BACKGROUND OF THE INVENTION
[0001] The present invention relates to noise reduction and, more particularly, to noise
reduction for antenna arrays.
[0002] As mobile terminals become more commonly used for providing communications to traveling
users, it is desirable to provide hand-free use of mobile terminals by drivers of
vehicles, such as automobiles. While hands-free systems have been introduced to assist
a vehicle driver, noise problems may be introduced by such systems. Two approaches
have previously been proposed to address this problem. One is single-microphone noise
reduction techniques which may utilize differences in the spectral characteristics
of speech and noise. Such systems are described, for example, in S.F.Boll. "Suppression
of acoustic noise in speech using spectral subtraction," IEEE Trans. on Acoustics,
Speech, and Signal Processing. ASSP-27(2):113-120, April 1979; and, R.J. McAlulay
and M.L. Malpass. "Speech enhancement using a soft-decision noise-suppression filter,"
IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-28:137-145, 1980. However,
in many situations, the speech and the noise tend to have similar spectral distributions.
Under these conditions, the single-microphone echo suppression technique may not yield
substantial improvement in speech intelligibility. On the other hand, the signal and
the echo in a car environment are acoustical fields which typically have different
spatial characteristics. The spatial separation of the speech and the echo can be
exploited to reduce the noise level.
[0003] It is known that processing of such spatial signals generally requires antenna (receiver)
arrays that utilize several microphones. Approaches which utilize such arrays in conjunction
with signal processing have been developed and applied in other fields, such as sonar
and seismic focus searching. The general technique, called "antenna array processing",
may achieve effective rejection of underwater noise (ambient noise and ocean reverberation)
as described, for example, in L.G. Krasny, Spatial processing of acoustic signals
in a plane-parallel waveguide, Sov.Phys.Accoust., 30, 4, 495-501, 1984 and A.B. Baggeroer,
W.A. Kuperman and H. Shmidt, "Matched-field processing: source localization in correlated
noise as an optimum parameter estimation problem," J.Acoust.Soc.Am. 83, 571-587,1988.
[0004] The typical conventional antenna array processing algorithm can be described by the
following equation in the frequency domain:

where
Uout(
w) and
U(
w,
ri) are respectively the Fourier transform of the antenna processor output and the field
u(
t,
ri) observed at the output of the i-th antenna element with the spatial coordinates
ri and H(
w;
ri) is the frequency response of the filter at the
ith antenna element, which satisfies the system of equations:

where
gN(
w;
ri,
rk) is the spatial correlation function of the background noise,
R0 is the spatial coordinates of the talker,
N is the number of antenna elements, j = √-1, and c is the speed of sound.
[0005] FIG. 1 illustrates a conventional system
100 for performing antenna array processing. The system includes
N filters
110 (filters
H1,..,HN) which filter
N signals received from microphones
120, where
N =
1,2,3,.... Preferably,
N spatially displaced microphones are used and the signals from each are sampled by
analog to digital (A/D) converters and the
N filters
110 are implemented as digital filters. The filtered results are summed in a summer
130 and the resulting sum
Uout is a signal in which the background noise is generally suppressed. The circuit
140 labeled "Est.CF" estimates the noise correlation matrix and calculates the frequency
responses of the filters
H1,..,HN 110 according to equation (2) above.
[0006] However, some difficulties may become apparent when this technique is applied to
the noise reduction problem in a car environment. First, while the conventional antenna
array processing equation (1) generally works properly in the presence of a single
sound source, its efficiency typically suffers considerably in the case of multiple
sound sources. For example, if the driver and passengers talk simultaneously, equation
(1) generally cannot separate these sources which may lead to a significant signal
distortion after array processing. Secondly, equation (1) is based on an assumption
that the antenna array is located in a free-field propagation channel. However, the
free-field propagation model does not take into account affects, such as waveguide
sound propagation, typically found in a car cabin environment. Accordingly, there
is a need for a system to reduce the noise associated with spatially displaced signal
sources.
[0007] European Patent Application Publication No. EP 0411801 describes a communication
system with active noise cancellation. An acoustic attenuation system is provided
with various adaptive filter models enabling communication between persons in spaced
zones by selectively canceling undesired noise and undesired speech on an on-line
basis.
SUMMARY OF THE INVENTION
[0008] The present invention may meet this need by providing methods, systems and mobile
terminals which use the spatial characteristics associated with the respective locations
of various signal sources within the receiver environment, such as a vehicle, in processing
received signals from the signal sources. The use of the spatial characteristics may
provide improved noise reduction and further, in various embodiments of the present
invention, may be used to apply a selected suppression level to one or more of the
signal sources. For example, in a vehicle hands-free speech reception system, far-end
feedback from a speaker in the vehicle may be substantially suppressed while speech
from a driver and a passenger in the vehicle may be processed with substantially zero
decibels of suppression. The suppression levels may be user selectable. These objects
are achieved by the system according to claim 1 and the method according to Claim
17.
[0009] In one embodiment of the present invention, a noise reduction system is provided
including a plurality off receive channels coupled to a plurality of signal inputs.
Each of the receive channels including a plurality of filters that output channel
component filtered signals. Each of the filters may be responsive to at least one
of the plurality of signal inputs and have coefficients based on a source spatial
characteristic associated with the respective receive channel. The receive channels
further include a channel combiner circuit that combines the channel component filtered
signals to provide a channel filtered signal. The noise suppression system further
includes a constraint circuit that outputs a suppression for at least one of the channel
filtered signals and an output combiner circuit responsive to the plurality of receive
channels that combines the channel filtered signals. The channel combiner circuit
may include a summer that receives the channel component filtered signals and a weighting
filter that filters an output of the summer to provide the channel filtered signal.
The weighting filter may be responsive to the constraint circuit. The constraint circuit
may be responsive to a user input designating a desired suppression for at least one
of the plurality of receive channels. In one embodiment, the constraint circuit outputs
coefficients of the weighting filter associated with the at least one of the plurality
of receive channels as the suppression for the at least one of the channel filtered
signals which is associated with the at least one of the plurality of channels based
on the designated desired suppression and the source spatial characteristic associated
with the at least one of the plurality of channels.
[0010] In another embodiment of the present invention, the noise suppression system includes
a coefficient estimation circuit that adjusts the coefficients of the plurality of
filters of each of the plurality of receive channels responsive to the audio inputs.
The coefficient estimation circuit may be configured to adjust the coefficients of
the plurality of filters of each of the plurality of receive channels based on the
source spatial characteristic associated with the respective receive channels. In
one embodiment, a plurality of receivers generate the plurality of signal inputs.
The coefficient estimation circuit adjusts the coefficients of the plurality of filters
of each of the plurality of receive channels based on the source spatial characteristic
associated with the respective receive channels using a Green function for each of
the plurality of receive channels that corresponds to a propagation channel from a
signal source associated with the respective channel to the plurality of receivers.
The receivers may be spatially displaced microphones and the signal sources associated
with the respective channels may be sound sources in a vehicle.
[0011] In a further embodiment of the present invention, a noise reduction system for a
multi-source environment is provided including a plurality of filters coupled to a
plurality of signal inputs. The plurality of filters output component filtered signals.
Each of the filters may be responsive to at least one of the plurality of signal inputs
and have coefficients based on source spatial characteristics associated with sources
in the multi-source environment. The system further includes an output combiner circuit
responsive to the plurality of filters that combines the component filtered signals
and a coefficient estimation circuit that adjusts the coefficients of the plurality
of filters based on the source spatial characteristics. The coefficient estimation
circuit may include a constraint circuit that outputs a suppression associated with
at least one of the sources in the multi-source environment.
[0012] In a further embodiment of the present invention, a vehicle hands-free speech reception
system is provided including a plurality of spatially displaced microphones in the
vehicle and a plurality of receive channels coupled to the microphones. Each of the
receive channels is associated with a respective one of a plurality of spatial positions
in the vehicle. Each of the receive channels includes a plurality of filters that
output channel component filtered signals, each of the filters responsive to at least
one of the microphones and having coefficients based on a source spatial characteristic
associated with the spatial position in the vehicle associated with the respective
receive channel, and a channel combiner circuit that combines the channel component
filtered signals to provide a channel filtered signal. A constraint circuit outputs
a suppression for at least one of the channel filtered signals and an output combiner
circuit responsive to the plurality of receive channels combines the channel filtered
signals. One of the plurality of spatial positions may be a passenger position and
at least one of the plurality positions may be a noise source. The noise source may
be a speaker and the speaker and the vehicle hands-free reception system may be a
telephone system.
[0013] In a method aspect of the present invention, a method for noise reduction is provided
including receiving sound signals from a plurality of displaced spatial positions
at a receiver and processing the received signals through a plurality of receive channels
to provide a plurality of processed signals, each of the processed signals being associated
with one of the displaced spatial positions. A selected suppression is applied to
at least one of the processed received signals and the suppressed at least one of
the processed received signals and the other processed signals are combined.
[0014] In a further embodiment of the present a method for noise reduction is provided including
receiving signals and processing the plurality of received signals through a first
filter having coefficients associated with a first source spatial characteristic to
provide a first filtered signal and through a second filter having coefficients associated
with a second source spatial characteristic to provide a second filtered signal. The
first filtered signal is processed through a third filter having coefficients associated
with a selected suppression for the first source to provide a first suppressed signal
and the second filtered signal is processed through a fourth filter having coefficients
associated with a selected suppression for the second source to provide a second suppressed
signal. The first and second suppressed signals are combined. The signals are preferably
received from N spatially displaced microphones and processed through an associated
one of N filters comprising the first filter and outputs of the N filters comprising
the first filter are combined to provide the first filtered signal. The received signals
from each of the N microphones are also processed through an associated one of N filters
comprising the second filter and outputs of the N filters comprising the second filter
are combined to provide the second filtered signal.
[0015] In a further embodiment of the present invention, the coefficients of the N filters
comprising the first filter and the N filters comprising the second filter are estimated.
The coefficients of the third filter may be estimated responsive to a constraint value
associated with the first source and the coefficients of the fourth filter may be
estimated responsive to a constraint value associated with the second source. The
first source may be a wanted source and the step of processing the first filtered
signal through a third filter may include processing the first filtered signal through
the third filter wherein the third filter provides a selected suppression of about
0 decibels. The second source may be an unwanted source and the step of processing
the second filtered signal through a fourth filter may include processing the second
filtered signal through the fourth filter wherein the fourth filter provides a selected
suppression of at least about -3 decibels.
[0016] In another embodiment of the present invention, a method for noise reduction is provided
including receiving signals from N spatially displaced microphones and processing
the received signals from each of the N microphones through an associated one of N
filters, each of the N filters having coefficients associated with a plurality of
source spatial characteristics and a selected suppression for a source associated
with each of the plurality of source spatial characteristics. The processed received
signals are combined. Preferably, the coefficients of the N filters are estimated
responsive to constraint values associated with the sources associated with each of
the plurality of source spatial characteristics.
[0017] As will further be appreciated by those of skill in the art, while described above
primarily with reference to method aspects, the present invention may also be embodied
as systems.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018]
FIG. 1 is a schematic block diagram illustrating a conventional array processing noise reduction
system;
FIG. 2 is a schematic block diagram illustrating a noise reduction system according to a
first embodiment of the present invention in a hands free vehicle speech reception
system;
FIG. 3 is a schematic block diagram illustrating a noise reduction system according to a
second embodiment of the present invention;
FIG. 4A - 4C are graphical illustrations of exemplary source signal spectra;
FIG. 5A - 5B are graphical illustrations of exemplary constraint functions;
FIG. 6 is a graphical illustration of performance for an embodiment of the present invention;
and
FIG. 7 is a flowchart illustrating operations for an embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0019] The present invention now will be described more fully hereinafter with reference
to the accompanying drawings, in which preferred embodiments of the invention are
shown. This invention may, however, be embodied in many different forms and should
not be construed as limited to the embodiments set forth herein; rather, these embodiments
are provided so that this disclosure will be thorough and complete, and will fully
convey the scope of the invention to those skilled in the art. As will be appreciated
by those of skill in the art, the present invention may be embodied as methods or
devices. Accordingly, the present invention may take the form of a hardware embodiment,
a software embodiment or an embodiment combining software and hardware aspects.
[0020] Operations of the present invention may be described by modeling the signal field
in a car as a superposition of the signals from M users and background noise (road
noise, wind noise, engine noise). In addition, assume that the microphones in the
receiving antenna array are placed into the car with an arbitrary geometry defining
the positions of the microphones. When a mixture of the signals and background noise
are incident on the array, the Fourier transform
U(
w,
ri) of the field
u(
t,
ri) received by the
i-th array element has the form:

where
Sm(
w) is the spectrum of the signal from the
m-th user,
G(
w,
ri,
Rm) is the Green function which describes a propagation channel from the
m-th user (or signal (sound) source) with the spatial coordinates
Rm to the antenna array, and
N(
w,ri) is the Fourier transform of the noise field.
[0021] A preferred embodiment of the present invention may be described as follows:

where
Uout (
w) is the Fourier transform of the antenna processor output, and

[0022] Equation (4) describes a multichannel system which includes
M spatial channels {
U1(
w),..,
UM(
w)}. The frequency responses of the filters
H(
w;
ri,
Rm) for each of these channels are matched with the spatial characteristics of the signal
from the
m-th user and the background noise and satisfy the following equation:

where
g
(
w;
ri,
rk) denotes elements of the matrix
g
which is the inverse of the noise spatial correlation function
gN(
w;
ri,
rk).
[0023] Therefore, in contrast to the conventional approach described in equation (1), the
noise reduction system described by equation (4) utilizes determinate information
about the spatial characteristic of the source signal field in a vehicle. The array
processing in the
m-th spatial channel may be optimized to detect a signal from the
m-th source against the background noise.
[0024] If the noise spatial correlation function
gN(
w;
ri,
rk) is a priori unknown, it may still be determinate as the inverse correlation matrix
g
(
w;
ri,
rk) can be estimated by using the adaptive algorithm, for instance:

where
g
(
w;
ri,
rk) is an estimate of the inverse noise correlation matrix
g
(
w;
ri,
rk) at the
n-th iteration,
mg is a convergence factor, and the functions
D(n)(
w,
ri) satisfy the following equation:

As seen in the equations, the functions
D(n)(
w,
ri) at the
n-th frame are calculated using the inverse noise correlation matrix at the previous
(
n-1)-th frame where a frame may be selected as a determined time interval and/or number
of samples of the received signal from the microphones by associated analog to digital
(A/D) converters.
[0025] The output voltages of the
M spatial channels may be accumulated with the weighting functions (filters) {
W1(
w),..,
WM(
w)}, which satisfy the following equation:

where Ψ

(
w) denotes elements of the matrix Ψ
-1(
w) which is the inverse of the matrix Ψ(
w) with elements:

and {
B1(
w),..,
BM(
w)} may be user selectable functions. The choice of these functions depends on the
desired signal processing result. For example, if clear speech is desired from all
M, sources, the functions
B1(
w),..,
BM(
w) may be chosen as

where the 1 values in one embodiment provide a suppression of 0 decibels (dB).
[0026] If the signal from some
k-th user (source) is unwanted the functions
B1(
w),..,
BM(
w) may be set as:

Bi(
w)=0 theoretically provides substantially complete suppression (cancellation). Intermediate
values may be provided for other levels of suppression. In one embodiment
Bi(
w)=.1 corresponds to -10dB of suppression,
Bi(
w)=.5 corresponds to -3dB of suppression and so on.
[0027] FIG. 2 is a schematic block diagram illustrating an embodiment of the present invention.
As shown in
FIG.2 the noise reduction system includes
M spatial channels
205a, 205b. Each channel
205a, 205b includes
N filters
210 (filters
Hm1,..,HmN for the
m-th channel where
m=
1,...M) which filter
N signals from microphones
220, where
N = 1,2,3,... The microphones are preferably spatially displaced. The N filters
210 output channel component filtered signals. Each of the N filters
210 is responsive to at least one of the signal inputs from the microphones
220 and has coefficients based on a source spatial characteristic associated with the
respective channel, for example, with a particular spatial location signal source
within a vehicle, such as the driver, with which the respective channel is associated.
[0028] With reference to each of the
M channels, the outputs of the filters
Hm1,..,
HmN at the
m-th spatial channel are summed in respective channel combiner circuits, such as summers
Σ
m 230, where
m =
1,2,3..,M are the respective M channels. A summer
230 is included in each of the
M channels
205a, 205b. The outputs of the summers Σ1,..,Σ
M 230 are filtered through the suppression (weighting) filters
W1,..,WM 240 which, in combination with the summers
230 provides a channel combiner circuit that outputs a suppression for the channel filtered
signals from the filters
210 in the illustrated embodiment. The weighting filters
240 are responsive to a constraint circuit
270 to provide a desired suppression to each of the spatial location signal sources.
The filtered results are summed in a summer (channel output combiner circuit)
250 and the resulting sum is a signal
Uout in which the background noise may be suppressed and signals from unwanted sources
may be canceled (substantially fully suppressed).
[0029] A coefficient estimation circuit
260 ("Est.CF") estimates the noise correlation matrix and calculates the frequency responses
of the filters
Hm1,..,
HmN (
m= 1,2,..,
M) 210. In a preferred embodiment, the coefficients are calculated according to equation
(6) and are updated responsive to the signal inputs from the microphones
220.
[0030] A constraint circuit
270 calculates the frequency responses of the filters
W1,.., W
M 240 (by providing the filter coefficients), preferably according to equation (8). The
constraint circuit
270 may also generate outputs based on constraint functions
B1(
w),..,
BM(
w). As mentioned above, choice of these functions depends on the goal of the circuit,
such as, to keep clear speech from all users or to suppress signals from some unwanted
signal sources. The constraint functions may be user selectable inputs designating
a desired suppression for each of the receive channels (and thereby the associated
spatial location signal source such as a driver, a passenger or a speaker). As shown
in
FIG. 2 and as can be seen from equation (8), the constraint circuit
270 receives the frequency responses of the filters
210 as inputs.
[0031] An alternative embodiment of the present invention is illustrated in the block diagram
of
FIG. 3. N filters
310 (filters
H01,..,
H0
N) are provided which filter
N digitally sampled signals received from N microphones
320. The filters
310 are responsive to the signals from the microphones
320 and have coefficients defining their frequency response based on source spatial characteristics
associated with sources in the multi-user environment of the system as, for example,
is shown in the embodiment described by equation (12) below. The component filtered
signals from the filters
310 are combined in an output combiner circuit
350 (a summer in the illustrated embodiment) and the resulting sum is a signal
Uout in which the background noise may be selectively suppressed.
[0032] In contrast to the filters
H1,..,
HN 110 for the conventional array processing system in
FIG. 1, the frequency responses of the filters
H01,..,
H0
N are preferably described by the following equation:

where the functions
Wm(
w) satisfy the system of equations (8) and the functions
H(
w;
ri,
Rm) satisfy the system of equations (6). In other words, each filter
H0i 310 may be viewed as
M filters
W1,..,WM with the frequency responses
Wm(w) and
M filters
Hmi,..,Hmi with the frequency responses
H(
w;
ri,Rm) (
m = 1,..,
M). Using this model, the coefficient estimation circuit
360 in the embodiment of
FIG. 3 estimates the noise correlation matrix and calculates the frequency responses of
the filters
Hm1,..,
HmN (
m = 1,..,
M) according to the equation (6). The constraint circuit
370 calculates the frequency responses of the filters
W1,..,
WM according to equation (8) using constraint functions
B1(
w),..,
BM(
w) to select signal suppression levels for wanted and unwanted signal sources. The
coefficient estimation circuit
360 and the constraint circuit
370 may be combined in constrained coefficient estimation circuit
375.
[0033] The present invention will now be further described by an example where there is
just one source (a driver) in the vehicle and we want to keep the driver's speech
clear. Let us assume also that we would like to suppress echo from a far-end speaker
which is to be suppressed during hands-free communication. In this example
M = 2 may be selected. Therefore, the system may include two spatial channels
U1(w) and
U2(
w). The frequency responses of the filters
H(
w;
ri,
R1) at the first channel may be matched with the spatial coordinates
R1 of the driver, and the frequency responses of the filters
H(
w;
ri,
R2) at the second channel may be matched with the spatial coordinates
R2 of a loudspeaker which creates echo signal.
[0034] The functions
B1(
w) and
B2(
w) are chosen according to equations

[0035] A further example would be when there are two user sources (a driver and one passenger
in a vehicle and we want to keep clear speech from both of them. Let us assume again
a far-end signal echo is to be suppressed. In this case, we may choose
M = 3. Therefore, the system may include three spatial channels
U1(w),
U2(
w) and
U3(
w). The frequency responses of the filters
H(
w;
ri,
R1) at the first channel may be matched with the spatial coordinates R
1 of the driver, the frequency responses of the filters
H(
w;
ri,
R2) at the second channel may be matched with spatial coordinates R
2 of a loudspeaker generating the far-end signal, and the frequency responses of the
filters
H(
w;
ri,
R3) at the third channel may be matched with the spatial coordinates R
3 of the passenger.
[0036] The functions
B1(
w),
B2(
w) and
B3(
w) are chosen in this simple example according to equations:

It is further to be understood that the functions
B1(
w) may be user selectable and, thus, changed by a driver or passenger in a vehicle.
[0037] More generally, the functions B
1(
w) ... B
M(
w) can be chosen to produce a desired overall effect. For example, there is a compromise
that may be achieved among several goals. This may be illustrated by a further example.
[0038] Consider a case where source 1 is a desired speech signal, source 2 is a fan on the
dashboard of a car that needs to be suppressed and the ambient noise is a mix of road
noise and engine noise. The spectra S
1(
w) and S
2(
w) are illustrated in
FIGs. 4A through
4C for purposes of illustrating this example as well as the spectrum of the noise S
noise(
w). In choosing B
1(
w), the goal may be to conserve source 1 while suppressing the noise. In choosing B
2(
w) it is preferable to attenuate source 2. Illustrative resulting choices for this
example are shown in
FIGs. 5A and
5B. It is to be understood that the spectra and constraints are illustrated in a simplified
manner for purposes of this example to illustrate the flexibility provided through
choosing the constraint functions to reflect the spectra of desired and undesired
signals.
[0039] A computer simulation of a system according to an embodiment of the present invention
is shown in
FIG. 6, which illustrates the output signal-to-noise ratio as a function of frequency. Solid
lines correspond to an embodiment of the present invention described by equation (4),
and dashed lines correspond a conventional system based on equation (1). The simulations
are based on 4-element antenna array and two user sources.
[0040] For this simulation, the present invention allows substantial (25-30 dB) attenuation
of the noise field and unwanted signal without substantial suppression and/or degradation
of the target (desired) signal.
[0041] Operations of the present invention will now be described with respect to the flowchart
illustration of
FIG. 7. It will be understood that each block of the flowchart illustrations and the block
diagram illustrations of
FIGs. 2 and
3, and combinations of blocks in the flowchart illustrations and the block diagram illustrations,
can be implemented by computer program instructions. These program instructions may
be provided to a processor to produce a machine, such that the instructions which
execute on the processor create means for implementing the functions specified in
the flowchart and block diagram block or blocks. The computer program instructions
may be executed by a processor to cause a series of operational steps to be performed
by the processor to produce a computer implemented process such that the instructions
which execute on the processor provide steps for implementing the functions specified
in the flowchart and block diagram block or blocks.
[0042] Accordingly, blocks of the flowchart illustrations and the block diagrams support
combinations of means for performing the specified functions, combinations of steps
for performing the specified functions and program instruction means for performing
the specified functions. It will also be understood that each block of the flowchart
illustrations and block diagrams, and combinations of blocks in the flowchart illustrations
and block diagrams, can be implemented by special purpose hardware-based systems which
perform the specified functions or steps, or combinations of special purpose hardware
and computer instructions. For example filters
210,
310, coefficient estimation circuits
260,
360 and constraint circuits
270,
370 may all be implemented as code executing on a processor, as custom chips or as a
combination of the above.
[0043] Operation according to embodiments of the present invention will now be described
with reference to the flowchart illustration of
FIG. 7. Operations begin at block 500 with determination of a desired suppression for each
of a plurality of spatial location signal sources. For example, for a hands-free speech
reception system in a vehicle, a spatial location associated with a driver and a passenger
respectively may be provided a desired suppression of substantially zero decibels.
A spatial location associated with a speaker outputting the far-end speech signal
into the vehicle compartment may be associated with a desired suppression of about
minus three decibels or, preferably, with substantially complete suppression providing
effective cancellation of far-end echo signals. For embodiments of the present invention
including separate channels associated with each spatial location signal source, as
illustrated, for example in
FIG. 2, one of the channels may be associated with each of the spatial location signal sources
(block
505).
[0044] Signals are received from the spatial location signal sources (block
510). Preferably, the signals are received at
N spatially displaced microphones providing an antenna array.
N filters
H(w) are preferably provided in each channel with one of the filters being associated
with each of the
N microphone sources. Coefficients are estimated for each of the filters
H(w) and for the suppression (weighting) filters
W(w) associated with each channel (block
515). It is further to be understood that, for embodiments such as that illustrated in
FIG. 3, the estimation of the coefficients
H(w) and
W(w) are combined and result in generation of the coefficients of the filters
310 as shown in
FIG. 3.
[0045] The received signals are then processed through the receive channels to provide a
plurality of process filtered signals, each of which is associated with one of the
displaced spatial location signal sources as will now be described with reference
to blocks
520 through
525. For the illustrated embodiment of
FIG. 7 which may be implemented, for example, in the system illustrated in
FIG. 2, the received signals are processed through associated ones of the N filters corresponding
to the respective
N microphones in each of the plurality of channels (block
520). The outputs of the filters within each channel are combined (block
525). For the illustrated embodiment shown in
FIG. 7, a selected suppression is applied to the received signals by processing the combined
outputs from the N filters
H(w) of each channel through a suppression filter
W(w) for each channel (block
530). The suppression filters
W(w) have coefficients associated with a selected suppression as determined at block
500. The selected suppressions may be user selectable or may be otherwise set.
[0046] It is to be further understood that, in other embodiments of the present invention,
the filter processing and suppression responsive to a spatial location associated
with each signal source may be combined into a single composite filtering step, for
example as with the illustrated embodiment of
FIG. 3. Accordingly, operations at block
520 through
530 described above may be carried out by processing the signal from each of the end
microphones through an associated filter having coefficients based upon signal source
spatial characteristics and a desired suppression for each of the displaced spatial
location signal sources. In either case, the outputs of the respective filters acting
as suppression filters may then be combined to generate a signal (block
535).
[0047] In the drawings and specification, there have been disclosed typical preferred embodiments
of the invention and, although specific terms are employed, they are used in a generic
and descriptive sense only and not for purposes of limitation, the scope of the invention
being set forth in the following claims.
1. A noise reduction system comprising:
a plurality of receive channels (205a, 205b ...) coupled to a plurality of signal
inputs (220), each of the plurality of receive channels comprising,
a plurality of filters (210) that output channel component filtered signals, each
of the plurality of filters responsive to at least one of the plurality of signal
inputs and having coefficients based on a source spatial characteristic associated
with the respective receive channel, and
a channel combiner circuit (230) that combines the channel component filtered signals
to provide a channel filtered signal;
and
an output combiner circuit (250) responsive to the plurality of receive channels that
combines the channel filtered signals.
2. The system according to Claim 1 wherein the system further comprises a constraint
circuit that outputs a suppression for at least one of the channel filtered signals.
3. The system according to Claim 2 wherein the channel combiner circuit further comprises:
a summer that receives the channel component filtered signals; and
a weighting filter that filters an output of the summer to provide the channel filtered
signal.
4. The system according to Claim 3 wherein the weighting filter is responsive to the
constraint circuit.
5. The system according to Claim 4 wherein the constraint circuit is responsive to a
user input designating a desired suppression for at least one of the plurality of
receive channels.
6. The system according to Claim 5 wherein the constraint circuit outputs coefficients
of the weighting filter associated with the at least one of the plurality of receive
channels as the suppression for the at least one of the channel filtered signals which
is associated with the at least one of the plurality of channels based on the designated
desired suppression and the source spatial characteristic associated with the at least
one of the plurality of channels.
7. The system according to any of claims 2-6 wherein the constraint circuit outputs a
suppression for at least one of the channel filtered signals based on a frequency
spectrum of the signal source associated with the receive channel providing the at
least one of the channel filtered signals.
8. The system according to any of claims 1-7 wherein the system further comprises a coefficient
estimation circuit that adjusts the coefficients of the plurality of filters of each
of the plurality of receive channels responsive to the signal inputs.
9. The system according to Claim 8 wherein the coefficient estimation circuit is further
configured to adjust the coefficients of the plurality of filters of each of the plurality
of receive channels based on the source spatial characteristic associated with the
respective receive channels.
10. The system according to Claim 9 further comprising a plurality of receivers that generate
the plurality of signal inputs and wherein the coefficient estimation circuit adjusts
the coefficients of the plurality of filters of each of the plurality of receive channels
based on the source spatial characteristic associated with the respective receive
channels using a Green function for each of the plurality of receive channels that
corresponds to a propagation channel from a signal source associated with the respective
channel to the plurality of receivers.
11. The system according to Claim 10 wherein the receivers are spatially displaced microphones
and the at least one signal source associated with the respective channels is at least
one sound source.
12. The system according to Claim 11 wherein the spatially displaced microphones and the
at least one sound source are in a vehicle.
13. A receive channel according to any of claims 1-12.
14. The system of Claim 1 wherein the system is a hands-free speech reception system in
a vehicle, the system further comprising:
a plurality of spatially displaced microphones in the vehicle, each of the microphones
coupled to the plurality of receive channels to provide the plurality of signal inputs;
and
wherein each of the receive channels is associated with a respective one of a
plurality of spatial positions in the vehicle and wherein each of the source spatial
characteristics associated with the respective receive channels are associated with
a respective one of a plurality of spatial positions in the vehicle.
15. The system according to Claim 14 wherein at least one of the plurality of spatial
positions is a passenger position and at least one of the plurality positions is a
noise source.
16. The system according to Claim 15 wherein the noise source is a speaker and wherein
the speaker and the hands-free reception system comprise a telephone system.
17. A method for noise reduction comprising:
receiving a plurality of received signals (220);
processing the plurality of received signals through a first filter (210, 230 in 205a)
having coefficients associated with a first source spatial characteristic to provide
a first filtered signal;
processing the plurality of received signals through a second filter (210, 230 in
205b) having coefficients associated with a second source spatial characteristic to
provide a second filtered signal;
processing the first filtered signal through a third filter (240 in 205a) having coefficients
associated with a selected suppression for the first source to provide a first suppressed
signal;
processing the second filtered signal through a fourth filter (240 in 205b) having
coefficients associated with a selected suppression for the second source to provide
a second suppressed signal; and
combining (250) the first and second suppressed signals.
18. The method according to Claim 17 wherein receiving a plurality of received signals
comprises receiving the plurality of received signals from N spatially displaced microphones
and wherein processing the plurality of received signals through a first filter having
coefficients associated with a first source spatial characteristic to provide a first
filtered signal comprises processing the plurality of received signals from each of
the N microphones through an associated one of N filters comprising the first filter
and combining outputs of the N filters comprising the first filter to provide the
first filtered signal and wherein processing the plurality of received signals through
a second filter having coefficients associated with a second source spatial characteristic
to provide a second filtered signal comprises processing the plurality of received
signals from each of the N microphones through an associated one of N filters comprising
the second filter and combining outputs of the N filters comprising the second filter
to provide the second filtered signal.
19. The method according to Claim 18 further comprising estimating the coefficients of
the N filters comprising the first filter and the N filters comprising the second
filter.
20. The method according to Claim 19 further comprising estimating the coefficients of
the third filter responsive to a constraint value associated with the first source
and estimating the coefficients of the fourth filter responsive to a constraint value
associated with the second source.
21. The method according to Claim 19 wherein estimating the coefficients of the N filters
comprising the first filter and the N filters comprising the second filter comprises
estimating the coefficients based on the equation

where
g
(
w;
ri,
rk) the matrix
g
which is an inverse of the noise spatial correlation function
gN(
w;
ri,
rk) and where
G(
w,
rk,
Rm) is a Green function which describes a propagation channel from a
m-th signal source with the spatial coordinates
Rm.
22. The method according to Claim 19 wherein the first source is a wanted source and processing
the first filtered signal through a third filter having coefficients associated with
a selected suppression for the first source to provide a first suppressed signal comprises
processing the first filtered signal through the third filter wherein the selected
suppression provided by the third filter is about 0 decibels and wherein the second
source is an unwanted source and processing the second filtered signal through a fourth
filter having coefficients associated with a selected suppression for the second source
to provide a second suppressed signal comprises processing the second filtered signal
through the fourth filter wherein the selected suppression provided by the fourth
filter is at least about -3 decibels.
1. Rauschreduzierungssystem, umfassend:
eine Vielzahl von Empfangskanälen (205a, 205b, ...), gekoppelt mit einer Vielzahl
von Signaleingaben (220), wobei jeder aus der Vielzahl von Empfangskanälen umfasst,
eine Vielzahl von Filtern (210), die kanalkomponenten-gefilterten Signale ausgeben,
wobei jeder aus der Vielzahl von Filtern auf mindestens eine von der Vielzahl von
Signaleingaben reagiert und mit Koeffizienten basierend auf einer Quellenraumcharakteristik,
die mit dem jeweiligen Empfangskanal in Verbindung steht, und
eine Kanalkombiniererschaltung (230), die die kanalkomponenten-gefilterten Signale
kombiniert, um ein kanalgefiltertes Signal vorzusehen; und
eine Ausgabekombiniererschaltung (250), die auf die Vielzahl von Empfangskanälen reagiert,
die die kanal-gefilterten Signale kombiniert.
2. System nach Anspruch 1, wobei das System ferner eine Beschränkungsschaltung umfasst,
die eine Unterdrückung für mindestens eines der kanal-gefilterten Signale ausgibt.
3. System nach Anspruch 2, wobei die Kanalkombiniererschaltung ferner umfasst:
einen Addierer, der die kanalkomponenten-gefilterten Signale empfängt; und
einen Wichtungsfilter, der eine Ausgabe des Addierers kombiniert, um das kanal-gefilterte
Signal vorzusehen.
4. System nach Anspruch 3, wobei der Wichtungsfilter auf die Beschränkungsschaltung reagiert.
5. System nach Anspruch 4, wobei die Beschränkungsschaltung auf eine Benutzereingabe
reagiert, die eine gewünschte Unterdrückung für mindestens einen aus der Vielzahl
von Empfangskanälen bestimmt.
6. System nach Anspruch 5, wobei die Beschränkungsschaltung Koeffizienten des Wichtungsfilters,
der mit dem mindestens einen aus der Vielzahl von Empfangskanälen in Verbindung steht,
als die Unterdrückung für das mindestens eine von den kanal-gefilterten Signalen ausgibt,
was mit dem mindestens einen aus der Vielzahl von Kanälen in Verbindung steht, basierend
auf der bestimmten gewünschten Unterdrückung und der Quellenraumcharakteristik, verbunden
mit dem mindestens einen aus der Vielzahl von Kanälen.
7. System nach einem beliebigen der Ansprüche 2-6, wobei die Beschränkungsschaltung eine
Unterdrückung für mindestens eines der kanal-gefilterten Signale basierend auf einen
Frequenzspektrum der Signalquelle ausgibt, die mit dem Empfangskanal in Verbindung
steht, der das mindestens eine der kanal-gefilterten Signale vorsieht.
8. System nach einem beliebigen der Ansprüche 1-7, wobei das System ferner eine Koeffizientenbewertungsschaltung
umfasst, die die Koeffizienten der Vielzahl von Filtern von jedem aus der Vielzahl
von Empfangskanälen justiert, die auf die Signaleingaben reagieren.
9. System nach Anspruch 8, wobei die Koeffizientenbewertungsschaltung ferner konfiguriert
ist, die Koeffizienten der Vielzahl von Filtern von jedem aus der Vielzahl von Empfangskanälen
basierend auf der Quellenraumcharakteristik zu justieren, die mit den jeweiligen Empfangskanälen
in Verbindung steht.
10. System nach Anspruch 9, ferner umfassend eine Vielzahl von Empfängern, die die Vielzahl
von Signaleingaben generieren, und wobei die Koeffizientenbewertungsschaltung die
Koeffizienten der Vielzahl von Filtern von jedem aus der Vielzahl von Empfangskanälen
justiert basierend auf der Quellenraumcharakteristik, die mit den jeweiligen Kanälen
in Verbindung steht, unter Verwendung einer Green-Funktion für jeden aus der Vielzahl
von Empfangskanälen, die einem Ausbreitungskanal von einer Signalquelle, die mit dem
jeweiligen Kanal in Verbindung steht, zu der Vielzahl von Empfängern entspricht.
11. System nach Anspruch 10, wobei die Empfänger räumlich versetzte Mikrofone sind und
die mindestens eine Signalquelle, die mit den jeweiligen Kanälen in Verbindung steht,
mindestens eine Schallquelle ist.
12. System nach Anspruch 11, wobei die räumlich versetzten Mikrofone und die mindestens
eine Schallquelle in einem Fahrzeug sind.
13. Empfangskanal nach einem beliebigen der Ansprüche 1-12.
14. System nach Anspruch 1, worin das System ein Freihand-Sprachempfangssystem in einem
Fahrzeug ist, wobei das System ferner umfasst:
eine Vielzahl von räumlich versetzten Mikrofonen in dem Fahrzeug, jedes der Mikrofone
mit der Vielzahl von Empfangskanälen gekoppelt, um die Vielzahl von Signaleingaben
vorzusehen; und
wobei jeder der Empfangskanäle mit einer jeweiligen aus einer Vielzahl von räumlichen
Positionen in dem Fahrzeug in Verbindung steht, und wobei jede der Quellenraumcharakteristika,
die mit den jeweiligen Empfangskanälen in Verbindung stehen, mit einer jeweiligen
aus einer Vielzahl von räumlichen Positionen in dem Fahrzeug in Verbindung steht.
15. System nach Anspruch 14, wobei mindestens eine aus der Vielzahl von räumlichen Positionen
eine Passagierposition ist und mindestens eine aus der Vielzahl von Positionen eine
Rauschquelle ist.
16. System nach Anspruch 15, wobei die Rauschquelle ein Lautsprecher ist und wobei der
Lautsprecher und das Freihand-Empfangssystem ein Telefonsystem umfassen.
17. Verfahren für eine Rauschreduzierung, umfassend:
Empfangen einer Vielzahl von empfangenen Signalen (220);
Bearbeiten der Vielzahl von empfangenen Signalen durch einen ersten Filter (210, 230
in 205a) mit Koeffizienten, die mit einer ersten Quellenraumcharakteristik in Verbindung
stehen, um ein erstes gefiltertes Signal vorzusehen;
Bearbeiten der Vielzahl von empfangenen Signalen durch einen zweiten Filter (210,
230 in 205b) mit Koeffizienten, die mit einer zweiten Quellenraumcharakteristik in
Verbindung stehen, um ein zweites gefiltertes Signal vorzusehen;
Bearbeiten des ersten gefilterten Signals durch einen dritten Filter (240 in 205a)
mit Koeffizienten, die mit einer ausgewählten Unterdrückung für die erste Quelle in
Verbindung stehen, um ein erstes unterdrücktes Signal vorzusehen;
Bearbeiten des zweiten gefilterten Signals durch einen vierten Filter (240 in 205b)
mit Koeffizienten, die mit einer ausgewählten Unterdrückung für die zweite Quelle
in Verbindung stehen, um ein zweites unterdrücktes Signal vorzusehen; und
Kombinieren (250) der ersten und zweiten unterdrückten Signale.
18. Verfahren nach Anspruch 17, wobei Empfangen einer Vielzahl von empfangenen Signalen
einen Empfang der Vielzahl von empfangenen Signalen von N räumlich versetzten Mikrofonen
umfasst und wobei eine Bearbeitung der Vielzahl von empfangenen Signalen durch einen
ersten Filter mit Koeffizienten, die mit einer ersten Quellenraumcharakteristik in
Verbindung stehen, um ein erstes gefiltertes Signal vorzusehen, umfasst Bearbeiten
der Vielzahl von empfangenen Signalen von jedem der N Mikrofone durch einen zugehörigen
von N Filtern umfassend den ersten Filter und Kombinieren von Ausgaben der N Filter
umfassend den ersten Filter, um das erste gefilterte Signal vorzusehen, und wobei
Bearbeiten der Vielzahl von empfangenen Signalen durch einen zweiten Filter mit Koeffizienten,
die mit einer zweiten Quellenraumcharakteristik in Verbindung stehen, um ein zweites
gefiltertes Signal vorzusehen, umfasst Bearbeiten der Vielzahl von empfangenen Signalen
von jedem der N Mikrofone durch einen zugehörigen von N Filtern umfassend den zweiten
Filter und Kombinieren von Ausgaben der N Filter umfassend den zweiten Filter, um
das zweite gefilterte Signal vorzusehen.
19. Verfahren nach Anspruch 18, ferner umfassend eine Bewertung der Koeffizienten der
N Filter umfassend den ersten Filter und der N Filter umfassend den zweiten Filter.
20. Verfahren nach Anspruch 19, ferner umfassend eine Bewertung der Koeffizienten des
dritten Filters, der auf einen Beschränkungswert reagiert, der mit der ersten Quelle
in Verbindung steht, und eine Bewertung der Koeffizienten des vierten Filters, der
auf einen Beschränkungswert reagiert, der mit der zweiten Quelle in Verbindung steht.
21. Verfahren nach Anspruch 19, wobei eine Bewertung der Koeffizienten der N Filter umfassend
den ersten Filter und der N Filter umfassend den zweiten Filter eine Bewertung der
Koeffizienten basierend auf der Gleichung

umfasst, wobei g
N-1(w;r
i,r
k) Elemente der Matrix g
N-1 bezeichnet, die eine Umkehrung der Rauschraumkorrelationsfunktion g
N(w;r
i, r
k) ist, und wobei G(w,r
k,R
m) eine Green-Funktion ist, die einen Ausbreitungskanal von einer m-ten Signalquelle
mit den Raumkoordinaten R
m beschreibt.
22. Verfahren nach Anspruch 19, wobei die erste Quelle eine erwünschte Quelle ist und
eine Bearbeitung des ersten gefilterten Signals durch einen dritten Filter mit Koeffizienten,
die mit einer ausgewählten Unterdrückung für die erste Quelle in Verbindung stehen,
um ein erstes unterdrücktes Signal vorzusehen, eine Bearbeitung des ersten gefilterten
Signals durch den dritten Filter umfasst, wobei die ausgewählte Unterdrückung, die
durch den dritten Filter vorgesehen wird, ungefähr 0 Dezibel ist, und wobei die zweite
Quelle eine unerwünschte Quelle ist und eine Bearbeitung des zweiten gefilterten Signals
durch einen vierten Filter mit Koeffizienten, die mit einer gewählten Unterdrückung
für die zweite Quelle in Verbindung stehen, um ein zweites unterdrücktes Signal vorzusehen,
eine Bearbeitung des zweiten gefilterten Signals durch den vierten Filter umfasst,
wobei die gewählte Unterdrückung, die durch den vierten Filter vorgesehen wird, mindestens
ungefähr -3 Dezibel ist.
1. Système de réduction du bruit, comprenant :
une pluralité de canaux de réception (205a, 205b, ...) couplés à une pluralité d'entrées
de signal (220), chacun de la pluralité de canaux de réception comprenant,
une pluralité de filtres (210) qui délivrent en sortie des signaux filtrés de composantes
de canaux, chacun de la pluralité de filtres réagissant à au moins l'une de la pluralité
d'entrées de signal et ayant des coefficients basés sur une caractéristique spatiale
de source associée au canal de réception respectif, et
un circuit mélangeur de canaux (230) qui combine les signaux filtrés de composantes
de canaux de façon à délivrer un signal filtré de canaux ; et
un circuit mélangeur de sortie (250) réagissant à la pluralité de canaux de réception,
qui combine les signaux filtrés de canaux.
2. Système selon la revendication 1, dans lequel le système comprend de plus un circuit
de contrainte qui délivre en sortie une atténuation pour au moins l'un des signaux
filtrés de canaux.
3. Système selon la revendication 2, dans lequel le circuit mélangeur de canaux comprend
de plus :
un totalisateur qui reçoit les signaux filtrés de composantes de canaux ; et
un filtre de pondération qui filtre une sortie de totalisateur pour délivrer le signal
filtré de canaux.
4. Système selon la revendication 3, dans lequel le filtre de pondération réagit au circuit
de contrainte.
5. Système selon la revendication 4, dans lequel le circuit de contrainte réagit à une
entrée d'utilisateur désignant une atténuation désirée pour au moins l'un de la pluralité
de canaux de réception.
6. Système selon la revendication 5, dans lequel le circuit de contrainte délivre en
sortie des coefficients du filtre de pondération associé avec le canal au nombre d'au
moins un parmi la pluralité de canaux de réception à titre d'atténuation pour le signal
au nombre d'au moins un parmi les signaux filtrés de canaux qui est associé au canal
au nombre d'au mois un parmi la pluralité de canaux en fonction de la suppression
désirée désignée et de la caractéristique spatiale de source associée au canal au
nombre d'au moins un parmi la pluralité de canaux.
7. Système selon l'une quelconque des revendications 2 à 6, dans lequel le circuit de
contrainte délivre en sortie une atténuation pour au moins l'un des signaux filtrés
de canaux en fonction d'un spectre de fréquence de la source de signal associée au
canal de réception délivrant le signal au nombre d'au moins un parmi les signaux filtrés
de canaux.
8. Système selon l'une quelconque des revendications 1 à 7, dans lequel le système comprend
de plus un circuit d'estimation de coefficients qui ajuste les coefficients de la
pluralité de filtres de chacun de la pluralité de canaux de réception en réponse aux
signaux d'entrée.
9. Système selon la revendication 8, dans lequel le circuit d'estimation de coefficients
est de plus configuré de façon à ajuster les coefficients de la pluralité de filtres
de chacun de la pluralité de canaux de réception en fonction de la caractéristique
spatiale de source associée aux canaux de réception respectifs.
10. Système selon la revendication 9, comprenant de plus une pluralité de récepteurs qui
génèrent une pluralité d'entrées de signal, et dans lequel le circuit d'estimation
de coefficients ajuste les coefficients de la pluralité de filtres de chacun de la
pluralité de canaux de réception en fonction de la caractéristique spatiale de source
associée aux canaux de réception respectifs à l'aide d'une fonction de Green pour
chacun de la pluralité de canaux de réception qui correspond à un canal de propagation
d'une source de signal associée au canal respectif à la pluralité de récepteurs.
11. Système selon la revendication 10, dans lequel les récepteurs sont des microphones
déplacés dans l'espace et la source de signal au nombre d'au moins une associée aux
canaux respectifs est au moins une source sonore.
12. Système selon la revendication 11, dans lequel les microphones déplacés dans l'espace
et la source sonore au nombre d'au moins une se trouvent dans un véhicule.
13. Canal de réception selon l'une quelconque des revendications 1 à 12.
14. Système selon la revendication 1, dans lequel le système est un système de réception
de la parole mains-libres dans un véhicule, le système comprenant de plus :
une pluralité de microphones déplacés dans l'espace dans le véhicule, chacun des microphones
étant couplé à la pluralité de canaux de réception pour délivrer la pluralité de signaux
d'entrée ; et
dans lequel chacun des canaux de réception est associé à une position respective parmi
une pluralité de positions spatiales dans le véhicule, et dans lequel chacune des
caractéristiques spatiales de source associées aux canaux de réception respectifs
est associée à une position respective parmi une pluralité de positions spatiales
dans le véhicule.
15. Système selon la revendication 14, dans lequel au moins l'une parmi la pluralité de
positions spatiales est une position de passager et au moins l'une parmi la pluralité
de positions est une source de bruit.
16. Système selon la revendication 15, dans lequel la source de bruit est un haut-parleur,
et dans lequel le haut-parleur et le système de réception mains-libres constituent
un système de téléphone.
17. Procédé pour la réduction du bruit, comprenant les étapes consistant à :
recevoir une pluralité de signaux reçus (220) ;
traiter la pluralité de signaux reçus par l'intermédiaire d'un premier filtre (210,
230 dans 205a) ayant des coefficients associés à une caractéristique spatiale de première
source de façon à délivrer un premier signal filtré ;
traiter la pluralité de signaux reçus par l'intermédiaire d'un deuxième filtre (210,
230 dans 205b) ayant des coefficients associés à une caractéristique spatiale de deuxième
source de façon à délivrer un deuxième signal filtré ;
traiter le premier signal filtré par l'intermédiaire d'un troisième filtre (240 dans
250a) ayant des coefficients associés à une atténuation sélectionnée pour la première
source de façon à délivrer un premier signal atténué ;
traiter le deuxième signal filtré par l'intermédiaire d'un quatrième filtre (240 dans
250b) ayant des coefficients associés à une atténuation sélectionnée pour la deuxième
source de façon à délivrer un deuxième signal atténué ; et
combiner (250) les premier et deuxième signaux atténués.
18. Procédé selon la revendication 17, dans lequel la réception d'une pluralité de signaux
reçus comprend la réception de la pluralité de signaux reçus à partir de N microphones
déplacés dans l'espace, et dans lequel le traitement de la pluralité de signaux reçus
par l'intermédiaire d'un premier filtre ayant des coefficients associés à une caractéristique
spatiale de première source de façon à délivrer un premier signal filtré comprend
le traitement de la pluralité de signaux reçus à partir de chacun des N microphones
par l'intermédiaire d'un filtre associé parmi N filtres comprenant le premier filtre
et la combinaison de sorties des N filtres comprenant le premier filtre de façon à
délivrer le premier signal filtré, et dans lequel le traitement de la pluralité de
signaux reçus par l'intermédiaire d'un deuxième filtre ayant des coefficients associés
à une caractéristique spatiale de deuxième source de façon à délivrer un deuxième
signal filtré comprend le traitement de la pluralité de signaux reçus à partir de
chacun des N microphones par l'intermédiaire d'un filtre associé parmi N filtres comprenant
le deuxième filtre et la combinaison de sorties des N filtres comprenant le deuxième
filtre de façon à délivrer le deuxième signal filtré.
19. Procédé selon la revendication 18, comprenant de plus l'estimation des coefficients
des N filtres comprenant le premier filtre et les N filtres comprenant le deuxième
filtre.
20. Procédé selon la revendication 19, comprenant de plus l'estimation des coefficients
du troisième filtre en réponse à une valeur de contrainte associée à la première source
et l'estimation des coefficients du quatrième filtre en réponse à une valeur de contrainte
associée à la deuxième source.
21. Procédé selon la revendication 19, dans lequel l'estimation des coefficients des N
filtres comprenant le premier filtre et les N filtres comprenant le deuxième filtre
comprend l'estimation des coefficients selon l'équation :

où
g
(
w;
ri,
rk) désigne des éléments de la matrice g

, qui est l'inverse de la fonction de corrélation spatiale de bruit g
N(w ; r
i,r
k) et où G(w ; r
k,R
m) est une fonction de Green qui décrit un canal de propagation à partir d'une m
ème source de signal avec les coordonnées spatiales R
m.
22. Procédé selon la revendication 19, dans lequel la première source est une source voulue,
et le traitement du premier signal filtré par l'intermédiaire d'un troisième filtre
ayant des coefficients associés à une atténuation sélectionnée pour la première source
de façon à délivrer un premier signal atténué comprend le traitement du premier signal
filtré par l'intermédiaire du troisième filtre, dans lequel l'atténuation sélectionnée
assurée par le troisième filtre est d'environ 0 décibel, et dans lequel la deuxième
source est une source indésirable, et le traitement du deuxième signal filtré par
l'intermédiaire d'un quatrième filtre ayant des coefficients associés à une atténuation
sélectionnée pour la deuxième source de façon à délivrer un deuxième signal atténué
comprend le traitement du deuxième signal filtré par l'intermédiaire du quatrième
filtre, dans lequel l'atténuation sélectionnée assurée par le quatrième filtre est
d'au moins environ -3 décibels.