[0001] The present invention relates to a method for treating organs subject to erosion
by liquids and an anti-erosion coating alloy.
[0002] In particular, the present invention relates to a method for the coating of organs
subject to erosion by liquids, such as vapour turbine components, by means of the
laser plating of a cobalt-based alloy.
[0003] It is known that the organs of equipment which undergo repeated impact with liquids
during functioning, are subject to a slow but continuous erosion destined to jeopardize
their functionality and performances after a certain period of operation.
[0004] This phenomenon is particularly evident and significant, for example, in vapour turbines
whose components are subject to marked wear when specific precautionary measures are
not adopted.
[0005] Specifically in vapour turbines, the condensation pressure values must be as low
as possible in order to obtain the highest outlet power in simple and combined cycles.
[0006] Under these operating conditions, the low pressure rotor blades are subjected to
different chemical and physical stress and therefore undergo erosion processes due
both to the presence of numerous water particles in the vapour flow and also to the
high peak rates of the blades.
[0007] The erosion phenomena of vapour turbine components, which occur as a result of repeated
impact with liquids under prolonged operating conditions, have already been the subject
of studies and are documented in Wear, M. Lesser 1995, 28-34.
[0008] In order to avoid the drawbacks due to these erosion phenomena, attempts were made
to solve the problem, from the design point of view, by increasing the axial spacing
between the stator and rotor or by extracting the humidity between the rows of blades
through holes or air gaps situated on the blades of the stator.
[0009] These remedies did not prove to be particularly suitable for solving the problem,
as they cause a reduction in the performances of the turbine.
[0010] Attempts were then made to prolong the average operating life of the turbine blades,
by studying new coating materials which are capable of reducing the erosion rate of
the metals caused by impact liquid separation (F.J. Heymann, ASM Handbook Vol. 18,
page 221).
[0011] Improvements in this field have so far been reached by resorting to specific treatment
on the metal surface of the blades, such as induction or local flame hardening, by
means of stellite plate brazing or with tool steels, or by means of hard coatings
applied by welding.
[0012] In order to evaluate the resistance to erosion, the coating materials of the known
art have been subdivided, approximately, into two groups, that of carbides and that
of metallic materials among which Stellite 6, according to what is already described
in literature for example in the publication "Erosion-resistant Coating for Low-Pressure
Steam Turbine Blades, Euromat '99".
[0013] Ionic nitriding with PVD coating using titanium nitride and chromium or zirconium
nitride were selected for the surface treatment.
[0014] The blades subjected to ionic nitriding treatment followed by two subsequent PVD
coatings were made up of a layer of titanium nitride followed by a coating of zirconium
nitride or chromium nitride.
[0015] All the PVD coatings had a thickness of about 3-4 µm. The coating tests showed a
coating discontinuity of the models and the behaviour was considered unsatisfactory.
[0016] A SEM test revealed that the PVD coating was not substantially capable of opposing
impact erosion whereas the nitride layer was subject to lesions as a result of micro-fractures
together with the foil nitrides present in the structure.
[0017] Blades with metallic coatings were then tested with HVOF (Triballoy 800).
[0018] The performances of the Triballoy 800 alloy, as coating material against erosion
from liquids, proved to be inadequate.
[0019] From the indications obtained in the tests effected, it can in fact be held that
these metal alloy coatings are not even as effective, in limiting erosion phenomena,
as uncoated surfaces of the base material.
[0020] This behaviour on the part of the Triballoy 800 alloy is verified both by the results
of the adhesion tests (all the coatings tested did not pass this test) and also through
SEM micrographic observation which revealed the presence of numerous micro-fractures
in the coating layer. The microstructure of these coatings, in fact, has a high oxide
content and a marked porosity which make it unsuitable for resisting erosion by liquids.
[0021] Blades with metallic coatings (Stellite 6) were then tested with HVOF.
[0022] Although stellite alloys are known as being a material suitable for coating, they
show all their limits when applied by means of HVOF. Micrographic analysis, in fact,
demonstrates that low content particles are also enveloped in a film of oxide.
[0023] This fact is also confirmed by the surface morphology revealed by means of SEM, which
shows a detachment or ungluing of the material specifically along these particles.
[0024] Blades treated with coatings with HVOF and SD-Gun TM carbides were then tested.
[0025] The results obtained with these types of coatings are in some cases comparable to
or better than those obtained with the hardened base material (WC-1OCo-4CrSD-Gun TM
and 88 WC-12Co HVOF).
[0026] The cases in which an unsatisfactory behaviour is verified can be explained by the
reduced adhesion of the coating and through the known intrinsic fragility (due to
the presence of chromium carbides).
[0027] Vice versa, the coatings of the known art which provide better results are those
made of tungsten carbides with a cobalt or chromium-cobalt matrix, depending on the
coating process used.
[0028] Coatings which have a good resistance to erosion are characterized by a detachment
of the material on a small portion of the sample whereas this phenomenon is extended
to a much larger surface of the materials whose resistance properties are considered
unsatisfactory.
[0029] This different behaviour can be explained by considering the surface morphology.
[0030] When the layer of surface coating starts losing its conformation following the loss
of material, the liquid/solid interaction is particularly complex. In this situation,
the impulse or impact pressures which trigger the erosion phenomenon, are greatly
influenced by the point in which there is initial contact with the drops which fall
on a crest (slope), developing lower local pressures with respect to the drops which
fall into a crater.
[0031] In the case of base materials, the low resistance effected by the surface makes the
removal of the material almost completely uniform along the whole area involved in
the test.
[0032] The unsatisfactory behaviour of most of the coatings of the known art can be explained
by the reduced adhesion of the coating on the metallic substrate and the well known
intrinsic fragility (due to the presence of chromium carbides).
[0033] Vice versa, the coatings of the art which provide improved results are those consisting
of tungsten carbides with a cobalt, chromium-cobalt matrix, depending on the use of
the coating process.
[0034] In general, the performances of the coatings with HVOF improve with an increase in
the content of tungsten carbide. The micrographic morphology of the 88WC-12Co coating
is, in fact, more homogeneous with respect to that of 83WC-17Co. On the other hand,
the difference in performance of the same material (WC10Co-4Cr), applied by means
of SD-GunTM or HVOF is quite marked. The results of the former are encouraging, whereas
those of the latter are unsatisfactory.
[0035] This confirms that at present the spraying process has a significant importance in
obtaining certain performances of the coating.
[0036] The thermal treatment of the known art for increasing the hardness, however, has
as yet shown a reduced increase in resistance to erosion due to an excessive fragility.
[0037] It has been verified that in the case of coatings by means of thermal spraying, an
important parameter for evaluating the resistance to erosion by liquids is the adhesion
resistance. A low value immediately suggests that the coating is not appropriate.
An additional requisite for resistance to erosion is the good quality of the microstructure
of the coating.
[0038] At the moment, the necessity is consequently felt for having new types of coating
or treatment of organs subject to erosion such as gas turbine components which are
capable of effectively reducing the metallic erosion rate due to separation by impact
with liquids.
[0039] The present invention therefore generally seeks to provide an alloy for the coating
of organs subject to erosion, such as vapour turbine components, which is highly resistant
to metallic erosion phenomena as a result of impact with liquids.
[0040] The invention further seeks to provide a method for the treatment of the surfaces
of metallic organs subject to erosion by liquid, in particular vapour turbine blades,
which effectively increases the adhesion resistance of the coating applied.
[0041] Lastly, the invention seeks to provide an alloy and a method for the coating of vapour
turbine blades which is simple to produce and does not involve high production costs.
[0042] It has now been surprisingly found that it is possible to obtain a coating for organs
subject to erosion, by applying on the metallic surfaces of said organs a cobalt-based
alloy, having a composition which is rich in tungsten and incorporating selected quantities
of other elements.
[0043] The alloy of the invention is of the stellite or Haynes alloy type, referring to
a material which belongs to the group of hard alloys based on cobalt, chromium and
tungsten, particularly resistant to corrosion and wear.
[0044] In accordance with a first aspect, the applicant has now identified, within the range
of cobalt-based alloys, a composition which is particularly suitable for the coating
of organs subject to erosion by liquids, such as for example, vapour turbine components,
comprising:
chromium |
from 28 to 32% by weight |
tungsten |
from 5 to 7% by weight |
silicon |
from 0.1 to 2% by weight |
carbon |
from 1.2 to 1.7% by weight |
nickel |
from 0.5 to 3% by weight |
iron |
from 0.01 to 1% by weight; |
manganese |
from 0.01 to 1% by weight; |
molybdenum |
from 0.2 to 1% by weight |
cobalt |
the complement to balance. |
[0045] The alloy of the invention, conveniently in powder form, can also comprise other
optional elements in a quantity ranging from 0 to 0.5% by weight.
[0046] The alloy of the invention has a balanced composition of constitutive elements which
enhances the properties of anti-erosion by liquid when it is applied to organs subject
to erosion according to the method of the invention.
[0047] It has been verified that the method and alloy compositions of the invention allow
the production of a layer of coating on organs subject to erosion by liquids, which
is highly resistant to mechanical stress when functioning, caused by impact with liquid
particles.
[0048] In particular, from specific tests it has been observed that the use of the alloy
of the invention allows the production of coatings having a higher resistance to erosion
from impact with liquids by an order of magnitude (for example 2,000,000 of impacts
against 180,000 with traditional hardening materials) with respect to the resistance
values of other materials used in the known art.
[0049] It has also been observed that the application of the composition of the invention
to the surfaces of vapour turbine components, such as blades, causes an unexpectedly
higher resistance to erosion with respect to the use of stellite alloys of the known
type.
[0050] The alloy according to the invention advantageously has a selected carbon content
to form carbides with a suitable stoichiometry, a chromium and tungsten content selected
for obtaining an improved reinforcement for a solid solution and for optimizing the
precipitation values of carbides having a suitable stoichiometry. The alloy of the
invention advantageously has a selected nickel content to provide a suitable ductility
and allow an effective application in the method of the invention.
[0051] A selected nickel content which is particularly suitable for optimizing the behaviour
of the alloy in laser plating ranges from 0.6 to 2.8% and preferably from 0.9 to 2.5%
by weight.
[0052] It has been observed that by maintaining the quantities of carbon, chromium, tungsten,
nickel and molybdenum within the ranges indicated above, the alloys of the invention
have a resistance to erosion by liquids that is higher than the norm.
[0053] According to another aspect of the invention, a method is provided for the treatment
of an organ subject to erosion by liquids, in particular vapour turbine components,
comprising the application of a cobalt-based alloy previously described to the surface
of said organ or turbine component, to form a coating layer resistant to erosion by
liquid.
[0054] According to a preferred embodiment, the method of the invention comprises the application
of said cobalt-based alloy by means of laser plating (laser cladding) on organs subject
to erosion, such as for example, vapour turbine components.
[0055] The method of the invention is particularly suitable for reducing the erosion by
liquids of vapour turbine components such as blades, rotor, stator and plates.
[0056] The laser plating according to the present invention can typically comprise one or
more passages on the surfaces of the metallic organs subject to erosion by liquid,
so as to form one or more anti-erosion coating layers.
[0057] The method of the invention conveniently comprises the application, on the metallic
surface to be treated, of an anti-erosion layer having a thickness ranging from 0.1
to 5 mm, preferably from 0.8 to 3 mm.
[0058] According to an embodiment of the invention, the metallic material to be subjected
to the treatment of the invention can be previously heated and the alloy of the invention
is subsequently applied, conveniently by the use of laser technology.
[0059] The laser plating is typically carried out using a CO
2 or Nd-Yag laser apparatus.
[0060] According to an embodiment, the method of the present invention combines the laser
application technology (laser cladding) with the use of alloys having the formulations
described above, thus allowing structures to be obtained, with increased anti-erosion
performances due to the high solidification rate and low thermal supply.
[0061] It has been verified that the combined use of the alloys of the invention with laser
plating gives rise to a) a matrix based on a solid solution over-saturated with the
alloy elements, b) an extremely fine grain, c) a precipitation of fine carbines homogeneously
dispersed in the matrix, d) an extremely reduced modified thermal area, e) an extremely
limited bath dilution.
[0062] The invention will now be described in greater detail, by way of example, with reference
to the drawings, the single figure of which illustrates a graph relating to comparative
liquid erosion tests on 4 metal samples.
[0063] In particular, the enclosed figure illustrates a graph which indicates in abscissa
the number of impacts and in ordinate the volume loss following impact with liquid
drops.
[0064] The graph summarizes the results of erosion by liquid drops sprayed through a 0.13
mm nozzle on four test samples made of martensite stainless steel, the same material
but with martempering treatment (MT), integral stellite and stainless steel coated
with a layer produced by laser plating of the alloy of the invention, according to
Example 1.
[0065] The graph indicates the increased resistance to erosion by liquid drops of the sample
treated according to the invention with respect to the samples of the known art.
[0066] Once the coating material, according to the present invention, has been applied to
metallic surfaces of vapour turbine components, it has a high adhesion resistance.
[0067] The high resistance properties of the coating produced with the method of the invention
are also justified by its microstructural morphology.
[0068] It has in fact been observed that the structure of the coating produced with the
laser technique is extremely fine and the removal of the material, which essentially
takes place by means of cracking along the carbide bonds, is reduced even after prolonged
periods of turbine activity.
[0069] Furthermore, the coating material applied according to the method of the invention
only tends to become detached, following prolonged and repeated stress, on a reduced
portion of the sample whereas this phenomenon involves a much wider surface area when
the coating is made with materials of the known art.
[0070] The application of the laser technology consequently makes it possible to produce
coatings with a high resistance to erosion by separation due to impact with liquids,
reducing alteration of the base material to the minimum. The use of the laser technology
also allows stress reducing treatment to be effected at temperatures slightly lower
than the recovery temperature, thus avoiding any possible negative effect on the tensile
strength.
[0071] The following examples are provided for the sole purpose of illustrating the present
invention and should in no way be considered as limiting the protection scope according
to the enclosed claims.
EXAMPLE 1
[0072] A composition was used, in powder form for the coating of mechanical vapour turbine
components having the following formulation:
Cr |
30 g |
W |
6g |
Si |
1 g |
C |
1.5 g |
Ni |
1.5 g |
Fe |
<0.3 g |
Mn |
<0.3 g |
Co |
48 g |
Mo |
0.75g |
Other |
<0.25 g |
[0073] The powder was applied to stainless steel turbine blades by means of YAG laser plating
(laser cladding) forming an anti-erosion layer having a thickness equal to about 1
mm.
EXAMPLE 2
[0074] The following Table indicates various formulations of compositions in powder form
according to the present invention.
Element |
Comp.1 |
Comp.2 |
Comp.3 |
Cr |
28% |
31.5% |
30% |
W |
5.1% |
6.5% |
6% |
Si |
0.1% |
1.8% |
1% |
C |
1.2% |
1.6% |
1.5% |
Ni |
0.5% |
2.8% |
1.8% |
Fe |
0.01% |
0.9% |
0.5% |
Mn |
0.01% |
0.8% |
0.3% |
Mo |
0.2% |
0.9% |
0.3% |
Co |
Balance |
Balance |
Balance |
Other |
0.01% |
0.005% |
0.05% |
[0075] For the sake of good order, various aspects of the invention are set out in the following
clauses: -
1. A method for the treatment of organs subject to erosion by liquids, comprising
the application of a cobalt-based alloy on the surface of said organs to form a layer
of anti-erosion coating, wherein said alloy comprises:
chromium |
from 28 to 32% by weight |
tungsten |
from 5 to 7% by weight |
silicon |
from 0.1 to 2% by weight |
carbon |
from 1.2 to 1.7% by weight |
nickel |
from 0.5 to 3% by weight |
iron |
from 0.01 to 1% by weight; |
manganese |
from 0.01 to 1% by weight; |
molybdenum |
from 0.2 to 1 % by weight |
cobalt |
the complement to balance. |
2. The method according to clause 1, characterized in that said application is effected
by means of laser plating (laser cladding).
3. The method according to clause 1 or 2, characterized in that said organs comprise
the components of a vapour turbine.
4. The method according to clause 3, characterized in that said components are vapour
turbine blades.
5. The method according to clause 2, characterized in that said laser plating is effected
with a CO
2 or YAG laser.
6. The method according to any of the previous clauses 1-5, characterized in that
the layer of coating applied has a thickness ranging from 0.1 to 5 mm.
7. The method according to any of the clauses 1-6, characterized in that it also comprises
a preliminary heating phase of the surface of the organ to be treated.
8. The method according to any of the clauses 1-7, characterized in that it comprises
a series of application passages of said alloy.
9. A cobalt-based alloy for the coating of organs subject to erosion by liquids, characterized
in that it comprises:
chromium |
from 28 to 32% by weight |
tungsten |
from 5 to 7% by weight |
silicon |
from 0.1 to 2% by weight |
carbon |
from 1.2 to 1.7% by weight |
nickel |
from 0.5 to 3% by weight |
iron |
from 0.01 to 1% by weight; |
manganese |
from 0.01 to 1% by weight; |
molybdenum |
from 0.2 to 1% by weight |
cobalt |
the complement to 100%. |
10. The cobalt-based alloy according to clause 9, characterized in that it has the
following composition:
Cr |
30 g |
W |
6g |
Si |
1 g |
C |
1.5 g |
Ni |
1.5 g |
Fe |
<0.3 g |
Mn |
<0.3 g |
Co |
48 g |
Mo |
0.75 g |
Other (Imp.) |
<0.25 g |
11. The cobalt-based alloy according to clause 9, characterized in that it has the
following composition:
Cr |
30 g |
W |
6g |
Si |
1 g |
C |
1.5 g |
Ni |
1.5 g |
Fe |
0.20 g |
Mn |
0.20 g |
Co |
Balance |
Mo |
0.75 g |
Other |
0.20 g |
12. The cobalt-based alloy according to clause 9, characterized in that it has the
following composition:
Elem. |
Quantity |
Cr |
28 % |
W |
5.1 % |
Si |
0.1 % |
C |
1.2 % |
Ni |
0.5% |
Fe |
0.01 % |
Mn |
0.01 % |
Mo |
0.2 % |
Co |
Balance |
Other (Imp.) |
0.01 % |
13. The cobalt-based alloy according to clause 9, characterized in that it has the
following composition:
Elem. |
Quantity |
Cr |
31.5 % |
W |
6.5 % |
Si |
1.8 % |
C |
1.6 % |
Ni |
2.8 % |
Fe |
0.9 % |
Mn |
0.8 % |
Mo |
0.9 % |
Co |
Balance |
Other (Imp.) |
0.005 % |
14. The cobalt-based alloy according to clause 9, characterized in that it has the
following composition:
Elem. |
Quantity |
Cr |
30 % |
W |
6% |
Si |
1 % |
C |
1.5% |
Ni |
1.8% |
Fe |
0.5 % |
Mn |
0.3 % |
Mo |
0.3 % |
Co |
Balance |
Other (Imp.) |
0.05 % |
15. An organ or end-product subject to erosion by liquids, characterized in that it
comprises a surface coating layer to prevent erosion from liquids based on an alloy
according to any of clauses 9-14.
16. The organ or end-product according to clause 15, characterized in that it is a
component of a vapour turbine.
17. The organ or end-product according to clause 16, characterized in that said component
is a blade of a vapour turbine.
18. The organ or end-product according to any of the clauses 15-17, characterized
in that said surface coating has a thickness ranging from 0.1 to 5 mm.