(19) |
 |
|
(11) |
EP 1 054 581 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
14.04.2004 Bulletin 2004/16 |
(22) |
Date of filing: 17.05.2000 |
|
(51) |
International Patent Classification (IPC)7: H05B 41/36 |
|
(54) |
A device for powering, controlling and commanding electric light sources
Anordnung zum Betreiben und Steuern von elektrischen Lichtquellen
Dispositif pour alimenter, controler et commander des sources lumineuses électriques
|
(84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
(30) |
Priority: |
18.05.1999 IT BO990267
|
(43) |
Date of publication of application: |
|
22.11.2000 Bulletin 2000/47 |
(73) |
Proprietor: CEE Electra S.r.l. |
|
40126 Imola (Bologna) (IT) |
|
(72) |
Inventors: |
|
- Collina, Eliseo
40026 Imola (Bologna) (IT)
- Gollini, Carlo
40026 Imola (Bologna) (IT)
|
(74) |
Representative: Lanzoni, Luciano |
|
c/o BUGNION S.p.A.
Via Goito, 18 40126 Bologna 40126 Bologna (IT) |
(56) |
References cited: :
EP-A- 0 169 673 EP-A- 0 821 546 EP-A- 0 848 580 US-A- 3 360 650 US-A- 5 868 838
|
EP-A- 0 212 892 EP-A- 0 830 982 GB-A- 2 180 418 US-A- 5 599 133
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a device for supplying power, controlling and commanding
electric light sources in general.
[0002] In particular, the present invention relates to a device for supplying power, controlling
and commanding light sources with electromagnetic radiation, such as halide vapour
lamps so-called metal halogen lamps, lamps emitting infrared radiation and, specifically,
discharge or luminescence lamps in which the emission is produced by an electric discharge
(arc) within a gas, a vapour or a mixture of gas and vapours for the emission of ultraviolet
radiation in the various wavelength bands. These types of lamps emitting ultraviolet
rays are used in all plants for the application of a layer of protective substance,
coating substance and the like, such as paints, enamels, glues, inks, and similar
substances on semi-finished or finished support products such as wood, ceramic, or
fibre glass reinforced plastic, paper and amorphous supports, and which use respective
drying processes, in which the products after being provided with a layer of protective
substances are moved by means of a conveyor belt underneath said lamps which allow
for an effective and rapid drying of the aforesaid substances. It should also be specified
that in the remainder of the present description the term "lamp" shall simply be used
to indicate the various types of lamps mentioned above.
[0003] Currently, in the types of plants described above, the use is known of sets for supplying
power to the lamps which substantially comprise a transformer to adapt the voltage
of the electrical distribution mains to the power supply voltage of the lamp, and
impedance connected in series to the lamp and able to limit the starting current at
the time the lamp is turned on, a command electrical apparatus able to short circuit
the aforementioned impedance once the lamp has exhausted the initial transitory and
its electrical parameters have stabilised, and a possible power regulator connected
in series to the lamp which allows a manual variation of the working point of the
lamp itself. The secondary of the transformer is provided with a plurality of distinct
outlets, each of which is connected in a determined point of the secondary to provide
at the output a determined power which varies from outlet to outlet from a minimum
value to a maximum value.
[0004] To be able to vary the emission power of the lamp, the operator must necessarily
turn the plant off and manually change the outlet, disconnecting for instance an outlet
with lesser power whereto the lamp was connected, to connect the lamp to a different
outlet with greater power if a greater power supply is necessary, or, on the contrary,
must disconnect the greater power outlet and connect the lamp to a lesser power outlet,
if a lesser power supply is necessary to the lamp.
[0005] The aforementioned electrical command apparatus, able to short circuit the aforementioned
impedance once the lamp has exhausted the initial transitory and its electrical parameters
have been stabilised, comprises a remote control switch connected in parallel to the
aforementioned impedance. The remote control switch is connected to an auxiliary circuit
which constitutes a device able to limit the insertion current of the lamp and favour
its pre-heating. When the lamp is turned on, the auxiliary circuit is powered and
it supplies power to a timer with an energising delay. Until the delay interval elapses,
the timer does not energise the remote control switch that remains open and in the
power supply circuit of the lamp the aforementioned impedance remains inserted, hence
the lamp does not work at its maximum potential defined by one of the outlets with
which it is connected to the secondary of the transformer, but is powered with voltage
and current that are limited by the voltage drop on the impedance to limit the initial
current of the arc inside the lamp itself. After the timer delay elapses, the timer
energises the remote control switch which closes the power supply circuit and the
lamp works at full power.
[0006] From the above description, it is evident that with such a power supply set it is
not possible to obtain a direct and continuous control of the power of the lamp since
the control is of the discrete ON-OFF type and it is effected by changing, manually
and with the plant stopped, the connection of the power supply circuit with the various
outlets positioned on the secondary of the transformer.
[0007] Moreover, once the remote switch is excited and it is closed by excluding the aforementioned
impedance, the lamp remains continuously supplied with a determined power defined
by the type of outlet previously chosen. The only possible intervention in such types
of power supply sets provides for positioning a control on the aforesaid conveyor
belt, which is fitted with a "drag" switch, which if a fault occurs so that the belt
stops, the switch detects the stoppage of the belt and opens the remote switch allowing
power to be supplied to the lamp through the aforesaid impedance, which, for the reasons
described above, allows to lower the power supplied to the lamp and to prevent any
erroneous drying of the aforesaid substances due, for instance, to an overly long
exposition time of the painted products underneath the lamp. It is in any case evident
that this type of control is also a discrete ON-OFF, and not continuous, type of control
of the lamp.
[0008] From the above description, it follows that in such known power supply sets the lamps
presents an instability of their emission, due to the fluctuation of the various electrical
power supply parameters of the lamp itself, and the lack of emission stability leads
to an imperfect drying process.
[0009] The aim of the present invention is to eliminate the aforesaid drawbacks, providing
a device that is able to supply power, control and command lamps in a continuous,
automatic manner and in real time, thereby providing an emission stability of the
lamps in order to prevent erroneous drying phases of the aforesaid employed substances.
[0010] According to the present invention, a device is realized according to one or more
of the attached claims.
[0011] The technical features of the invention shall become more readily apparent from the
detailed description that follows, made with reference to the accompanying drawings,
which represent an embodiment provided purely by way of non limiting example, in which:
- Figure 1 schematically shows a generic embodiment of a power supply, control and command
circuit;
- Figure 2 schematically shows a first preferred and more complete embodiment of the
circuit of Figure 1;
- Figure 3 schematically shows an alternative embodiment of the circuit of Figure 2.
- Figure 4 schematically shows a further embodiment of the circuit of Figure 2;
- Figure 5 shows a detail of the circuit of Figure 4.
[0012] With reference to the figures of the accompanying drawings, the reference 1 globally
indicates a portion of a plant for drying protective substances, such as paints, enamels,
glues, inks, and like substances, distributed on related semi-finished or finished
support products 2 such as panels made of wood, ceramic, glass fibre reinforced plastic,
paper and amorphous supports, which plant uses a respective drying process, in which
the products 2 after being provided with a layer of protective substances, hereafter
generically indicated for the sake of simplicity with the term paints, are moved,
by means of a conveyor belt 3 closed in a loop about two pulleys 4, whereof at least
one motorised by a respective motor means 35, along a respective determined path P
underneath a drying station 5 comprising lamps 6 which allow an effective and rapid
drying of the aforementioned paints. The plant 1 is provided with a device 7 for supplying
power, controlling and commanding the aforementioned lamps 6 (whereof only one is
shown) which are constituted by lamps 6 emitting electromagnetic radiation, such as
metal halogen lamps, lamps emitting infrared radiation and, in particular, discharge
or luminescence lamps for the emission of ultraviolet radiation in the various wavelength
bands, whose emitted light stream allows a rapid and suitable drying of the paints
themselves.
[0013] The device 7 comprises a power supply circuit 8 presenting electrical parameters
suited to the electrical characteristics of the lamps 6 and able to supply power to
the lamps 6 themselves at a pre-determined power value.
[0014] As shown in greater detail in Figures 2 and 3, the circuit 8 comprises a step-up
transformer 9 provided with a primary 10 connected to a mains grid, schematically
indicated with R, and provided with a battery of re-phasing capacitors 11 and a secondary
12 connected through a respective electrical connection circuit 13 to the terminals
14 of the lamps 6, which in this specific case are constituted by a pair of cathodes
14.
[0015] As shown in Figure 2, the secondary 12 of the transformer 9 is connected, through
the respective circuit 13 to first sensor means, generically indicated as 15, able
to measure the value of the electrical parameters of the power supply circuit 8 and
constituted by a voltage transformer 16 connected in parallel, and a current transformer
17 inserted along one of the two power supply branches of the lamp 6 in series therewith.
The transformer 16 is able to measure the value of the output voltage from the secondary
12, whilst the transformer 17 is able to measure the value of the output current from
the secondary 12 of the transformer 9.
[0016] The power supply circuit 8 further comprises second sensor means, globally indicated
as 18, which are able to measure the working parameters of the lamps 6. In particular,
the second sensor means 18 comprise a sensor 19 for measuring the actual irradiation
power emitted by the lamps 6, a pair of sensors 20 for measuring the value of the
temperature reached by the cathodes 14 of the lamps 6 during their operation as elements
radiating electromagnetic emissions of ultraviolet rays, and a sensor 21 for measuring
the value of the temperature reached by the paint of the products 2 during the respective
drying phase.
[0017] The second sensor means 18 further comprise a sensor 22 located on one of the pulleys
4 and able to measure the speed of advance of the conveyor belt 3, thereby providing
at the output and in real time the value of the speed V of advance of the products
2 along the aforementioned path P in a direction F of advance of the products 2 themselves
towards an operative station for the withdrawal of the products 2 presenting the respective
dried paints, schematically indicated with a block 23.
[0018] The circuit 8 further comprises a control and command unit 24 which is connected
at the input to the aforementioned first and, respectively, second sensor means 15,
18 and at the output of the actuator means 25 acting on the circuit 8 itself.
[0019] The unit 24 is able to monitor, in a continuous manner and in real time, all the
respective signals coming from the aforementioned voltage transformer 16, current
transformer 17, from the sensor 19 for measuring the actual irradiating power emitted
by the lamps 6, from the sensors 20 for measuring the value of the temperature reached
by the cathodes 14 of the lamps 6 during their operation, from the sensor 21 for measuring
the value of the temperature reached by the paint of the products 2 during the respective
drying phase, and from the sensor 22 able to measure the speed of advance of the conveyor
belt 3, and for comparing such values with respective pre-set reference values of
the aforementioned measured parameters whereto corresponds a value of the power supplied
to the lamps 6, correctly determined and pre-set according to the type of required
drying of the paint, and specifically drying time and drying value.
[0020] In use, every time at least one of said input signals indicates a variation in the
related parameter with respect to the related reference value, the unit 24 is able
to send a respective signal proportional to said measured variation of said parameters
to the aforementioned actuator means 25.
[0021] As shown in Figure 2, the aforesaid actuator means 25 comprise respective electromechanical-electronic
actuator means 26 able to vary the impedance of the aforesaid power supply circuit
8 in such a way as to vary the electrical parameters, constituted by voltage and current
at the terminals 14 of the lamps 6 and being able to send a respective command signal,
proportional to said signal received from the unit 24, to the power supply circuit
8 in such a way as to act on the circuit 8 itself contrasting the aforementioned variation
of at least one of said parameters mentioned by the aforesaid sensors 15 and 18 and
thereby constantly maintaining the efficiency of the lamps 6 at a determined value.
[0022] The aforesaid electromechanical-electronic actuator means 26 comprise a magnetic
amplifier 27, which, according to the embodiment shown in Figure 2, comprises a power
circuit 28 connected to a branch of the circuit 8 and in series to the lamps 6, and
a command circuit 29 connected to the aforesaid control and command unit 24. The power
circuit 28 and the command circuit 29 are mutually coupled by electromagnetic induction
through a ferromagnetic core 30.
[0023] In practice, the power circuit 28 and the command circuit 29 constitute an inductance
31 whose value of impedance connected to the circuit 8 is variable according to the
signal received from the unit 24 and which powers the command circuit 29 itself.
[0024] As shown in the embodiment of Figure 3, the aforesaid magnetic amplifier 27 presents
the respective power circuit 28 connected in series to the input of the primary 10
of the transformer 9 and the respective command circuit 29 connected to the aforesaid
control and command unit 24, in such a way as to vary the impedance 31 of the primary
circuit 10 according to the variations in electrical parameters measured by the sensors
15 on the secondary 12.
[0025] As shown in Figures 2 and 3 the power supply device 7 further comprises additional
second sensor means 18, constituted by thermal pellets 32 and 33 positioned in proximity
to the step-up transformer 9 and, respectively, to the magnetic amplifier 27 able
to provide unit 24 with the value of the temperature reached, during the operation,
by the aforesaid transformer 9 and magnetic amplifier 27 themselves, and by a work
potentiometer 34 which is used by the operator at the start of a drying cycle to vary
and set the power of the circuit 8 supplying power to the lamps 6 and which serves
as a reference system for the unit 24 and for the magnetic amplifier 27.
[0026] As shown in Figures 2 and 3, to the unit 24 are also connected the motor 35 for motorising
the motor-driven pulley 4, a first means 36 for cooling the lamps 6 and a second means
37 for cooling the products 2 supported by the conveyor belt 3, as well as a so-called
drag switch 38, able to provide the unit 24 with a signal relating to the stoppage
of the advance of the belt 3 along the aforementioned path P. The first and second
cooling means 36, 37 are constituted by respective fans able to send a flow of cooling
air, respectively to the lamps 6 and to the products 2.
[0027] Also as shown in Figures 2 and 3, the power supply and control device 7 comprises
a known circuit 39 for protection against insulation losses and shown with a block
39.
[0028] In use, during a cycle of the drying process, with the power supply and control device
7 it is possible to command, by means of the unit 24, the magnetic amplifier 27 through
its command circuit 29, varying in a continuous and real time manner the value of
the impedance of the variable inductance 31, according to the signals coming from
the aforementioned first and second sensor means 15 and 18 described above, so that
when a variation of these parameters occurs, the power supplied to the lamps 6, and
in particular the current that circulates in the circuit 13 of the secondary of the
step-up transformer 9, thereby adapting the emission power of the lamps 6 according
to a new work equilibrium imposed by the variations of the parameters whose signals
reach the unit 24.
[0029] In this way the unit 24 itself acts on the magnetic amplifier 27 compensating for
any variations incurred by the electrical power supply parameters of the lamps 6 or
of the work parameters of the lamps 6 themselves.
[0030] It is important to stress that among the electrical parameters measured by the sensors
16 and 17 (TV and TA), the work parameters of the lamps 6 (lamp efficiency, emission
power, etc.) measured by the sensors 19, 20, the temperature parameters of the products
2 measured by the sensors 19 and the speed parameters V of the belt 3 obtained by
the sensors 22, there is a direct correlation. The signals that come from the sensors
16 and 17 measure the electrical parameters that determine the power supplied to the
lamps 6 through the circuit 13, which supplied power can vary, for instance, upon
variation of the mains voltage R of the transformer 9. If, from a work equilibrium
condition imposed by a determined current that circulates in the circuit 13, the current
changes, then the unit 24 measures this current variation through the sensor 17 and
sends a signal, proportional to the value of the current change and derived from a
comparison operation of the new current value with a pre-set current value, to the
circuit 29 for commanding the magnetic amplifier 27 which circuit, in turn, intervenes
changing the inductance 31 of the magnetic amplifier 27, thereby providing the lamps
6 with the same steady-state power supply existing before the occurrence of the variation.
It is evident that if the current increases the amplifier 27 increase the impedance
31, on the contrary if the current decreases, the amplifier 6 decreases the impedance
31.
[0031] If the sensors 20 detect an excessive temperature of the lamps 6, the unit 24 is
able to cool the lamps 6 with the fan 36, or energises the magnetic 27 which makes
a lower current circulate in the circuit 13 by increasing, for instance, the impedance
31 in the manners described above. Similarly if, for instance, the speed of advance
of the belt 3 changes, the unit 24 as a result of the signal coming from the sensor
22, energises the magnetic amplifier 27 which will cause a lower current to circulate
in the circuit 13 adapting the emission power of the lamps 6 to the new speed of advance
V1, lower than speed V. The current in the circuit 13 will increase if the speed V1
is greater than speed V. This explains the correlation between speed of advance of
the belt 3 and the time of permanence of the products underneath the lamps 3. The
more the speed V increases, the shorter will be the time of permanence of the products
2 under the lamps 6 which shall thus be supplied with greater power by increasing,
through the magnetic amplifier 27, the power supply current to the lamps 6 themselves.
[0032] On the contrary, the more the speed V decreases, the longer will be the time of permanence
of the products 2 under the lamps 6, which shall thus be supplied with lesser power,
to prevent excessively violent drying of the paint, by decreasing, through the magnetic
amplifier 27, and in the manners described above, the power supply current to the
lamps 6 themselves.
[0033] According to the embodiment of the power supply control and command device 7 shown
in Figures 4 and 5, the aforementioned actuator means 25 comprise an actuator converter
circuit, indicated globally with the reference number 40, which is interposed between
the power grid R and the power supply circuit 8.
[0034] In particular, as shown in Figure 5, the circuit 40 comprises a rectifier circuit
41 which is connected at the input to the power grid R, which usually is at a frequency
of 50 or 60 Hz, and at the output is connected to a frequency converter circuit 42
which, in turn, is connected at the output to an actuator circuit 43 that is connected,
at the output, to the primary 10 of the aforementioned transformer 9 which powers
the power supply circuit 8.
[0035] The rectifier circuit 41 converts the alternating voltage input into a direct voltage
and powers the converter circuit 42 which suppliers at it output a pulsating square
wave voltage with a frequency on the order of 20 kHz. The value of the output frequency
from the converter circuit 42 can assume different values which may oscillate, for
instance, between a minimum of 5 kHz and a maximum of 200 kHz and, therefore, we could
indicate this frequency as an average frequency.
[0036] In this case both the magnetic amplifier 27, and the aforementioned actuator means
26 are replaced by the actuator converter circuit 40, which also controls the power
supply to the circuit 8 and regulates the frequency of said circuit 8.
[0037] The circuit 40, and specifically the converter 42 is connected to the aforesaid control
and command unit 24, and its operation does not differ from the operation described
for the embodiments illustrated in Figures 2 and 3.
[0038] The advantages obtained from the embodiment illustrated in Figures 4 and 5 are the
reduction in the dimensions of the transformer 9, and of its magnetic circuit for
equal supplied power. Using an average frequency enables considerably to reduce the
magnetic circuit of the transformer 9 and hence to obtain a reduction in size, losses
and heating. Moreover, the ability to power the lamps 6 at a higher frequency allows
to obtain much more uniform ray emissions compared to the oscillations obtained when
powering the lamps 6 with lower frequencies of the order of 50/60 Hz.
[0039] Hence, to summarise, the invention allows, through the control and command device
7 described above, to maintain the irradiating efficiency of the lamps 6 always at
an optimal value, according to the required type of drying of the paints of the products
2.
[0040] The invention thus conceived can be subject to numerous modifications and variations,
without thereby departing from the scope of the inventive concept.
[0041] Moreover, all components can be replaced by technically equivalent elements.
1. A device for powering, controlling and commanding electric light sources (6); the
device being associated to at least a portion (1) of a plant for drying protective
substances applied onto products (2) advancing along a first determined path (P) by
means of a transferring conveyor (3) able to make said products (2) advance through
a drying station (5) comprising at least one said light source (6); the device being
characterised in that it comprises a power supply circuit (8) for supplying power to said light source
(6) at a determined power level and comprising power actuator means (25) connected
to said power supply circuit (8), first sensor means (15) able to measure the value
of at least an electrical parameter of said power supply circuit (8), second sensor
means (18) comprising at least a sensor able to measure the value of a parameter which
is indicative of the actual emitted irradiation of said light source (6), a control
and command unit (24) connected at the input to said first and second sensor means
(15, 18) and at the output to said power actuator means (25); said control and command
unit (24) being able continuously to monitor the signals coming from said first and
second sensor means (15, 18) comparing them with related pre-set reference values
of said parameters whereto corresponds said determined power value and, every time
at least one of said input signals indicates a variation of the related parameter
with respect to the related reference value, being able to send a respective signal
proportional to said variation to said power actuator means (25), said power actuator
means (25) being able to send a respective command signal, proportional to said received
signal, to said power supply circuit (8) in such a way as to act on the power supply
circuit (8) itself contrasting said variation of at least one of said parameters to
maintain the efficiency of said light source (6) constantly at a determined value.
2. A device as claimed in claim 1, characterised in that said power actuator means (25) act on said power supply circuit (8) by varying the
value of at least one of its electrical power supply parameters to said light source
(6).
3. A device as claimed in claim 1, characterised in that said first sensor means (15) measure the value of at least an electrical parameter
that powers said power supply circuit (8).
4. A device as claimed in claim 1, characterised in that said second sensor means (18) comprise a sensor (19) for measuring the actual emitted
irradiation of said light source (6).
5. A device as claimed in claim 1, characterised in that said second sensor means (18) comprise sensors (20) for measuring the temperature
of the light source (6).
6. A device as claimed in claim 1, characterised in that said power actuator means (25) comprise respective electromechanical-electronic actuator
means (26) able to vary the impedance (31) of said power supply circuit (8) in such
a way as to vary the electrical parameters at the terminals (14) of said light source
(6).
7. A device as claimed in claim 6, characterised in that said electromechanical-electronic actuator means (26) comprise a magnetic amplifier
(27).
8. A device as claimed in claim 7, characterised in that said magnetic amplifier (27) comprises a power circuit (28) connected in series to
said light source (6) and a command circuit (29) connected to said control and command
unit (24), said power circuit and command circuit (28, 29) being mutually coupled
by electromagnetic induction.
9. A device as claimed in claim 7, characterised in that said magnetic amplifier (27) comprises a power circuit (28) connected in series at
the input (10) of said power supply and power circuit (8) and a command circuit (29)
connected to said control and command unit (24), said power circuit and command circuit
(28, 29) being mutually coupled by electromagnetic induction.
10. A device as claimed in claim 1, characterised in that said power actuator means (25) comprise an actuator converter circuit (40) interposed
between a power grid (R) for powering said power supply circuit (8) and said circuit
(8) and able to power the power supply circuit (8) at a higher frequency than the
frequency of said power grid (R).
11. A device as claimed in claim 10, characterised in that the power supply frequency of said actuator converter circuit (40) is an average
frequency.
12. A device as claimed in claim 10, characterised in that said actuator converter circuit (40) comprises a rectifier circuit (41) connected
at the input to said power supply grid (R) and at the output to a frequency converter
circuit (42) which is connected at the output to an actuator circuit (43) connected
at the output to said power supply circuit (8); said actuator converter circuit (40)
being connected to said control and command unit (24).
13. A device as claimed in claim 9, characterised in that the power circuit (28) and the command circuit (29) constitute a variable inductance
(31), whose value of impedance which is connected to the circuit (8) is variable according
to the signal received from the unit (24) and which powers the command circuit (29)
itself.
14. A device as claimed in one of the previous claims from 1 to 13, characterised in that said light source (6) is a lamp (6) emitting ultraviolet rays.
15. A device as claimed in one of the previous claims from 1 to 13, characterised in that said second sensor means (18) comprise a sensor (22) of the speed of advance of said
conveyor (3).
16. A device as claimed in claim 1, characterised in that said second sensor means (18) comprise a sensor (21) of the temperature reached by
said protective substances applied onto said products (2).
17. A device as claimed in claim 1, characterised in that it comprises a first means (36) for cooling said light source (6) connected to said
control and command unit (24).
18. A device as claimed in one of the previous claims from 1 to 13, characterised in that it comprises a second means (37) for cooling said products (2) positioned on said
conveyor (3).
19. A device as claimed in one of the previous claims from 1 to 16, characterised in that said first sensor means (15) are able to measure the electrical parameters of said
power supply circuit (8) and said second sensor means (18) are able to detect the
work parameters of the lamp (6) according to the electrical parameters of said power
supply circuit (8), said control and command unit (24) being also able to correlate
said electrical parameters with said work parameters with respect to an equilibrium
work state of the lamp (6) itself as a function of all parameters, so as to vary the
impedance (31) of said power actuator means (25) which are able to vary the electrical
parameters of said power supply circuit (8) in such a way as to bring the lamp (6)
to its required working equilibrium condition upon variation of one of said parameters.
1. Vorrichtung zum Betreiben, Steuern und Schalten von elektrischen Lichtquellen (6);
wobei die Vorrichtung wenigstens einem Abschnitt (1) einer Anlage zum Trocknen von
Schutzsubstanzen zugeordnet ist, angebracht an Produkten (2), die entlang einer ersten
vorgegebenen Bahn (P) mit Hilfe eines Transferförderers (3) vorlaufen, der in der
Lage ist, die genannten Produkte (2) durch eine Trockenstation (5) vorzuschieben,
welche die wenigstens eine genannte Lichtquelle (6) enthält; wobei die Vorrichtung
dadurch gekennzeichnet ist, dass sie einen Versorgungskreis (8) zum Zuführen von Leistung an die genannte Lichtquelle
(6) mit einem bestimmten Leistungsniveau enthält, sowie enthaltend an den genannten
Versorgungskreis (8) angeschlossene Leistungsantriebsmittel (25), erste Fühlermittel
(15) zum Messen des Wertes von wenigstens einem elektrischen Parameter des genannten
Versorgungskreises (8), zweite Fühlermittel (18), enthaltend wenigstens einen Fühler
zum Messen des Wertes eines Parameters, der hinweisend auf die im Augenblick abgegebene
Strahlung der genannten Lichtquelle (6) ist, eine Steuer- und Antriebseinheit (24),
angeschlossen mit dem Eingang an die genannten ersten und zweiten Fühlermittel (15,
18) und mit dem Ausgang an die genannten Leistungsantriebsmittel (25); wobei die genannte
Steuer- und Antriebseinheit (24) in der Lage ist, die von den genannten ersten und
zweiten Fühlermitteln (15, 18) kommenden Signale kontinuierlich zu überwachen, sie
mit den entsprechenden vorgegebenen Bezugswerten der genannten Parameter zu vergleichen,
denen der genannte bestimmte Leistungswert entspricht, und jedes Mal, wenn wenigstens
eins der genannten Eingangssignale eine Veränderung des betreffenden Parameters im
Verhältnis zu dem betreffenden Bezugswert anzeigt, ein entsprechendes Signal proportional
zu der genannten Veränderung an die genannten Leistungsantriebsmittel (25) aussendet,
wobei die genannten Leistungsantriebsmittel (25) fähig sind, ein jeweiliges Steuersignal
proportional zu dem genannten empfangenen Signal an den genannten Versorgungskreis
(8) auszusenden, und zwar auf solche Weise, dass sie auf den Versorgungskreis (8)
selbst wirken und der genannten Veränderung von wenigstens einem der genannten Parameter
entgegenwirken, um die genannte Lichtquelle (6) gleichbleibend auf einem bestimmten
Wert zu halten.
2. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass die genannten Leistungsantriebsmittel (25) auf den genannten Versorgungskreis (8)
durch Veränderung des Wertes von wenigstens einem seiner elektrischen Parameter zur
Leistungszufuhr an die genannte Lichtquelle (6) wirkt.
3. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass die genannten ersten Fühlermittel (15) den Wert von wenigstens einem elektrischen
Parameter messen, der den genannten Versorgungskreis (8) speist.
4. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass die genannten zweiten Fühlermittel (18) einen Fühler (19) zum Messen der im Augenblick
ausgesandten Strahlung der genannten Lichtquelle (6) enthalten.
5. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass die genannte zweiten Fühlermittel (18) Fühler (20) zum Messen der Temperatur der
Lichtquelle (6) enthalten.
6. Vorrichtung nach Patentanspruch 1, dadurch gekenn zeichnet, dass die genannten Leistungsantriebsmittel (25) jeweilige elektromechanisch-elektronische
Antriebsmittel (26) enthalten, in der Lage, die Impedanz (31) des genannten Versorgungskreises
(8) auf solche Weise zu verändern, dass die elektrischen Parameter an den Enden (14)
der genannten Lichtquelle (6) verändert werden.
7. Vorrichtung nach Patentanspruch 6, dadurch gekennzeichnet, dass die genannten elektromechanisch-elektronischen Antriebsmittel (26) einen Magnetverstärker
(27) enthalten.
8. Vorrichtung nach Patentanspruch 7, dadurch gekennzeichnet, dass der genannte Magnetverstärker (27) einen in Serie an die genannte Lichtquelle (6)
angeschlossenen Leistungskreis (28) enthält, sowie einen Antriebskreis (29), angeschlossen
an die genannte Steuer- und Antriebseinheit (24), wobei der genannte Leistungskreis
und der Antriebskreis (28, 29) durch elektromagnetische Induktion miteinander verbunden
sind.
9. Vorrichtung nach Patentanspruch 7, dadurch gekennzeichnet, dass der genannte Magnetverstärker (27) einen in Serie an den Eingang (10) des genannten
Versorgungskreises (8) angeschlossenen Leistungskreis (28) enthält, sowie einen Antriebskreis
(29), der an die genannte Steuer- und Antriebseinheit (24) angeschlossen ist, wobei
der genannte Leistungskreis und der Antriebskreis (28, 29) durch elektromagnetische
Induktion miteinander verbunden sind.
10. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass die genannten Leistungsantriebsmittel (25) einen Antriebsumformerkreis (40) enthalten,
eingesetzt zwischen einem Leistungsgitter (R) zum Speisen des genannten Versorgungskreises
(8) und dem genannten Kreis (8) und in der Lage, den Versorgungskreis (8) mit einer
höheren Frequenz zu speisen als die Frequenz des genannten Leistungsgitters (R).
11. Vorrichtung nach Patentanspruch 10, dadurch gekennzeichnet, dass die genannte Speisungsfrequenz des genannten Antriebsumformerkreises (40) eine durchschnittliche
Frequenz ist.
12. Vorrichtung nach Patentanspruch 10, dadurch gekennzeichnet, dass der genannte Antriebsumformerkreis (40) einen Gleichrichterkreis (41) enthält, angeschlossen
im Eingang an das genannte Leistungsgitter (R) und im Ausgang an einen Frequenzumformerkreis
(42), welcher im Ausgang an einen Antriebskreis (43) angeschlossen ist, verbunden
im Ausgang mit dem genannten Versorgungskreis (8); wobei der genannte Antriebsumformerkreis
(40) an die genannte Steuer- und Antriebseinheit (24) angeschlossen ist.
13. Vorrichtung nach Patentanspruch 9, dadurch gekennzeichnet, dass der genannte Leistungskreis (28) und der genannte Antriebskreis (29) eine veränderbare
Induktivität (31) bilden, deren an den Kreis (8) angeschlossener Impedanzwert je nach
dem von der Einheit (24) empfangenen Signal veränderbar ist, und welcher den Antriebskreis
(29) selbst speist.
14. Vorrichtung nach einem der vorstehenden Patentansprüche von 1 bis 13, dadurch gekennzeichnet, dass die genannte Lichtquelle (6) eine ultraviolette Strahlen aussendende Lampe (6) ist.
15. Vorrichtung nach einem der vorstehenden Patentansprüche von 1 bis 13, dadurch gekennzeichnet, dass die genannten zweiten Fühlermittel (18) einen Fühler (22) der Vorlaufgeschwindigkeit
des genannten Förderers (3) enthalten.
16. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass die genannten zweiten Fühlermittel (18) einen Fühler (21) der Temperatur enthalten,
die durch die genannten, an den genannten Produkten (2) angebrachten Schutzsubstanzen
erreicht worden ist.
17. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass sie ein erstes Mittel (36) zum Kühlen der genannten Lichtquelle (6) enthält, angeschlossen
an die genannte Steuer- und Antriebseinheit (24).
18. Vorrichtung nach einem der vorstehenden Patentansprüche von 1 bis 13, dadurch gekennzeichnet, das sie ein zweites Mittel (37) zum Kühlen der genannten Produkte (2) enthält, die
auf dem genannten Förderer (3) angeordnet sind.
19. Vorrichtung nach einem der vorstehenden Patentansprüche von 1 bis 16, dadurch gekennzeichnet, das die genannten ersten Fühlermittel (15) in der Lage sind, die elektrischen Parameter
des genannten Versorgungskreises (8) zu messen, und die genannten zweiten Fühler (18)
in der Lage sind, die Arbeitsparameter der Lampe (6) je nach den elektrischen Parametern
des genannten Versorgungskreises (8) zu erfassen, wobei die genannte Steuer- und Antriebseinheit
(24) ebenso in der Lage ist, die genannten elektrischen Parameter mit den genannten
Arbeitsparametern im Verhältnis zu einem ausgeglichenen Arbeitszustand der Lampe (6)
selbst als Funktion aller Parameter in Wechselbeziehung zu bringen, so dass die Impedanz
(31) der genannten Leistungsantriebsmittel (25) verändert wird, welche wiederum in
der Lage sind, die elektrischen Parameter des genannten Versorgungskreises (8) auf
solche Weise zu verändern, dass die Lampe (6) nach Veränderung von einem der genannten
Parameter in ihren ausgeglichenen Arbeitszustand gebracht wird.
1. Un dispositif pour alimenter, contrôler et commander des sources lumineuses (6) électriques
; ledit dispositif étant associé à au moins une portion (1) d'une installation pour
le séchage de substances protectrices appliquées sur des produits (2) avançant le
long d'un premier parcours (P) déterminé par l'intermédiaire d'un convoyeur de transfert
(3) à même de faire avancer lesdits produits (2) à travers une station de séchage
(5) comprenant au moins une source lumineuse (6) en question ; ledit dispositif étant
caractérisé en ce qu'il comprend un circuit (8) d'alimentation et de puissance pour alimenter ladite source
lumineuse (6) à une valeur de puissance déterminée et comprenant des moyens actionneurs
de puissance (25) reliés au circuit (8) susmentionné d'alimentation et de puissance,
des premiers moyens capteurs (15) destinés à mesurer la valeur d'au moins un paramètre
électrique du circuit (8) d'alimentation et de puissance, des seconds moyens capteurs
(18) comprenant au moins un capteur destiné à mesurer la valeur d'un paramètre indiquant
l'irradiation émise réelle de ladite source lumineuse (6), une unité de contrôle et
de commande (24) reliée en entrée aux premiers et seconds moyens capteurs (15, 18)
susmentionnés et en sortie aux moyens actionneurs de puissance (25) susmentionnés
; ladite unité de contrôle et de commande (24) étant destinée à surveiller en permanence
les signaux provenant des premiers et seconds moyens capteurs (15, 18) en les comparant
avec des valeurs de référence prédéfinies de ces paramètres auxquelles correspond
ladite valeur de puissance déterminée et étant destinée, chaque fois qu'au moins un
des signaux en entrée indique une variation du paramètre correspondant par rapport
à la valeur de référence correspondante, à envoyer un signal respectif proportionnel
à ladite variation aux moyens actionneurs de puissance (25), lesdits moyens actionneurs
de puissance (25) étant destinés à envoyer un signal de commande respectif, proportionnel
au signal reçu, au circuit (8) d'alimentation et de puissance de manière à agir sur
ce même circuit (8) d'alimentation et de puissance en contrastant ladite variation
d'au moins un des paramètres pour maintenir en permanence l'efficacité de ladite source
lumineuse (6) à une valeur déterminée.
2. Le dispositif selon la revendication 1, caractérisé en ce que lesdits moyens actionneurs de puissance (25) agissent sur ledit circuit (8) d'alimentation
et de puissance en faisant varier la valeur d'au moins un de ses paramètres électriques
d'alimentation à ladite source lumineuse (6).
3. Le dispositif selon la revendication 1, caractérisé en ce que lesdits premiers moyens capteurs (15) mesurent la valeur d'au moins un paramètre
électrique qui alimente ledit circuit (8) d'alimentation et de puissance.
4. Le dispositif selon la revendication 1, caractérisé en ce que lesdits seconds moyens capteurs (18) comprennent un capteur (19) destiné à mesurer
l'irradiation émise réelle de ladite source lumineuse (6).
5. Le dispositif selon la revendication 1, caractérisé en ce que lesdits seconds moyens capteurs (18) comprennent des capteurs (20) destinés à mesurer
la température de ladite source lumineuse (6).
6. Le dispositif selon la revendication 1, caractérisé en ce que lesdits moyens actionneurs de puissance (25) comprennent des moyens actionneurs électromécaniques-électroniques
(26) respectifs destinés à faire varier l'impédance (31) du circuit (8) d'alimentation
et de puissance de manière à faire varier les paramètres électriques aux bornes (14)
de ladite source lumineuse (6).
7. Le dispositif selon la revendication 6, caractérisé en ce que lesdits moyens actionneurs électromécaniques-électroniques (26) comprennent un amplificateur
magnétique (27).
8. Le dispositif selon la revendication 7, caractérisé en ce que ledit amplificateur magnétique (27) comprend un circuit de puissance (28) relié en
série à ladite source lumineuse (6) et un circuit de commande (29) relié à ladite
unité de contrôle et de commande (24), lesdits circuit de puissance et circuit de
commande (28, 29) étant mutuellement couplés par induction électromagnétique.
9. Le dispositif selon la revendication 7, caractérisé en ce que ledit amplificateur magnétique (27) comprend un circuit de puissance (28) relié en
série à l'entrée (10) du circuit (8) d'alimentation et de puissance et un circuit
de commande (29) relié à ladite unité de contrôle et de commande (24), lesdits circuit
de puissance et circuit de commande (28, 29) étant mutuellement couplés par induction
électromagnétique.
10. Le dispositif selon la revendication 1, caractérisé en ce que lesdits moyens actionneurs de puissance (25) comprennent un circuit convertisseur
actionneur (40) interposé entre un réseau (R) d'alimentation du circuit (8) d'alimentation
et de puissance et ce même circuit (8) et destiné à alimenter ledit circuit (8) d'alimentation
et de puissance à une fréquence supérieure à la fréquence du réseau (R) d'alimentation.
11. Le dispositif selon la revendication 10, caractérisé en ce que la fréquence d'alimentation du circuit convertisseur actionneur (40) susmentionné
est une fréquence moyenne.
12. Le dispositif selon la revendication 10, caractérisé en ce que ledit circuit convertisseur actionneur (40) comprend un circuit redresseur (41) relié
en entrée au réseau (R) d'alimentation susmentionné et en sortie à un circuit convertisseur
de fréquence (42) qui est relié en sortie à un circuit actionneur (43) relié en sortie
au circuit (8) d'alimentation et de puissance ; ledit circuit convertisseur actionneur
(40) étant relié à ladite unité de contrôle et de commande (24).
13. Le dispositif selon la revendication 9, caractérisé en ce que ledit circuit de puissance (28) et ledit circuit de commande (29) constituent une
inductance variable (31), dont la valeur d'impédance qui est reliée au circuit (8)
est variable en fonction du signal reçu depuis l'unité (24) et qui alimente le circuit
de commande (29) lui-même.
14. Le dispositif selon une des revendications précédentes de 1 à 13, caractérisé en ce que ladite source lumineuse (6) est une lampe (6) émettant des rayons ultraviolets.
15. Le dispositif selon une des revendications précédentes de 1 à 13, caractérisé en ce que lesdits seconds moyens capteurs (18) comprennent un capteur (22) de la vitesse d'avancement
du convoyeur (3) susmentionné.
16. Le dispositif selon la revendication 1, caractérisé en ce que lesdits seconds moyens capteurs (18) comprennent un capteur (21) de la température
atteinte par lesdites substances protectrices appliquées sur lesdits produits (2).
17. Le dispositif selon la revendication 1, caractérisé en ce qu'il comprend un premier moyen (36) de refroidissement de ladite source lumineuse (6),
relié à ladite unité de contrôle et de commande (24).
18. Le dispositif selon une des revendications précédentes de 1 à 13, caractérisé en ce qu'il comprend un second moyen (37) de refroidissement des produits (2) susmentionnés
situés sur ledit convoyeur (3).
19. Le dispositif selon une des revendications précédentes de 1 à 16, caractérisé en ce que lesdits premiers moyens capteurs (15) sont destinés à mesurer les paramètres électriques
du circuit (8) d'alimentation et de puissance et lesdits seconds moyens capteurs (18)
sont destinés à détecter les paramètres de travail de la lampe (6) en fonction des
paramètres électriques de ce même circuit (8) d'alimentation et de puissance, ladite
unité de contrôle et de commande (24) étant également destinée à corréler lesdits
paramètres électriques avec lesdits paramètres de travail par rapport à un état de
travail d'équilibre de la lampe (6) elle-même qui est fonction de tous les paramètres,
de manière à faire varier l'impédance (31) des moyens actionneurs de puissance (25)
susmentionnés qui sont destinés à faire varier les paramètres électriques du circuit
(8) d'alimentation et de puissance de manière à reporter la lampe (6) à sa condition
d'équilibre de travail requise lorsqu'une variation d'un des paramètres en question
s'est produite.