(19) |
 |
|
(11) |
EP 1 295 301 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
14.04.2004 Bulletin 2004/16 |
(22) |
Date of filing: 15.06.2001 |
|
(86) |
International application number: |
|
PCT/EP2001/006820 |
(87) |
International publication number: |
|
WO 2002/003398 (10.01.2002 Gazette 2002/02) |
|
(54) |
CABLE WITH RECYCLABLE COVERING
KABEL MIT WIEDERVERWERTBARER UMMANTELUNG
CABLE A GAINE RECYCLABLE
|
(84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
(30) |
Priority: |
28.06.2000 EP 00113661 03.07.2000 US 216032 P
|
(43) |
Date of publication of application: |
|
26.03.2003 Bulletin 2003/13 |
(73) |
Proprietor: Pirelli & C. S.p.A. |
|
20123 Milano (IT) |
|
(72) |
Inventors: |
|
- CASTELLANI, Luca
I-20094 Corsico (IT)
- MARTINOTTO, Luca
I-20025 Legnano (IT)
- SCELZA, Cristiana
I-84044 Angellara di Vallo della Lucania (IT)
- ALBIZZATI, Enrico
I-28040 Lesa (IT)
|
(74) |
Representative: Mancini, Vincenzo, Dr. et al |
|
Ing. A. Giambrocono & C. s.r.l.,
Via Rosolino Pilo 19/B 20129 Milano 20129 Milano (IT) |
(56) |
References cited: :
WO-A-98/32137 US-A- 4 330 439
|
WO-A-99/13477 US-A- 5 017 733
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a cable with recyclable covering. In particular,
the invention relates to a cable for transporting or distributing medium or high voltage
electric energy, wherein an extruded covering layer based on a thermoplastic polymer
material in admixture with a dielectric liquid with superior mechanical and electrical
properties is present, enabling, in particular, the use of high operating temperatures
and the transportation of high power energy.
[0002] The requirement for products of high environmental compatibility, composed of materials
which, in addition to not being harmful to the environment during production or utilization,
can be easily recycled at the end of their life, is now fully accepted in the field
of electrical and telecommunications cables.
[0003] However the use of materials compatible with the environment is conditioned by the
need to limit costs while, for the more common uses, providing a performance equal
to or better than that of conventional materials.
[0004] In the case of cables for transporting medium and high voltage energy, the various
coverings surrounding the conductor commonly consist of polyolefin-based crosslinked
polymer, in particular crosslinked polyethylene (XLPE), or elastomeric ethylene/propylene
(EPR) or ethylene/propylene/diene (EPDM) copolymers, also crosslinked. The crosslinking,
effected after the step of extrusion of the polymeric material onto the conductor,
gives the material satisfactory performance even under hot conditions during continuous
use and with current overload.
[0005] It is well known however that crosslinked materials cannot be recycled, so that manufacturing
wastes and the covering material of cables which have reached the end of their life
can be disposed of only by incineration.
[0006] Electric cables are also known having their insulation consisting of a multi-layer
wrapping of a paper or paper/polypropylene laminate impregnated with a large quantity
of a dielectric liquid (commonly known as mass impregnated cables or also oil-filled
cables). By completely filling the spaces present in the multi-layer wrapping, the
dielectric liquid prevents partial discharges arising with consequent perforation
of the electrical insulation. As dielectric liquids products are commonly used such
as mineral oils, polybutenes, alkylbenzenes and the like (see for example US-4,543,207,
US-4,621,302, EP-A-0987718, WO 98/32137).
[0007] It is however well known that mass impregnated cables have numerous drawbacks compared
with extruded insulation cables, so that their use is currently restricted to specific
fields of application, in particular to the construction of high and very high voltage
direct current transmission lines, both for terrestrial and in particular for underwater
installations. In this respect, the production of mass impregnated cables is particularly
complex and costly, both for the high cost of the laminates and for the difficulties
encountered during the steps of wrapping the laminate and then of impregnating it
with the dielectric liquid. In particular, the dielectric liquid used must have low
viscosity under cold conditions to allow rapid and uniform impregnation, while at
the same time it must have a low tendency to migrate during installation and operation
of the cable to prevent liquid loss from the cable ends or following breakage. In
addition, mass impregnated cables cannot be recycled and their use is limited to an
operating temperature of less than 90°C.
[0008] Within non-crosslinked polymeric materials, it is known to use high density polyethylene
(HDPE) for covering high voltage cables. HDPE has however the drawback of a lower
temperature resistance than XLPE, both to current overload and during operation.
[0009] Thermoplastic low density polyethylene (LDPE) insulating coverings are also used
in medium and high voltage cables: again in this case; these coverings are limited
by too low an operating temperature (about 70°C).
[0010] WO 99/13477 describes an insulating material consisting of a thermoplastic polymer
forming a continuous phase which incorporates a liquid or easily meltable dielectric
forming a mobile interpenetrating phase within the solid polymer structure. The weight
ratio of thermoplastic polymer to dielectric is between 95:5 and 25:75. The insulating
material can be produced by mixing the two components while hot either batchwise or
continuously (for example by means of an extruder). The resultant mixture is then
granulated and used as insulating material for producing a high voltage electric cable
by extrusion onto a conductor. The material can be used either in thermoplastic or
crosslinked form. As thermoplastic polymers are indicated: polyolefins, polyacetates,
cellulose polymers, polyesters, polyketones, polyacrylates, polyamides and polyamines.
The use of polymers of low crystallinity is particularly suggested. The dielectric
is preferably a synthetic or mineral oil of low or high viscosity, in particular a
polyisobutene, naphthene, polyaromatic, α-olefin or silicone oil.
[0011] The Applicant considers as still unsolved the technical problem of producing an electric
cable with a covering made from a thermoplastic polymer material having mechanical
and electrical properties comparable to those of cables with an insulating covering
of crosslinked material. In particular, the Applicant has considered the problem of
producing a cable with a non-crosslinked insulating covering having good flexibilty
and high mechanical strength under both hot and cold conditions, while at the same
time possessing high dielectric strength, without using products potentially polluting
during the life cycle of the cable, i.e. from its production to its disposal.
[0012] In view of said problem, the Applicant considers that the addition of dielectric
liquids to polymer materials as proposed in the cited WO 99/13477 gives totally unsatisfactory
results. In this respect, the Applicant maintains that adding a dielectric liquid
to an insulating material should both determine a significant increase in its electrical
properties (in particular its dielectric strength), without changing the material
characteristics (thermomechanical properties, manageability) and without resulting
in exudation of the dielectric liquid. In particular, the resultant cable should give
substantially constant performance with time and hence high reliability, even at high
operating temperatures (at least 90°C and beyond).
[0013] The Applicant has now found it possible to solve said technical problem by using,
as recyclable polymer base material, a thermoplastic propylene homopolymer or copolymer
mixed with a dielectric liquid as hereinafter defined. The resultant composition possesses
good flexibility even when cold, excellent thermomechanical strength and high electrical
performance, such as to make it particularly suitable for forming at least one covering
layer, and in particular an electrical insulating layer, of a medium or high voltage
cable of high operating temperature, of at least 90°C and beyond. The dielectric liquid
suitable for implementing the invention has high compatibility with the base polymer
and high efficiency in the sense of improving electrical performance, consequently
allowing the use of small quantities of additive such as not to impair the thermomechanical
characteristics of the insulating layer.
[0014] High compatibility between the dielectric liquid and the base polymer ensures homogeneous
dispersion of the liquid in the polymer matrix and improves cold behaviour of the
polymer. Moreover, as the dielectric liquid suitable for forming the cable of the
invention is free of polar groups, it absorbs water in extremely small quantities,
hence preventing formation of insulation defects due to the presence of steam which
normally forms during the process of high temperature extrusion.
[0015] According to a first aspect, the invention therefore relates to a cable (1) comprising
at least one electrical conductor (2) and at least one extruded covering layer (3,
4, 5) based on a thermoplastic polymer material in admixture with a dielectric liquid,
wherein:
- said thermoplastic material comprises a propylene homopolymer or a copolymer of propylene
with at least an olefin comonomer selected from ethylene and an α-olefin other than
propylene, said homopolymer or copolymer having a melting point greater than or equal
to 140°C and a melting enthalpy of from 30 to 100 J/g;
- said liquid comprises at least one alkylaryl hydrocarbon having at least two non-condensed
aromatic rings and a ratio of number of aryl carbon atoms to total number of carbon
atoms greater than or equal to 0.6, and preferably greater than or equal to 0.7.
[0016] According to a first embodiment, said extruded covering layer based on said thermoplastic
polymer material in admixture with said dielectric liquid is an electrically insulating
layer.
[0017] According to a further embodiment, said extruded covering layer based on said thermoplastic
polymer material in admixture with said dielectic liquid is a semiconductive layer.
[0018] Preferably, the propylene homopolymer or copolymer has a melting point of from 145
to 170°C.
[0019] Preferably, the propylene homopolymer or copolymer has a melting enthalpy of from
30 to 85 J/g.
[0020] Preferably, the propylene homopolymer or copolymer has a flexural modulus, measured
in accordance with ASTM D790, at room temperature, of from30 to 1400 MPa, and more
preferably from 60 to 1000 MPa.
[0021] Preferably, the propylene homopolymer or copolymer has a melt flow index (MFI), measured
at 230°C with a load of 21.6 N in accordance with ASTM D1238/L, of from 0.05 to 10.0
dg/min, more preferably from 0.5 to 5.0 dg/min.
[0022] If a copolymer of propylene with an olefin comonomer is used, this latter is preferably
present in a quantity of less than or equal to 15 mol%, and more preferably of less
than or equal to 10 mol%. The olefin comonomer is, in particular, ethylene or an α-olefin
of formula CH
2=CH-R, where R is a linear or branched C
2-C
10 alkyl, selected for example from: 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene,
1-octene, 1-decene, 1-dodecene and the like, or combinations thereof. Propylene/ethylene
copolymers are particularly preferred.
[0023] Preferably, said thermoplastic material is selected from:
a) a propylene homopolymer or a copolymer of propylene with at least one olefin comonomer
selected from ethylene and an α-olefin other than propylene, having a flexural modulus
generally of from 30 to 900 MPa, and preferably of from 50 to 400 MPa;
b) a heterophase copolymer comprising a thermoplastic phase based on propylene and
an elastomeric phase based on ethylene copolymerized with an α-olefin, preferably
with propylene, in which the elastomeric phase is present in a quantity of at least
45 wt% on the total weight of the heterophase copolymer.
[0024] The homopolymers or copolymers of class a) show a single-phase microscopic structure,
i.e. substantially devoid of heterogeneous phases dispersed as molecular domains of
size greater than one micron. These materials do not show in fact the optical phenomena
typical of heterophase polymer materials, and in particular are characterised by better
transparency and reduced whitening due to local mechanical stresses (commonly known
as "stress whitening").
[0025] Particularly preferred of said class a) is a propylene homopolymer or a copolymer
of propylene with at least one olefin comonomer selected from ethylene and an α-olefin
other than propylene, said homopolymer or copolymer having:
- a melting point of from 140 to 165°C;
- a melting enthalpy of from 30 to 80 J/g;
- a fraction soluble in boiling diethyl ether in an amount of less than or equal to
12 wt%, preferably from 1 to 10 wt%, having a melting enthalpy of less than or equal
to 4 J/g, preferably less than or equal to 2 J/g;
- a fraction soluble in boiling n-heptane in an amount of from 15 to 60 wt%, preferably
from 20 to 50 wt%, having a melting enthalpy of from 10 to 40 J/g, preferably from
15 to 30 J/g; and
- a fraction insoluble in boiling n-heptane in an amount of from 40 to 85 wt%, preferably
from 50 to 80 wt%, having a melting enthalpy of greater than or equal to 45 J/g, preferably
from 50 to 95 J/g.
[0026] Further details of these materials and their use in covering cables are given in
European patent application 99122840 filed on 17.11.1999 in the name of the Applicant,
incorporated herein for reference.
[0027] The heterophase copolymers of class b) are thermoplastic elastomers obtained by sequential
copolymerization of: i) propylene, possibly containing minor quantities of at least
one olefin comonomer selected from ethylene and an α-olefin other than propylene;
and then of: ii) a mixture of ethylene with an α-olefin, in particular propylene,
and possibly with minor portions of a diene. This class of product is also commonly
known by the term "thermoplastic reactor elastomers".
[0028] Particularly preferred of the said class b) is a heterophase copolymer in which the
elastomeric phase consists of an elastomeric copolymer of ethylene and propylene comprising
from 15 to 50 wt% of ethylene and from 50 to 85 wt% of propylene on the weight of
the elastomeric phase. Further details of these materials and their use in covering
cables are given in European patent application 98830800 filed on 30.12.1998 in the
name of the Applicant, incorporated herein for reference.
[0029] Products of class a) are available commercially for example under the trademark Rexflex
R of the Huntsman Polymer Corporation.
[0030] Products of class b) are available commercially for example under the trademark Hifax
R of Montell.
[0031] Alternatively, as thermoplastic base material, a propylene homopolymer or copolymer
as hereinabove defined can be used in mechanical mixture with a low crystallinity
polymer, generally with a melting enthalpy of less than 30 J/g, which mainly acts
to increase flexibility of the material. The quantity of low crystallinity polymer
is generally less than 70 wt%, and preferably of from 20 to 60 wt%, on the total weight
of the thermoplastic material.
[0032] Preferably, the low crystallinity polymer is a copolymer of ethylene with a C
3-C
12 α-olefin, and possibly with a diene. The α-olefin is preferably selected from propylene,
1-hexene and 1-octene. If a diene comonomer is present, this is generally C
4-C
20, and is preferably selected from: conjugated or non-conjugated linear diolefins,
such as 1,3-butadiene, 1,4-hexadiene, 1,6-octadiene or their mixtures and the like;
monocyclic or polycyclic dienes, such as 1,4-cyclohexadiene, 5-ethylidene-2-norbornene,
5-methylene-2-norbornene, 5-vinyl-2-norbornene or their mixtures and the like.
[0033] Particularly preferred ethylene copolymers are:
(i) copolymers having the following monomer composition: 35-90 mol% of ethylene; 10-65
mol% of an α-olefin, preferably propylene; 0-10 mol% of a diene, preferably 1,4-hexadiene
or 5-ethylene-2-norbornene (EPR and EPDM rubbers are within this class);
(ii) copolymers having the following monomer composition: 75-97 mol%, preferably 90-95
mol%, of ethylene; 3-25 mol%, preferably 5-10 mol%, of an α-olefin; 0-5 mol%, preferably
0-2 mol%, of a diene (for example ethylene/1-octene copolymers, such as the products
EngageR of Dow-DuPont Elastomers).
[0034] The alkylaryl hydrocarbon of the invention preferably has a dielectric constant,
at 25°C, of less than or equal to 3.5 and preferably less than 3 (measured in accordance
with IEC 247).
[0035] According to a further preferred aspect, the alkylaryl hydrocarbon of the invention
has a predetermined viscosity such as to prevent fast diffusion of the liquid within
the insulating layer and hence its outward migration, while at the same time such
as to enable it to be easily fed and mixed into the polymer. Generally, the dielectric
liquid of the invention has a kinematic viscosity, at 20°C, of between 1 and 500 mm
2/s, preferably between 5 and 100 mm
2/s (measured in accordance with ISO 3104).
[0036] According to a further preferred aspect, the alkylaryl hydrocarbon of the invention
has a hydrogen absorption capacity greater than or equal to 5 mm
3/min, preferably greater than or equal to 50 mm
3/min (measured in accordance with IEC 628-A).
[0037] According to a preferred aspect, an epoxy resin can be added to the dielectric liquid
suitable for forming the cable of the invention, generally in a quantity of less than
or equal to 1 wt% on the weight of the liquid, this being considered to mainly act
to reduce the ion migration rate under an electrical field, and hence the dielectric
loss of the insulating material.
[0038] In a preferred embodiment, the dielectric liquid of the invention comprises at least
one alkylaryl hydrocarbon having at least three non-condensed aromatic rings.
[0039] Even more preferably, the dielectric liquid of the invention comprises at least one
alkylaryl hydrocarbon having at least three non-condensed aromatic rings in a quantity
of not less than 10 wt% on the total weight of the dielectric liquid.
[0040] Preferably, the dielectric liquid of the invention comprises at least one alkylaryl
hydrocarbon having the structural formula:

wherein:
R1, R2, R3 and R4, equal or different, are hydrogen or methyl;
n 1 and n2, equal or different, are zero, 1 or 2, with the proviso that the sum n1+n2
is less than or equal to 3.
[0041] The dielectric liquid can also contain minor quantities of at least one triphenylmethane,
either unsubstituted or substituted by at least one radical selected from methyl,
benzyl and methylbenzyl. Examples of triphenylmethanes are: ditoluylphenylmethane,
dixylylphenylmethane, xylyltoluylphenylmethane and the like, or their mixtures.
[0042] More preferably, the dielectric liquid of the invention comprises at least one alkylaryl
hydrocarbon of the aforegiven formula (I) in which the sum n1+n2 is other than zero.
[0043] Alkylaryl hydrocarbons corresponding to formula (I) in which the sum n1+n2 is equal
to zero, and usable advantageously in this invention, are for example: benzyltoluene,
benzylxylene, (methylbenzyl)toluene, (methylbenzyl)xylene and the like, or their mixtures.
[0044] Alkylaryl hydrocarbons corresponding to formula (I) in which the sum n1+n2 is other
than zero, and usable advantageously in this invention, are for example: dibenzyltoluene,
dibenzylxylene, di(methylbenzyl)toluene, di(methylbenzyl)xylene and the like, or their
mixtures.
[0045] The alkylaryl hydrocarbons of formula (I) are generally prepared by reacting benzylchloride,
methylbenzylchloride or their mixtures, with an aromatic hydrocarbon selected from
benzene, toluene, xylene or their mixtures, in the presence of a Friedel-Crafts catalyst
(for example FeCl
3, SbCl
3, TiCl
4 or AlCl
3). Further details regarding the preparation of alkylaryl hydrocarbons of formula
(I) are given for example in US-5,192,463, US-5,446,228, US-5,545,355 and US-5,601,755.
[0046] The dielectric liquid suitable for implementing the invention has good heat resistance,
considerable gas absorption capacity, in particular for hydrogen, and hence high resistance
to partial discharges, so that dielectric loss is not high even at high temperature
and high electrical gradient. The weight ratio of dielectric liquid to base polymer
material of the invention is generally between 1:99 and 25:75, preferably between
2:98 and 20:80, and more preferably between 3:97 and 15:85.
[0047] According to a preferred aspect, the cable of the invention has at least one extruded
covering layer with electrical insulation properties formed from the thermoplastic
polymer material in admixture with the aforedescribed dielectric liquid.
[0048] According to a further preferred embodiment, the cable of the invention has at least
one extruded covering layer with semiconductive properties formed from the thermoplastic
polymer material in admixture with the aforedescribed dielectric liquid. To form a
semiconductive layer, a conductive filler is generally added to the polymer material.
To ensure good dispersion of the conductive filler within the base polymer material,
this latter is preferably selected from propylene homopolymers or copolymers comprising
at least 40 wt% of amorphous phase, on the total polymer weight.
[0049] In a preferred embodiment, the cable of the invention has at least one electrical
insulation layer and at least one semiconductive layer formed from a thermoplastic
polymer material in admixture with a dielectric liquid as hereinabove described. This
prevents the semiconductive layers from absorbing, with time, part of the dielectric
liquid present in the insulating layer, so reducing its quantity just at the interface
between the insulating layer and semiconductive layer, in particular the inner semiconductive
layer where the electrical field is higher.
[0050] According to a further aspect, the invention relates to a polymer composition comprising
a thermoplastic polymer material in admixture with a dielectric liquid, in which:
- said thermoplastic material comprises a propylene homopolymer or a copolymer of propylene
with at least one olefin comonomer selected from ethylene and an α-olefin other than
propylene, said homopolymer or copolymer having a melting point of greater than or
equal to 140°C and a melting enthalpy of from 30 to 100 J/g;
- said liquid comprises at least one alkylaryl hydrocarbon with at least two non-condensed
aromatic rings and a ratio of number of aryl carbon atoms to total number of carbon
atoms greater than or equal to 0.6, preferably greater than or equal to 0.7.
[0051] According to a further aspect, the invention relates to the use of a polymer composition,
as described hereinabove, as the base polymer material for preparing a covering layer
(4) with electrical insulation properties, or for preparing a covering layer (3, 5)
with semiconductive properties.
[0052] In forming a covering layer for the cable of the invention, other conventional components
can be added to the aforedefined polymer composition, such as antioxidants, processing
aids, water tree retardants, and the like.
[0053] Conventional antioxidants suitable for the purpose are for example distearyl-thiopropionate
and pentaerithryl-tetrakis [3-(3,5-di-tertbutyl-4-hydroxyphenyl)propionate] and the
like, or their mixtures.
[0054] Processing aids which can be added to the polymer base include, for example, calcium
stearate, zinc stearate, stearic acid, paraffin wax and the like, or mixtures thereof.
[0055] With particular reference to medium and high voltage cables, the polymer materials
as defined hereinabove can be advantageously used to form an insulating layer. As
stated above, these polymer materials show indeed good mechanical characteristics
both at ambient temperature and under hot conditions, and also show improved electrical
properties. In particular they enable high operating temperature to be employed, comparable
with or even exceeding that of cables with coverings consisting of crosslinked polymer
base materials.
[0056] If a semiconductive layer is to be formed, a conductive filler, in particular carbon
black, is generally dispersed within the polymer material in a quantity such as to
provide the material with semiconductive characteristics (i.e. such as to obtain a
resistivity of less than 5 Ohm.m at ambient temperature). This quantity is generally
between 5 and 80 wt%, and preferably between 10 and 50 wt%, of the total weight of
the mixture.
[0057] The possibility to use the same type of polymer composition for both the insulating
layer and the semiconductive layers is particularly advantageous in producing cables
for medium or high voltage, in that it ensures excellent adhesion between adjacent
layers and hence better electrical behaviour, particularly at the interface between
the insulating layer and the inner semiconductive layer, where the electrical field
and hence the risk of partial discharges are higher.
[0058] The compositions of the invention can be prepared by mixing together the base polymer
material, the dielectric liquid and any other additives possibly present by methods
known in the art. Mixing can be carried out for example by an internal mixer of the
type with tangential rotors (Banbury) or with interpenetrating rotors, or, preferably,
in a continuous mixer of Ko-Kneader (Buss) type, or of co- or counter-rotating double-screw
type.
[0059] Alternatively, the dielectric liquid of the invention can be added to the polymer
material during the extrusion step by direct injection into the extruder cylinder.
[0060] According to the present invention, the use of the aforedefmed polymer composition
in covering cables for medium or high voltage enables recyclable, flexible coverings
to be obtained with excellent mechanical and electrical properties.
[0061] Greater compatibility has also been found between the dielectric liquid and thermoplastic
base polymer of the invention than in the case of similar mixtures of the same polymer
material with other dielectric liquids known in the art. This greater compatibility
leads,
inter alia, to less exudation of the dielectric liquid and hence a reduction of the already
discussed migration phenomena. Because of their high operating temperature and their
low dielectric loss, the cables of the invention can carry, for the same voltage,
a power at least equal to or even greater than that transportable by a traditional
cable with XLPE covering.
[0062] For the purposes of the invention the term "medium voltage" generally means a voltage
of between 1 and 35 kV, whereas "high voltage" means voltages higher than 35 kV.
[0063] Although this description is mainly focused on the production of cables for transporting
or distributing medium or high voltage energy, the polymer composition of the invention
can be used for covering electrical devices in general and in particular cables of
different type, for example low voltage cables, telecommunications cables or combined
energy/telecommunications cables, or accessories used in constructing electrical lines,
such as terminals or connectors.
[0064] Further characteristics will be apparent from the detailed description given hereinafter
with reference to the accompanying drawing, in which:
- Figure 1 is a perspective view of an electric cable, particularly suitable for medium
or high voltage, according to the invention.
[0065] In Figure 1, the cable 1 comprises a conductor 2, an inner layer with semiconductive
properties 3, an intermediate layer with insulating properties 4, an outer layer with
semiconductive properties 5, a metal screen 6, and an outer sheath 7.
[0066] The conductor 2 generally consists of metal wires, preferably of copper or aluminium,
stranded together by conventional methods. At least one covering layer selected from
the insulating layer 4 and the semiconductive layers 3 and 5 comprises the composition
of the invention as heretofore defined. Around the outer semiconductive layer 5 there
is usually positioned a screen 6, generally of electrically conducting wires or strips
wound helically. This screen is then covered by a sheath 7 of a thermoplastic material,
for example non-crosslinked polyethylene (PE) or preferably a propylene homopolymer
or copolymer as heretofore defined.
[0067] The cable can also be provided with an outer protective structure (not shown in Figure
1) the main purpose of which is to mechanically protect the cable against impact or
compression. This protective structure can be, for example, a metal reinforcement
or a layer of expanded polymer as described in WO 98/52197.
[0068] Figure 1 shows only one possible embodiment of a cable according to the invention.
Suitable modifications known in the art can evidently be made to this embodiment,
but without departing from the scope of the invention.
[0069] The cable of the invention can be constructed in accordance with known methods for
depositing layers of thermoplastic material, for example by extrusion. The extrusion
is advantageously carried out in a single pass, for example by the tandem method in
which individual extruders are arranged in series, or by co-extrusion with a multiple
extrusion head.
[0070] The following examples illustrate the invention, but without limiting it.
EXAMPLES
[0071] TABLE 1shows the characteristics of the dielectric liquids used in the following
examples.
Table 1
Dielectric liquid |
Dielectric constant (*) |
Total carbon atoms |
Ratio C(aryl)/C(total) |
JarylecR |
2.8 |
MXX = 16 |
0.75 |
Exp 4 |
|
DXX = 24 |
|
JarylecR |
2.7 |
21 |
0.86 |
Exp 3 |
|
|
|
BaysiloneR |
2.6 |
- |
- |
(*) at 25°C in accordance with IEC 247 |
The dielectric liquids according to the invention were:
JarylecRExp4 (commercial product of Elf Atochem):
a mixture containing 85 wt% of monoxylylxylene (MXX)

and 15 wt% of dixylylxylene (DXX)

JarylecRExp3 (commercial product of Elf Atochem):
dibenzyltoluene (DBT)

[0072] The comparison dielectric liquids were:
BaysiloneRPD5 (commercial product of General Electric - Bayer):
polyphenylmethylsiloxane (PPMS), polyaromatic dielectric oil as described in IEEE
Transactions on Electrical Insulation Vol. 26, No.4, 1991, having a viscosity of 4
mm2/sec at 25°C;
FlexonR641 (commercial product of Esso):
naphthene-based aromatic oil having a viscosity of 22 mm2/sec at 40°C, consisting of 40 wt% aromatic hydrocarbons, 57 wt% saturated hydrocarbons
and 3 wt% polar compounds.
The following polymer materials were used:
- a flexible propylene homopolymer with melting point 160°C, melting enthalpy 56.7 J/g,
MFI 1.8 dg/min and flexural modulus 290 MPa (RexflexRWL105 - commercial product of Huntsman Polymer Corp.) (Examples 1-6)
- a propylene heterophase copolymer with an ethylene/propylene elastomeric phase content
of about 65 wt% (propylene 72 wt% in the elastomeric phase), melting enthalpy 32 J/g,
melting point 163°C, MFI 0.8 dg/min and flexural modulus of about 70 MPa (HifaxRKSO81 - commercial product of Montell).
Composition preparation
[0073] The polymer in granular form was preheated to 80°C in a turbomixer. The dielectric
liquid was added, in the quantities specified for the formulations given in Table
2, to the polymer preheated in the turbomixer under agitation at 80°C over 15 min.
After the addition agitation was continued for a further hour at 80°C until the liquid
was completely absorbed in the polymer granules.
[0074] After this first stage, the resultant material was kneaded in a laboratory double-screw
Brabender Plasticorder PL2000 at a temperature of 185°C to complete homogenization.
The material left the double-screw mixer in the form of granules.
Measurement of dielectric strength (DS)
[0075] The dielectric strength of the polymer compositions obtained was evaluated on test-pieces
of insulating material having the geometry proposed by the EFI (Norwegian Electric
Power Research Institute) in the publication "The EFI Test Method for Accelerated
Growth of Water Trees" (IEEE International Symposium on Electrical insulation, Toronto,
Canada, June 3-6 1990). In this method, the cable is simulated with glass-shaped test
pieces of insulating material having their base coated on both sides with a semiconductive
material coating.
[0076] The glass-shaped test-pieces were formed by moulding discs of insulating material
at 160-170°C from a plate of thickness 10 mm obtained by compressing granules at about
190°C.
[0077] The inner and outer surfaces of the base, which had a thickness of about 0.40-0.45
mm, were coated with a semiconductive coating. The DS measurement was made by applying
to these specimens, immersed in silicone oil at 20°C, an alternating current at 50
Hz starting with a voltage of 25 kV and increasing in steps of 5 kV every 30 minutes
until perforation of the test-piece occurred. Each measurement was repeated on 10
test-pieces. The values given in Table 2 are the arithmetic mean of the individual
measured values.
TABLE 2
Ex. |
Polymer |
Dielectric liquid |
% dielectric liquid by weight |
DS (mean) |
1* |
RexflexR |
-- |
-- |
92 |
|
WL 105 |
|
|
|
2* |
RexflexR |
BaysiloneR |
5 |
90 |
|
WL 105 |
PD5 |
|
|
3* |
RexflexR |
FlexonR641 |
5 |
94 |
|
WL 105 |
|
|
|
4 |
RexflexR |
JarylecR |
6 |
128 |
|
WL 105 |
Exp4 |
|
|
5 |
RexflexR |
JarylecR |
15 |
150 |
|
WL 105 |
EXP4 |
|
|
6 |
RexflexR |
JarylecR |
4 |
143 |
|
WL 105 |
Exp3 |
|
|
7* |
HifaxR |
-- |
-- |
90 |
|
KS081 |
|
|
|
8 |
HifaxR |
JarylecR |
15 |
140 |
|
KS081 |
Exp4 |
|
|
[0078] The dielectric strength values given in Table 2 highlight the improvement in electrical
performance deriving from the dielectric liquids of the invention, compared to that
of the base polymer as such or when mixed with the comparison dielectric liquids.
Migration tests
[0079] Using the polymer/dielectric liquid compositions prepared in Examples 5 and 6 moulded
into 5 mm plates at 190°C, the loss of dielectric liquid (expressed as percentage
by weight on the initial quantity) was measured against time at 20°C in air in order
to verify the diffusivity of the dielectric liquids in the polymer and hence their
stability with time in these compositions.
TABLE 3
Days |
Composition Example 6 |
Composition Example 3 |
0 |
100.00 |
100.00 |
1 |
100.00 |
99.84 |
4 |
99.97 |
99.32 |
5 |
99.97 |
99.14 |
6 |
99.97 |
99.14 |
8 |
99.75 |
98.6 |
12 |
99.45 |
97.91 |
18 |
99.34 |
96.69 |
28 |
99.24 |
94.92 |
39 |
99.14 |
93.54 |
[0080] The data of Figure 3 show the high compatibility of the dielectric liquids with the
described base polymer material and consequently the low tendency of these liquids
to migrate to the outside of the polymer material.
1. A cable (1) comprising at least one electrical conductor (2) and at least one extruded
covering layer (3, 4, 5) based on a thermoplastic polymer material in admixture with
a dielectric liquid, wherein:
- said thermoplastic material comprises a propylene homopolymer or a copolymer of
propylene with at least an olefin comonomer selected from ethylene and an α-olefin
other than propylene, said homopolymer or copolymer having a melting point greater
than or equal to 140°C and a melting enthalpy of from 30 to 100 J/g;
- said liquid comprises at least one alkylaryl hydrocarbon with at least two non-condensed
aromatic rings and a ratio of number of aryl carbon atoms to total number of carbon
atoms greater than or equal to 0.6.
2. A cable as claimed in claim 1, wherein the ratio of number of aryl carbon atoms to
total number of carbon atoms is greater than or equal to 0.7.
3. A cable as claimed in claim 1 or 2, wherein the propylene homopolymer or copolymer
has a melting point of from 145 to 170°C.
4. A cable as claimed in any one of the preceding claims, wherein the propylene homopolymer
or copolymer has a melting enthalpy of from 30 to 85 J/g.
5. A cable as claimed in any one of the preceding claims, wherein the propylene homopolymer
or copolymer has a flexural modulus, measured at ambient temperature, of from 30 to
1400 MPa.
6. A cable as claimed in any one of the preceding claims, wherein the propylene homopolymer
or copolymer has a flexural modulus, measured at ambient temperature, of from 60 to
1000 MPa.
7. A cable as claimed in any one of the preceding claims, wherein the propylene homopolymer
or copolymer has a melt flow index, measured at 230°C, of from 0.05 to 10.0 dg/min.
8. A cable as claimed in any one of the preceding claims, wherein the propylene homopolymer
or copolymer has a melt flow index, measured at 230°C, of from 0.5 to 5.0 dg/min.
9. A cable as claimed in any one of the preceding claims, wherein the olefin comonomer
is present in a quantity of less than or equal to 15 mol%.
10. A cable as claimed in any one of the preceding claims, wherein the olefin comonomer
is present in a quantity of less than or equal to 10 mol%.
11. A cable as claimed in any one of the preceding claims, wherein the olefin comonomer
is ethylene or an α-olefin of formula CH2=CH-R, where R is a linear or branched C2-C10 alkyl.
12. A cable as claimed in the preceding claim, wherein the α-olefin is selected from 1-butene,
1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene and the like,
or combinations thereof.
13. A cable as claimed in any one of the preceding claims, wherein the thermoplastic material
is selected from:
a) a propylene homopolymer or a copolymer of propylene with at least one olefin comonomer
selected from ethylene and an α-olefin other than propylene, having a flexural modulus
of from 30 to 900 MPa;
b) a heterophase copolymer comprising a thermoplastic phase based on propylene and
an elastomeric phase based on ethylene copolymerized with an α-olefin, in which the
elastomeric phase is present in a quantity of at least 45 wt% on the total weight
of the heterophase copolymer.
14. A cable as claimed in the preceding claim, wherein the propylene homopolymer or copolymer
under a) has a flexural modulus of from 50 to 400 MPa.
15. A cable as claimed in claim 13 or 14, wherein the propylene homopolymer or copolymer
under a) has:
- a melting point of from 140 to 165°C;
- a melting enthalpy of from 30 to 80 J/g;
- a fraction soluble in boiling diethyl ether in an amount of less than or equal to
12 wt%, having a melting enthalpy of less than or equal to 4 J/g;
- a fraction soluble in boiling n-heptane in an amount of from 15 to 60 wt%, having
a melting enthalpy from 10 to 40 J/g; and
- a fraction insoluble in boiling n-heptane in an amount of from 40 to 85 wt%, having
a melting enthalpy of greater than or equal to 45 J/g.
16. A cable as claimed in any one of claims from 13 to 15, wherein the propylene homopolymer
or copolymer of a) has:
- a fraction soluble in boiling diethyl ether in an amount of from 1 to 10 wt%, having
a melting enthalpy of less than or equal to 2 J/g;
- a fraction soluble in boiling n-heptane in an amount of from 20 to 50 wt%, having
a melting enthalpy of from 15 to 30 J/g; and
- a fraction insoluble in boiling n-heptane in an amount of from 50 to 80 wt%, having
a melting enthalpy from 50 to 95 J/g.
17. A cable as claimed in claim 13, wherein the α-olefin included in the elastomeric phase
of the heterophase copolymer under b) is propylene.
18. A cable as claimed in the preceding claim, wherein the elastomeric phase consists
of an elastomeric copolymer of ethylene and propylene comprising from 15 to 50 wt%
of ethylene and from 50 to 85 wt% of propylene on the weight of the elastomeric phase.
19. A cable as claimed in any one of the preceding claims, wherein the base thermoplastic
material is the propylene homopolymer or copolymer in mechanical mixture with a low
crystallinity polymer having a melting enthalpy of less than or equal to 30 J/g, and
a quantity of less than or equal to 70 wt% on the total weight of the thermoplastic
material.
20. A cable as claimed in the preceding claim, wherein the low crystallinity polymer is
in a quantity of from 20 to 60 wt% on the total weight of the thermoplastic material.
21. A cable as claimed in claims 19 or 20, wherein the low crystallinity polymer is a
copolymer of ethylene with a C3-C12 α-olefin.
22. A cable as claimed in claim 19 or 20, wherein the low crystallinity polymer is a copolymer
of ethylene with an α-olefin and a diene.
23. A cable as claimed in claims 21 or 22, wherein the ethylene copolymer is selected
from
i) a copolymer having the following monomer composition: 35-90 mol% of ethylene; 10-65
mol% of α-olefin; 0-10 mol% of a diene;
ii) a copolymer having the following monomer composition: 75-97 mol% of ethylene;
3-25 mol% of α-olefin; 0-5 mol% of a diene.
24. A cable as claimed in the preceding claim, wherein the ethylene copolymer is selected
from a copolymer having the following monomer composition: 90-95 mol% of ethylene;
5-10 mol% of α-olefin; 0-2 mol% of a diene.
25. A cable as claimed in any one of claims from 21 to 24, wherein the α-olefin is selected
from propylene, 1-hexene and 1-octene.
26. A cable as claimed in any one of claims from 22 to 25, wherein the diene has from
4 to 20 carbon atoms.
27. A cable as claimed in any one of claims from 22 to 26, wherein the diene is selected
from a conjugated or non-conjugated linear diolefin, and a monocyclic or polycyclic
diene.
28. A cable as claimed in any one of claims from 22 to 27, wherein the diene is selected
from 1,3-butadiene, 1,4-hexadiene, 1,6-octadiene, 1,4-cyclohexadiene, 5-ethylidene-2-norbornene,
5-methylene-2-norbornene, 5-vinyl-2-norbornene, or their mixtures and the like.
29. A cable as claimed in any one of the preceding claims, wherein the alkylaryl hydrocarbon
has a dielectric constant at 25°C of less than or equal to 3.5.
30. A cable as claimed in any one of the preceding claims, wherein the dielectric constant
at 25°C is less than or equal to 3.
31. A cable as claimed in any one of the preceding claims, wherein the dielectric liquid
has a kinematic viscosity at 20°C of between 1 and 500 mm2/s.
32. A cable as claimed in any one of the preceding claims, wherein the dielectric liquid
has a kinematic viscosity at 20°C of between 5 and 100 mm2/s.
33. A cable as claimed in any one of the preceding claims, wherein the alkylaryl hydrocarbon
has a hydrogen absorption capacity of greater than or equal to 5 mm3/min.
34. A cable as claimed in the preceding claim, wherein the hydrogen absorption capacity
is greater than or equal to 50 mm3/min.
35. A cable as claimed in any one of the preceding claims, wherein an epoxy resin is added
to the dielectric liquid in a quantity of less than or equal to 1 wt% on the weight
of the liquid.
36. A cable as claimed in the preceding claim, wherein the alkylaryl hydrocarbon is present
in a quantity of greater than or equal to 10 wt% on the total weight of the dielectric
liquid.
37. A cable as claimed in any one of the preceding claims, wherein the dielectric liquid
comprises at least one alkylaryl hydrocarbon having at least three non-condensed aromatic
rings.
38. A cable as claimed in any one of the preceding claims, wherein the alkylaryl hydrocarbon
has the structural formula:

where:
R1, R2, R3 and R4, equal or different, are hydrogen or methyl;
n1 and n2, equal or different, are zero, 1 or 2, with the proviso that the sum
n1+n2 is less than or equal to 3.
39. A cable as claimed in any one of the preceding claims, wherein the alkylaryl hydrocarbon
is selected from benzyltoluene, benzylxylene, (methylbenzyl)toluene, (methylbenzyl)xylene,
dibenzyltoluene, dibenzylxylene, di(methylbenzyl)toluene, di(methylbenzyl)xylene and
the like, or their mixtures.
40. A cable as claimed in any one of the preceding claims, wherein the dielectric liquid
comprises at least one triphenylmethane, either unsubstituted or substituted by at
least one radical selected from methyl, benzyl and methylbenzyl.
41. A cable as claimed in the preceding claim, wherein the triphenylmethane is selected
from ditoluylphenylmethane, dixylylphenylmethane, xylyltoluylphenylmethane and the
like, or their mixtures.
42. A cable as claimed in any one of the preceding claims, wherein the weight ratio of
dielectric liquid to base polymer material is from 1:99 to 25:75.
43. A cable as claimed in any one of the preceding claims, wherein the weight ratio of
dielectric liquid to base polymer material is from 2:98 to 20:80.
44. A cable as claimed in any one of the preceding claims, wherein the weight ratio of
dielectric liquid to base polymer material is from 3:97 to 15:85.
45. A cable as claimed in any one of the preceding claims, wherein the extruded covering
layer is a layer (4) with electrical insulation properties.
46. A cable as claimed in any one of claims from 1 to 44, wherein the extruded covering
layer is a layer (3, 5) with semiconductive properties.
47. A cable as claimed in the preceding claim, wherein a conductive filler is dispersed
in the layer with semiconductive properties.
48. A cable as claimed in any one of the preceding claims, wherein the base polymer material
is selected from propylene homopolymers or copolymers comprising at least 40 wt% of
amorphous phase, on the total polymer weight.
49. A cable as claimed in any one of the preceding claims, wherein at least one layer
with electrical insulation properties and at least one layer with semiconductive properties
are present.
50. A polymer composition comprising a thermoplastic polymer material in admixture with
a dielectric liquid in accordance with any one of claims from I to 49.
51. Use of a polymer composition as claimed in claim 50, as base polymer material for
the preparation of a covering layer (4) with electrical insulation properties.
52. Use of a polymer composition as claimed in claim 50, as base polymer material for
the preparation of a covering layer (3, 5) with semiconductive properties.
1. Kabel (1), das mindestens einen elektrischen Leiter (2) und mindestens eine extrudierte
Abdeckschicht (3, 4, 5) auf Basis eines thermoplastischen Polymermaterials unter Zumischung
einer dielektrischen Flüssigkeit umfasst, wobei:
- das thermoplastische Material ein Propylen-Homopolymer oder ein Copolymer von Propylen
mit mindestens einem Olefincomonomer, ausgewählt aus Ethylen und einem anderen α-Olefin
als Propylen, umfasst, wobei das Homopolymer oder Copolymer einen Schmelzpunkt grösser
als oder gleich 140°C und eine Schmelzenthalpie von 30 bis 100 J/g hat;
- die Flüssigkeit mindestens einen Alkylaryl-Kohlenwasserstoff mit mindestens zwei
nichtkondensierten aromatischen Ringen und einem Verhältnis der Zahl von Aryl-Kohlenstoffatomen
zur Gesamtzahl von Kohlenstoffatomen grösser als oder gleich 0,6 umfasst.
2. Kabel wie in Anspruch 1 beansprucht, wobei das Verhältnis der Zahl von Aryl-Kohlenstoffatomen
zur Gesamtzahl von Kohlenstoffatomen grösser als oder gleich 0,7 ist.
3. Kabel wie in Anspruch 1 oder 2 beansprucht, wobei das Propylen-Homopolymer oder -Copolymer
einen Schmelzpunkt von 145 bis 170°C hat.
4. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Propylen-Homopolymer
oder -Copolymer eine Schmelzenthalpie von 30 bis 85 J/g hat.
5. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Propylen-Homopolymer
oder -Copolymer einen bei Umgebungstemperatur gemessenen Biegemodul von 30 bis 1.400
MPa besitzt.
6. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Propylen-Homopolymer
oder -Copolymer einen bei Umgebungstemperatur gemessenen Biegemodul von 60 bis 1.000
MPa besitzt.
7. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Propylen-Homopolymer
oder -Copolymer einen bei 230°C gemessenen Schmelzindex von 0,05 bis 10,0 dg/min besitzt.
8. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Propylen-Homopolymer
oder -Copolymer einen bei 230°C gemessenen Schmelzindex von 0,5 bis 5,0 dg/min besitzt.
9. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Olefincomonomer
in einer Menge von weniger als oder gleich 15 mol-% vorliegt.
10. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Olefincomonomer
in einer Menge von weniger als oder gleich 10 mol-% vorliegt.
11. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Olefincomonomer
Ethylen oder ein α-Olefin der Formel CH2=CH-R ist, worin R ein lineares oder verzweigtes C2-10-Alkyl ist.
12. Kabel wie im vorstehenden Anspruch beansprucht, wobei das α-Olefin ausgewählt ist
aus 1-Buten, 1-Penten, 4-Methyl-1-penten, 1-Hexen, 1-Octen, 1-Decen, 1-Dodecen und
dergleichen oder Kombinationen davon.
13. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das thermoplastische
Material ausgewählt ist aus:
(a) einem Propylen-Homopolymer oder einem Copolymer von Propylen mit mindestens einem
Olefincomonomer, ausgewählt aus Ethylen und einem anderen α-Olefin als Propylen, mit
einem Biegemodul von 30 bis 900 MPa;
(b) einem Heterophasen-Copolymer, das eine thermoplastische Phase auf Basis von Propylen
und eine elastomere Phase auf Basis von Ethylen, das mit einem α-Olefin copolymerisiert
ist, umfasst, wobei die elastomere Phase in einer Menge von mindestens 45 Gew.%, bezogen
auf das Gesamtgewicht des Heterophasen-Copolymers, vorliegt.
14. Kabel wie im vorstehenden Anspruch beansprucht, wobei das Propylen-Homopolymer oder
-Copolymer unter (a) einen Biegemodul von 50 bis 400 MPa besitzt.
15. Kabel wie in Anspruch 13 oder 14 beansprucht, wobei das Propylen-Homopolymer oder
-Copolymer unter (a):
- einen Schmelzpunkt von 140 bis 165°C;
- eine Schmelzenthalpie von 30 bis 80 J/g;
- eine in siedendem Diethylether lösliche Fraktion in einer Menge von weniger als
oder gleich 12 Gew.% mit einer Schmelzenthalpie von weniger als oder gleich 4 J/g;
- eine in siedendem n-Heptan lösliche Fraktion in einer Menge von 15 bis 60 Gew.%
mit einer Schmelzenthalpie von 10 bis 40 J/g; und
- eine in siedendem n-Heptan unlösliche Fraktion in einer Menge von 40 bis 85 Gew.%
mit einer Schmelzenthalpie grösser als oder gleich 45 J/g
aufweist.
16. Kabel wie in mindestens einem der Ansprüche 13 bis 15 beansprucht, wobei das Propylen-Homopolymer
oder
- Copolymer (a) :
- eine in siedendem Diethylether lösliche Fraktion in einer Menge von 1 bis 10 Gew.%
mit einer Schmelzenthalpie von weniger als oder gleich 2 J/g;
- eine in siedendem n-Heptan lösliche Fraktion in einer Menge von 20 bis 50 Gew.%
mit einer Schmelzenthalpie von 15 bis 30 J/g; und
- eine in siedendem n-Heptan unlösliche Fraktion in einer Menge von 50 bis 80 Gew.%
mit einer Schmelzenthalpie von 50 bis 95 J/g
aufweist.
17. Kabel wie in Anspruch 13 beansprucht, wobei das α-Olefin, welches in die elastomere
Phase des Heterophasen-Copolymers unter (b) eingeschlossen ist, Propylen ist.
18. Kabel wie im vorstehenden Anspruch beansprucht, wobei die elastomere Phase aus einem
elastomeren Copolymer von Ethylen und Propylen besteht, das 15 bis 50 Gew.% Ethylen
und 50 bis 85 Gew.% Propylen, bezogen auf das Gewicht der elastomeren Phase, umfasst.
19. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das thermoplastische
Basismaterial das Propylen-Homopolymer oder - Copolymer in mechanischer Mischung mit
einem Polymer niedriger Kristallinität mit einer Schmelzenthalpie von weniger als
oder gleich 30 J/g und einer Menge von weniger als oder gleich 70 Gew.%, bezogen auf
das Gesamtgewicht des thermoplastischen Materials, ist.
20. Kabel wie im vorstehenden Anspruch beansprucht, wobei das Polymer niedriger Kristallinität
in einer Menge von 20 bis 60 Gew.%, bezogen auf das Gesamtgewicht des thermoplastischen
Materials, vorliegt.
21. Kabel wie in Anspruch 19 oder 20 beansprucht, wobei das Polymer niedriger Kristallinität
ein Copolymer von Ethylen mit einem C3-12-α-Olefin ist.
22. Kabel wie in Anspruch 19 oder 20 beansprucht, wobei das Polymer niedriger Kristallinität
ein Copolymer von Ethylen mit einem α-Olefin und einem Dien ist.
23. Kabel wie in Anspruch 21 oder 22 beansprucht, wobei das Ethylen-Copolymer ausgewählt
ist aus
(i) einem Copolymer mit der folgenden Monomerzusammensetzung: 35 bis 90 mol-% Ethylen;
10 bis 65 mol-% α-Olefin; 0 bis 10 mol-% eines Diens;
(ii) einem Copolymer mit der folgenden Monomerzusammensetzung: 75 bis 97 mol-% Ethylen;
3 bis 25 mol-% α-Olefin; 0 bis 5 mol-% eines Diens.
24. Kabel wie im vorstehenden Anspruch beansprucht, wobei das Ethylen-Copolymer ausgewählt
ist aus einem Copolymer mit der folgenden Monomerzusammensetzung: 90 bis 95 mol-%
Ethylen; 5 bis 10 mol-% α-Olefin; 0 bis 2 mol-% eines Diens.
25. Kabel wie in mindestens einem der Ansprüche 21 bis 24 beansprucht, wobei das α-Olefin
ausgewählt ist aus Propylen, 1-Hexen und 1-Octen.
26. Kabel wie in mindestens einem der Ansprüche 22 bis 25 beansprucht, wobei das Dien
4 bis 20 Kohlenstoffatome besitzt.
27. Kabel wie in mindestens einem der Ansprüche 22 bis 26 beansprucht, wobei das Dien
ausgewählt ist aus einem konjugierten oder nicht-konjugierten linearen Diolefin und
einem monocyclischen oder polycyclischen Dien.
28. Kabel wie in mindestens einem der Ansprüche 22 bis 27 beansprucht, wobei das Dien
ausgewählt ist aus 1,3-Butadien, 1,4-Hexadien, 1,6-Octadien, 1,4-Cyclohexadien, 5-Ethyliden-2-norbornen,
5-Methylen-2-norbornen, 5-Vinyl-2-norbornen oder ihren Mischungen und dergleichen.
29. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei der Alkylaryl-Kohlenwasserstoff
eine dielektrische Konstante bei 25°C von weniger als oder gleich 3,5 besitzt.
30. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei die dielektrische
Konstante bei 25°C weniger als oder gleich 3 ist.
31. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei die dielektrische
Flüssigkeit eine kinematische Viskosität bei 20°C zwischen 1 und 500 mm2/s besitzt.
32. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei die dielektrische
Flüssigkeit eine kinematische Viskosität bei 20°C zwischen 5 und 100 mm2/s besitzt.
33. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei der Alkylaryl-Kohlenwasserstoff
eine Wasserstoffabsorptionskapazität von grösser als oder gleich 5 mm3/min besitzt.
34. Kabel wie im vorstehenden Anspruch beansprucht, wobei die Wasserstoffabsorptionskapazität
grösser als oder gleich 50 mm3/min ist.
35. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei ein Epoxyharz
in einer Menge von weniger als oder gleich 1 Gew.%, bezogen auf das Gewicht der Flüssigkeit,
zur dielektrischen Flüssigkeit zugegeben wird.
36. Kabel wie im vorstehenden Anspruch beansprucht, wobei der Alkylaryl-Kohlenwasserstoff
in einer Menge von grösser als oder gleich 10 Gew.%, bezogen auf das Gesamtgewicht
der dielektrischen Flüssigkeit, vorliegt.
37. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei die dielektrische
Flüssigkeit mindestens einen Alkylaryl-Kohlenwasserstoff mit mindestens drei nichtkondensierten
aromatischen Ringen umfasst.
38. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei der Alkylaryl-Kohlenwasserstoff
die Strukturformel:

besitzt, worin:
R1, R2, R3 und R4, gleich oder verschieden, Wasserstoff oder Methyl sind;
n1 und n2, gleich oder verschieden, 0, 1 oder 2 sind, mit der Massgabe, dass die Summe
n1 + n2 weniger als oder gleich 3 ist.
39. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei der Alkylaryl-Kohlenwasserstoff
ausgewählt ist aus Benzyltoluol, Benzylxylol, (Methylbenzyl)toluol, (Methylbenzyl)xylol,
Dibenzyltoluol, Dibenzylxylol, Di(methylbenzyl)toluol, Di(methylbenzyl)xylol und dergleichen
oder ihren Mischungen.
40. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei die dielektrische
Flüssigkeit mindestens ein Triphenylmethan, entweder unsubstituiert oder substituiert
mit mindestens einem Rest, ausgewählt aus Methyl, Benzyl und Methylbenzyl, umfasst.
41. Kabel wie im vorstehenden Anspruch beansprucht, wobei das Triphenylmethan ausgewählt
ist aus Ditoluylphenylmethan, Dixylylphenylmethan, Xylyltoluylphenylmethan und dergleichen
oder ihren Mischungen.
42. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Gewichtsverhältnis
der dielektrischen Flüssigkeit zum Polymer-Basismaterial 1:99 bis 25:75 ist.
43. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Gewichtsverhältnis
der dielektrischen Flüssigkeit zum Polymer-Basismaterial 2:98 bis 20:80 ist.
44. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Gewichtsverhältnis
der dielektrischen Flüssigkeit zum Polymer-Basismaterial 3:97 bis 15:85 ist.
45. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei die extrudierte
Abdeckschicht eine Schicht (4) mit elektrischen Isolierungseigenschaften ist.
46. Kabel wie in mindestens einem der Ansprüche 1 bis 44 beansprucht, wobei die extrudierte
Abdeckschicht eine Schicht (3, 5) mit halbleitenden Eigenschaften ist.
47. Kabel wie im vorstehenden Anspruch beansprucht, wobei ein leitfähiger Füllstoff in
der Schicht mit halbleitenden Eigenschaften dispergiert ist.
48. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei das Polymer-Basismaterial
ausgewählt ist aus Propylen-Homopolymeren oder -Copolymeren, die mindestens 40 Gew.%
amorphe Phase, bezogen auf das gesamte Polymergewicht, umfassen.
49. Kabel wie in mindestens einem der vorstehenden Ansprüche beansprucht, wobei mindestens
eine Schicht mit elektrischen Isolierungseigenschaften und mindestens eine Schicht
mit halbleitenden Eigenschaften vorliegen.
50. Polymerzusammensetzung, die ein thermoplastisches Polymermaterial unter Zumischung
einer dielektrischen Flüssigkeit gemäss mindestens einem der Ansprüche 1 bis 49 umfasst.
51. Verwendung einer Polymerzusammensetzung, wie in Anspruch 50 beansprucht, als Polymer-Basismaterial
für die Herstellung einer Abdeckschicht (4) mit elektrischen Isolierungseigenschaften.
52. Verwendung einer Polymerzusammensetzung, wie in Anspruch 50 beansprucht, als Polymer-Basismaterial
für die Herstellung einer Abdeckschicht (3, 5) mit halbleitenden Eigenschaften.
1. Câble (1) comprenant au moins un conducteur électrique (2) et au moins une couche
de revêtement extrudé (3, 4, 5) à base d'un matériau polymère thermoplastique mélangé
avec un liquide diélectrique, dans lequel câble
- ledit matériau thermoplastique comprend un homopolymère de propylène ou un copolymère
de propylène et d'au moins une oléfine comonomère choisie parmi l'éthylène et une
α-oléfine autre que le propylène, lequel homopolymère ou copolymère présente un point
de fusion supérieur ou égal à 140 °C et une enthalpie de fusion de 30 à 100 J/g ;
- et ledit liquide comprend au moins un hydrocarbure alkyl-arylique qui comporte au
moins deux cycles aromatiques non condensés et où le rapport du nombre d'atomes de
carbone aryliques au nombre total d'atomes de carbone est supérieur ou égal à 0,6.
2. Câble conforme à la revendication 1, dans lequel le rapport du nombre d'atomes de
carbone aryliques au nombre total d'atomes de carbone est supérieur ou égal à 0,7.
3. Câble conforme à la revendication 1 ou 2, dans lequel l'homopolymère ou copolymère
de propylène présente un point de fusion de 145 à 170 °C.
4. Câble conforme à l'une des revendications précédentes, dans lequel l'homopolymère
ou copolymère de propylène présente une enthalpie de fusion de 30 à 85 J/g.
5. Câble conforme à l'une des revendications précédentes, dans lequel l'homopolymère
ou copolymère de propylène présente un module de flexion, mesuré à température ambiante,
de 30 à 1400 MPa.
6. Câble conforme à l'une des revendications précédentes, dans lequel l'homopolymère
ou copolymère de propylène présente un module de flexion, mesuré à température ambiante,
de 60 à 1000 MPa
7. Câble conforme à l'une des revendications précédentes, dans lequel l'homopolymère
ou copolymère de propylène présente un indice de fluidité à chaud, mesuré à 230 °C,
de 0,05 à 10,0 dg/min.
8. Câble conforme à l'une des revendications précédentes, dans lequel l'homopolymère
ou copolymère de propylène présente un indice de fluidité à chaud, mesuré à 230 °C,
de 0,5 à 5,0 dg/min.
9. Câble conforme à l'une des revendications précédentes, dans lequel l'oléfine comonomère
se trouve en une proportion molaire inférieure ou égale à 15 %.
10. Câble conforme à l'une des revendications précédentes, dans lequel l'oléfine comonomère
se trouve en une proportion molaire inférieure ou égale à 10 %.
11. Câble conforme à l'une des revendications précédentes, dans lequel l'oléfine comonomère
est de l'éthylène ou une α-oléfine de formule CH2=CH-R où R représente un groupe alkyle en C2-10, linéaire ou ramifié.
12. Câble conforme à la revendication précédente, dans lequel l'α-oléfine est choisie
parmi les 1-butène, 1-pentène, 4-méthyl-1-pentène, 1-hexène, 1-octène, 1-décène, 1-docécène
et composés similaires, ainsi que leurs combinaisons.
13. Câble conforme à l'une des revendications précédentes, dans lequel le matériau thermoplastique
est choisi parmi :
a) un homopolymère de propylène ou un copolymère de propylène et d'au moins une oléfine
comonomère choisie parmi l'éthylène et une α-oléfine autre que le propylène, présentant
un module de flexion de 30 à 900 MPa ;
b) un copolymère hétérophasique, qui comprend une phase thermoplastique à base de
propylène et une phase élastomère à base d'éthylène copolymérisé avec une α-oléfine,
et dans lequel la phase élastomère se trouve en une quantité représentant au moins
45 % du poids total du polymère hétérophasique.
14. Câble conforme à la revendication précédente, dans lequel l'homopolymère ou copolymère
de propylène (a) présente un module de flexion de 50 à 400 MPa.
15. Câble conforme à la revendication 13 ou 14, dans lequel l'homopolymère ou copolymère
de propylène (a) présente
- un point de fusion de 140 à 165 °C ;
- une enthalpie de fusion de 30 à 80 J/g ;
- une fraction inférieure ou égale à 12 % en poids de matière soluble dans de l'éther
diéthylique bouillant, présentant une enthalpie de fusion inférieure ou égale à 4
J/g ;
- une fraction de 15 à 60 % en poids de matière soluble dans du n-heptane bouillant,
présentant une enthalpie de fusion de 10 à 40 J/g ;
- et une fraction de 40 à 85 % en poids de matière insoluble dans du n-heptane bouillant,
présentant une enthalpie de fusion supérieure ou égale à 45 J/g.
16. Câble conforme à l'une des revendications 13 à 15, dans lequel l'homopolymère ou copolymère
de propylène (a) présente
- une fraction de 1 à 10 % en poids de matière soluble dans de l'éther diéthylique
bouillant, présentant une enthalpie de fusion inférieure ou égale à 2 J/g ;
- une fraction de 20 à 50 % en poids de matière soluble dans du n-heptane bouillant,
présentant une enthalpie de fusion de 15 à 30 J/g ;
- et une fraction de 50 à 80 % en poids de matière insoluble dans du n-heptane bouillant,
présentant une enthalpie de fusion de 50 à 95 J/g.
17. Câble conforme à la revendication 13, dans lequel l'a-oléfine incluse dans la phase
élastomère du copolymère hétérophasique (b) est du propylène.
18. Câble conforme à la revendication précédente, dans lequel la phase élastomère consiste
en un copolymère élastomère d'éthylène et de propylène, constitué de 15 à 50 % en
poids d'éthylène et de 50 à 85 % en poids de propylène, par rapport au poids de la
phase élastomère.
19. Câble conforme à l'une des revendications précédentes, dans lequel le matériau thermoplastique
de base est un homopolymère ou copolymère de propylène, mélangé mécaniquement avec
un polymère à bas taux de cristallinité dont l'enthalpie de fusion est inférieure
ou égale à 30 J/g et qui représente au plus 70 % du poids total du matériau thermoplastique.
20. Câble conforme à la revendication précédente, dans lequel le polymère à bas taux de
cristallinité représente de 20 à 60 % du poids total du matériau thermoplastique.
21. Câble conforme à la revendication 19 ou 20, dans lequel le polymère à bas taux de
cristallinité est un copolymère d'éthylène et d'une α-oléfine en C3-12.
22. Câble conforme à la revendication 19 ou 20, dans lequel le polymère à bas taux de
cristallinité est un copolymère d'éthylène, d'une α-oléfine et d'un diène.
23. Câble conforme à la revendication 21 ou 22, dans lequel le copolymère d'éthylène est
choisi parmi
i) un copolymère dont la composition en monomères est la suivante : 35 à 90 % en moles
d'éthylène, 10 à 65 % en moles d'une α-oléfine, et 0 à 10 % en moles d'un diène ;
ii) et un copolymère dont la composition en monomères est la suivante : 75 à 97 %
en moles d'éthylène, 3 à 25 % en moles d'une α-oléfine, et 0 à 5 % en moles d'un diène.
24. Câble conforme à la revendication précédente, dans lequel le copolymère d'éthylène
est un copolymère dont la composition en monomères est la suivante : 90 à 95 % en
moles d'éthylène, 5 à 10 % en moles d'une α-oléfine, et 0 à 2 % en moles d'un diène.
25. Câble conforme à l'une des revendications 21 à 24, dans lequel l'α-oléfine est choisie
parmi les propylène, 1-hexène et 1-octène.
26. Câble conforme à l'une des revendications 22 à 25, dans lequel le diène comporte de
4 à 20 atomes de carbone.
27. Câble conforme à l'une des revendications 22 à 26, dans lequel le diène est choisi
parmi les dioléfines linéaires à doubles liaisons conjuguées ou non et les diènes
monocycliques ou polycycliques.
28. Câble conforme à l'une des revendications 22 à 27, dans lequel le diène est choisi
parmi les 1,3-butadiène, 1,4-hexadiène, 1,6-octadiène, 1,4-cyclohexadiène, 5-éthylidène-2-norbornène,
5-méthylène-2-norbornène, 5-vinyl-2-norbornène et composés similaires, ainsi que leurs
mélanges.
29. Câble conforme à l'une des revendications précédentes, dans lequel l'hydrocarbure
alkyl-arylique présente, à 25 °C, une constante diélectrique inférieure ou égale à
3,5.
30. Câble conforme à l'une des revendications précédentes, dans lequel la constante diélectrique,
à 25 °C, est inférieure ou égale à 3.
31. Câble conforme à l'une des revendications précédentes, dans lequel le liquide diélectrique
présente, à 20 °C, une viscosité cinématique de 1 à 500 mm2/s.
32. Câble conforme à l'une des revendications précédentes, dans lequel le liquide diélectrique
présente, à 20 °C, une viscosité cinématique de 5 à 100 mm2/s.
33. Câble conforme à l'une des revendications précédentes, dans lequel l'hydrocarbure
alkyl-arylique présente une capacité d'absorption d'hydrogène supérieure ou égale
à 5 mm3/min.
34. Câble conforme à la revendication précédente, dans lequel la capacité d'absorption
d'hydrogène est supérieure ou égale à 50 mm3/min.
35. Câble conforme à l'une des revendications précédentes, dans lequel une résine époxy
est ajoutée au liquide diélectrique, en une quantité qui représente au plus 1 % du
poids de ce liquide.
36. Câble conforme à la revendication précédente, dans lequel l'hydrocarbure alkyl-arylique
se trouve présent en une quantité qui représente au moins 10 % du poids total du liquide
diélectrique.
37. Câble conforme à l'une des revendications précédentes, dans lequel le liquide diélectrique
contient au moins un hydrocarbure alkyl-arylique qui comporte au moins trois cycles
aromatiques non condensés.
38. Câble conforme à l'une des revendications précédentes, dans lequel l'hydrocarbure
alkyl-arylique présente la formule structurale suivante :

dans laquelle
R1, R2, R3 et R4, qui peuvent être identiques ou différents, représentent chacun
un atome d'hydrogène ou un groupe méthyle,
et n1 et n2, qui peuvent être identiques ou différents, valent chacun 0, 1 ou 2,
sous réserve que la somme n1 + n2 soit inférieure ou égale à 3.
39. Câble conforme à l'une des revendications précédentes, dans lequel l'hydrocarbure
alkyl-arylique est choisi parmi les benzyltoluène, benzylxylène, (méthylbenzyl)toluène,
(méthylbenzyl)xylène, dibenzyltoluène, dibenzylxylène, di(méthylbenzyl)toluène, di(méthylbenzyl)xylène
et composés similaires, ainsi que leurs mélanges.
40. Câble conforme à l'une des revendications précédentes, dans lequel le liquide diélectrique
contient au moins un triphénylméthane qui ne comporte aucun substituant ou comporte
au moins un substituant choisi parmi les groupes méthyle, benzyle et méthyl-benzyle.
41. Câble conforme à la revendication précédente, dans lequel le triphénylméthane est
choisi parmi les ditoluyl-phényl-méthane, dixylylphényl-méthane, xylyl-toluyl-phényl-méthane
et composés similaires, ainsi que leurs mélanges.
42. Câble conforme à l'une des revendications précédentes, dans lequel le rapport pondéral
du liquide diélectrique au matériau polymère de base vaut de 1/99 à 25/75.
43. Câble conforme à l'une des revendications précédentes, dans lequel le rapport pondéral
du liquide diélectrique au matériau polymère de base vaut de 2/98 à 20/80.
44. Câble conforme à l'une des revendications précédentes, dans lequel le rapport pondéral
du liquide diélectrique au matériau polymère de base vaut de 3/97 à 15/85.
45. Câble conforme à l'une des revendications précédentes, dans lequel la couche de revêtement
extrudé est une couche (4) dotée de propriétés d'isolant électrique.
46. Câble conforme à l'une des revendications 1 à 44, dans lequel la couche de revêtement
extrudé est une couche (3, 5) dotée de propriétés de semi-conducteur.
47. Câble conforme à la revendication précédente, dans lequel une charge conductrice est
dispersée dans la couche dotée de propriétés de semi-conducteur.
48. Câble conforme à l'une des revendications précédentes, dans lequel le matériau polymère
de base est choisi parmi les homopolymères et copolymères de propylène comportant
une phase amorphe qui constitue au moins 40 % du poids total du polymère.
49. Câble conforme à l'une des revendications précédentes, dans lequel il y a au moins
une couche dotée de propriétés d'isolant électrique et au moins une couche dotée de
propriétés de semi-conducteur.
50. Composition de polymère comportant un matériau polymère thermoplastique mélangé avec
un liquide diélectrique, conforme à l'une des revendications 1 à 49.
51. Emploi d'une composition de polymère, conforme à la revendication 50, en tant que
matériau polymère de base dans la préparation d'une couche de revêtement (4) dotée
de propriétés d'isolant électrique.
52. Emploi d'une composition de polymère, conforme à la revendication 50, en tant que
matériau polymère de base dans la préparation d'une couche de revêtement (3, 5) dotée
de propriétés de semi-conducteur.
