(19) |
 |
|
(11) |
EP 1 287 201 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
11.02.2004 Bulletin 2004/07 |
(22) |
Date of filing: 27.04.2001 |
|
(86) |
International application number: |
|
PCT/FI2001/000410 |
(87) |
International publication number: |
|
WO 2001/083886 (08.11.2001 Gazette 2001/45) |
|
(54) |
A PROCESS FOR CONTROLLING MICROBIAL GROWTH
VERFAHREN ZUR KONTROLLE VON MIKROBIELLEM WACHSTUM
PROCESSUS PERMETTANT DE MAITRISER LA CROISSANCE MICROBIENNE
|
(84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
(30) |
Priority: |
04.05.2000 FI 20001040
|
(43) |
Date of publication of application: |
|
05.03.2003 Bulletin 2003/10 |
(73) |
Proprietor: AGA AKTIEBOLAG |
|
181 81 Lidingö (SE) |
|
(72) |
Inventors: |
|
- HOLMBERG, Anna
S-426 74 Västra Frölunda (SE)
- LEINO, Hannu
FIN-02320 Espoo (FI)
- KONTOLA, Pia
FIN-02940 Espoo (FI)
- PUUTONEN, Pirjo
A-2380 Perchtoldsdorf (AT)
|
(74) |
Representative: Kasseckert, Rainer et al |
|
Linde AG
Zentrale Patentabteilung
Dr.-Carl-von-Linde-Strasse 6-14 82049 Höllriegelskreuth 82049 Höllriegelskreuth (DE) |
(56) |
References cited: :
EP-A- 1 002 899 US-A- 3 806 404 US-A- 5 139 613
|
WO-A-88/04706 US-A- 4 532 007
|
|
|
|
|
- DATABASE WPI Section Ch, Week 198911 Derwent Publications Ltd., London, GB; Class
F09, AN 1989-078753 XP002901861 -& EP 0 307 295 A (CANADIAN LIQUID AIR LTD AIR LIQUIDE
CANADA LTEE) 15 March 1989 (1989-03-15)
- DATABASE PAPERCHEM. [Online] Dialog information serv.,File 240, KYMRON B J: "Safe
nontoxic pest control for books" retrieved from DIALOG INF. SERV., accession no. 00408118
Database accession no. GA3701113 XP002901862 & THE ABBEY NEWSLETTER, vol. 14, no.
1, 16 February 1990 (1990-02-16),
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a process for controlling microbial growth in a
production line for cellulosic products with the aid of gases. The invention also
relates to the use of gases such as carbon dioxide, nitrogen, a noble gas and/or non-naturally
occurring mixtures thereof for controlling microbial growth.
[0002] In the production of cellulosic products such as cellulose, paper and board (hereinafter
referred to as paper), cellulosic fibers are treated in aqueous suspensions under
varying conditions. The amount of water in the production line is huge and the water
is continuously recirculated in smaller or larger loops. The conditions in the production
line are often susceptible to microbial growth. This is especially so during storage
of the aqueous material.
[0003] For growth all microbes require that the system should include sufficient nutrients
and that the pH, temperature, moisture, oxygen level etc. is adequate.
[0004] For breeding the microbes need time to grow and propagate in the system. The retention
time must be long enough; otherwise, the cells will be washed out of the system. In
a papermaking system the microbes can easily find locations with a sufficient retention
time, e.g. water storage tanks, stock chests, treatment of broke and long pipelines.
[0005] Normal papermaking conditions are suitable for the growth of many kinds of microbes.
The recirculating white water in the short and long circulation contains enough carbohydrates
and other essential ingredients such as inorganics and trace elements. Also chemicals
used in the papermaking themselves represent an ideal nutrient source, e.g. starch,
or contain as impurities quite a lot of nutrient material, e.g. kaolin. The incoming
raw water can also contain considerable amounts of nutrients.
[0006] The microbes found in a papermaking system can be divided into three main groups,
bacteria, fungi and algae. The bacteria are either spore forming (anaerobic) or non
spore forming (aerobic); the fungi comprise moulds and yeasts; and the prevailing
algae are blue-green or green algae.
[0007] Many different kinds of problems can be caused by microbial growth, such as slime
problems, runnability problems, corrosion problems, additive problems, and product
problems.
[0008] Unless microbial control agents are added to the papermaking system, the general
growth requirements for microbes are usually well satisfied in papermaking systems.
Modem microbial control agents can roughly be divided into groups, which act in the
following ways: oxidative decomposition of microbes (O
2, ClO
2, O
3, peroxides); biocides, which inhibit or kill the microbes (organic, synthetic chemicals);
and enzymes.
[0009] Oxygen is primarily used to prevent anaerobic conditions, while chlorine dioxide,
ozone and peroxide work as biocides and disinfectants. They are quite effective but
considered to be costly. Conventional biocides can be used alone or in combination
with oxidative biocides. They are effective, but toxic. They can also be environmentally
dangerous and hazardous for the working environment. A relatively new method of slime
control is the use of enzyme. Enzymes are active at pH 3.5-10, which is an advantage
compared with conventional biocides. However, enzymes have limited effect on bacteria.
[0010] Oxygen and oxygen-rich gases have primarily been used for preventing the formation
of hydrogen sulfide and other volatile gases by anaerobic bacteria in waste waters.
Robichaud, W. T., Tappi Journal, Feb. 1991, pp 149-153, has reported on the use of
aeration for controlling anaerobic bacteria to improve product quality and mill safety
in papermaking systems.
[0011] Use of carbon dioxide in paper making has been suggested in the prior art for various
reasons mainly connected with specific needs for adjusting the pH or influencing the
carbonate or bicarbonate chemistry. Examples of patents related to the use of carbon
dioxide in papermaking systems are US 5,378,322 (Canadian Liquid Air); US 5,262,006
(Mo och Domsjö Ab); EP 0 296 198 (AGA Aktiebolag); EP 0 281 273 (The BOC Group); GB
2 008 562 (J.M. Voith GmbH); WO 99/24661 (AGA Aktiebolag); and WO 99/35333 (AGA Aktiebolag).
None of these publications relate to the problem of microbial growth.
[0012] Mixtures of gases have been used in the packaging of foodstuffs in order to retain
the foodstuff's original taste, texture and appearance. The gas mixtures usually consist
of carbon dioxide, nitrogen and oxygen, but also other gases such as nitrous oxide,
argon and hydrogen have been used. Carbon dioxide inhibits microbial activity on the
foodstuff by reducing the pH and by penetrating biological membranes, causing changes
in permeability and function. Nitrogen is primarily used to replace oxygen in packaging.
Oxygen helps to preserve the oxygenated form of myoglobin, which gives meat its red
colour. Oxygen is also required for fruit and vegetable respiration.
[0013] Amanatidou, A.; Smid, E. J.; Gorris, L. G.; J Appl Microbiol, March 1999, pp 429-38,
have reported on the effect of elevated oxygen and carbon dioxide on the surface growth
of vegetable-associated micro-organisms. Consistently strong inhibition was observed
only when the two gases were used in combination.
[0014] As mentioned above, problems with microbial growth are conventional in papermaking
systems, especially in storage tanks and in long pipe lines. Moreover, protection
of the environment by the closing of the white water systems and increased recirculation
of process waters as well as the increased use of waste paper has caused a marked
increase in the microbial growth in the papermaking systems.
[0015] The papermaking industry consequently has an increasing need for means for reducing
the microbial growth in a technically feasible, inexpensive and environmentally friendly
way.
[0016] It has now been found that a gaseous inhibitor in the form of carbon dioxide, nitrogen,
a noble gas or a gas mixture containing one or more of said gases may be used for
controlling microbial growth in a papermaking system.
[0017] Consequently, the present invention provides a process for controlling microbial
growth in a production line for cellulosic products, which comprises providing an
aqueous material containing water as well as suspended pulp fibers and/or additives
therefor, maintaining said aqueous material under conditions susceptible to microbial
growth, providing a gaseous inhibitor comprising a gas selected from carbon dioxide,
nitrogen, noble gases and non-natural gas mixtures containing the same, and introducing
said gaseous inhibitor to said aqueous material in an amount sufficient to significantly
retard or inhibit the growth of microorganisms therein.
[0018] The gaseous inhibitor is preferably added immediately prior to and/or during storage
of said aqueous material, since storage provides a sufficient time for the microbes
to propagate.
[0019] The gaseous inhibitor should preferably consist of or contain a significant amount
of carbon dioxide, nitrogen and/or a noble gas such as helium, neon, argon, krypton,
xenon and/or radon. Carbon dioxide is the preferred gas according to the present invention.
Among the noble gases argon is preferred.
[0020] If a gas mixture is used, said mixture should be a non-natural one. The gases of
the mixture may be mixed before introduction into the aqueous material, or they may
be added separately, simultaneously or sequentially. Although the gas mixture may
contain oxygen, it should not have the composition of air, since air is known to inhibit
only the growth of anaerobic microbes.
[0021] The gaseous inhibitor of the present invention may be used in combination with oxygen
either by combining oxygen in the mixture of carbon dioxide, nitrogen and/or argon,
or by adding oxygen separately from the other gases. When oxygen is added to the gas
mixture, the amount of oxygen may vary from 10 to 90% of the total gas volume. However,
according to another embodiment of the invention, an oxygen-rich gas is introduced
into the aqueous material separately from the gaseous inhibitor of the present invention.
Such an oxygen-rich gas may be added either before or after the addition of the inhibiting
gas mixture.
[0022] The present invention will now be described in greater detail with reference to papermaking
systems. It is, however, clear that the gaseous inhibiting system of the present invention
may be used also in the production of cellulose, board, etc. As used in the context
of the invention, a production line for cellulosic products comprises a line for the
production of pulp, paper, board or the like. The production line will typically include
at least a portion of reprocessed recovered paper and/or broke and will include loops
of recirculating waters. The production line has a more or less closed water system,
it being understood by those skilled in the art that the problems with microbial growth
are prone to escalate in closed systems with an increasing and accumulating mass of
microbes circulating in the system.
[0023] The temperature in the papermaking systems usually varies from 30 to 60 °C. Because
of recycling, the temperature in the white water often exceeds 50 °C. Fungi and yeasts
generally do not tolerate temperatures above 40 °C. Contrary to this, many bacteria
thrive well in the high temperature range. pH usually varies from 3 to 10. Acidic
conditions, pH 3-6, are very convenient for fungi and yeasts. Bacteria dominate under
neutral and alkaline conditions, viz. at pH levels from 7 to 10. Anaerobic conditions
can be found in many places throughout the production line, such as storage after
dithionite bleaching, pulp chests and white water tanks.
[0024] Slime helps microbes to adhere onto surfaces and provides a food reserve. Microbial
growth causes operating problems by plugging filters and screens, by reducing wire
and felt life and by causing a decline of productivity due to breaks, wash-ups, etc.
Corrosion induced by microbes is a consequence of vigorous microbial activity on surfaces.
[0025] The most important microbial species in this area include sulphate-reducing bacteria,
which are anaerobic in character. There are, however, also a number of aerobic species
which are harmful. Additives, such as starch, can deteriorate due to microbial activity,
not to mention that a contaminated starch slurry can constitute a heavy inoculation
of the white water system. When masses of microbes get loose from the actual growth
place, the result may be seen as spots, holes or dirt specks in the final paper product.
Spore-forming bacteria tolerate much heat and usually survive the drying stage. Thus
they remain alive in the product and can be harmful later on.
[0026] In the working of the present invention note should be taken of the special circumstances
of a papermaking system with its huge volumes of fluids, all the time on the move
and having no definite surface where the microbes are prone to exist. This is in sharp
contrast to, for instance, the packaging of food in protective atmospheres. The food
moves nowhere within the package, its surface is solid and the gaseous atmosphere
surrounds the product. In a papermaking system the aqueous material has a surface
which changes continuously and it cannot be surrounded by the gas.
[0027] The term microbe or microorganism as used in the context of the present invention
is intended to mean bacteria, fungi and/or algae such as described above. It should
be understood that all of the microorganisms present in a papermaking system will
not be influenced by the gaseous inhibitor of the present invention and that the gaseous
inhibitor of the invention may therefore be used in combination with other inhibitors,
such as oxygen-rich gases and biocides of various forms, as long as these do not interfere
with the working of the invention itself.
[0028] According to the present invention microbial growth in the papermaking system is
reduced by a gaseous inhibitor. The gaseous inhibitor of the present invention is
a gas or a gas mixture capable of inhibiting, partly or totally, the growth of microorganisms
present in the papermaking system. The preferred single gas is carbon dioxide. The
gaseous inhibitor may also comprise nitrogen and/or argon. Said gases may also be
used alone, but they are more preferably used in combination with carbon dioxide.
A suitable gaseous inhibitor consists of a mixture of carbon dioxide, nitrogen and
argon. The mixture preferably contains at least 10% carbon dioxide.
[0029] The gaseous inhibitor may additionally contain oxygen. The oxygen should not be used
in a combination resembling air, since such a mixture is effective only against anaerobic
microorganisms. In a mixture of carbon dioxide and oxygen, the proportion of carbon
dioxide should be between 90% and 10% and the proportion of oxygen should be between
10 % and 90%. It should be noted that normal air contains about 21 % oxygen and about
0.03% carbon dioxide.
[0030] A preferred embodiment of the invention comprises the use of a gaseous inhibitor
consisting essentially of carbon dioxide, nitrogen, argon or mixtures thereof, which
is introduced into a liquid flow of the aqueous material entering a storage tank for
said aqueous material or into said storage tank itself. An oxygen-free gaseous inhibitor
is preferably added in an amount sufficient to purge said aqueous material of oxygen
and thereby inhibiting the growth of aerobic bacteria contained therein. Most aerobic
bacteria are sensitive to the lack of oxygen and will eventually be killed off by
such a procedure while the carbon dioxide will adversely affect many of the anaerobic
species.
[0031] In an improvement of this embodiment, oxygen is used separately from the gaseous
inhibitor of the present invention. Thus, after a suitable retention time the introduction
of the gaseous inhibitor is followed by and/or preceded by an introduction of an oxygen
containing gas into said storage tank in an amount sufficient to kill anaerobic bacteria
in the aqueous material.
[0032] The introduction of the gaseous inhibitor and the introduction of oxygen may be repeated
in an alternating manner during storage of said aqueous material.
[0033] The inhibitor is preferably added in a position where the risk for microbial growth
is largest, i.e. in storage tanks for aqueous pulp suspensions or aqueous additives
susceptible to microbial attack. However, the gaseous inhibitor may also be added
to liquid flows of the aqueous material, to recirculating waters and to fresh water
prior to its entering the system. The main principle of the present invention is to
reduce the microbial growth at any position where it would otherwise rise to harmful
proportions. It is not necessary to kill all the microbes but it is essential to reduce
the microbial growth to such proportions that the harmful accumulations are minimized
in the production line and in the final product.
[0034] In a preferred embodiment of the present invention the gaseous inhibitor is introduced
into a liquid flow of the aqueous material or into a liquid flow of a diluent or additive
for said material just prior to storage thereof. The gaseous inhibitor may also be
introduced into any storage tank containing said aqueous material by bubbling the
gas into the aqueous material and/or by filling the void space above the fluid.
[0035] In a typical process according to the present invention the aqueous material comprises
a pulp suspension in a papermaking system and the suspension is treated with the gaseous
inhibitor before it enters and/or as it is retained in a pulp storage tower, a stock
chest, a broke tower or the like storage tank. The pulp suspension may also be stock
in the stock preparation of a paper making system.
[0036] In a preferred embodiment the aqueous material to be treated comprises white water
in a papermachine, preferably white water stored in the long circulation.
[0037] In another embodiment the aqueous material comprises a slurry of an additive chemical
such as starch, coating, pigment, filler, or the like. Such additives are usually
retained in aqueous suspension in readiness for use in the papermaking process and
many of the additives contain nutrients making them susceptible to microbial attack.
Typically this is true of starch, which in itself is a nutrient for many microorganisms.
Many other additives, although inert in themselves, contain sufficient amounts of
impurities to make them, with time, susceptible to microbial attacks. Treating such
additive tanks with intermittent introductions of the gaseous inhibitor will effectively
reduce the amount of microbes entering the system that way.
[0038] In a preferred embodiment of the present invention, the gaseous inhibitor is added
at a late point, preferably just prior to the point where microbial attack is expected
to be most severe, such as in a storage tower. Additional gaseous inhibitor (carbon
dioxide/nitrogen/argon) should, if necessary, be added to the head space of the tower.
[0039] If oxygen is used in combination with the gaseous inhibitor, the oxygen should preferably
be added directly after a pump feeding the aqueous material to the storage tower to
make use of any turbulence to achieve a high rate of mixing. Additional oxygen should,
if necessary be added to any of the tower's recirculation pipes to avoid creating
any anaerobic areas in the storage tower.
[0040] It should be noted that although gases such as carbon dioxide and oxygen have previously
been used in papermaking, the gaseous inhibitor of the present invention, comprising
carbon dioxide, nitrogen or argon alone or in a non-natural gas mixture has not previously
been used in papermaking systems for controlling microbial growth.
[0041] The aqueous materials of the cellulosic production line are processed to cellulosic
products such as paper, board, dried pulp or the like material in a manner which is
conventional in all other ways except for the biocidal treatment of the present invention.
[0042] The present invention will now be illustrated with the following examples.
Example 1
[0043] A set of representative bacterial strains was isolated from a white water sample
from a Swedish recycled pulp mill. The sample originally yielded 70 bacterial strains
which each represented a group of different bacteria, which grew under similar conditions.
The strains were tested on different media and their oxygen demands were studied.
The results gave an indication of eight main groups. Further investigations showed
that three out of the eight main groups seemed to be almost similar. Those three groups
were put together to one large group.
[0044] From this dominating group, one strain was chosen for the carbon dioxide experiments.
Two other strains from another recycled pulp mill were included in the experiments.
[0045] Glass bottles were tempered to 45 °C and CO
2 was added to create a carbon dioxide atmosphere. Bacteria from the three isolated
strains were added to separate bottles together with a nutrient broth. A first sample
representing "0 min" was taken out immediately from each bottle and then at a number
of occasions during the next three hours. Each sample was diluted in dilution series
with dilution 1/10 in six steps (10
1-10
6) and grown on agar plates. The plates were incubated at 45 °C for two days, after
which the number of colonies were counted and related to the dilution.
[0046] The percentage of surviving cells as a function of growth time under the influence
of a CO
2 atmosphere is indicated in Table 1.
Table 1
Time (min) |
Strain 1 (%) |
Strain 2 (%) |
Strain 3 (%) |
Average (%) |
0 |
100 |
100 |
100 |
100 |
10 |
75 |
141 |
92 |
103 |
20 |
34 |
76 |
77 |
62 |
30 |
73 |
137 |
58 |
89 |
40 |
50 |
48 |
47 |
48 |
50 |
61 |
94 |
36 |
64 |
60 |
59 |
46 |
67 |
57 |
80 |
39 |
88 |
44 |
57 |
100 |
16 |
55 |
42 |
38 |
120 |
18 |
43 |
16 |
47 |
140 |
5 |
35 |
7 |
16 |
160 |
4 |
41 |
4 |
16 |
180 |
9 |
24 |
2 |
12 |
[0047] The results clearly showed that after approximately 1 hour about 60% of the bacteria
had survived, after 2 hours about 50% and after 3 hours slightly more than 10% (the
values > 100% result from small mistakes in sampling or dilution).
Example 2
[0048] A mill produced wood-free paper from chemical pulp. At the time of the trials, the
mill stored pulp for long periods of time in storage towers prior to the stock preparation.
The storage caused problems with bad smell and black spots in the pulp, which was
believed to be caused by high microbial activity during storage.
[0049] A full-scale trial of treatment with a gaseous inhibitor was performed. Thus, carbon
dioxide gas was introduced in an amount of 1-2 kg CO
2/ton pulp just prior to the storage tower.
[0050] Both the pulp's bad smell and the number of black spots in the pulp were reduced.
No negative effects of the CO
2 introduction were observed.
Example 3
[0051] A pulp storage tower having problems with an excess of microbial growth during a
production stop is fed by a pump until the storage tower has been filled to about
80% of its capacity.
[0052] A gaseous inhibitor comprising a mixture of carbon dioxide/nitrogen/argon in the
ratio 70/25/5 is added to the feed line just before the pulp enters the tower. The
gas is fed into the feed line at a rate of 1.5 kg gas per ton of pulp. The gas feeding
is continued about 5 min after the feeding pump has stopped feeding pulp to the tower,
in order to fill the head space of the tower with gaseous inhibitor.
[0053] 2 hours after the feeding of the gaseous inhibitor mixture, an oxygen-rich gas (air)
is added into the pulp in the tower through a gas distribution tube. Addition of oxygen-rich
gas is continued until a significant amount of oxygen is found to be present in the
vent from the tower.
[0054] The following day the treatment is repeated by first feeding gaseous inhibitor of
the present invention into the gas distribution tube, and after a residence time of
about 2 hours, oxygen-rich gas is fed through the tube. The microbiocidal treatment
is repeated every day of the production stop.
[0055] The microbial growth in the storage tower is reduced to an acceptable level and at
start-up no smell problems are encountered. A paper web is formed from the stored
pulp in the normal way and only a minimal amount of dirt specks are seen in the paper.
1. A process for controlling microbial growth in a production line for cellulosic products
comprising
- providing an aqueous material containing water and suspended pulp fibers and/or
additives therefor,
- maintaining said aqueous material under conditions susceptible to microbial growth,
- providing a gaseous microbe inhibitor selected from carbon dioxide, nitrogen, noble
gases and non-natural mixtures containing the same,
- introducing said gaseous microbe inhibitor to said aqueous material in an amount
sufficient for said microbe inhibitor to significantly retard or inhibit the growth
of micro-organisms therein.
2. A process according to claim 1, wherein said aqueous material is maintained in a storage
vessel and said gaseous microbe inhibitor is introduced prior to and/or during said
storage.
3. A process according to claim 1 or 2, wherein said gaseous microbe inhibitor consists
essentially of carbon dioxide, nitrogen or one or more noble gases.
4. A process according to claim 1 or 2, wherein said noble gas is selected from helium,
neon, argon, krypton, xenon and radon.
5. A process according to claim 1 or 2, wherein said gaseous microbe inhibitor is a mixture
of carbon dioxide and nitrogen, preferably in a ratio of 10-90% carbon dioxide and
90-10% nitrogen.
6. A process according to claim 1 or 2, wherein said gaseous microbe inhibitor additionally
contains oxygen.
7. A process according to claim 5, wherein said gaseous microbe inhibitor comprises a
combination of carbon dioxide and oxygen, preferably in a ratio of 10-90% carbon dioxide
and 90-10% oxygen.
8. A process according to claim 1, wherein said gaseous microbe inhibitor comprises a
combination of carbon dioxide, nitrogen, noble gases and oxygen containing at least
10% carbon dioxide.
9. A process according to any one of claims 1 to 8, wherein said gaseous microbe inhibitor
is introduced into a liquid flow of said material prior to said storage.
10. A process according to any one of claims 1 to 8, wherein said gaseous microbe inhibitor
is introduced into a storage tank containing said aqueous material.
11. A process according to any one of claims 1 to 8, wherein said gaseous microbe inhibitor
is introduced into a diluent for said material.
12. A process according to any one of claims 1 to 11, wherein said microorganisms comprise
bacteria, fungi and/or algae.
13. A process according to claim 1, wherein said gaseous microbe inhibitor, consisting
essentially of carbon dioxide, nitrogen, argon gases or mixtures thereof, is introduced
into a liquid flow entering a storage tank for said aqueous material or into said
storage tank itself.
14. A process according to claim 13, wherein said introduction of gaseous microbe inhibitor
is followed by and/or preceded by an introduction of an oxygen containing gas into
said storage tank or into a liquid flow entering said storage tank.
15. A process according to claim 14, wherein said introduction of gaseous microbe inhibitor
and said introduction of an oxygen containing gas are repeated in an alternating manner
during storage of said aqueous material.
16. A process according to any one of claims 1 to 15, wherein said aqueous material is
a pulp suspension located in a pulp storage tower, a stock chest, a broke tower or
the like storage tank.
17. A process according to any one of claims 1 to 15, wherein said aqueous material is
stock in the stock preparation of a paper making system.
18. A process according to any one of claims 1 to 15, wherein said aqueous material is
white water in a papermachine, preferably white water in a white water tank of the
long circulation.
19. A process according to any one of claims 1 to 15, wherein said aqueous material is
a slurry of an additive chemical such as starch, coating, pigment, filler, or the
like.
20. A process according to any one of claims 1 to 19, wherein said production line for
cellulosic products comprises a line for the production of pulp, paper, board or the
like.
21. A process according to claim 20, wherein said. production line comprises the reprocessing
of recovered paper and/or broke.
22. A process according to claim 20 or 21, wherein said production line has a substantially
closed water system.
23. A process according to any one of claims 1 to 22, wherein said aqueous material treated
with said gaseous microbe inhibitor is processed into a cellulosic product such as
pulp, paper, board or the like.
24. Use of carbon dioxide, nitrogen or a noble gas alone or in a non-natural gas mixture
as a gaseous microbe inhibitor for controlling microbial growth in an aqueous material
containing water as well as suspended pulp fibers and/or additives therefor, which
material is processed and/or stored in a production line for cellulosic products.
25. The use according to claim 24, wherein said gaseous microbe inhibitor consists of
essentially carbon dioxide.
26. The use according to claim 25, wherein carbon dioxide and oxygen are used in combination
or as alternating feeds to said material.
27. The use according to any one of claims 24 to 26 in the production of paper in a production
line having a substantially closed water system and comprising the reprocessing of
recovered paper.
1. Verfahren zur Kontrolle von mikrobiellem Wachstum in einer Herstellungsanlage für
Zelluloseprodukte, umfassend
- Bereitstellen eines wässrigen Materials, enthaltend Wasser und suspendierte Zellstofffasern
und/oder Zusätze dafür,
- Halten des wässrigen Materials unter für mikrobielles Wachstum anfälligen Bedingungen,
- Bereitstellen eines gasförmigen Mikrobeninhibitors, ausgewählt aus Kohlendioxid,
Stickstoff, Edelgasen und nicht natürlichen Mischungen, die dieselben enthalten,
- Einführen des gasförmigen Mikrobeninhibitors in das wässrige Material in einer Menge,
die ausreichend ist, damit der Mikrobeninhibitor das Wachstum von Mikroorganismen
darin wesentlich verzögern oder hemmen kann.
2. Verfahren nach Anspruch 1, wobei das wässrige Material in einem Lagerungsbehälter
gehalten wird und der gasförmige Mikrobeninhibitor vor und/oder während der Lagerung
eingeführt wird.
3. Verfahren nach Anspruch 1 oder 2, wobei der gasförmige Mikrobeninhibitor im Wesentlichen
aus Kohlendioxid, Stickstoff oder einem Edelgas bzw. mehreren Edelgasen besteht.
4. Verfahren nach Anspruch 1 oder 2, wobei das Edelgas aus Helium, Neon, Argon, Krypton,
Xenon und Radon ausgewählt ist.
5. Verfahren nach Anspruch 1 oder 2, wobei der gasförmige Mikrobeninhibitor eine Mischung
aus Kohlendioxid und Stickstoff vorzugsweise in einem Verhältnis von 10-90 % Kohlendioxid
und 90-10 % Stickstoff ist.
6. Verfahren nach Anspruch 1 oder 2, wobei der gasförmige Mikrobeninhibitor zusätzlich
Sauerstoff enthält.
7. Verfahren nach Anspruch 5, wobei der gasförmige Mikrobeninhibitor eine Kombination
von Kohlendioxid und Sauerstoff vorzugsweise in einem Verhältnis von 10-90 % Kohlendioxid
und 90-10 % Sauerstoff umfasst.
8. Verfahren nach Anspruch 1, wobei der gasförmige Mikrobeninhibitor eine Kombination
von Kohlendioxid, Stickstoff, Edelgasen und Sauerstoff mit wenigstens 10 % Kohlendioxid
umfasst.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei der gasförmige Mikrobeninhibitor
in einen flüssigen Strom des Materials vor der Lagerung eingeführt wird.
10. Verfahren nach einem der Ansprüche 1 bis 8, wobei der gasförmige Mikrobeninhibitor
in einen das wässrige Material enthaltenden Lagertank eingeführt wird.
11. Verfahren nach einem der Ansprüche 1 bis 8, wobei der gasförmige Mikrobeninhibitor
in ein Verdünnungsmittel für das Material eingeführt wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, wobei die Mikroorganismen Bakterien,
Pilze und/oder Algen umfassen.
13. Verfahren nach Anspruch 1, wobei der gasförmige Mikrobeninhibitor, bestehend im Wesentlichen
aus Kohlendioxid-, Stickstoff-, Argongasen oder Mischungen davon, in einen flüssigen
Strom, der in einen Lagertank für das wässrige Material hinein läuft, oder in den
Lagertank selber eingeführt wird.
14. Verfahren nach Anspruch 13, wobei der Einführung des gasförmigen Mikrobeninhibitors
eine Einführung eines sauerstoffhaltigen Gases in den Lagertank oder in einen flüssigen
Strom, der in einen Lagertank für das wässrige Material hinein läuft, folgt und/oder
vorausgeht.
15. Verfahren nach Anspruch 14, wobei die Einführung des gasförmigen Mikrobeninhibitors
und die Einführung eines sauerstoffhaltigen Gases während der Lagerung des wässrigen
Materials abwechselnd wiederholt werden.
16. Verfahren nach einem der Ansprüche 1 bis 15, wobei das wässrige Material eine Zellstoffsuspension
ist, die sich in einem Zellstofflagerturm, einer Stoffbütte, einem Ausschuss-Turm
oder einem ähnlichen Lagertank befindet.
17. Verfahren nach einem der Ansprüche 1 bis 15, wobei das wässrige Material ein Stoff
bei der Stoffaufbereitung eines Papierherstellungssystems ist.
18. Verfahren nach einem der Ansprüche 1 bis 15, wobei das wässrige Material Rückwasser
in einer Papiermaschine ist, vorzugsweise Rückwasser in einem Rückwassertank des langen
Kreislaufs.
19. Verfahren nach einem der Ansprüche 1 bis 15, wobei das wässrige Material eine Schlämme
einer Zusatzmittelchemikalie wie beispielsweise Stärke, Beschichtung, Pigment, Füllmittel
oder dergleichen ist.
20. Verfahren nach einem der Ansprüche 1 bis 19, wobei die Herstellungsanlage für Zelluloseprodukte
eine Anlage für die Herstellung von Zellstoff, Papier, Pappe oder dergleichen umfasst.
21. Verfahren nach Anspruch 20, wobei die Herstellungsanlage die Wiederverarbeitung von
wiedergewonnenem Papier und/oder Ausschuss umfasst.
22. Verfahren nach Anspruch 20 oder 21, wobei die Herstellungsanlage ein im Wesentlichen
geschlossenes Wassersystem hat.
23. Verfahren nach einem der Ansprüche 1 bis 22, wobei das mit dem gasförmigen Mikrobeninhibitor
behandelte, wässrige Material zu einem Zelluloseprodukt wie beispielsweise Zellstoff,
Papier, Pappe oder dergleichen verarbeitet wird.
24. Verwendung von Kohlendioxid, Stickstoff oder einem Edelgas alleine oder ein einer
nicht natürlichen Gasmischung als ein gasförmiger Mikrobeninhibitor zur Kontrolle
von mikrobiellem Wachstum in einem Wasser sowie suspendierte Zellstofffasern und/oder
Zusatzmittel dafür enthaltenden, wässrigen Material, wobei das Material in einer Herstellungsanlage
für Zelluloseprodukte verarbeitet und/oder gelagert wird.
25. Verwendung nach Anspruch 24, wobei der gasförmige Mikrobeninhibitor im Wesentlichen
aus Kohlendioxid besteht.
26. Verwendung nach Anspruch 25, wobei Kohlendioxid und Sauerstoff in Kombination verwendet
oder dem Material abwechselnd zugeführt werden.
27. Verwendung nach einem der Ansprüche 24 bis 26 in der Papierherstellung in einer Herstellungsanlage
mit einem im Wesentlichen geschlossenen Wassersystem und umfassend die Wiederverarbeitung
von wiedergewonnenem Papier.
1. Procédé de contrôle de la croissance microbienne dans une chaîne de production de
produits cellulosiques, comprenant :
- la fourniture d'un matériau aqueux contenant de l'eau et des fibres de pâte en suspension
et/ou des additifs pour celles-ci,
- le maintien dudit matériau aqueux dans des conditions susceptibles d'une croissance
microbienne,
- la fourniture d'un inhibiteur de microbes gazeux choisi parmi le dioxyde de carbone,
l'azote, les gaz nobles et des mélanges non naturels contenant ceux-ci,
- l'introduction dudit inhibiteur de microbes gazeux dans ledit matériau aqueux en
une quantité suffisante pour que ledit inhibiteur de microbes retarde ou inhibe de
façon significative la croissance de micro-organismes dans celui-ci.
2. Procédé selon la revendication 1, dans lequel ledit matériau aqueux est maintenu dans
un récipient de stockage et ledit inhibiteur de microbes gazeux est introduit préalablement
audit et/ou pendant ledit stockage.
3. Procédé selon la revendication 1 ou 2, dans lequel ledit inhibiteur de microbes gazeux
est constitué essentiellement de dioxyde de carbone, d'azote ou d'un ou plusieurs
gaz nobles.
4. Procédé selon la revendication 1 ou 2, dans lequel ledit gaz noble est choisi parmi
l'hélium, le néon, l'argon, le krypton, le xénon et le radon.
5. Procédé selon la revendication 1 ou 2, dans lequel ledit inhibiteur de microbes gazeux
est un mélange de dioxyde de carbone et d'azote, préférablement en un rapport de 10-90%
de dioxyde de carbone et de 90-10% d'azote.
6. Procédé selon la revendication 1 ou 2, dans lequel ledit inhibiteur de microbes gazeux
contient en outre de l'oxygène.
7. Procédé selon la revendication 5, dans lequel ledit inhibiteur de microbes gazeux
comprend une association de dioxyde de carbone et d'oxygène, préférablement en un
rapport de 10-90% de dioxyde de carbone et de 90-10% d'oxygène.
8. Procédé selon la revendication 1, dans lequel ledit inhibiteur de microbes gazeux
comprend une association de dioxyde de carbone, d'azote, de gaz nobles et d'oxygène,
contenant au moins 10% de dioxyde de carbone.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel ledit inhibiteur
de microbes gazeux est introduit dans un courant liquide dudit matériau préalablement
audit stockage.
10. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel ledit inhibiteur
de microbes gazeux est introduit dans un bassin de stockage contenant ledit matériau
aqueux.
11. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel ledit inhibiteur
de microbes gazeux est introduit dans un diluant pour ledit matériau.
12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel lesdits micro-organismes
comprennent les bactéries, les champignons et/ou les algues.
13. Procédé selon la revendication 1, dans lequel ledit inhibiteur de microbes gazeux,
constitué essentiellement de dioxyde de carbone, d'azote, de gaz d'argon ou de mélanges
de ceux-ci, est introduit dans un courant liquide pénétrant dans un bassin de stockage
pour ledit matériau aqueux ou dans ledit bassin de stockage lui-même.
14. Procédé selon la revendication 13, dans lequel ladite introduction d'inhibiteur de
microbes gazeux est suivie et/ou précédée d'une introduction d'un gaz contenant de
l'oxygène dans ledit bassin de stockage ou dans un courant liquide pénétrant dans
ledit bassin de stockage.
15. Procédé selon la revendication 14, dans lequel ladite introduction d'inhibiteur de
microbes gazeux et ladite introduction de gaz contenant de l'oxygène sont répétées
de manière alternative au cours du stockage dudit matériau aqueux.
16. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel ledit matériau
aqueux est une suspension de pâte située dans une tour de stockage de pâte, dans un
cuvier de pâte, une tour de cassé de fabrication ou un bassin de stockage semblable.
17. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel ledit matériau
aqueux est de la pâte liquide dans le traitement de la pâte d'un système de fabrication
de papier.
18. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel ledit matériau
aqueux est de l'eau collée dans une machine à papier, préférablement de l'eau collée
dans un réservoir à eau collée de la circulation longue.
19. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel ledit matériau
aqueux est une bouillie d'un additif chimique, tel que l'amidon, un revêtement, un
pigment, une charge, ou similaire.
20. Procédé selon l'une quelconque des revendications 1 à 19, dans lequel ladite chaîne
de production pour les produits cellulosiques comprend une chaîne pour la production
de pâte, de papier, de carton ou similaire.
21. Procédé selon la revendication 20, dans lequel ladite chaîne de production comprend
le retraitement de papier et/ou de cassé de fabrication récupérés.
22. Procédé selon la revendication 20 ou 21, dans lequel ladite chaîne de production a
un système d'eau sensiblement fermé.
23. Procédé selon l'une quelconque des revendications 1 à 22, dans lequel ledit matériau
aqueux traité par ledit inhibiteur de microbes gazeux est traité en un produit cellulosique
tel que la pâte, le papier, le carton ou similaire.
24. Utilisation de dioxyde de carbone, d'azote ou d'un gaz noble seul ou dans un mélange
gazeux non naturel comme inhibiteur de microbes gazeux pour le contrôle de la croissance
microbienne dans un matériau aqueux contenant de l'eau ainsi que des fibres de pâte
en suspension et/ou des additifs pour celles-ci, lequel matériau étant traité et/ou
stocké dans une chaîne de production pour les produits cellulosiques.
25. Utilisation selon la revendication 24, dans laquelle ledit inhibiteur de microbes
gazeux est constitué essentiellement de dioxyde de carbone.
26. Utilisation selon la revendication 25, dans laquelle du dioxyde de carbone et de l'oxygène
sont utilisés en association ou comme alimentations alternées audit matériau.
27. Utilisation selon l'une quelconque des revendications 24 à 26 dans la production de
papier dans une chaîne de production ayant un système d'eau sensiblement fermé, et
comprenant le retraitement de papier récupéré.