammalian cell
proliferation or for the treatment or prevention of diseases characterized by abnormal
cell proliferation include compounds numbers 1, 2, 3, 4, 6, 7, 8, 10, 11, 15, 16,
17, 19 and 20.
[0072] Furthermore, compounds of formula (I) with the following exceptions are novel:
when - - - is single bond, X is C, R1 is -OH, R2 R3 and R4 are H, Y is absent, then at least one of R5, R6 and R7 are other than H; or
when - - - is single bond, X is C, R1 and R2 taken together are =O, Y is absent, R3 and R4 are H, then at least one of R5, R6 and R7 are other than H; or
when - - - is single bond, X is C, R1 and R2 taken together are =O, Y is absent, R3 and R4 are H, m = 0, n = 1 and R5 is H, then R6 is not Br (para), or OMe (para) or OH (para); or
when - - - is single bond, X is C, R1, R2, R3 and R4 are H, Y is absent, then (a) at least one of R5, R6 or R7 are other than H; and (b) if m = 0 and n is 1, then R5 and R6 are not both -NH2 (para) or -OH (para); or
when - - - is double bond, X is C, R1 and R4 are H, R2, R3 and Y are absent, then (a) at least one of R5, R6 or R7 are other than H; and (b) if m = 0, n = 1, and R5 is H, then R6 is not -OMe (para), or Br (para), or -CN (para); or
when - - - is single bond, X is C, R1 and R2 taken together are =O, Y is CH2, R3 and R4 are H, m = 0, and n = 1, then R5 and R6 are not both -OH (para); or
when - - - is single bond, X is C, R1 and R2 taken together are =O, Y is absent, R3 is H, R4 is -C(O)OEt, m = 0, n = 1, and R5 is H, then R6 is not -OH (para); or
when - - - is single bond, X is C, R1 is -OH, R2 R3 and R, are H, Y is absent, m = 0, n = 1, and R5 is H, then R6 is not -Br at the para position; or
when - - - is single bond, X is C, R1 and R2 taken together are =N-OR, Y is absent, and R3, R4, R5, R6 and R7 are H, then the salt can not be hydrochloric; or
when - - - is single bond, X is N, R1, R3 and R4 are H, Y and R2 are absent, then a) at least one of R5, R6 or R7 are other than H, and b) if n = 0 and m is 2, then the R7 substituents are not both Br at the 5 and 7 positions of the indole moiety; or
when - - - is single bond, X is N, R1, R3 and R4 are H, Y and R2 are absent, m = 0, n = 1, then R5 and R6 are not both NMe2 (para) or Me (para); or
when - - - is double bond, X is N, R1, R2, R3 and Y are absent, R4 is H, then a) at least one of R5, R6 or R7 are other than H; and b) if n = 0, and m = 2, then the R7 substituents are not both Br at the 5 and 7 positions of the indole moiety; or
when - - - is double bond, X is N, R1, R2, R3 and Y are absent, R4 is H, m = 0, n = 1, then R5 and R6 are not both Me (para);
when - - - is double bond, X is N, R1, R2, R3 and Y are absent, R4 is NH2, then at least one of R5, R6 or R7 are other than H;
each R is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, substituted (C5-C20) aryl, (C6-C26) alkaryl and substituted (C6-C26) alkaryl;
the heterocycloalkyl substituents are each independently selected from the group consisting
of -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR',
- C(O)SR', -C(S)SR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', -C(S)R', - C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR',
- C(O)NR'2, -C(S)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl and (C1-C6) alkynyl.
[0073] Accordingly, the following known compounds
per se are excluded from the scope of the present invention:
1. 3,3-diphenyl-1-indanol
2. 3,3-diphenyl-1-indanone
3. 3-(p-bromophenyl)-3-phenyl-1-indanone
4. 3-(p-methoxyphenyl)-3-phenyl-1-indanone
5. 3-(p-hydroxyphenyl)-3-phenyl-1-indanone
6. 1,1-diphenylindane
7. 1,1-bis(p-aminophenyl)indane
8. 1,1-bis(p-hydroxyphenyl)indane
9. 1,1-diphenylindene
10. 1-(p-methoxyphenyl)-1-phenylindene
11. 1-(p-bromophenyl)-1-phenylindene
12. 1-(p-cyanophenyl)-1-phenylindene
13. 3,3-bis(p-hydroxyphenyl)-2-methyl indanone
14. ethyl-3-(p-hydroxyphenyl)-3-phenylhydrindone-2-carboxylate
15. 3-(p-bromophenyl)-3-phenylindanole
16. 3,3-diphenyl-lindanone oxime ether hydrochloride
17. 3,3-diphenyl-1-indolene
18. 3,3-diphenyl,5,7-dibromo-1-indolene
19. 3,3-bis(p-N,N-dimethylaminopheny) indolene
20. 3,3-bis(p-methylphenyl)indolene
21. 3,3-diphenyl-3H-indole
22. 3,3-diphenyl-5,7-dibromo-3H-indole
23. 3,3-bis(p-methylphenyl)-3H-indole
24. 3,3-diphenyl-2-amino-3H-indole
proliferation include compound numbers
1, 2, 3, 4, 6, 7, 8, 10, 11, 15, 16, 17, 19 and
20.
5.2 Formulation and Routes of Administration
[0074] The compounds described herein, or pharmaceutically acceptable addition salts or
hydrates thereof, can be delivered to a patient using a wide variety of routes or
modes of administration. Suitable routes of administration include, but are not limited
to, inhalation, transdermal, oral, rectal, transmucosal, intestinal and parenteral
administration, including intramuscular, subcutaneous and intravenous injections.
[0075] The compounds described herein, or pharmaceutically acceptable salts and/or hydrates
thereof, may be administered singly, in combination with other compounds of the invention,
and/or in cocktails combined with other therapeutic agents. Of course, the choice
of therapeutic agents that can be co-administered with the compounds of the invention
will depend, in part, on the condition being treated.
[0076] For example, when administered to patients suffering from sickle cell disease, the
compounds of the invention can be administered in cocktails containing agents used
to treat the pain, infection and other symptoms and side effects commonly associated
with sickle cell disease. Such agents include, e.g., analgesics, antibiotics, etc.
The compounds can also be administered in cocktails containing other agents that are
commonly used to treat sickle cell disease, including butyrate and butyrate derivatives
(Perrine
et al., 1993,
N. Engl. J. Med.
328(2):81-86); hydroxyurea (Charache
et al., 1995,
N. Engl. J. Med.
323(20):1317-1322); erythropoietin (Goldberg et
al, 1990,
N. Engl. J. Med.
323(6): 366-372); and dietary salts such as magnesium (De Franceschi
et al., 1996,
Blood 88(648a):2580).
[0077] When administered to a patient undergoing cancer treatment, the compounds may be
administered in cocktails containing other anti-cancer agents and/or supplementary
potentiating agents. The compounds may also be administered in cocktails containing
agents that treat the side-effects of radiation therapy, such as anti-emetics, radiation
protectants, etc.
[0078] Anti-cancer drugs that can be co-administered with the compounds of the invention
include, e.g., Aminoglutethimide; Asparaginase; Bleomycin; Busulfan; Carboplatin;
Carmustine (BCNU); Chlorambucil; Cisplatin (cis-DDP); Cyclophosphamide; Cytarabine
HCl; Dacarbazine; Dactinomycin; Daunorubicin HCl; Doxorubicin HCl; Estramustine phosphate
sodium; Etoposide (VP-16); Floxuridine; Fluorouracil (5-FU); Flutamide; Hydroxyurea
(hydroxycarbamide); Ifosfamide; Interferon Alfa-2a, Alfa 2b, Lueprolide acetate (LHRH-releasing
factor analogue); Lomustine (CCNU); Mechlorethamine HCl (nitrogen mustard); Melphalan;
Mercaptopurine; Mesna; Methotrexate (MTX); Mitomycin; Mitotane (o.p'-DDD); Mitoxantrone
HCl; Octreotide; Plicamycin; Procarbazine HCl; Streptozocin; Tamoxifen citrate; Thioguanine;
Thiotepa; Vinblastine sulfate; Vincristine sulfate; Amsacrine (m-AMSA); Azacitidine;
Hexamethylmelamine (HMM); Interleukin 2; Mitoguazone (methyl-GAG; methyl glyoxal bis-guanylhydrazone;
MGBG); Pentostatin; Semustine (methyl-CCNU); Teniposide (VM-26); paclitaxel and other
taxanes; and Vindesine sulfate.
[0079] Supplementary potentiating agents that can be co-administered with the compounds
of-the invention include, e.g., Tricyclic anti-depressant drugs (e.g., imipramine,
desipramine, amitriptyline, clomipramine, trimipramine, doxepin, nortriptyline, protriptyline,
amoxapine and maprotiline); non-tricyclic and anti-depressant drugs (e.g., sertraline,
trazodone and citalopram); Ca
++ antagonists (e.g., verapamil, nifedipine, nitrendipine and caroverine); Amphotericin
(e.g., Tween 80 and perhexiline maleate); Triparanol analogues (e.g., tamoxifen);
antiarrhythmic drugs (e.g., quinidine); antihypertensive drugs (e.g., reserpine);
Thiol depleters (e.g., buthionine and sulfoximine); and calcium leucovorin.
[0080] The active compound(s) may be administered
per se or in the form of a pharmaceutical composition wherein the active compound(s) is
in admixture with one or more pharmaceutically acceptable carriers, excipients or
diluents. Pharmaceutical compositions for use in accordance with the present invention
may be formulated in conventional manner using one or more physiologically acceptable
carriers comprising excipients and auxiliaries which facilitate processing of the
active compounds into preparations which can be used pharmaceutically. Proper formulation
is dependent upon the route of administration chosen.
[0081] For injection, the agents of the invention may be formulated in aqueous solutions,
preferably in physiologically compatible buffers such as Hanks's solution, Ringer's
solution, or physiological saline buffer. For transmucosal administration, penetrants
appropriate to the barrier to be permeated are used in the formulation. Such penetrants
are generally known in the art.
[0082] For oral administration, the compounds can be formulated readily by combining the
active compound(s) with pharmaceutically acceptable carriers well known in the art.
Such carriers enable the compounds of the invention to be formulated as tablets, pills,
dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for
oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use
can be obtained solid excipient, optionally grinding a resulting mixture, and processing
the mixture of granules, after adding suitable auxiliaries, if desired, to obtain
tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars,
including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as,
for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum
tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose,
and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added,
such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof
such as sodium alginate.
[0083] Dragee cores are provided with suitable coatings. For this purpose, concentrated
sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl
pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions,
and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added
to the tablets or dragee coatings for identification or to characterize different
combinations of active compound doses.
[0084] Pharmaceutical preparations which can be used orally include push-fit capsules made
of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such
as glycerol or sorbitol. The push-fit capsules can contain the active ingredients
in admixture with filler such as lactose, binders such as starches, and/or lubricants
such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules,
the active compounds may be dissolved or suspended in suitable liquids, such as fatty
oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may
be added. All formulations for oral administration should be in dosages suitable for
such administration.
[0085] For buccal administration,the compositions may take the form of tablets or lozenges
formulated in conventional manner.
[0086] For administration by inhalation, the compounds for use according to the present
invention are conveniently delivered in the form of an aerosol spray presentation
from pressurized packs or a nebulizer, with the use of a suitable propellant,
e.
g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon
dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit
may be determined by providing a valve to deliver a metered amount. Capsules and cartridges
of
e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder
mix of the compound and a suitable powder base such as lactose or starch.
[0087] The compounds may be formulated for parenteral administration by injection,
e.
g., by bolus injection or continuous infusion. Formulations for injection may be presented
in unit dosage form,
e.
g., in ampoules or in multidose containers, with an added preservative. The compositions
may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles,
and may contain formulatory agents such as suspending, stabilizing and/or dispersing
agents.
[0088] Pharmaceutical formulations for parenteral administration include aqueous solutions
of the active compounds in water-soluble form. Additionally, suspensions of the active
compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic
solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid
esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions
may contain substances which increase the viscosity of the suspension, such as sodium
carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also
contain suitable stabilizers or agents which increase the solubility of the compounds
to allow for the preparation of highly concentrated solutions.
[0089] Alternatively, the active ingredient may be in powder form for constitution with
a suitable vehicle,
e.
g., sterile pyrogen-free water, before use.
[0090] The compounds may also be formulated in rectal compositions such as suppositories
or retention enemas,
e.
g., containing conventional suppository bases such as cocoa butter or other glycerides.
[0091] In addition to the formulations described previously, the compounds may also be formulated
as a depot preparation. Such long acting formulations may be administered by implantation
or transcutaneous delivery (for example subcutaneously or intramuscularly), intramuscular
injection or a transdermal patch. Thus, for example, the compounds may be formulated
with suitable polymeric or hydrophobic materials (for example as an emulsion in an
acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example,
as a sparingly soluble salt.
[0092] The pharmaceutical compositions also may comprise suitable solid or gel phase carriers
or excipients. Examples of such carriers or excipients include but are not limited
to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives,
gelatin, and polymers such as polyethylene glycols.
5.3 Effective Dosages
[0093] Pharmaceutical compositions suitable for use with the present invention include compositions
wherein the active ingredient is contained in a therapeutically effective amount,
i.e., in an amount effective to achieve its intended purpose. Of course, the actual
amount effective for a particular application will depend,
inter alia, on the condition being treated. For example, when administered in methods to reduce
sickle cell dehydration and/or delay the occurrence of erythrocyte sickling or distortion
in situ, such compositions will contain an amount of active ingredient effective to
achieve this result. When administered in methods to inhibit cell proliferation, such
compositions will contain an amount of active ingredient effective to achieve this
result. When administered to patients suffering from sickle cell disease or disorders
characterized by abnormal cell proliferation, such compositions will contain an amount
of active ingredient effective to, inter alia, prevent the development of or alleviate
the existing symptoms of, or prolong the survival of, the patient being treated. For
use in the treatment of cancer, a therapeutically effective amount further includes
that amount of compound or composition which arrests or regresses the growth of a
tumor. Determination of an effective amount is well within the capabilities of those
skilled in the art, especially in light of the detailed disclosure herein.
[0094] For any compound described herein the therapeutically effective amount can be initially
determined from cell culture arrays. Target plasma concentrations will be those concentrations
of active compound(s) that are capable of inducing at least about 25% inhibition of
the Gardos channel and/or at least about 25% inhibition of cell proliferation in cell
culture assays, depending, of course, on the particular desired application. Target
plasma concentrations of active compound(s) that are capable of inducing at least
about 50%, 75%, or even 90% or higher inhibition of the Gardos channel and/or cell
proliferation in cell culture assays are preferred. The percentage of inhibition of
the Gardos channel and/or cell proliferation in the patient can be monitored to assess
the appropriateness of the plasma drug concentration achieved, and the dosage can
be adjusted upwards or downwards to achieve the desired percentage of inhibition.
[0095] Therapeutically effective amounts for use in humans can also be determined from animal
models. For example, a dose for humans can be formulated to achieve a circulating
concentration that has been found to be effective in animals. A particularly useful
animal model for sickle cell disease is the SAD mouse model (Trudel
et al., 1991,
EMBO J. 11:3157-3165). Useful animal models for diseases characterized by abnormal cell proliferation
are well-known in the art. In particular, the following references provide suitable
animal models for cancer xenografts (Corbett et
al., 1996,
J. Exp. Ther. Oncol. 1:95-108; Dykes
et al., 1992,
Contrib. Oncol. Basel. Karger 42:1-22), restenosis (Carter et al., 1994,
J. Am. Coll. Cardiol. 24(5):1398-1405), atherosclerosis (Zhu
et al., 1994,
Cardiology 85(6):370-377) and neovascularization (Epstein
et al., 1987,
Cornea 6(4):250-257). The dosage in humans can be adjusted by monitoring Gardos channel inhibition
and/or inhibition of cell proliferation and adjusting the dosage upwards or downwards,
as described above.
[0096] A therapeutically effective dose can also be determined from human data for compounds
which are known to exhibit similar pharmacological activities, such as Clotrimazole
and other antimycotic agents (see,
e.
g., Brugnara et al., 1995,
JPET 273:266-272; Benzaquen
et al., 1995,
Nature Medicine 1:534-540; Brugnara
et al., 1996,
J. Clin. Invest. 97(5):1227-1234). The applied dose can be adjusted based on the relative bioavailability
and potency of the administered compouna as compared with Clotrimazole.
[0097] Adjusting the dose to achieve maximal efficacy in humans based on the methods described
above and other methods as are well-known in the art is well within the capabilities
of the ordinarily skilled artisan.
[0098] Of course, in the case of local administration, the systemic circulating concentration
of administered compound will not be of particular importance. In such instances,
the compound is administered so as to achieve a concentration at the local area effective
to achieve the intended result.
[0099] For use in the prophylaxis and/or treatment of sickle cell disease, including both
chronic sickle cell episodes and acute sickle cell crisis, a circulating concentration
of administered compound of about 0.001 µM to 20 µM is considered to be effective,
with about 0.1 µM to 5 µM being preferred.
[0100] Patient doses for oral administration of the compounds described herein, which is
the preferred mode of administration for prophylaxis and for treatment of chronic
sickle cell episodes, typically range from about 80 mg/day to 16,000 mg/day, more
typically from about 800 mg/day to 8000 mg/day, and most typically from about 800
mg/day to 4000 mg/day. Stated in terms of patient body weight, typical dosages range
from about 1 to 200 mg/kg/day, more typically from about 10 to 100 mg/kg/day, and
most typically from about 10 to 50 mg/kg/day. Stated in terms of patient body surface
areas, typical dosages range from about 40 to 8000 mg/m
2/day, more typically from about 400 to 4000 mg/m
2/day, and most typically from about 400 to 2000 mg/m
2/day.
[0101] For use in the treatment of disorders characterized by abnormal cell proliferation,
including cancer, arteriosclerosis and angiogenic conditions such as restenosis, a
circulating concentration of administered compound of about 0.001 µM to 20 µM is considered
to be effective, with about 0.1 µM to 5 µM being preferred.
[0102] Patient doses for oral administration of the compounds described herein for the treatment
or prevention of cell proliferative disorders typically range from about 80 mg/day
to 16,000 mg/day, more typically from about 800 mg/day to 8000 mg/day, and most typically
from about 800 mg/day to 4000 mg/day. Stated in terms of patient body weight, typical
dosages range from about 1 to 200 mg/kg/day, more typically from about 10 to 100 mg/kg/day,
and most typically from about 10 to 50 mg/kg/day. Stated in terms of patient body
surface areas, typical dosages range from about 40 to 8000 mg/m
2/day, more typically from about 400 to 4000 mg/m
2/day, and most typically from about 400 to 2000 mg/m
2/day.
[0103] For other modes of administration, dosage amount and interval can be adjusted individually
to provide plasma levels of the administered compound effective for the particular
clinical indication being treated. For example, if acute sickle crises are the most
dominant clinical manifestation, a compound according to the invention can be administered
in relatively high concentrations multiple times per day. Alternatively, if the patient
exhibits only periodic sickle cell crises on an infrequent or periodic or irregular
basis, it may be more desirable to administer a compound of the invention at minimal
effective concentrations and to use a less frequent regimen of administration. This
will provide a therapeutic regimen that is commensurate with the severity of the sickle
cell disease state.
[0104] For use in the treatment of tumorigenic cancers, the compounds can be administered
before, during or after surgical removal of the tumor. For example, the compounds
can be administered to the tumor via injection into the tumor mass prior to surgery
in a single or several doses. The tumor, or as much as possible of the tumor, may
then be removed surgically. Further dosages of the drug at the tumor site can be applied
post removal. Alternatively, surgical removal of as much as possible of the tumor
can precede administration of the compounds at the tumor site.
[0105] Combined with the teachings provided herein, by choosing among the various active
compounds and weighing factors such as potency, relative bioavailability, patient
body weight, severity of adverse side-effects and preferred mode of administration,
an effective prophylactic or therapeutic treatment regimen can be planned which does
not cause substantial toxicity and yet is entirely effective to treat the clinical
symptoms demonstrated by the particular patient. Of course, many factors are important
in determining a therapeutic regimen suitable for a particular indication or patient.
Severe indications such as cancer may warrant administration of higher dosages as
compared with less severe indications such as sickle cell disease.
5.4 Toxicity
[0106] The ratio between toxicity and therapeutic effect for a particular compound is its
therapeutic index and can be expressed as the ratio between LD
50 (the amount of compound lethal in 50% of the population) and ED
50 (the amount of compound effective in 50% of the population). Compounds which exhibit
high therapeutic indices are preferred. Therapeutic index data obtained from cell
culture assays and/or animal studies can be used in formulating a range of dosages
for use in humans. The dosage of such compounds preferably lies within a range of
plasma concentrations that include the ED
50 with little or no toxicity. The dosage may vary within this range depending upon
the dosage form employed and the route of administration utilized. The exact formulation,
route of administration and dosage can be chosen by the individual physician in view
of the patient's condition. (See
e.
g. Fingl
et al., 1975,
In: The Pharmacological Basis of Therapeutics, Ch. 1 p1).
[0107] The invention having been described, the following examples are intended to illustrate,
not limit, the invention.
6. EXAMPLE: Compound Syntheses
[0108] This Example demonstrates general methods for synthesizing the compounds of the invention,
as well as preferred methods of synthesizing certain exemplary compounds of the invention.
In all of the reaction schemes described herein, suitable starting materials are either
commercially available or readily obtainable using standard techniques of organic
synthesis. Where necessary, suitable groups and schemes for protecting the various
funtionalities are well-known in the art, and can be found, for example, in Kocienski,
Protecting Groups, Georg Thieme Verlag, New York, 1994 and Greene & Wuts,
Protective Groups in organic Chemistry, John Wiley & Sons, New York, 1991.
[0109] In FIGS. 1 and 2, the various substituents are defined as for structure (I),
supra.
6.1 Synthesis of Substituted 3,3-Diphenyl Indanones
[0110] Referring to FIG. 1, substituted 3,3-diphenyl indanone compounds are synthesized
as follows: substituted triphenylpropionic acid
100 (0.25-0.50 M in sulfuric acid) is stirred at room temperature for 1 hour and then
poured into an equal volume of cold water. The aqueous mixture is extracted with an
equal volume of ethyl acetate and the organics dried over sodium sulfate. Evaporation
gives the desired substituted 3,3-diphenyl indanone compound 102 in about 60-75% yield.
6.2 Synthesis of Substituted 1-Hydroxy-3,3-Diphenyl Indane Compounds
[0111] Referring to FIG. 1, substituted 1-hydroxy-3,3-diphenyl indane compounds are synthesized
as follows: a solution of substituted 3,3-diphenylindanone
102 (0.25 M in tetrahydrofuran) is added dropwise to 0.25 volume of a 1.0 M solution
of lithium aluminum hydride in tetrahydrofuran at 0-5 °C. The mixture is warmed to
reflux and refluxed for 2.5 h, cooled to 0-5 °C and an equal volume of 1 M HCl added
slowly. The mixture is then extracted three times with an equal volume of ethyl acetate.
The combined organic extracts are washed with a saturated aqueous solution of sodium
bicarbonate and dried over sodium sulfate. Evaporation gives the desired substituted
1-hydroxy-3,3-diphenyl indane compound
104 in about 45-90 % yield.
6.3 Synthesis of Substituted 1-N-Oxime-3,3-Diphenyl Indanes
[0112] Referring to FIG. 1, substituted 1-N-oxime-3,3-diphenyl indane compounds are synthesized
as follows: substituted 3,3-diphenylindanone
102 (1 equivalent) is combined with 5 equivalents of hydroxylamine hydrochloride and
10 equivalents of sodium acetate and dissolved in methanol. The solution is stirred
at room temperature for 16 h and then an equal volume of water is added. The mixture
is extracted three times with an equal volume of ethyl acetate and the combined organic
extracts are dried over sodium sulfate. Evaporation gives the desired substituted
1-N-oxime-3,3-diphenyl indane compound
106 (as a mixture of cis and trans isomers) in about 90-98 % yield.
6.4 Synthesis of Substituted 2-Alkyl-3,3-Diphenyl Indanones
[0113] Referring to FIG. 1, substituted 2-alkyl-3,3-diphenyl indanone compounds are synthesized
as follows: substituted 3,3-diphenyl indanone
102 (1 equivalent) is dissolved in tetrahydrofuran (0.4 - 1.0 M) and 1.2 equivalents
of potassium hydride is added. The mixture is stirred at room temperature until the
gas evolution subsides and then the bromoalkane (1.2 equivalents) is added. The mixture
is stirred at room temperature and monitored by TLC. The reaction is quenched with
water and the mixture extracted with ethyl acetate. The desired substituted 2-alkyl-3,3-diphenyl
indanone compound
108 is isolated by silica gel chromatography in about 50-75% yield.
6.5 Synthesis of Substituted 1-Alkoxy-3,3-Diphenyl Indanes
[0114] Referring to FIG. 1, substituted 1-alkoxy-3,3-diphenyl indane compounds are synthesized
as follows: substituted 1-hydroxy-3,3-diphenylindanone
104 (1 equivalent) is combined with 2 equivalents of sodium hydride in N,N-dimethylformamide
and stirred at room temperature until the gas evolution subsides. The haloalkane (2
equivalents) is added and stirred at room temperature for 16-20 hours. An equal volume
of water is added and the mixture extracted four times with twice the volume of ethyl
acetate. The combined organic extracts are dried over sodium sulfate and the solvent
removed
in vacuo. The desired substituted 1-alkoxy-3,3-diphenyl indane compound
110 is isolated by vacuum distillation.
6.6 Synthesis of Substituted 3,3-Diphenyl-3H-Indoles
[0115] Referring to FIG. 2, substituted 3,3-diphenyl-3
H-indole compounds are synthesized as follows: substituted phenyl hydrazine
120 is combined with an equimolar amount of substituted 1,1-diphenyl-2-ketone
122 in phosphoric acid. This mixture is stirred at 100-120 °C until the reaction is complete
as determined by TLC. The reaction is cooled to 60-70 °C and diluted with twice the
volume of water while stirring. After cooling to room temperature, the mixture is
filtered, washed with water, and the crude solid substituted 3,3-diphenyl indole compound
124 is purified by column chromatography or crystallization.
6.7 Synthesis of Substituted 3,3-Diphenyl-3H-Indolines
[0116] Referring to FIG. 2, substituted 3,3-diphenyl-3
H-indoline compounds are synthesized as follows: substituted 3,3-diphenyl indole compound
124 is reduced with sodium borohydride or sodium cyanoborohydride in a suitable solvent
to yield the substituted 3,3-diphenyl-3
H-indoline compound
126.
6.8 Synthesis of Substituted N-Substituted-3,3-Diphenyl Indolines
[0117] Referring to FIG. 2, substituted N-substituted-3,3-diphenyl indoline compounds are
synthesized as follows: substituted 3,3-diphenyl indoline
126 (1 equivalent) is combined with an alkyl halide (1 equivalent) and potassium carbonate
(3-4 equivalents) in acetonitrile. The mixture is stirred at reflux until the reaction
is complete as determined by TLC. Water and ethyl acetate are added and the mixture
is extracted with ethyl acetate. Evaporation of the combined ethyl acetate extracts
gives the crude substituted N-substituted-3,3-diphenyl indoline compound
128, which is purified by column chromatography.
6.9 Synthesis of 3,3-Diphenylindanone (Compound 2)
[0118] 3,3-Diphenylindanone (Compound
2) was synthesized as follows: Triphenylpropionic acid (12 g, 0.04 mol) was stirred
in 50 ml concentrated sulfuric acid for 1 hour. The reaction mixture was cooled in
an ice bath and diluted with 50 ml water. This mixture was extracted three times with
ethyl acetate. The ethyl acetate extracts were combined, dried over sodium sulfate
and the solvent removed in vacuo to yield 9.0 g (78% yield) of 3,3-Diphenylindanone
(Compound 2) as a white solid having a melting point of 119-123°C.
6.10 Synthesis of 1-Hydroxy-3,3-Diphenylindane (Compound 3)
[0119] 1-Hydroxy-3,3-Diphenylindane (Compound
3) was synthesized as follows: A solution of 2 g (0.007 mol) 3,3-diphenylindanone (Compound
2) in 20 ml of tetrahydrofuran was added dropwise to a solution of 0.34 g (0.009 mol)
LiAlH
4 in 10 ml tetrahydrofuran at 0-5°C. The mixture was warmed to reflux and refluxed
for 3 hr., cooled to 0-5°C and 30 ml of 1 M HCl added slowly. The mixture was then
extracted three times with 60 ml ethyl acetate. The ethyl acetate extracts were combined,
washed with a saturated aqueous solution of sodium bicarbonate and dried over sodium
sulfate. Evaporation of the solvent gave 0.9 g (45% yield) of 1-Hydroxy-3,3-Diphenylindane
(Compound
3) as white crystals with a melting point of 133-135°C.
6.11 Synthesis of 1-N-Oxime-3,3-Diphenylindane (Compound 4)
[0120] 1-N-Oxime-3,3-Diphenylindane (Compound
4) was synthesized as follows: 3,3-Diphenylindanone (Compound
2) (2.0 g, 0.007 mol) was combined with 2.4 g (0.035 mol) of hydroxylamine hydrochloride
and 5.8 g (0.07 mol) of sodium acetate and dissolved in 30 ml of methanol. The solution
was stirred at room temperture for 16 hr and then 100 ml of water was added. The mixture
was extracted with 100 ml ethyl acetate and the organic layer dried over sodium sulfate.
Evaporation of the solvent gave 1.9 g (90% yield) of 1-N-Oxime-3,3-Diphenylindane
(Compound
4) as a white solid having a melting point of 138-141°C.
6.12 Synthesis of Spiro[3,3-diphenyl-2,3-dihydro(1H)indene-1,3'-2'-cyanooxirane] (Compound
5) and 2-Cyanomethyl-3,3-diphenylindanone (Compound 9)
[0121] Spiro[3,3-diphenyl-2,3-dihydro(1H)indene-1,3'-2'-cyanooxirane] (Compound
5) and 2-cyanomethyl-3,3-diphenylindanone (Compound
9) were synthesized as follows: 3,3-diphenylindanone (Compound
2), 5.0 g (0.0176 mole) and 2.62 g (0.0229 mole) of potassium hydride were stirred
at room temperature in 40 mL of tetrahydrofuran. After the gas evolution subsided
(approx. 45 min), 1.5 mL (0.0215 mole) of bromoacetonitrile was added. The dark red
mixture was stirred for 1 hour and then 50 mL of water was added. The mixture was
extracted three times with 75 mL of ethyl acetate. The combined organic extracts were
concentrated in vacuo, loaded onto a silica gel column and eluted with 10% ethyl acetate
in hexane. Three fractions were collected. After evaporation of the solvent, the first
fraction yielded unreacted starting material (3.5 g). The second fraction yielded
0.49 g (9% yield) of spiro[3,3-diphenyl-2,3-dihydro(1H)indene-1,3'-2'-cyanooxirane]
(Compound
5) as a white solid. The third fraction yielded 1.05 g (18% yield) of 2-cyanomethyl-3,3-diphenylindanone
(Compound
9) as a yellow oil.
6.13 Synthesis of 2-(2'-Propenyl)-1-(2'-propenoxy)-3,3-diphenylindane (Compound 6)
[0122] 2-(2'-Propenyl)-1-(2'-propenoxy)-3,3-diphenylindane (Compound
6) was synthesized as follows: 3,3-diphenylindanone (Compound
2) 2.0 g (0.007 mole) and 0.28 g (0.0084 mole) sodium hydride were stirred at room
temperature in 40 mL of dimethylformamide for 1 hour. The reaction mixture was then
added drop-wise to 0.64 mL (0.0078 mole) of allyl bromide at -50 °C. The mixture was
then warmed to reflux and refluxed for 1 hour. After cooling to room temperature,
50 mL of water was added. The mixture was extracted with ethyl acetate, dried over
sodium sulfate and concentrated
in vacuo. 2-(2'-propenyl)-1-(2'-propenoxy)-3,3-diphenylindane (Compound
6) was isolated in 30% yield as the first fraction from a silica gel column using 10%
dichloromethane in hexane as eluate.
6.14 Synthesis of 1-Acetoxy-3,3-diphenylindane (compound 7)
[0123] 1-Acetoxy-3,3-diphenylindane (Compound
7) was synthesized as follows: 1-Hydroxy-3,3-diphenylindane (Compound
3) (0.06 g, 0.0021 mol) was combined with 0.3 mL (0.0022 mol) triethylamine in 10 mL
of dichloromethane. The mixture was warmed to reflux with stirring to dissolve all
of the starting material. The heat was removed and 0.16 mL (0.0022 mol) of acetyl
chloride was added to the warm solution. The mixture was returned to reflux and stirred
at reflux for 1 h. After cooling to room temperature, the reaction was quenched by
adding 5 mL of water. The reaction mixture was extracted with dichloromethane and
the organic layer dried over sodium sulfate. Evaporation of the solvent gave 0.008
g (11% yield) of 1-acetoxy-3,3-diphenylindanone (Compound 7) as an off-white solid
with a melting point of 90°C.
6.15 Synthesis of 6-Chloro-3,3-di(4-chlorophenyl)indanone (Compound 8)
[0124] 6-Chloro-3,3-di(4-chlorophenyl)indanone (Compound
8) was synthesized as follows: 3,3,3-Tris(4-chlorophenyl) propionic acid (1.5 g, 0.004
mol) was stirred in 10 mL of concentrated sulfuric acid at room temperature for 1.5
h. The reaction mixture was then poured into 10 mL of ice water and the mixture extracted
with dichloromethane. The solvent was evaporated and 0.8 g (54% yield) of 6-Chloro-3,3-di(4-chlorophenyl)indanone
(Compound
8) was collected as an off-white solid having a melting point of 134°C.
6.16 Synthesis of 6-Chloro-2-cyanomethyl-3,3-di(4'-chlorophenyl)indanone (Compound 10)
[0125] 6-Chloro-2-cyanomethyl-3,3-di(4'-chlorophenyl)indanone (Compound
10) was synthesized as follows: 6-Chloro-3,3-di(4'-chlorophenyl)indanone (Compound
8) (1.0 g, 0.0026 mol) was dissolved in 5 mL of tetrahydrofuran and 0.124 g (0.0031
mol) of sodium hydride was added. The reaction mixture was stirred at room temperature
for 1.5 h before 0.22 mL (0.0215 mol) of bromoacetonitrile was added. After stirring
overnight the reaction was quenched with water and extracted with ethyl acetate. The
extracts were combined and the solvent removed
in vacuo. The residue was purified on a silica gel column using 5% ethyl acetate in hexane
as the eluent. The first fraction from the column was recovered starting material
(1.05 g). The second fraction contained undesired side reaction product. The third
fraction contained the desired product. After evaporation of the solvent, 0.179 g
(16% yield) 6-Chloro-2-cyanomethyl-3,3-di(4'-chlorophenyl)indanone (Compound
10) as a pale yellow solid was obtained.
6.17 Synthesis of 6-Chloro-3,3-di(4'-chlorophenyl)-2-N-oxime-3,3-diphenylindane (Compound
11)
[0126] 6-Chloro-3,3-di(4'-chlorophenyl)-2-N-oxime-3,3-diphenylindane (Compound
11) was synthesized as follows: 6-Chloro-3,3-di(4'-chlorophenyl)indanone (compound
8) (0.80 g, 0.0021 mol) was combined with 0.72 g (0.0103 mol) of hydroxylamine hydrochloride
and 1.69 g (0.0206 mol) of sodium acetate and dissolved in 25 mL of methanol. The
solution was stirred at room temperature for 16 h and then water was added. The mixture
was extracted with ethyl acetate and the organic layer was dried over magnesium sulfate.
Evaporation of the solvent gave 0.85 g (100% yield) of 6-Chloro-3,3-di(4'-chlorophenyl)-2-N-oxime-3,3-diphenylindane
(Compound
11) as a white solid having a melting point of 85°C.
6.18 Synthesis of 2-Acetamide-3,3-diphenylindanone (Compound 12)
[0127] 2-Acetamide-3,3-diphenylindanone (Compound
12) was synthesized as follows: 2-Cyanomethyl-3,3-diphenylindanone (0.685 g, 0.0021
mol) was combined with 10 mL of concentrated sulfuric acid and 10 mL of glacial acetic
acid. The solution was stirred at room temperature for 3 h and then water was added.
The mixture was cooled in an ice bath and neutralized to pH 7 with concentrated ammonium
hydroxide and then extracted with ethyl acetate. The organic layer was dried over
magnesium sulfate. Evaporation of the solvent gave 0.77 g of a light orange solid.
This solid was crystallized from a mixture of ethyl acetate and hexane. 2-Acetamide-3,3-diphenylindanone
(Compound
12) was obtained as off-white crystals, 0.527g (73% yield), having a melting point of
169 - 171°C.
6.19 Synthesis of 2-Cyanomethyl-3,3-diphenylindanol (Compound 13)
[0128] 2-Cyanomethyl-3,3-diphenylindanol (compound
13) was synthesized as follows: 2-Cyanomethyl-3,3-diphenylindanone (Compound
2) (0.311 g, 0.001 mol) was dissolved in 5 mL of ethanol at room temperature. sodium
borohydride (0.437 g, 0.011 mol) was added and the mixture was stirred at room temperature
for 15 min. The mixture was diluted with ethyl acetate and the pH was adjusted to
2 with 2N hydrochloric acid. The layers were separated and the aqueous layer extracted
twice with ethyl acetate. The combined extracts were evaporated in vacuo and the crude
product was purified on a silica gel column using 20% ethyl acetate in hexane. The
first fraction was unreacted starting material. The second fraction, when the solvent
was evaporated, gave 0.16 g (51% yield) of 2-Cyanomethyl-3,3-diphenylindanol (Compound
13) as a white solid having a melting point of 79 - 85°C.
6.20 Synthesis of 2-Acetamide-3,3-diphenylindanol (Compound 14)
[0129] 2-Acetamide-3,3-diphenylindanol (Compound
14) was synthesized as follows: 2-Acetamide-3,3-diphenylindanone (Compound
12) (0.100 g, 0.0003 mol) was dissolved in 2 mL of ethanol and 0.5 mL of methanol at
room temperature. Sodium borohydride (0.136 g, 0.0004 mol) was added and the mixture
was stirred at room temperature for 3 hours. The mixture was quenched with 2N hydrochloric
acid to pH 1. The mixture was extracted with ethyl acetate and the combined extracts
dried over magnesium sulfate. Evaporation of the solvent gave an off-white solid which
was crystallized from a mixture of ethyl acetate/hexane. 2-Acetamide-3,3-diphenylindanol
(Compound
14) was collected by filtration as a white solid (0.026 g, 25% yield) having a melting
point of 218 - 220°C.
6.21 Synthesis of 3,3-Diphenylindanone-2-methyl acetate (Compound 15)
[0130] 3,3-Diphenylindanone-2-methyl acetate (Compound
15) was synthesized as follows: 3,3-Diphenylindanone (Compound
2) (3.84 g, 0.0135 mol) was dissolved in 30 mL of tetrahydrofuran at room temperature.
Potassium hydride (1.85 g, 0.0162 mol) was added and the mixture was stirred at room
temperature for 1 hour. Methyl chloroformate (1.25 mL, 0.0162 mol) was added and the
mixture was stirred at room temperature for 1 hour. The mixture was quenched with
water and extracted with ethyl acetate. The combined extracts were dried over magnesium
sulfate. Evaporation of the solvent gave an dark brown solid which was purified on
a silica gel column using 5% ethyl acetate in hexane as eluent. The product was collected
in the second fraction off the column. Evaporation of the solvent gave a slightly
wet, pink solid which was stirred in hexane. 3,3-Diphenylindanone-2-methyl acetate
(Compound 15) was collected by filtration as an off-white solid (2.06 g, 45% yield)
having a melting point of 140 - 142°C.
6.22 Synthesis of 3,3-Diphenyl-1-indanyl-2-naphthylmethyl ether (Compound 16)
[0131] 3,3-Diphenyl-1-indanyl 2-naphthylmethyl ether (Compound 16) was synthesized as follows:
1-Hydroxy-3,3-diphenylindane (Compound 3) (0.25 g, 0.87 mmol) was dissolved in 10
mL of dimethylformamide and cooled to 0°C with stirring. Sodium amide (0.042 g, 1.04
mmol) was added and the reaction stirred for 0.5 h at 0°C before 0.23 g (1.04 mmol)
of 2-bromomethyinaphthalene was added. The reaction mixture was allowed to warm to
room temperature and stirred for 15h. An equal volume of water was added to the mixture
and this was extracted twice with 50 mL of ethyl acetate. After drying over magnesium
sulfate the solvent was evaporated and the resultant solid was purified on a silica
gel column using 2% ethyl acetate in hexane as the eluent. The second fraction collected
was the desired product. Evaporation of the solvent gave 0.300 g (81% yield) of 3,3-Diphenyl-1-indanyl
2-naphthylmethyl ether (Compound
16) as an off-white, sticky solid.
6.23 Synthesis of 3,3-Diphenyl-1-indanyl α-(4-methyltoluate) ether (Compound 17)
[0132] 3,3-Diphenyl-1-indanyl α-(4-methyltoluate) ether (Compound
17) was synthesized as follows: 1-Hydroxy-3,3-diphenylindane (Compound 3) (0.505 g,
1.8 mmol) was combined with 0.069 g (2.9 mmol) of sodium amide in 10 mL of dimethylformamide
and stirred at room temperature for 1.5 h before 0.667 g (2.9 mmol) of methyl 4-(bromomethyl)benzoate
was added. The reaction mixture was stirred for 18h. The reaction mixture was poured
into 50 mL of water and extracted four times with 25 mL of ethyl acetate. The combined
extracts were washed with brine, dried over sodium sulfate and the solvent evaporated
to yield a yellow oil. The oil was purified by vacuum distillation to give 0.370 g
(47% yield) of 3,3-Diphenyl-1-indanyl α-(4-methyltouate) ether (Compound
17) as a yellow solid having a melting point of 50-52°C.
6.24 Synthesis of 3,3-Diphenyl-1-indanyl α-(2-chlorotoluyl) ether (Compound 18)
[0133] 3,3-Diphenyl-1-indanyl α-(2-chlorotoluyl) ether (Compound
18) was synthesized as follows: 1-Hydroxy-3,3-diphenylindane (Compound 3) (0.503 g,
1.8 mmol) was combined with 0.075 g (3.1 mmol) of sodium amide in 10 mL of dimethylformamide
and stirred at room temperature for 1.5 h before 0.40 mL (3.2 mmol) of 2-chlorobenzyl
chloride was added. The reaction mixture was stirred for 21h. The reaction mixture
was poured into 50 mL of water and extracted four times with 25 mL of ethyl acetate.
The combined extracts were washed with brine, dried over sodium sulfate and the solvent
evaporated to yield a yellow oil. The oil was purified by vacuum distillation to give
0.520 g (70% yield) of 3,3-Diphenyl-1-indanyl α-(2-chlorotoluyl) ether (Compound
18) as a solid having a melting point of 27 - 29°C.
6.25 Synthesis of 3-(3',3'-diphenyl-2'-indanyl-1'-one)propanol (Compound 19)
[0134] 3-(3',3'-diphenyl-2'-indanyl-1'-one)propanol (Compound
19) was synthesized as follows: 3,3-Diphenylindanone (Compound
2) (2 g, 0.007 mol) was dissolved in 10 mL of tetrahydrofuran, cooled in an ice bath,
and 0.97 g (0.0085 mol) of potassium hydride was added. The reaction mixture was stirred
at room temperature for 0.5 h before 0.72 mL (0.0077 mol) of 3-bromo-1-propanol was
added. After stirring overnight the reaction was quenched with water and extracted
with ethyl acetate. The combined extracts were dried over magnesium sulfate and the
solvent removed in vacuo. The residue was purified on a silica gel column using 15%
ethyl acetate in hexane as the eluent. The first fraction from the column was recovered
starting material (1.05 g). The second fraction contained the product. After evaporation
of the solvent, 0.84 g (35% yield) of 3-(3',3'-diphenyl-2'-indanyl-1'-one)propanol
(Compound
19) as a beige solid having a melting point of 98°C was obtained.
6.26 Synthesis of 2-(Ethyl-2'-(1,3-dioxolane))-1-hydroxy-3,3-diphenylindene (Compound 20)
[0135] 2-(Ethyl-2'-(1,3-dioxolane))-1-hydroxy-3,3-diphenylindene (Compound
20) was synthesized as follows: 3,3-Diphenylindanone (Compound
2) (4.0 g, 0.0141 mol) was dissolved in 30 mL of tetrahydrofuran at room temperature.
Potassium hydride (2.4 g, 0.0175 mol) was added and the mixture was stirred at room
temperature for 0.5 h. 2-(2-Bromoethyl)-1,3-dioxolane (2.0 mL, 0.0170 mol) was added
and the mixture was continued stirring overnight at room temperature. The mixture
was quenched with water and extracted with ethyl acetate. The combined extracts were
purified on a silica gel column using 8% ethyl acetate in hexane followed by 10% ethyl
acetate in hexane as eluent. The product was collected in the second fraction off
the column. Evaporation of the solvent gave 2-(Ethyl-2'-(1,3-dioxolane))-1-hydroxy-3,3-diphenylindene
(Compound
20) as an off-white solid (0.47 g, 9% yield) having a melting point of 124-126°C.
6.27 Other Compounds
[0136] Other compounds of the invention can be synthesized by routine modification of the
above-described syntheses, or by other methods that are well known in the art. Compound
1 is available from Maybridge Chemical Company (distributor: Ryan Scientific, South
Carolina).
7. EXAMPLE: In Vitro Activity
[0137] This Example demonstrates the ability of several exemplary compounds of structural
formula (I) to inhibit the Gardos channel of erythrocytes (Gardos Channel Assay) and/or
mitogen-induced cell proliferation (Mitogenic Assay)
in vitro. The assays are generally applicable for demonstrating the
in vitro activity of other compounds of structural formula (I).
7.1 Experimental Protocol
[0138] The percent inhibition of the Gardos channel (10 µM compound) and the IC
50 were determined as described in Brugnara
et al., 1993,
J. Biol. Chem. 268(12):8760-8768. The percent inhibition of mitogen-induced cell proliferation (10 µM
compound) and the IC
50 were determined or described in Benzaquen
et al. (1995,
Nature Medicine 1:534-540) with NIH 3T3 mouse fibroblast cells (ATCC No. CRL 1658). Other cell lines,
e.
g., cancer cells, endothelial cells and fibroblasts, as well as many others, may be
used in the cell proliferation assay. Selection of a particular cell line will depend
in part on the desired application, and is well within the capabilities of an ordinarily
skilled artisan.
7.2 Results
[0139] The results of the experiment are provided in TABLE 1, below. Clotrimazole is reported
for purposes of comparison. Most of the compounds tested exhibited significant activity
in both assays. All of the compounds tested exhibited significant activity in at least
one of the assays.
TABLE 1
Pharmacological Activities of Various Compounds (% Inhibition measured at 10 µM) |
Compound
Number |
Mitogenic Assay |
Gardos Channel Assay |
|
IC50
(µM) |
Inhibition
(%) |
IC50
(µM) |
Inhibition
(%) |
Clotrimazole |
0.626 |
93.0 |
0.046 |
99.3 |
(1) |
0.700 |
97.0 |
0.419 |
98.0 |
(2) |
1.300 |
99.0 |
1.006 |
100.0 |
(3) |
1.100 |
90.0 |
0.819 |
100.0 |
(4) |
2.600 |
99.0 |
1.350 |
100.0 |
(5) |
-- |
29.0 |
-- |
67.3 |
(6) |
3.400 |
90.0 |
-- |
35.0 |
(7) |
3.400 |
98.0 |
1.152 |
88.0 |
(8) |
2.000 |
97.0 |
0.176 |
30.0 |
(9) |
-- |
45.0 |
0.505 |
100.0 |
(10) |
3.300 |
98.0 |
-- |
49.5 |
(11) |
3.400 |
99.0 |
-- |
50.0 |
(12) |
-- |
31.0 |
0.189 |
99.5 |
(13) |
-- |
12.0 |
1.590 |
99.5 |
(14) |
-- |
3.0 |
2.961 |
90.5 |
(15) |
7.500 |
80.0 |
2.901 |
54.8 |
(16) |
-- |
75.0 |
-- |
0 |
(17) |
-- |
76.0 |
-- |
0 |
(18) |
-- |
73.0 |
-- |
0 |
(19) |
1.500 |
99.0 |
5.952 |
43.7 |
(20) |
-- |
81.0 |
-- |
0 |
8. EXAMPLE: Activity In Cancer Cell Lines
[0140] This Example demonstrates the antiproliferative effect of several exemplary compounds
of formula (I) against a variety of cancer cell lines. The assays are generally applicable
for demonstrating the antiproliferative activity of other compounds of formula (I).
8.1 Growth of Cells
[0141] The antiproliferative assays described herein were performed using standard aseptic
procedures and universal precautions for the use of tissues. Cells were propagated
using RPMI 1640 media (Gibco) containing 2% N 5% fetal calf serum (Biowhittaker) at
37°C, 5% CO
2 and 95% humidity. The cells were passaged using Trypsin (Gibco). Prior to addition
of test compound, the cells were harvested, the cell number counted and seeded at
10,000 cells/well in 100 µl 5% fetal calf serum (FCS) containing RPMI medium in 96-wall
plates and incubated overnight at 37°C, 5% CO
2 and 95% humidity.
[0142] On the day of the treatment, stock solutions of the test compounds (10 mM compound/DMSO)
were added in 100 µl FCS containing medium to a final concentration of 10-0.125 µM
and the cells were incubated for 2, 3 or 5 days at 37°C, 5% CO
2 and 95% humidity.
[0143] Following incubation, the cellular protein was determined with the ulforhodamine
B (SRB) assay (Skehan P et al., 1990,
J. Natl. Cancer Inst. 82:1107-1112). Growth inhibition, reported as the concentration of test compound
which inhibited 50% of cell proliferation (IC
50) was determined by curve fitting.
[0144] Values for VP-16, a standard anti-cancer agent, are provided for comparison.
[0145] Except for MMRU cells, all cancer cell lines tested were obtained from the American
Type Culture Collection (ATCC, Rockville, MD). The ATCC assession numbers were as
follows: HeLa (CCL-2); CaSki (CRL-1550); MDA-MB-231 (HTB-26); MCF-7 (HTB-22); A549
(CCL-185); HTB-174 (HTB-174); HEPG2 (HB-8065); DU-145 (HTB-81); SK-MEL-28 (HTB-72);
HT-29 (HTB-38); HCT-15 (CCL-225); ACHN (CRL-1611); U-118MG (HTB-15); SK-OV-3 (HTB-77).
[0146] MMRU cells (Stender et al., 1993,
J. Dermatology 20:611-617) were a gift of one of the authors.
8.2 RESULTS
[0147] The results of the cell culture assays are presented in TABLES 2 and 3, below.
TABLE 2
SRB ASSAY RESULTS
(5% FCS, 5 Day Incubation) |
Cancer Type |
Cell Line |
Test Compound IC50 (µM) |
|
|
VP-16 |
8 |
11 |
Cervical |
HeLa |
<1.25 |
>10 |
5.1 |
|
CaSki |
1.8 |
6.8 |
7 |
Breast |
MDA-MB-23 |
<1.25 |
>10 |
>10 |
|
MCF7 |
<1.25 |
5.5 |
4.4 |
Lung |
A549 |
<1.25 |
8.9 |
8.8 |
|
HTB174 |
<1.25 |
>10 |
5.9 |
Hepatocel |
HEPG2 |
<1.25 |
6.4 |
5.8 |
Prostate |
DU-145 |
<1.25 |
>10 |
>10 |
Melanoma |
SK-MEL-28 |
<1.25 |
>10 |
5.5 |
|
MMRU |
<1.25 |
>10 |
6.2 |
Colon |
HT29 |
<1.25 |
8.3 |
6.8 |
|
HCT-15 |
1.3 |
>10 |
6.6 |
Renal |
ACHN |
<1.25 |
>10 |
>10 |
CNS |
U118MG |
2.2 |
>10 |
>10 |
Ovary |
SK-OV-3 |
|
|
>10 |
Normal |
HUVEC |
<1.25 |
>10 |
6.4 |
human |
GM |
1.4 |
>10 |
>10 |
|
3T3 |
|
>10 |
>10 |
mouse |
L929 |
<1.25 |
>10 |
8.6 |

9. EXAMPLE: Formulations
[0148] The following examples provide exemplary, not limiting, formulations for administering
the compounds of the invention to mammalian, especially human, patients. Any of the
compounds described herein, or pharmaceutical salts or hydrates thereof, may be formulated
as provided in the following examples.
9.1 Tablet Formulation
[0149] Tablets each containing 60 mg of active ingredient are made up as follows:
Active Compound |
60 mg |
Starch |
45 mg |
Microcrystalline |
45 mg |
Cellulose |
|
sodium carboxymethyl starch |
4.5 mg |
Talc |
1 mg |
Polyvinylpyrrolidone (10% in water) |
4 mg |
Magnesium Stearate |
0.5 mg |
|

|
[0150] The active ingredient, starch and cellulose are passed through a No. 45 mesh U.S.
sieve and mixed thoroughly. The solution of polyvinylpyrrolidone is mixed with the
resultant powders which are then passed through a No. 14 mesh U.S. sieve. The granules
are dried at 50°-60°C and passed through a No. 18 mesh U.S. sieve. The sodium carboxymethyl
starch, magnesium stearate and talc, previously passed through a No. 60 mesh U.S.
sieve, are then added to the granules, which, after mixing are compressed by a tablet
machine to yield tablets each weighing 150 mg.
[0151] Tablets can be prepared from the ingredients listed by wet granulation followed by
compression.
9.2 Gelatin Capsules
[0152] Hard gelatin capsules are prepared using the following ingredients:
Active Compound |
250 mg/capsule |
Starch dried |
200 mg/capsule |
Magnesium Stearate |
10 mg/capsule |
[0153] The above ingredients are mixed and filled into hard gelatin capsules in 460 mg quantities.
9.3 Aerosol Solution
[0154] An aerosol solution is prepared containing the following components:
Active Compound |
0.25% (w/w) |
Ethanol |
29.75% (w/w) |
Propellant 22 |
77.00% (w/w) |
(Chlorodifluoromethane) |
|
[0155] The active compound is mixed with ethanol and the mixture added to a portion of the
propellant 22, cooled to - 30°C and transferred to a filling device. The required
amount is then fed to a stainless steel container and diluted with the remainder of
the propellant. The valve units are then fitted to the container.
9.4 Suppositories
[0156] Suppositories each containing 225 mg of active ingredient are made as follows:
Active Compound |
225 mg |
Saturated fatty acid glycerides |
2,000 mg |
[0157] The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in
the saturated fatty acid glycerides previously melted using the minimum heat necessary.
The mixture is then poured into a suppository mould of nominal 2 g capacity and allowed
to cool.
9.5 Suspensions
[0158] Suspensions each containing 50 mg of medicament per 5 mL dose are made as follows:
Active compound |
50 mg |
Sodium carboxymethylcellulose |
50 mg |
syrup |
1.25 mL |
Benzoic acid solution |
0.10 mL |
Flavour |
q.v. |
Colour |
q.v. |
Purified water to |
5 mL |
[0159] The active ingredient is passed through a No. 45 mesh U.S. sieve and mixed with the
sodium carboxymethyl cellulose and syrup to form a smooth paste. The benzoic acid
solution, flavour and some colour are diluted with some of the water and added, with
stirring. Sufficient water is then added to produce the required volume.
[0160] Various modifications of the above-described Examples for carrying out the invention
will be obvious to those skilled in the pharmaceutical arts or related fields.
1. A compound having the structural formula (I):

or a pharmaceutically acceptable salt or hydrate thereof,
wherein:
the bond --- designates a single or double bond;
m is 0, 1,2,3 or 4;
each n is independently 0, 1, 2, 3, 4 or 5;
X is C or N;
Y is absent, (C1-C6) alkyl, (C1-C6) alkenyl or (C1-C6) alkynyl;
R1 is absent, H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R, or when taken together
with R2 is =O, =S, =N-OR, a 3-8 membered heterocycloalkyl or a substituted 3-8 membered heterocycloalkyl;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8) cycloalkyl, 3-8 membered heterocycloalkyl, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2 or -C(S)NR'2;
each R5, R6 and R7 is independently selected from the group consisting of -halogen, -R', - OR', -SR',
-NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', - C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'); - C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR']2, -CH[C(O)SR']2 and -CH[C(S)SR']2; with the following exceptions:
when - - - is single bond, X is C, R1 is -OH, R2 R3 and R4 are H, Y is absent, then at least one of R5, R6 and R7 are other than H; or
when - - - is single bond, X is C, R1 and R2 taken together are =O, Y is absent, R3 and R4 are H, then at least one of R5, R6 and R7 are other than H; or
when - - - is single bond, X is C, R1 and R2 taken together are =O, Y is absent, R3 and R4 are H, m = 0, n = 1 and R5 is H, then R6 is not Br (para), or OMe (para) or OH (para); or
when - - - is single bond, X is C, R1, R2, R3 and R4 are H, Y is absent, then (a) at least one of R5, R6 or R7 are other than H; and (b) if m = 0 and n is 1, then R5 and R6 are not both -NH2 (para) or -OH (para); or
when - - - is double bond, X is C, R1 and R4 are H, R2, R3 and Y are absent, then (a) at least one of R5, R6 or R7 are other than H; and (b) if m = 0, n = 1, and R5 is H, then R6 is not - OMe (para), or Br (para), or -CN (para); or
when - - - is single bond, X is C, R1 and R2 taken together are =O, Y is CH2, R3 and R4 are H, m = 0, and n = 1, then R5 and R6 are not both -OH (para); or
when - - - is single bond, X is C, R1 and R2 taken together are =O, Y is absent, R3 is H, R4 is -C(O)OEt, m = 0, n = 1, and R5 is H, then R6 is not -OH (para); or
when - - - is single bond, X is C, R1 is -OH, R2 R3 and R4 are H, Y is absent, m = 0, n = 1, and R5 is H, then R6 is not -Br at the para position; or
when - - - is single bond, X is C, R1 and R2 taken together are =N-OR, wherein R = H, Y is absent, and R3, R4, R5, R6 and R7 are H, then the salt can not be hydrochloric; or
when - - - is single bond, X is N, R1, R3 and R4 are H, Y and R2 are absent, then a) at least one of R5, R6 or R7 are other than H, and b) if n = 0 and m is 2, then the R7 substituents are not both Br at the 5 and 7 positions of the indole moiety; or
when - - - is single bond, X is N, R1, R3 and R4 are H, Y and R2 are absent, m = 0, n = 1, then R5 and R6 are not both NMe2 (para) or Me (para); or
when - - - is double bond, X is N, R1, R2, R3 and Y are absent, R4 is H, then a) at least one of R5, R6 or R7 are other than H; and b) if n = 0, and m = 2, then the R7 substituents are not both Br at the 5 and 7 positions of the indole moiety; or
when - - - is double bond, X is N, R1, R2, R3 and Y are absent, R4 is H, m = 0, n = 1, then R5 and R6 are not both Me (para);
when - - - is double bond, X is N, R1, R2, R3 and Y are absent, R4 is NH2 or OCH3, then at least one of R5, R6 or R7 are other than H;
each R is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, substituted (C5-C20) aryl, (C6-C26) alkaryl and substituted (C6-C26) alkaryl;
the heterocycloalkyl substituents are each independently selected from the group consisting
of-CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', - C(O)SR', -C(S)SR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR', - C(O)NR'2, -C(S)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl and (C1-C6) alkynyl.
2. The compound of Claim 1, wherein said compound is selected from the group consisting
of Compounds
4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 1 6, 17, 18, 19 and
20.
3. A pharmaceutical composition comprising an effective amount of a compound and a pharmaceutically
acceptable excipient, carrier or diluent, said compound having the structural formula
(I):

or a pharmaceutically acceptable salt or hydrate thereof, wherein:
the bond --- designates a single or double bond;
m is 0, 1, 2, 3 or 4;
each n is independently 0, 1, 2, 3, 4 or 5;
X is C or N;
Y is absent, (C1-C6) alkyl, (C1-C6) alkenyl or (C1-C6) alkynyl;
R1 is absent, H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R, or when taken together
with R2 is =O, =S, =N-OR, a 3-8 membered heterocycloalkyl or a substituted 3-8 membered heterocycloalkyl;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8) cycloalkyl, 3-8 membered heterocycloalkyl, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2 or C(S)NR'2;
each R5, R6 and R7 is independently selected from the group consisting of -halogen, -R', - OR', -SR',
-NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'); - C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, - CH[C(O)OR']2, -CH[C(S)OR']2, -CH[C(O)SR']2 and -CH[C(S)SR']2;
each R is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, substituted (C5-C20) aryl, (C6-C26) alkaryl and substituted (C6-C26) alkaryl;
the heterocycloalkyl substituents are each independently selected from the group consisting
of -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR',
-C(O)SR', -C(S)SR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR',
-C(O)NR'2, -C(S)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl and (C1-C6) alkynyl.
4. A pharmaceutical composition comprising an effective amount of a compound and a pharmaceutically
acceptable excipient, carrier or diluent, said compound having the structural formula
(I):

or a pharmaceutically acceptable salt or hydrates thereof, wherein:
the bond --- designates a single or double bond;
m is 0 or 1;
each n is independently 0 or 1;
X is C or N;
Y is absent, (C1-C3) alkyl, (C1-C3) alkenyl or (C1-C3) alkynyl;
R1 is absent, -H, -OR, -O-C(O)R, -N(R)2 or when taken together with R2 is =O, =N-OR, a 3-5 membered oxirane or 3-5 membered substituted oxirane;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR, -N(R)2, -CN, -C(O)OR, -C(O)N(R)2 or 5-6 membered dioxoycycloalkyl; each R5, R6 and R7 is independently selected from the group consisting of -R', -F, -Cl or -Br;
each R is independently selected from the group consisting of -H, (C1-C3) alkyl, (C1-C3) alkenyl, (C1-C3) alkynyl, (C5-C10) aryl, substituted (C5-C10) aryl, (C6-C13) alkaryl, substituted (C6-C13) alkaryl;
the oxirane substituent is -CN, -NO2, -NR'2, -OR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of -F, -Cl, -Br, -CN, -NO2, -NR'2, -C(O)R', -C(O)OR' and trihalomethyl;
R' is -H, (C1-C3) alkyl, (C1-C3) alkenyl or (C1-C3) alkynyl.
5. A pharmaceutical composition according to Claim 4, wherein said compound is selected
from the group consisting of Compounds
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and
20:
6. The use of compound of a formula (I):

or a pharmaceutically acceptable salt or hydrate thereof, in the preparation of a
medicament for inhibiting mammalian cell proliferation,
wherein:
the bond -- designates a single or double bond;
m is 0, 1, 2, 3 or 4;
each n is independently 0, 1, 2, 3, 4 or 5;
X is C or N;
Y is absent, (C1-C6) alkyl, (C1-C6) alkenyl or (C1-C6) alkynyl;
R1 is absent, H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R, or when taken together
with R2 is =O, =S, =N-OR, a 3-8 membered heterocycloalkyl or a substituted
3-8 membered heterocycloalkyl;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8) cycloalkyl, 3-8 membered heterocycloalkyl, - C(O)R', -C(S)R', -C(O)OR', -C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2 or -C(S)NR'2; each R5, R6 and R7 is independently selected from the group consisting of-halogen, -R', - OR', -SR',
-NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', - C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'); - C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, - CH[C(S)OR']2, -CH[C(O)SR']2 and -CH[C(S)SR']2;
each R is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, substituted (C5-C20) aryl, (C6-C26) alkaryl and substituted (C6-C26) alkaryl;
the heterocycloalkyl substituents are each independently selected from the group consisting
of -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', - C(S)SR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR'2, - C(S)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl and (C1-C6) alkynyl.
7. The use of a compound of formula (I):

or a pharmaceutically acceptable salt or hydrate thereof, in the preparation of a
medicament for inhibiting mammalian cell proliferation,
wherein:
the bond --- designates a single or double bond;
m is 0 or 1;
each n is independently 0 or 1;
X is C or N;
Y is absent, (C1-C3) alkyl, (C1-C3) alkenyl or (C1-C3) alkynyl;
R1 is absent, -H, -OR, -O-C(O)R, -N(R)2, or when taken together with R2 is =O, =N-OR, or 3-5 membered oxirane or 3-5 membered substituted oxirane;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR, -N(R)2, -CN, -C(O)OR, -C(O)N(R)2, or 5-6 membered dioxoycycloalkyl; each R5, R6 and R7 is independently selected from the group consisting of -R', -F, -Cl or -Br;
each R is independently selected from the group consisting of -H, (C1-C3) alkyl, (C1-C3) alkenyl, (C1-C3) alkynyl, (C5-C10) aryl, substituted (C5-C10) aryl, (C6-C13) alkaryl, substituted (C6-C13) alkaryl;
the oxirane substituent is -CN, -NO2, -NR'2, -OR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of -F, -Cl, -Br, -CN, -NO2, -NR'2, -C(O)R', -C(O)OR' and trihalomethyl;
R' is -H, (C1-C3) alkyl, (C1-C3) alkenyl or (C1-C3) alkynyl.
8. The use according to Claim 6 or Claim 7, wherein the compound is selected from the
group consisting of Compounds 1, 2, 3, 4, 6, 7, 8, 10, 11, 15, 16, 17, 19 and 20:
9. The use according to Claim 6 or Claim 7, wherein said mammalian cell is an endothelial
cell, a fibrotic cell or a vascular smooth muscle cell.
10. The use of a therapeutically effective amount of a pharmaceutical composition according
to Claim 3 in the preparation of a medicament for treating or preventing a disorder
characterized by abnormal cell proliferation.
11. The use of a therapeutically effective amount of a pharmaceutical composition according
to Claim 4 in the preparation of a medicament for treating or preventing a disorder
characterized by abnormal cell proliferation.
12. The use according to Claim 11, wherein said compound is selected from the group consisting
of Compounds 1, 2, 3, 4, 6, 7, 8, 10, 11, 15, 16, 17, 19 and 20:
13. The use according to Claim 10 or 11, wherein the disorder characterized by abnormal cell proliferation is cancer, a blood vessel proliferative disorder, a fibrotic
disorder or an arteriosclerotic condition.
14. The use according to 13, wherein the pharmaceutical composition is in a form suitable
for oral, parenteral or intravenous administration.
15. The use according to Claim 10 or 11, wherein the disorder characterized by abnormal cell proliferation is a dermatological disease or Kaposi's sarcoma.
16. The use according to Claim 15, wherein the dermatological disease is selected from
the group consisting of keloids, hypertonic scars, seborrheic dermatosis, papilloma
virus infection, eczema and actinic keratosis.
17. The use according to Claim 15 or Claim 16, wherein the pharmaceutical composition
is in a form suitable for transdermal administration.
18. A compound having the structural formula (I):

or a pharmaceutically acceptable salt or hydrate thereof, wherein:
the bond --- designates a single or double bond;
m is 0, 1, 2, 3 or 4;
each n is independently 0, 1, 2, 3, 4 or 5;
X is C or N;
Y is absent, (C1-C6) alkyl, (C1-C6) alkenyl or (C1-C6) alkynyl;
R1 is absent, H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R, or when taken together
with R2 is =O, =S, =N-OR, a 3-8 membered heterocycloalkyl or a substituted 3-8 membered heterocycloalkyl;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8) cycloalkyl, 3-8 membered heterocycloalkyl, - C(O)R', -C(S)R', -C(O)OR', -C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2 or C(S)NR'2; each R5, R6 and R7 is independently selected from the group consisting of -halogen, -R', -OR', -SR',
-NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'); -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, - CH[C(S)OR']2, -CH[C(O)SR']2 and -CH[C(S)SR']2;
each R is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl, (C1-C6) alkynyl, (C5-C20) aryl, substituted (C5-C20) aryl, (C6-C26) alkaryl and substituted (C6-C26) alkaryl;
the heterocycloalkyl substituents are each independently selected from the group consisting
of -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', - C(O)SR', -C(S)SR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of halogen, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR', - C(O)NR'2, -C(S)NR'2 and trihalomethyl;
each R' is independently selected from the group consisting of -H, (C1-C6) alkyl, (C1-C6) alkenyl and (C1-C6) alkynyl
for use in therapy.
19. A compound having the structural formula (I):

or a pharmaceutically acceptable salt or hydrates thereof, wherein:
the bond --- designates a single or double bond;
m is 0 or 1;
each n is independently 0 or 1;
X is C or N;
Y is absent, (C1-C3) alkyl, (C1-C3) alkenyl or (C1-C3) alkynyl;
R1 is absent, -H, -OR, -O-C(O)R, -N(R)2 or when taken together with R2 is =O, =N-OR, a 3-5 membered oxirane or 3-5 membered substituted oxirane;
R2 is absent or -H;
R3 is absent or -H;
R4 is -H, -OR, -N(R)2, -CN, -C(O)OR, -C(O)N(R)2 or 5-6 membered dioxoycycloalkyl; each R5, R6 and R7 is independently selected from the group consisting of -R', -F, -Cl or -Br;
each R is independently selected from the group consisting of -H, (C1-C3) alkyl, (C1-C3) alkenyl, (C1-C3) alkynyl, (C5-C10) aryl, substituted (C5-C10) aryl, (C6-C13) alkaryl, substituted (C6-C13) alkaryl;
the oxirane substituent is -CN, -NO2, -NR'2, -OR' and trihalomethyl;
the aryl and alkaryl substituents are each independently selected from the group consisting
of -F, -Cl, -Br, -CN, -NO2, -NR'2, -C(O)R', -C(O)OR' and trihalomethyl; R' is -H, (C1-C3) alkyl, (C1-C3) alkenyl or (C1-C3) alkynyl,
for use in the inhibition of unwanted or abnormal cell proliferation.
20. A pharmaceutical composition according to any one of Claims 3 to 5 for use in the
inhibition of unwanted or abnormal cell proliferation.
21. A pharmaceutical composition according to any one Claims 3 to 5 and 20 in a form suitable
for inhalation, transdermal, oral, rectal, transmucosal, intestinal and parenteral
administration, including intramuscular, subcutaneous and intravenous injections.
22. A pharmaceutical composition according to Claim 21, for use in sickle cell disease
and/or in cancer treatment further comprising another therapeutic agent selected from:
analgesics, antibiotics, butyrate, butyrate derivatives, hydroxyurea, erythropoietin
and dietary salts, if used in sickle cell disease, and further comprising another
therapeutic agent selected from: anti-cancer agents, potentiating agents, anti-emetics
and radiation protectants, if used in cancer treatment.
1. Verbindung, welche die Strukturformel (I) hat:

oder ein pharmazeutisch verträgliches Salz oder Hydrat davon, worin sind:
die Bindung "---" bezeichnet eine Einfach- oder Doppelbindung;
m ist 0, 1, 2, 3 oder 4;
jedes n ist unabhängig 0, 1, 2, 3, 4 oder 5;
X ist C oder N;
Y ist nicht vorhanden, ist (C1-C6)-Alkyl, ist (C1-C6)-Alkenyl oder ist (C1-C6)-Alkinyl;
R1 ist nicht vorhanden, ist H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R oder
ist, wenn es mit R2 zusammengenommen wird, =O, =S, =N-OR, ein 3- bis 8-gliedriges Heterocycloalkyl oder
ein substituiertes 3- bis 8-gliedriges Heterocycloalkyl;
R2 ist nicht vorhanden oder ist -H;
R3 ist nicht vorhanden oder ist -H;
R4 ist -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8)-Cycloalkyl, 3- bis 8-gliedriges Heterocycloalkyl, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR',
-C(O)SR', -C(S)SR',-C(O)NR'2 oder -C(S)NR'2;
jedes R5, R6 und R7 ist unabhängig ausgewählt aus der Gruppe, bestehend aus: Halogen, -R', -OR', -SR',
-NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'), -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, - CH[C(S)OR']2, -CH[C(O)SR']2 und -CH[C(S)SR']2; mit den folgenden Ausnahmen:
wenn "---" eine Einfachbindung darstellt und wenn X C ist, R1 -OH ist, R2, R3 und R4 H sind, Y nicht vorhanden ist; dann ist mindestens eines von R5, R6 und R7 kein H; oder
wenn "---" eine Einfachbindung ist und wenn X C ist, R1 und R2 zusammengenommen =O sind, Y nicht vorhanden ist, R3 und R4 H sind; dann ist mindestens eines von R5, R6 und R7 nicht H; oder
wenn "---" eine Einfachbindung ist und wenn X C ist, R1 und R2 zusammengenommen =O sind, Y nicht vorhanden ist, R3 und R4 H sind, m=0 ist, n=1 ist und R5 H ist; dann ist R6 nicht Br (para) oder OMe (para) oder OH (para); oder
wenn "---" eine Einfachbindung ist und wenn X C ist, R1, R2, R3 und R4 H sind, Y nicht vorhanden ist; (a) ist mindestens eines von R5, R6 oder R7 nicht H; und (b) wenn m=0 ist und n=1 ist; dann sind R5 und R6 nicht beide gleichzeitig -NH2 (para) oder -OH (para); oder
wenn "---" eine Doppelbindung ist und wenn X C ist, R1 und R4 H sind, R2, R3 und Y nicht vorhanden sind; dann (a) ist mindestens eines von R5, Rs oder R7 nicht H; und (b) wenn m=0 ist, n=1 ist und R5 H ist; dann ist R6 nicht -OMe (para) oder Br (para) oder
-CN (para); oder
wenn "---" eine Einfachbindung ist und wenn X C ist, R1 und R2 zusammengenommen =O sind, Y CH2 ist, R3 und R4 H sind, m=0 ist und n=1 ist; dann sind R5 und R6 nicht beide gleichzeitig -OH (para); oder
wenn "---" eine Einfachbindung ist und wenn X C ist, R1 und R2 zusammengenommen =O sind, Y nicht vorhanden ist, R3 H ist, R4 -C(O)Oet ist, m=0 ist, n=1 ist und R5 H ist; dann ist R6 nicht -OH (para); oder
wenn "---" eine Einfachbindung ist X C ist und wenn R1 -OH ist, R2, R3 und R4 H sind, Y nicht vorhanden ist, m=0 ist, n=1 ist und R5 H ist; dann ist R6 nicht -Br in para-Stellung; oder
wenn "---" eine Einfachbindung ist und wenn X C ist, R1 und R2 zusammengenommen =N-OR sind, worin R H ist, Y nicht vorhanden ist und R3, R4, R5, R6 und R7 H sind; dann darf das Salz nicht ein Hydrochlor-Salz sein; oder
wenn "---" eine Einfachbindung ist und wenn X N ist, R1, R3 und R4 H sind, Y und R2 nicht vorhanden sind, dann a) ist mindestens eines von R5, R6 oder R7 nicht H, und b) wenn n 0 ist und m 2 ist; dann sind die R7-Substituenten nicht beide gleichzeitig Br in den Stellungen 5 und 7 des Indol-Teils;
oder
wenn "---" eine Einfachbindung ist und wenn X N ist, R1, R3 und R4 H sind, Y und R2 nicht vorhanden sind, m=0 ist, n=1 ist; dann sind R5 und R6 nicht beide gleichzeitig Nme2 (para) oder Me (para); oder
wenn "---" eine Doppelbindung ist und wenn X N ist, R1, R2, R3 und Y nicht vorhanden sind, R4 H ist; dann a) ist mindestens eines von R5, R6 oder R7 nicht H; und b) wenn n=0 ist und m=2 ist; dann sind die R7-Substituenten nicht beide gleichzeitig Br in den Stellungen 5 und 7 des Indol-Teils;
oder
wenn "---" eine Doppelbindung ist und wenn X N ist, R1, R2, R3 und Y nicht vorhanden sind, R4 H ist, m=0 ist, n=1 ist; dann sind R5 und R6 nicht beide gleichzeitig Me (para);
wenn "--" eine Doppelbindung ist und wenn X N ist, R1, R2, R3 und Y nicht vorhanden sind, R4 NH2 oder OCH3 ist; dann ist mindestens eines von R5, R6 oder R7 nicht H;
jedes R wird unabhängig ausgewählt aus der Gruppe, bestehend aus: -H, (C1-C6)-Alkyl, (C1-C6)-Alkenyl, (C1-C6)-Alkinyl, (C5-C20)-Aryl, substituiertes (C5-C20)-Aryl, (C6-C26)-Alkaryl und substituiertes (C6-C26)-Alkaryl;
die Heterocycloalkyl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus: -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' und Trihalogenmethyl;
die Aryl- und Alkaryl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus: Halogen, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', - C(S)SR',
-C(O)NR'2, -C(S)NR'2 und Trihalogenmethyl;
jedes R' ist unabhängig ausgewählt aus der Gruppe, bestehend aus -H, (C1-C6)-Alkyl, (C1-C6)-Alkenyl und (C1-C6)-Alkinyl.
2. Verbindung nach Anspruch 1, wobei die Verbindung ausgewählt ist aus der Gruppe, bestehend
aus Verbindungen 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 und 20.
3. Pharmazeutische Zusammensetzung, aufweisend eine wirksame Menge einer Verbindung und
eines pharmazeutisch verträglichen Arzneimittelträgers, Trägersubstanz oder Streckmittels,
wobei die Verbindung die Strukturformel (I) hat:

oder ein pharmazeutisch verträgliches Salz oder Hydrat davon, worin sind:
die Bindung "---" bezeichnet eine Einfach- oder Doppelbindung;
m ist 0, 1, 2, 3 oder 4;
jedes n ist unabhängig 0, 1, 2, 3, 4 oder 5;
X ist C oder N;
Y ist nicht vorhanden, ist (C1-C6)-Alkyl, ist (C1-C6)-Alkenyl oder ist (C1-C6)-Alkinyl;
R1 ist nicht vorhanden, ist H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R oder
ist, wenn es mit R2 zusammengenommen wird, =O, =S, =N-OR, ein 3- bis 8-gliedriges Heterocycloalkyl oder
ein substituiertes 3- bis 8-gliedriges Heterocycloalkyl;
R2 ist nicht vorhanden oder ist -H;
R3 ist nicht vorhanden oder ist -H;
R4 ist -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8)-Cycloalkyl, 3- bis 8-gliedriges Heterocycloalkyl, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2 oder -C(S)NR'2;
jedes R5, R6 und R7 ist unabhängig ausgewählt aus der Gruppe, bestehend aus: Halogen, -R', -OR', -SR',
-NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'), -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR']2, -CH[C(O)SR']2 und -CH[C(S)SR']2;
jedes R wird unabhängig ausgewählt aus der Gruppe, bestehend aus: -H, (C1-C6)-Alkyl, (C1-C6)-Alkenyl, (C1-C6)-Alkinyl, (C5-C20)-Aryl, substituiertes (C5-C20)-Aryl, (C6-C26)-Alkaryl und substituiertes (C6-C26)-Alkaryl;
die Heterocycloalkyl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus: -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' und Trihalogenmethyl;
die Aryl- und Alkaryl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus: Halogen, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', - C(S)SR',
-C(O)NR'2, -C(S)NR'2 und Trihalogenmethyl;
jedes R' ist unabhängig ausgewählt aus der Gruppe, bestehend aus -H, (C1-C6)-Alkyl, (C1-C6)-Alkenyl und (C1-C6)-Alkinyl.
4. Pharmazeutische Zusammensetzung, aufweisend eine wirksame Menge einer Verbindung und
eines pharmazeutisch verträglichen Arzneimittelträgers, Trägersubstanz oder Streckmittels,
wobei die Verbindung die Strukturformel (I) hat:

oder eines pharmazeutisch verträglichen Salzes oder Hydrate davon, worin sind:
die Bindung "---" bezeichnet eine Einfach- oder Doppelbindung;
m ist 0 oder 1;
jedes n ist unabhängig Null oder 1;
X ist C oder N;
Y ist nicht vorhanden, ist (C1-C3)-Alkyl, ist (C1-C3)-Alkenyl oder ist (C1-C3)-Alkinyl;
R1 ist nicht vorhanden, ist H, -OR, -O-C(O)R, -N(R)2 oder ist, wenn es mit R2 zusammengenommen wird, =O, =N-OR, ein 3- bis 5-gliedriges Oxiran oder ein 3- bis
5-gliedriges substituiertes Oxiran;
R2 ist nicht vorhanden oder ist -H;
R3 ist nicht vorhanden oder ist -H;
R4 ist -H, -OR, -N(R)2, -CN, -C(O)OR, -C(O)N(R)2 oder ein 5- bis 6-gliedriges Dioxoycycloalkyl;
jedes R5, R6 und R7 ist unabhängig ausgewählt aus der Gruppe, bestehend aus: -R', - F, -Cl oder -Br;
jedes R wird unabhängig ausgewählt aus der Gruppe, bestehend aus: -H, (C1-C3)-Alkyl, (C1-C3)-Alkenyl, (C1-C3)-Alkinyl, (C5-C10)-Aryl, substituiertes (C5-C10)-Aryl, (C6-C13)-Alkaryl, substituiertes (C6-C13)-Alkaryl;
der Oxiran-Substituent ist -CN, -NO2, -NR'2, -OR' und Trihalogenmethyl;
die Aryl- und Alkaryl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus: -F, -Cl, -Br, -CN, -NO2, -NR'2, -C(O)R', -C(O)OR' und Trihalogenmethyl;
R' ist -H, (C1-C3)-Alkyl, (C1-C3)-Alkenyl und (C1-C3)-Alkinyl.
5. Pharmazeutische Zusammensetzung nach Anspruch 4, worin die Verbindung ausgewählt ist
aus der Gruppe, bestehend aus 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19 und 20:
6. Verwendung der Verbindung einer Formel (I):

oder eines pharmazeutisch verträglichen Salzes oder Hydrates davon in der Herstellung
eines Medikaments zum Hemmen von Mammalia-Zellproliferation,
worin sind:
die Bindung "---" bezeichnet eine Einfach- oder Doppelbindung;
m ist 0, 1, 2, 3 oder 4;
jedes n ist unabhängig 0, 1, 2, 3, 4 oder 5;
X ist C oder N;
Y ist nicht vorhanden, ist (C1-C6)-Alkyl, ist (C1-C6)-Alkenyl oder ist (C1-C6)-Alkinyl;
R1 ist nicht vorhanden, ist H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R oder
ist, wenn es mit R2 zusammengenommen wird, =O, =S, =N-OR, ein 3- bis 8-gliedriges Heterocycloalkyl oder
ein substituiertes 3- bis 8-gliedriges Heterocycloalkyl;
R2 ist nicht vorhanden oder ist -H;
R3 ist nicht vorhanden oder ist -H;
R4 ist -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8)-Cycloalkyl, 3- bis 8-gliedriges Heterocycloalkyl, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2 oder -C(S)NR'2;
jedes R5, R6 und R7 ist unabhängig ausgewählt aus der Gruppe, bestehend aus: Halogen, -R', -OR', -SR',
-NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'), -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR']2, -CH[C(O)SR']2 und -CH[C(S)SR']2;
jedes R wird unabhängig ausgewählt aus der Gruppe, bestehend aus: -H, (C1-C6)-Alkyl, (C1-C6)-Alkenyl, (C1-C6)-Alkinyl, (C5-C20)-Aryl, substituiertes (C5-C20)-Aryl, (C6-C26)-Alkaryl und substituiertes (C6-C26)-Alkaryl;
die Heterocycloalkyl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus: -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' und Trihalogenmethyl;
die Aryl- und Alkaryl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus; Halogen, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR',
-C(O)NR'2, -C(S)NR'2 und Trihalogenmethyl;
jedes R' ist unabhängig ausgewählt aus der Gruppe, bestehend aus -H, (C1-C6)-Alkyl, (C1-C6)-Alkenyl und (C1-C6)-Alkinyl.
7. Verwendung einer Verbindung der Formel (I):

oder eines pharmazeutisch verträglichen Salzes oder Hydrates davon in der Herstellung
eines Medikaments zum Hemmen von Mammalia-Zellproliferation,
worin sind:
die Bindung "---" kennzeichnet eine Einfach- oder Doppelbindung;
m ist 0 oder 1;
jedes n ist unabhängig Null oder 1;
X ist C oder N;
Y ist nicht vorhanden, ist (C1-C3)-Alkyl, ist (C1-C3)-Alkenyl oder ist (C1-C3)-Alkinyl;
R1 ist nicht vorhanden, ist H, -OR, -O-C(O)R, -N(R)2 oder ist, wenn es mit R2 zusammengenommen wird, =O, =N-OR oder ein 3- bis 5-gliedriges Oxiran oder ein 3-bis
5-gliedriges substituiertes Oxiran;
R2 ist nicht vorhanden oder ist -H;
R3 ist nicht vorhanden oder ist -H;
R4 ist -H, -OR, -N(R)2, -CN, -C(O)OR, -C(O)N(R)2 oder ein 5- bis 6-gliedriges Dioxoycycloalkyl;
jedes R5, R6 und R7 ist unabhängig ausgewählt aus der Gruppe, bestehend aus: -R', - F, -Cl oder -Br;
jedes R wird unabhängig ausgewählt aus der Gruppe, bestehend aus: -H, (C1-C3)-Alkyl, (C1-C3)-Alkenyl, (C1-C3)-Alkinyl, (C5-C10)-Aryl, substituiertes (C5-C10)-Aryl, (C6-C15)-Alkaryl, substituiertes (C6-C13)-Alkaryl;
der Oxiran-Substituent ist -CN, -NO2, -NR'2, -OR' und Trihalogenmethyl;
die Aryl- und Alkaryl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus: -F, -Cl, -Br, -CN, -NO2, -NR'2, -C(O)R', -C(O)OR' und Trihalogenmethyl;
R' ist-H, (C1-C3)-Alkyl, (C1-C3)-Alkenyl und (C1-C3)-Alkinyl.
8. Verwendung nach Anspruch 6 oder 7, worin die Verbindung ausgewählt ist aus der Gruppe,
bestehend aus Verbindungen 1, 2, 3, 4, 6, 7, 8, 10, 11, 15, 16, 17, 19 und 20:
9. Verwendung nach Anspruch 6 oder 7, wobei die Mammalia-Zelle eine Endothelzelle, eine
fibrotische Zelle oder eine vaskuläre glatte Muskelzelle ist.
10. Verwendung einer therapeutisch wirksamen Menge einer pharmazeutischen Zusammensetzung
nach Anspruch 3 in der Herstellung eines Medikaments zur Behandlung oder Verhütung
einer Erkrankung, gekennzeichnet durch anomale Zellproliferation.
11. Verwendung einer therapeutisch wirksamen Menge einer pharmazeutischen Zusammensetzung
nach Anspruch 4 in der Herstellung eines Medikaments zur Behandlung oder Verhütung
einer Erkrankung, gekennzeichnet durch anomale Zellproliferation.
12. Verwendung nach Anspruch 11, wobei die Verbindung ausgewählt ist aus der Gruppe, bestehend
aus den Verbindungen 1, 2, 3, 4, 6, 7, 8, 10, 11, 15, 16, 17, 19 und 20:
13. Verwendung nach Anspruch 10 oder 11, wobei die durch anomale Zellproliferation gekennzeichnete
Krankheit Krebs ist, durch eine proliferative Erkrankung der Blutgefäße, eine fibrotische
Erkrankung oder eine arteriosklerotische Krankheit.
14. Verwendung nach Anspruch 13, wobei die pharmazeutische Zusammensetzung in einer für
die orale, parenterale oder intravenöse Verabreichung geeigneten Form vorliegt.
15. Verwendung nach Anspruch 10 oder 11, wobei die durch anomale Zellproliferation gekennzeichnete
Erkrankung eine dermatologische Erkrankung ist oder ein Kaposi-Sarkom.
16. Verwendung nach Anspruch 15, wobei die dermatologische Erkrankung bestehen kann aus:
Wulstnarben, hypertonischen Narben, seborrhoische Dermatitis, Infektion durch Papillomavirus,
Ekzem und aktinische Keratose.
17. Verwendung nach Anspruch 15 oder 16, wobei die pharmazeutische Zusammensetzung in
einer für die transkutane Verabreichung geeigneten Form vorliegt.
18. Verbindung mit der Strukturformel (I):

oder ein pharmazeutisch verträgliches Salz oder Hydrat davon, worin sind:
die Bindung "---" bezeichnet eine Einfach- oder Doppelbindung;
m ist 0, 1, 2, 3 oder 4;
jedes n ist unabhängig 0, 1, 2, 3, 4 oder 5;
X ist C oder N;
Y ist nicht vorhanden, ist (C1-C6)-Alkyl, ist (C1-C6)-Alkenyl oder ist (C1-C6)-Alkinyl;
R1 ist nicht vorhanden, ist H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R oder
ist, wenn es mit R2 zusammengenommen wird, =O, =S, =N-OR, ein 3- bis 8-gliedriges Heterocycloalkyl oder
ein substituiertes 3- bis 8-gliedriges Heterocycloalkyl;
R2 ist nicht vorhanden oder ist -H;
R3 ist nicht vorhanden oder ist -H;
R4 ist -H, -OR', -SR', -NR'2, -CN, -NO2, (C3-C8)-Cycloalkyl, 3- bis 8-gliedriges Heterocycloalkyl, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR',
-C(O)SR', -C(S)SR', -C(O)NR'2 oder -C(S)NR'2;
jedes R5, R6 und R7 ist unabhängig ausgewählt aus der Gruppe, bestehend aus: Halogen, -R', -OR', -SR',
-NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'), -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, - CH[C(S)OR']2, -CH[C(O)SR']2 und-CH[C(S)SR']2;
jedes R wird unabhängig ausgewählt aus der Gruppe, bestehend aus: -H, (C1-C6)-Alkyl, (C1-C6)-Alkenyl, (C1-C6)-Alkinyl, (C5-C20)-Aryl, substituiertes (C5-C20)-Aryl, (C6-C26)-Alkaryl und substituiertes (C6-C26)-Alkaryl;
die Heterocycloalkyl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus: -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' und Trihalogenmethyl;
die Aryl- und Alkaryl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus: Halogen, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR',
-C(O)NR'2, -C(S)NR'2 und Trihalogenmethyl;
jedes R' ist unabhängig ausgewählt aus der Gruppe, bestehend aus -H, (C1-C6)-Alkyl, (C1-C6)-Alkenyl und (C1-C6)-alkinyl; zur Verwendung in der Therapie.
19. Verbindung mit der Strukturformel (I):

oder ein pharmazeutisch verträgliches Salz oder Hydrate davon, worin sind:
die Bindung "---" bezeichnet eine Einfach- oder Doppelbindung;
m ist Null oder 1;
jedes n ist unabhängig Null oder 1;
X ist C oder N;
Y ist nicht vorhanden, ist (C1-C3)-Alkyl, ist (C1-C3)-Alkenyl oder ist (C1-C3)-Alkinyl;
R1 ist nicht vorhanden, -H, -OR, -O-C(O)R, -N(R)2 oder ist, wenn es mit R2 zusammengenommen wird, =O, =N-OR, ein 3- bis 5-gliedriges Oxiran oder ein 3- bis
5-gliedriges substituiertes Oxiran;
R2 ist nicht vorhanden oder ist -H;
R3 ist nicht vorhanden oder ist -H;
R4 ist -H, -OR, -N(R)2, -CN, -C(O)OR, -C(O)N(R)2 oder ein 5- bis 6-gliedriges Dioxoycycloalkyl;
jedes R5, R6 und R7 ist unabhängig ausgewählt aus der Gruppe, bestehend aus: -R', -F, -Cl oder -Br;
jedes R wird unabhängig ausgewählt aus der Gruppe, bestehend aus: -H, (C1-C3)-Alkyl, (C1-C3)-Alkenyl, (C1-C3)-Alkinyl, (C5-C10)-Aryl, substituiertes (C5-C10)-Aryl, (C6-C13)-Alkaryl, substituiertes (C6-C13)-Alkaryl;
der Oxiran-Substituent ist -CN, -NO2, -NR'2, -OR' und Trihalogenmethyl;
die Aryl- und Alkaryl-Substituenten sind jeweils unabhängig ausgewählt aus der Gruppe,
bestehend aus: -F, -Cl, -Br, -CN, -NO2, -NR'2, -C(O)R', -C(O)OR' und Trihalogenmethyl;
R' ist -H, (C1-C3)-Alkyl, (C1-C3)-Alkenyl und (C1-C3)-Alkinyl;
zur Verwendung in der Hemmung von unerwünschter oder anomaler Zellproliferation.
20. Pharmazeutische Zusammensetzung nach einem der Ansprüche 3 bis 5 zur Verwendung in
der Hemmung von unerwünschter oder anomaler Zellproliferation.
21. Pharmazeutische Zusammensetzung nach einem der Ansprüche 3 bis 5 und 20 in einer Form,
die geeignet ist zur Inhalation, zur transkutanen, oralen, rektalen, transmukosalen,
intestinalen und parenteralen Verabreichung, einschließlich intramuskulärer, subkutaner
und intravenöser Injektionen.
22. Pharmazeutische Zusammensetzung nach Anspruch 21 für die Verwendung in der Sichelzellen-Erkrankung
und/oder in der Krebsbehandlung, ferner aufweisend ein weiteres therapeutisches Mittel,
ausgewählt aus: Analgetika, Antibiotika, Butyrat, Butyrat-Derivaten, Hydroxyharnstoff,
Erythropoetin und diätetischen Salzen, sofern die Verwendung in der Sichelzellen-Erkrankung
erfolgt, und ferner aufweisend ein weiteres therapeutisches Mittel, ausgewählt aus:
anticancerogenen Mitteln, Mitteln zum Potenzieren antiemetischen Mitteln und Mitteln
zum Strahlenschutz, sofern die Verwendung in der Krebsbehandlung erfolgt.
1. Un composé de formule (I):

ou un sel ou hydrate pharmaceutiquement acceptable dudit composé, où:
la liaison ---- représente une liaison simple ou double;
m est égal à 0, 1, 2, 3 ou 4:
chaque n est indépendamment égal à 0, 1, 2, 3, 4 ou 5;
X représente C ou N;
Y est absent ou représente un groupement alkyle en (C1-C6), un groupement alkényle en (C1-C6) ou un groupement alkynyle en (C1-C6);
R1 est absent ou représente -H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R ou -S-C(S)R ou,
si pris ensemble avec R2, =O, =S, =N-OR, un groupement alkyle hétérocyclique à 3-8 chaînons ou un groupement
alkyle hétérocyclique substitué à 3-8 chaînons;
R2 est absent ou représente -H;
R3 est absent ou représente -H;
R4 représente -H, -OR', -SR', -NR'2, -CN, -NO2, un groupement cycloalkyle en (C3-C8), un groupement alkyle hétérocyclique à 3-8 chaînons, -C(O)R', -C(S)R', -C(O)OR',
-C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR'2 ou -C(S)NR'2;
R5, R6 et R7 sont chacun indépendamment sélectionnés parmi le groupe consistant en un halogène,
-R', -OR', -SR', -NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'), -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR']2, -CH[C(O)SR']2 et -CH[C(S)SR']2, aux exceptions près qui suivent:
quand ---- représente une liaison unique, X représente C, R1 représente -OH, R2, R3 et R4 représentent H et Y est absent, un au moins des radicaux R5, R6 et R7 ne représente pas H; ou
quand --- représente une liaison unique, X représente C, R1 et R2 pris ensemble représentent =O, Y est absent et R3 et R4 représentent H, un au moins des radicaux R5, R6 et R7 ne représente pas H; ou
quand ---- représente une liaison unique, X représente C, R1 et R2 pris ensemble représentent =O, Y est absent, R3 et R4 représentent H, m=0, n=1 et R5 représente H, R6 ne représente pas -Br (para), -OMe (para) ou -OH (para); ou
quand --- représente une liaison unique, X représente C, R1, R2, R3 et R4 représentent H et Y est absent, (a) un au moins des radicaux R5, R6 et R7 ne représente par H; et (b) si m=0 et n=1, R5 et R6 ne représentent pas tous les deux -NH2 (para) ou -OH (para); ou
quand --- représente une liaison double, X représente C, R1 et R4 représentent H et R2, R3 et Y sont absents, (a) un au moins des radicaux R5, R6 et R7 ne représente par H; et (b) si m=0, n=1 et R5 représente H, R6 ne représente pas - OMe (para), -Br (para) ou -CN (paru); ou
quand --- représente une liaison unique, X représente C, R1 et R2 pris ensemble représentent =O, Y représente CH2, R3 et R4 représentent H, m=0 et n=1, R5 et R6 ne représentent pas tous les deux -OH (para); ou
quand --- représente une liaison unique, X représente C, R1 et R2 pris ensemble représentent =O, Y est absent, R3 représente H, R4 représente -C(O)OEt, m=0, n=1 et R5 représente H, R6 ne représente pas -OH (para); ou
quand ---- représente une liaison unique, X représente C, R1 représente -OH, R2, R3 et R4 représentent H, Y est absent, m=0, n=1 et R5 représente H, R6 ne représente pas un substituant -Br en position para; ou
quand --- représente une liaison unique, X représente C, R1 et R2 pris ensemble représentent =-N-OP, où R=H, Y est absent et R3, R4, R5, R6 et R7 représentent H, le sel ne peut pas correspondre au sel chlorhydrique; ou
quand ---- représente une liaison unique, X représente N, R1, R3 et R4 représentent H et Y et R2 sont absents, (a) un au moins des radicaux R5, R6 ou R7 ne représente pas H, et (b) si n=0 et m=2, les radicaux R7 ne représentent pas tous les deux un substituant -Br en positions 5 et 7 du fragment
indole; ou
quand ---- représente une liaison unique, X représente N, R1, R3 et R4 représentent H, Y et R2 sont absents, m=0 et n=1, R5 et R6 ne représentent pas tous les deux NMe2 (para) ou Me (para); ou
quand --- représente une liaison double, X représente N, R1, R2, R3 et Y sont absents et R4 représente H, (a) un au moins des radicaux R5, R6 ou R7 ne représente pas H, et (b) si n=0 et m=2, les radicaux R7 ne représentent pas tous les deux un substituant -Br en positions 5 et 7 du fragment
indole; ou
quand ---- représente une liaison double, X représente N, R1, R2, R3 et Y sont absents, R4 représente H; m=0 et n=1, R5 et R6 ne représentent pas tous les deux Me (para); ou
quand ---- représente une liaison double, X représente N, R1, R2, R3 et Y sont absents et R4 représente -NH2 ou -OCH3, un au moins des radicaux R5, R6 ou R7 ne représente pas H;
chaque R est indépendamment sélectionné parmi le groupe consistant en -H, un groupement
alkyle en (C1-C6), un groupement alkényle en (C1-C6), un groupement alkynyle (C1-C6), un groupement aryle en (C5-C20), un groupement aryle en (C5-C20) substitué, un groupement alkaryle en (C6-C26) et un groupement alkaryle en (C6-C26) substitué;
les groupements alkyles hétérocycliques sont chacun indépendamment sélectionnés parmi
le groupe consistant en -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' et un groupement trihalométhyle;
les groupements aryles et alkaryles sont chacun indépendamment sélectionnés parmi
le groupe consistant en un halogène, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR',
-C(S)SR', -C(O)NR'2, -C(S)NR'2 et un groupement trihalométhyle;
chaque groupement R' est indépendamment sélectionné parmi le groupe consistant en
-H, un groupement alkyle en (C1-C6), un groupement alkényle en (C1-C6) et un groupement alkynyle en (C1-C6).
2. Le composé selon la revendication 1, ledit composé étant sélectionné parmi le groupe
consistant en les composés 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
et 20.
3. Une composition pharmaceutique comprenant un composé en une quantité efficace et un
excipient, véhicule ou diluant pharmaceutiquement acceptable, ledit composé répondant
à la formule développée (I):

ou un sel ou hydrate pharmaceutiquement acceptable dudit composé, où:
la liaison ---- représente une liaison simple ou double:
m est égal à 0, 1, 2, 3 ou 4;
chaque n est indépendamment égal à 0, 1, 2, 3, 4 ou 5;
X représente C ou N;
Y est absent ou représente un groupement alkyle en (C1-C6), un groupement alkényle en (C1-C6) ou un groupement alkynyle en (C1-C6);
R1 est absent ou représente -H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R ou -S-C(S)R ou,
si pris ensemble avec R2, =O, =S, =N-OR, un groupement alkyle hétérocyclique à 3-8 chaînons ou un groupement
alkyle hétérocyclique substitué à 3-8 chaînons;
R2 est absent ou représente -H;
R3 est absent ou représente -H;
R4 représente -H, -OR', -SR', -NR'2, -CN, -NO2, un groupement cycloalkyle en (C3-C8), un groupement alkyle hétérocyclique à 3-8 chaînons, -C(O)R', -C(S)R', -C(O)OR',
-C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR'2 ou -C(S)NR'2;
R5, R6 et R7 sont chacun indépendamment sélectionnés parmi le groupe consistant en un halogène,
-R', -OR', -SR', -NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'), -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR']2, -CH[C(O)SR']2 et -CH[C(S)SR']2;
chaque R est indépendamment sélectionné parmi le groupe consistant en -H, un groupement
alkyle en (C1-C6), un groupement alkényle en (C1-C6), un groupement alkynyle (C1-C6), un groupement aryle en (C5-C20), un groupement aryle en (C5-C20) substitué, un groupement alkaryle en (C6-C26) et un groupement alkaryle en (C6-C26) substitué;
les groupements alkyles hétérocycliques sont chacun indépendamment sélectionnés parmi
le groupe consistant en -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' et un groupement trihalométhyle;
les groupements aryles et alkaryles sont chacun indépendamment sélectionnés parmi
le groupe consistant en un halogène, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR',
-C(S)SR', -C(O)NR'2, -C(S)NR'2 et un groupement trihalométhyle;
chaque groupement R' est indépendamment sélectionné parmi le groupe consistant en
-H, un groupement alkyle en (C1-C6), un groupement alkényle en (C1-C6) et un groupement alkynyle en (C1-C6).
4. Une composition pharmaceutique comprenant un composé en une quantité efficace et un
excipient, véhicule ou diluant pharmaceutiquement acceptable, ledit composé répondant
à la formule développée (I):

ou un sel ou hydrate pharmaceutiquement acceptable dudit composé, où:
la liaison ---- représente une liaison simple ou double;
m est égal à 0 ou 1;
chaque n est indépendamment égal à 0 ou 1;
X représente C ou N;
Y est absent ou représente un groupement alkyle en (C1-C3), un groupement alkényle en (C1-C3) ou un groupement alkynyle en (C1-C3);
R1 est absent ou représente -H, -OR, -O-C(O)R ou -N(R)2, ou si pris ensemble avec R2, =O, =N-OR, un groupement oxyrane à 3-5 chaînons ou un groupement oxyrane substitué
à 3-5 chaînons;
R2 est absent ou représente -H;
R3 est absent ou représente -H;
R4 représente -H, -OR, -N(R)2, -CN, -C(O)OR, -C(O)N(R)2 ou un groupement dioxocycloalkyle à 5-6 chaînons;
R5, R6 et R7 sont chacun indépendamment sélectionnés parmi le groupe consistant en -R', -F, -Cl
ou -Br;
chaque R est indépendamment sélectionné parmi le groupe consistant en -H, un groupement
alkyle en (C1-C3), un groupement alkényle en (C1-C3), un groupement alkynyle (C1-C3), un groupement aryle en (C5-C10), un groupement aryle en (C5-C10) substitué, un groupement alkaryle en (C6-C13) et un groupement alkaryle en (C6-C13) substitué;
le substituent du groupement oxyrane correspond à -CN, -NO2, -NR'2, -OR' ou un groupement trihalométhyle;
les groupements aryles et alkaryles sont chacun indépendamment sélectionnés parmi
le groupe consistant en -F, -Cl, -Br, -CN, -NO2, -NR'2, -C(O)R', -C(O)OR' et un groupement trihalométhyle;
R' représente -H, un groupement alkyle en (C1-C3), un groupement alkényle en (C1-C3) ou un groupement alkynyle en (C1-C3).
5. Une composition pharmaceutique selon la revendication 4, dans laquelle ledit composé
est sélectionné parmi le groupe consistant en les composés 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 et 20:
6. L'utilisation d'un composé de formule (I):

ou d'un sel ou d'un hydrate pharmaceutiquement acceptable dudit composé, dans la
préparation d'un médicament à effet inhibiteur sur la prolifération des cellules de
mammifères, où:
la liaison ---- représente une liaison simple ou double;
m est égal à 0, 1, 2, 3 ou 4;
chaque n est indépendamment égal à 0, 1, 2, 3, 4 ou 5;
X représente C ou N;
Y est absent ou représente un groupement alkyle en (C1-C6), un groupement alkényle en (C1-C6) ou un groupement alkynyle en (C1-C6);
R1 est absent ou représente -H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R ou -S-C(S)R ou,
si pris ensemble avec R2, =O, =S, =N-OR, un groupement alkyle hétérocyclique à 3-8 chaînons ou un groupement
alkyle hétérocyclique substitué à 3-8 chaînons;
R2 est absent ou représente -H;
R3 est absent ou représente -H;
R4 représente -H, -OR', -SR', -NR'2, -CN, -NO2, un groupement cycloalkyle en (C3-C8), un groupement alkyle hétérocyclique à 3-8 chaînons, -C(O)R', -C(S)R', -C(O)OR',
-C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR'2 ou -C(S)NR'2;
R5, R6 et R7 sont chacun indépendamment sélectionnés parmi le groupe consistant en un halogène,
-R', -OR', -SR', -NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R',-C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'), -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR']2, -CH[C(O)SR']2 et -CH[C(S)SR']2;
chaque R est indépendamment sélectionné parmi le groupe consistant en -H, un groupement
alkyle en (C1-C6), un groupement alkényle en (C1-C6), un groupement alkynyle (C1-C6), un groupement aryle en (C5-C20), un groupement aryle en (C5-C20) substitué, un groupement alkaryle en (C6-C26) et un groupement alkaryle en (C6-C26) substitué;
les groupements alkyles hétérocycliques sont chacun indépendamment sélectionnés parmi
le groupe consistant en -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' et un groupement trihalométhyle;
les groupements aryles et alkaryles sont chacun indépendamment sélectionnés parmi
le groupe consistant en un halogène, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR',
-C(S)SR', -C(O)NR'2, -C(S)NR'2 et un groupement trihalométhyle;
chaque groupement R' est indépendamment sélectionné parmi le groupe consistant en
-H, un groupement alkyle en (C1-C6), un groupement alkényle en (C1-C6) et un groupement alkynyle en (C1-C6).
7. L'utilisation d'un composé de formule (I):

ou d'un sel ou d'un hydrate pharmaceutiquement acceptable dudit composé, dans la
préparation d'un médicament à effet inhibiteur sur la prolifération des cellules de
mammifères, où:
la liaison --- représente une liaison simple ou double;
m est égal à 0 ou 1;
chaque n est indépendamment égal à 0 ou 1;
X représente C ou N;
Y est absent ou représente un groupement alkyle en (C1-C3), un groupement alkényle en (C1-C3) ou un groupement alkynyle en (C1-C3);
R1 est absent ou représente -H, -OR, -O-C(O)R ou -N(R)2, ou si pris ensemble avec R2, =O, =N-OR, un groupement oxyrane à 3-5 chaînons ou un groupement oxyrane substitué
à 3-5 chaînons;
R2 est absent ou représente -H;
R3 est absent ou représente -H;
R4 représente -H, -OR, -N(R)2, -CN, -C(O)OR, -C(O)N(R)2 ou un groupement dioxocycloalkyle à 5-6 chaînons;
R5, R6 et R7 sont chacun indépendamment sélectionnés parmi le groupe consistant en -R', -F, -Cl
ou -Br;
chaque R est indépendamment sélectionné parmi le groupe consistant en -H, un groupement
alkyle en (C1-C3), un groupement alkényle en (C1-C3), un groupement alkynyle (C1-C3), un groupement aryle en (C5-C10), un groupement aryle en (C5-C10) substitué, un groupement alkaryle en (C6-C13) et un groupement alkaryle en (C6-C13) substitué;
le substituent du groupement oxyrane correspond à -CN, -NO2, -NR'2, -OR' ou un groupement trihalométhyle;
les groupements aryles et alkaryles sont chacun indépendamment sélectionnés parmi
le groupe consistant en -F, -Cl, -Br, -CN, -NO2, -NR'2, -C(O)R', -C(O)OR' et un groupement trihalométhyle;
R' représente -H, un groupement alkyle en (C1-C3), un groupement alkényle en (C1-C3) ou un groupement alkynyle en (C1-C3).
8. L'utilisation selon la revendication 6 ou la revendication 7, dans laquelle ledit
composé est sélectionné parmi le groupe consistant en les composés 1, 2, 3, 4, 6,
7, 8, 10, 11, 15, 16, 17, 19 et 20:
9. L'utilisation selon la revendication 6 ou la revendication 7, dans laquelle ladite
cellule de mammifères est une cellule endothéliale, une cellule fibreuse ou une cellule
musculaire lisse vasculaire.
10. L'utilisation d'une composition pharmaceutique selon la revendication 3 en une quantité
thérapeutiquement efficace dans la préparation d'un médicament pour le traitement
ou la prophylaxie d'une affection caractérisée par une prolifération cellulaire anormale.
11. L'utilisation d'une composition pharmaceutique selon la revendication 4 en une quantité
thérapeutiquement efficace dans la préparation d'un médicament pour le traitement
ou la prophylaxie d'une affection caractérisée par une prolifération cellulaire anormale.
12. L'utilisation selon la revendication 11, dans laquelle ledit composé est sélectionné
parmi le groupe consistant en les composés 1, 2, 3, 4, 6, 7, 8, 10, 11, 15, 16, 17,
19 et 20:
13. L'utilisation selon la revendication 10 ou 11, dans laquelle ladite affection caractérisée par une prolifération cellulaire anormale est un cancer, une maladie vasculaire proliférative,
une maladie fribreuse ou une pathologie artérioscléreuse.
14. L'utilisation selon la revendication 13, dans laquelle ladite composition pharmaceutique
est sous une forme qui se prête à une administration par voie orale, parentérale ou
intraveineuse.
15. L'utilisation selon la revendication 10 ou 11, dans laquelle ladite affection caractérisée par une prolifération cellulaire anormale est une pathologie dermatologique ou le sarcome
de Kaposi.
16. L'utilisation selon la revendication 15, dans laquelle ladite pathologie dermatologique
est sélectionnée parmi le groupe consistant en une chéloïde, une cicatrice hypertrophique,
une dermatose séborrhéique, une infection par le virus du papillome, un eczéma et
une kératose actinique.
17. L'utilisation selon la revendication 15 ou la revendication 16, dans laquelle ladite
composition pharmaceutique est sous une forme qui se prête à une administration transdermique.
18. Un composé répondant à la formule développée (I):

ou un sel ou hydrate pharmaceutiquement acceptable dudit composé, où:
la liaison ― représente une liaison simple ou double;
m est égal à 0, 1, 2, 3 ou 4;
chaque n est indépendamment égal à 0, 1, 2, 3, 4 ou 5;
X représente C ou N;
Y est absent ou représente un groupement alkyle en (C1-C6), un groupement alkényle en (C1-C6) ou un groupement alkynyle en (C1-C6);
R1 est absent ou représente -H, -OR, -SR, -O-C(O)R, -S-C(O)R, -O-C(S)R ou -S-C(S)R ou,
si pris ensemble avec R2, =O, =S, =N-OR, un groupement alkyle hétérocyclique à 3-8 chaînons ou un groupement
alkyle hétérocyclique substitué à 3-8 chaînons;
R2 est absent ou représente -H;
R3 est absent ou représente -H;
R4 représente -H, -OR', -SR', -NR'2, -CN, -NO2, un groupement cycloalkyle en (C3-C8), un groupement alkyle hétérocyclique à 3-8 chaînons, -C(O)R', -C(S)R', -C(O)OR',
-C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR'2 ou -C(S)NR'2,
R5, R6 et R7 sont chacun indépendamment sélectionnés parmi le groupe consistant en un halogène,
-R', -OR', -SR', -NR'2, -ONR'2, -SNR'2, -NO2, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR'2, -C(S)NR'2, -C(O)NR'(OR'), -C(S)NR'(OR'), -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)2, -CH[C(O)R']2, -CH[C(S)R']2, -CH[C(O)OR']2, -CH[C(S)OR']2, -CH[C(O)SR']2 et -CH[C(S)SR']2;
chaque R est indépendamment sélectionné parmi le groupe consistant en -H, un groupement
alkyle en (C1-C6), un groupement alkényle en (C1-C6), un groupement alkynyle (C1-C6), un groupement aryle en (C5-C20), un groupement aryle en (C5-C20) substitué, un groupement alkaryle en (C6-C26) et un groupement alkaryle en (C6-C26) substitué;
les groupements alkyles hétérocycliques sont chacun indépendamment sélectionnés parmi
le groupe consistant en -CN, -NO2, -NR'2, -OR', -C(O)NR'2, -C(S)NR'2, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' et un groupement trihalométhyle;
les groupements aryles et alkaryles sont chacun indépendamment sélectionnés parmi
le groupe consistant en un halogène, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR',
-C(S)SR', -C(O)NR'2, -C(S)NR'2 et un groupement trihalométhyle;
chaque groupement R' est indépendamment sélectionné parmi le groupe consistant en
-H, un groupement alkyle en (C1-C6), un groupement alkényle en (C1-C6) et un groupement alkynyle en (C1-C6)
utilisé à des fins thérapeutiques.
19. Un composé répondant à la formule développée (I):

ou un sel ou hydrate pharmaceutiquement acceptable dudit composé, où:
la liaison --- représente une liaison simple ou double;
m est égal à 0 ou 1;
chaque n est indépendamment égal à 0 ou 1;
X représente C ou N;
Y est absent ou représente un groupement alkyle en (C1-C3), un groupement alkényle en (C1-C3) ou un groupement alkynyle en (C1-C3);
R1 est absent ou représente -H, -OR, -O-C(O)R ou -N(R)2, ou si pris ensemble avec R2, =O, =N-OR, un groupement oxyrane à 3-5 chaînons ou un groupement oxyrane substitué
à 3-5 chaînons;
R2 est absent ou représente -H;
R3 est absent ou représente -H;
R4 représente -H, -OR, -N(R)2, -CN, -C(O)OR, -C(O)N(R)2 ou un groupement dioxocycloalkyle à 5-6 chaînons;
R5, R6 et R7 sont chacun indépendamment sélectionnés parmi le groupe consistant en -R', -F, -Cl
ou -Br;
chaque R est indépendamment sélectionné parmi le groupe consistant en -H, un groupement
alkyle en (C1-C3), un groupement alkényle en (C1-C3), un groupement aryle en (C5-C10), un groupement aryle en (C5-C10) substitué, un groupement alkaryle en (C6-C13) et un groupement alkaryle en (C6-C13) substitué;
le groupement oxyrane correspond à -CN, -NO2, -NR'2, -OR' ou un groupement trihalométhyle;
les groupements aryles et alkaryles sont chacun indépendamment sélectionnés parmi
le groupe consistant en -F, -Cl, -Br, -CN, -NO2, -NR'2, -C(O)R', -C(O)OR' et un groupement trihalométhyle;
R' représente -H, un groupement alkyle en (C1-C3), un groupement alkényle en (C1-C3) ou un groupement alkynyle en (C1-C3)
utilisé pour produire l'inhibition d'une prolifération cellulaire non souhaitée ou
anormale.
20. Une composition pharmaceutique selon l'une quelconque des revendications 3 à 5 utilisée
pour produire l'inhibition d'une prolifération cellulaire non souhaitée ou anormale.
21. Une composition pharmaceutique selon l'une quelconque des revendications 3 à 5 et
20 sous une forme qui se prête à une administration par voie inhalée, transdermique,
orale, rectale, transmuqueuse, intestinale et parentérale, y compris en injection
intramusculaire, sous-cutanée et intraveineuse.
22. Une composition pharmaceutique selon la revendication 21 pour le traitement de la
maladie microdrépanocytaire et/ou du cancer, qui comprend également un autre agent
thérapeutique sélectionné parmi les suivants: analgésiques, antibiotiques, butyrate,
dérivés du butyrate, hydroxy-urée, ézythropoïétine et sels diététiques en ce qui concerne
le traitement de la maladie microdrépanocytaire, et qui comprend également un autre
agent thérapeutique sélectionné parmi les suivants: agents anticancéreux, agents potentialisateurs,
antiémétiques et radioprotecteurs en ce qui concerne le traitement d'un cancer.