TECHNICAL FIELD
[0001] The present invention relates to base station apparatus, mobile station apparatus,
wireless communication systems, and wireless communication methods.
BACKGROUND ART
[0002] Conventionally, the methods of packet scheduling have been under discussion with
adaptive modulation selection methods in relation to HSDPA (High Speed Down-link Packet
Access) under 3GPP (3rd Generation Partnership Project: Standardization organization
for technical specifications for 3rd generation mobile systems").
[0003] A 3GPP technical report, namely "12.3.5 Packet Scheduler" (3GTR V0.1.0), proposes
a technique in relation to packet scheduling where signals transmitted and received
on wireless channels are seen as packets. According to this method, the CIR (Carrier
to Interferer Ratio) or the SIR (Signal to Interferer Ratio) is measured at a mobile
station end, and the result is reported to a base station, and at the base station
end, the mobile station is assigned its priority in packet transmission based on the
scale of the CIR or SIR level. By this priority assignment, after a mobile station
with high priority finishes communication, the mobile station of the next priority
is able to perform communication.
[0004] In addition, the idea of achieving optimum transmission rates by changing the modulation
scheme in accordance with measurement results of the CIR level or SIR level is under
discussion. By giving priority to communications by those mobile stations of good
channel conditions, the overall throughput of the communication system can be enhanced.
[0005] Meanwhile, Japanese Laid-Open Patent Application Publication No.HEI8-274756 discloses
a prior art technique for changing the transmission symbol rate of the downlink. FIG.1
shows a configuration of the conventional wireless communication system disclosed
in the above publication. Referring to this figure, base station 1 comprises antennas
2 and 9, receiver 3, demodulator 4, signal detector 5, controller 6, modulator 7,
and transmitter 8. Mobile station 10 comprises antennas 11 and 18, receiver 12, demodulator
13, estimator 14, controller 15, modulator 16 and transmitter 17.
[0006] In base station 1, receiver 3 receives a radio signal transmitted frommobile station
10 and inputs the received signal into demodulator 4. Demodulator 4 demodulates the
input signal to the original baseband signal, and inputs this into signal detector
5. From the baseband signal input, signal detector 5 extracts a signal that requests
a change of the signal transmission rate (i.e. transmission rate of the downlink signals
for when signals are sent from base station 1 to mobile station 10), and then inputs
this into controller 6. This signal in request of a change of the signal transmission
rate is transmitted from mobile station 10.
[0007] In response to the signal transmission rate change request signal extracted in signal
detector 5, controller 6 generates a signal transmission rate change signal, and inputs
this into modulator 7. Modulator 7 modulates the input, signal transmission rate change
signal by a prescribed modulation scheme, and inputs this into transmitter 8. Transmitter
8 amplifies the input, modulation signal and transmits it from antenna 9.
[0008] Mobile station 10 receives the signal from base station 1 in receiver 12, which is
then demodulated to a baseband signal in demodulator 13. From the baseband signal
demodulated in demodulator 13, estimator 14 estimates the propagation path between
base station 1 and the mobile station, and inputs the result in controller 15. Based
on the input, propagation path estimation result, controller 15 decides whether or
not to change the transmission rate of the downlink signals. If a change of the transmission
rate is to be made, a change request signal is generated and input into modulator
16. Modulator 16 modulates the input, change request signal and generates the modulation
signal, which is then input to transmitter 17. Transmitter 17 amplifies the modulation
signal from modulator 16 and transmits it from antenna 18. By the above configuration,
the transmission rate of the downlink signals from base station 1 to mobile station
10 is changed.
[0009] FIG.2 is a sequence diagram illustrating the process of changing the transmission
rate between mobile station apparatus and base station apparatus under conventional
wireless communication system. A unique word (i.e. known pattern) for propagation
path estimation is inserted on a given interval in the downlink signals from base
station 1 to mobile station 10. Mobile station 10 performs propagation path estimation
that estimates the correlation with these unique words. Propagation path estimation
utilizes output from a correlator which is not shown and output from a received electric
field strength measurer which is not shown. More specifically, the transmission rate
is changed taking into account (1) the received electric field strength, (2) I-pattern
variance, (3) known pattern detection, and (4) the error rate in the mobile station
after reception.
[0010] Results of propagation path estimation are reported from mobile station 10 to base
station 1 on a regular basis in accordance with the performance of propagation path
estimation. Base station 1 receives the propagation path estimation results frommobile
station 10 and decides whether or not to change the transmission rate of the downlink
signals (i.e. determination for transmission rate variation (42)). If the transmission
rate of the downlink signals after the determination result in base station 1 regarding
transmission rate change (42) is the same as at present, base station 1 reports only
the transmission rate of the downlink signals to mobile station 10 (transmission rate
report (43)). If the result of transmission rate variation (42) proves a need to change
the transmission rate, base station 1 informs mobile station 10 to the effect that
the transmission rate will change and the transmission rate to change to, and the
change timing (44).
[0011] If a report on the propagation path estimation result (41) from mobile station 10
reaches base station 1 during the time after base station 1 informs mobile station
10 to the effect of a transmission rate change (44) and the signal transmission rate
changes, base station 1 dismisses the result (45).
[0012] Propagation path estimation is performed on a regular basis in mobile station 10,
except immediately after the transmission rate of the downlink signals has changed
(46) . When a result ofpropagationpath estimation is reported from mobile station
10 after an interval, base station 1 validates this report and determines the transmission
rate (42). Then, if the transmission rate proves the same as at present, the transmission
rate alone is reported to mobile station 10 (43). When the transmission rate of the
downlink signals changes, at this point, mobile station 10 is reported to the effect
that the transmission rate will change and the transmission rate to change to, and
the change timing (44).
[0013] The above prior art provides the following two methods of changing the downlink transmission
symbol rate.
(i) Method of FIG.3
Base station 1 transmits (downlink signals) unique words (known patterns) that are
time divided for every prescribed period To and that have varying transmission rates.
Mobile station 10 receives the unique words corresponding to the respective To's,
determines the maximum receivable transmission rate, and reports the result to base
station 1 (uplink). By this means, the transmission rate of the downlink can be set
at optimum.
(ii) Method of FIG.4 During the prescribed period To, base station 1 switches the
transmission rate for the transmission rate for the downlink signals from high-speed
to low-speed in sequence from prescribed transmission rates. Mobile station 10 performs
the parity check of the signals transmitted from base station 1 at rate 4 (rate 4),
and, only when they are receivable, reports the transmission rate to base station
1. Upon receiving this report on the transmission rate frommobile station 10, base
station 1 switches to this transmission rate. According to this method, reception
is at the optimum transmission rate, and this makes it possible to quickly set the
fastest transmission rate for the propagation path condition at the time of communication.
[0014] Incidentally, the symbol rates of the unique words of varying transmission rates
include 10Msps, 20Msps, 30Msps, 40Msps, 50Msps, 53.24Msps, 60Msps, and 70Msps.
[0015] However, conventional wireless communication systems have the following problems.
(1) Given that there is no one fixed SIR (or CIR) measurement method for individual
mobile stations and that the elements that configure the circuit for SIR (or CIR)
measurement are inconsistent, a base station is unable to accurately compare the downlink
signal reception qualities from the respective mobile stations. Due to this, selecting
the modulation scheme in consideration of SIR (CIR) measurement result is mediocre
in accuracy, and achieving the communication quality above a certain level is difficult.
(2) The wireless communication system disclosed in Unexamined Japanese Patent Application
Publication No.HEI8-274756 changes the symbol rate, so radio bandwidth must always
leave some room for when using the optimum speed rate. As a result, when a low-speed
rate is selected, the rest of the radio bandwidth becomes a waste (that is, a waste
of radio resources).
DISCLOSURE OF THE INVENTION
[0016] It is therefore one of the primary objects of the present invention to provide a
base station apparatus, a mobile station apparatus, a wireless communication system,
and a wireless communication method that can accurately change the modulation scheme
without wasting radio resources.
[0017] The above obj ect can be achieved where a base station provides each of a number
of modulation schemes (e.g. QPSK, 8PSK, 16PSK, 16QAM, 64QAM) with a dedicated pilot
signal for adaptive modulation (referred to as MCS (Modulation Coding Scheme) pilot
signal in the detailed descriptions of embodiments), and modulation schemes are selected
by referring to mobile station reception results, which refer to the determinations
as to the receivability of the results of these dedicated pilot signals after reception
and modulation in a mobile station.
BRIEF DESCRIPTION OF DRAWINGS
[0018]
FIG.1 is a block diagram showing a conventional wireless communication system configuration;
FIG.2 is a sequence diagram illustrating the process of changing transmission rate
between mobile station apparatus and base station apparatus under conventional wireless
communication system;
FIG.3 illustrates a method of changing downlink transmission symbol rate in conventional
wireless communication system;
FIG.4 illustrates a method of changing downlink transmission symbol rate in conventional
wireless communication system;
FIG.5 is a block diagram showing a configuration of base station apparatus under the
wireless communication system of the first embodiment of the present invention;
FIG.6 is a block diagram showing a configuration of mobile station apparatus under
the wireless communication system of the first embodiment;
FIG.7 is a block diagram showing a transmission pattern for MCS pilot channel signals
in base station apparatus under the wireless communication system of the first embodiment;
FIG.8 shows an example of mobile station reception result in mobile station apparatus
under the wireless communication system of the first embodiment;
FIG.9 is a conceptual diagram of transmission pattern for mobile station reception
result in mobile station apparatus under the wireless communication system of the
first embodiment;
FIG. 10 is a flow chart of the operation of switching modulation scheme in base station
apparatus under the wireless communication system of the first embodiment;
FIG.11 is a flow chart of the operation of switching modulation scheme in mobile station
apparatus under the wireless communication system of the first embodiment;
FIG.12 is a sequence diagram showing the process of changing transmission rate between
wireless communication apparatus and base station apparatus under the wireless communication
system of the first embodiment;
FIG.13 is a conceptual diagram showing a variation of the transmission pattern for
MCS pilot channel signals shown in FIG.6;
FIG.14 is a conceptual diagram showing a variation of the transmission pattern for
mobile station reception result shown in FIG.9;
FIG.15 is a block diagram showing a configuration of MCS pilot channel demodulator
in mobile station apparatus under the wireless communication system of the second
embodiment of the present invention;
FIG.16 shows an example of a correspondence table of bit error rates and modulation
schemes under the wireless communication system of the second embodiment;
FIG.17 is a block diagram showing a configuration of MCS pilot channel generator in
base station apparatus under the wireless communication system of the third embodiment
of the present invention;
FIG.18 is a block diagram showing a configuration of MCS pilot channel demodulator
in mobile station apparatus under the wireless communication system of the third embodiment;
FIG.19 shows a transmission format for MCS pilot signals in base station apparatus
under the wireless communication system of the third embodiment;
FIG.20 is a block diagram showing a configuration of base station apparatus under
the wireless communication system of the fourth embodiment of the present invention;
FIG.21 is a block diagram showing a configuration of mobile station apparatus under
the wireless communication system of the fourth embodiment;
FIG.22 shows an example of a correspondence table of bit error rates, coding rates,
and modulation schemes under the wireless communication system of the fourth embodiment;
FIG.23 is a sequence diagram showing the process of changing transmission rate between
wireless communication apparatus and base station apparatus under the wireless communication
system of the fourth embodiment;
FIG.24 is a block diagram showing a configuration of base station apparatus under
the wireless communication system of the fifth embodiment of the present invention;
FIG.25 is a block diagram showing a configuration of MCS pilot channel generator in
base station apparatus under the wireless communication system of the sixth embodiment
of the present invention;
FIG.26 is for explaining the function of MCS pilot channel generator in base station
apparatus under the wireless communication system of the sixth embodiment; and
FIG.27 is a conceptual diagram of transmission pattern for MCS pilot channel signals
where the present invention is employed in multicarrier communication scheme of the
frequency direction.
BEST MODE FOR CARRYING OUT THE INVENTION
[0019] With reference to the accompanying drawings now, best modes for carrying out the
present invention will be explained.
(Embodiment 1)
[0020] FIG.5 is a block diagram showing a configuration of base station apparatus under
the wireless communication system of the first embodiment of the present invention,
and FIG.6 is a block diagram showing a transmission pattern for MCS pilot channel
signals in base station apparatus under the wireless communication system of the first
embodiment.
[0021] In FIG.5, base station apparatus 49 comprises antenna 50, duplexer 51, receiver 52,
despreader 53, channel estimator 54, distortion corrector 55, demodulator 56, separator
57, selector 58, adaptive modulator 59, modulator 60, multiplexer 61, spreader 62,
MCS pilot channel generator 63, adder 64, and transmitter 65.
[0022] Duplexer 51 switches antenna 50 between the transmitting side and the receiving side.
Receiver 52 receives a radio signal via antenna 50, and inputs the received signal
into despreader 53. Despreader 53 dispreads the received signal input from receiver
52 and extracts the first modulation wave, which is then input into channel estimator
54 and distortion corrector 55. With respect to the first modulation wave input from
despreader 53, channel estimator 54 estimates the shift (distortion) in IQ component,
and inputs the result into distortion corrector 55. Using the channel estimation value
input from cannel estimator 54, distortion corrector 55 corrects the distortion on
the first modulation wave input from despreader 53, and inputs the corrected first
modulation wave into demodulator 56. Demodulator 56 demodulates the distortion-corrected
first modulation wave input from distortion corrector 55, and obtains the transmission
data from mobile station apparatus 99 (see FIG. 6) . The obtained transmission data
is input into separator 57. Separator 57 isolates the mobile station reception result
(later described in details) and the received data, from the transmission data input
from demodulator 56. The mobile station reception result is input into selector 58.
[0023] Selector 58 selects a modulation scheme according to the mobile station reception
result input from separator 57. That is, based on the result of acknowledgement from
mobile station apparatus 99, the modulation scheme of the maximum receivable modulation
level is selected. Then, the selected modulation scheme is reported to adaptive modulator
59. Adaptive modulator 59 modulates transmission data by the modulation scheme reported
from selector 58. This modulation wave is input into multiplexer 61 as the first modulation
wave. In modulator 60, an existing pilot signal for channel estimation is input Modulator
60 modulates, and then inputs this pilot signal into multiplexer 61 as the first modulation
wave. Multiplexer 61 multiplexes the first modulation wave input from adaptive modulator
59 and the first modulation wave input from modulator 60, and inputs the multiplex
first modulation wave into spreader 62. Using spreading code PN0, spreader 62 performs
a second modulation of the multiplex first modulation wave, and generates a second
modulation wave.
[0024] MCS pilot channel generator 63 comprises MCS pilot signal output 69 from which pilot
signals (hereinafter "MCS pilot signals") dedicated to adaptive modulation and correspond
respectively to four patterns of modulation schemes (i.e. QPSK, 8PSK, 16QAM, 64QAM)
are output together, four modulators 70 - 73 that modulate the MCS pilot signals that
are output from MCS pilot signal output 69 and that correspond to the respective modulation
schemes, spreader 75 - spreader 78 provided in correspondence with modulator 70 -
modulator 73, and adder 80 that adds outputs from spreader 75 - spreader 78. Incidentally,
the respective MCS pilot signals output from MCS pilot signal output 69 can be ones
memorized in data form in storage medium such as a memory or can be program-generated.
[0025] Modulator 70 modulates the MCS pilot signal that is output from MCS pilot signal
output 69 and that corresponds to QPSK. Unshown modulator 71 modulates the MCS pilot
signal that is output from MCS pilot signal output 69 and that corresponds to 8PSK.
Unshown modulator 72 modulates the MCS pilot signal that is output from MCS pilot
signal output 69 and that corresponds to 16QAM. Modulator 73 modulates the MCS pilot
signal that is output from MCS pilot signal output 69 and that corresponds to 64QAM.
[0026] Using spreading code PN1, spreader 75 spreads the modulation wave signal output from
modulator 70. Using spreading code PN2, unshown spreader 76 spreads the modulation
wave signal output from unshown modulator 71. Using spreading code PN3, unshown spreader
77 spreads the modulation wave signal output from unshown modulator 72. Using spreading
code PN4, spreader 78 spreads the modulation wave signal output from modulator 73.
[0027] Adder 80 adds the modulation waves from spreader 75 - spreader 78. Adder 64 adds
the modulation wave from adder 80 and the second modulation wave signal from spreader
62. The added-up modulation wave signal from adder 64 is input into transmitter 65.
Transmitter 65 up-converts the input modulation wave signal to a given radio frequency,
which is then power-amplified to a given level and transmitted from antenna 50 via
duplexer 51.
[0028] Now, FIG. 7 is a conceptual diagram of a transmission pattern for MCS pilot channel
signals. As shown in this figure, for each of QPSK, 8PSK, 16QAM, and 64QAM, MCS pilot
signals are code-multiplexed.
[0029] Next, in FIG.6, mobile station apparatus 99 comprises antenna 100, duplexer 101,
receiver 102, MCS pilot channel modulator 103, despreader 104, channel estimator 105,
distortion corrector 106, selector 107, adaptive modulator 108, separator 109, multiplexer
109, modulator 111, spreader 112, and transmitter 113. Duplexer 101 switches antenna
100 between the transmitting side and the receiving side. Receiver 102 receives a
radio signal via antenna 100. MCS pilot channel modulator 103 comprises despreader
115 - despreader 118, distortion corrector 120 - distortion corrector 123, modulator
125 - modulator 128, and comparator 130 - comparator 133, and modulates, from the
received signal, MCS pilot signals that correspond to respective modulation schemes,
draws a comparison between the modulated MCS pilot signals and known symbol patterns
provided in correspondence with the respective MCS pilot signals, and outputs the
comparison result (called "mobile station reception result") in either "match" or
"nonmatch." Using spreading code PN1, despreader 115 extracts one of the code multiplexed
signals out of the received signal from receiver 102. Using spreading code PN2, unshown
despreader 116 extracts one of the code multiplexed signals out of the received signal
from receiver 102. Using spreading code PN3, unshown despreader 117 extracts one of
the code multiplexed signals out of the received signal from receiver 102. Using spreading
code PN4, despreader 118 extracts one of the code multiplexed signals out of the received
signal from receiver 102.
[0030] Using the channel estimation value estimated in channel estimator 105, distortion
corrector 120 performs the distortion correction of the signal extracted by despreader
115. Using the channel estimation value estimated in channel estimator 105, unshown
distortion corrector 121 performs the distortion correction of the signal extracted
by unshown despreader 116. Using the channel estimation value estimated in channel
estimator 105, unshown distortion corrector 122 performs the distortion correction
of the signal extracted by unshown despreader 117. Using the channel estimation value
estimated in channel estimator 105, unshown distortion corrector 123 performs the
distortion correction of the signal extracted by despreader 118.
[0031] Demodulator 125 demodulates the MCS pilot signal corresponding to QPSK from the despread
signal subjected to distortion correction in distortion corrector 120. Unshown demodulator
126 demodulates the MCS pilot signal corresponding to 8PSK from the despread signal
subjected to distortion correction in unshown distortion corrector 121. Unshown demodulator
127 demodulates the MCS pilot signal corresponding to 16QAM from the despread signal
subjected to distortion correction in unshown distortion corrector 122. Demodulator
128 demodulates the MCS pilot signal corresponding to 64QAM from the despread signal
subjected to distortion correction in distortion corrector 123.
[0032] Comparator 130 has a known symbol pattern that accords with the MCS pilot signal
corresponding to QPSK, and draws a comparison between this known symbol pattern and
the MCS pilot signal that was demodulated in demodulator 125 and that corresponds
to QPSK, and determines their match/nonmatch. Unshown comparator 131 has a known symbol
pattern that accords with the MCS pilot signal corresponding to 8PSK, and draws a
comparison between this known symbol pattern and the MCS pilot signal that was demodulated
in unshown demodulator 126 and that corresponds to 8PSK, and determines their match/nonmatch.
Unshown comparator 132 has a known symbol pattern that accords with the MCS pilot
signal corresponding to 16QAM, and draws a comparison between this known symbol pattern
and the MCS pilot signal that was demodulated in unshown demodulator 127 and that
corresponds to 16QAM, and determines their match/nonmatch. Comparator 133 has a known
symbol pattern that accords with the MCS pilot signal corresponding to 64QAM, and
draws a comparison between this known symbol pattern and the MCS pilot signal that
was demodulated in demodulator 128 and that corresponds to 64QAM and determines their
match/nonmatch. In the respective comparisons between the known symbol patterns in
comparator 130 - comparator 133 and the MCS pilot signals, "1" is output upon match,
and "0" is output upon nonmatch.
[0033] The comparison results from comparator 130 - comparator 133 are reported to base
station apparatus 49 as the above-described mobile station reception result. Now,
FIG.8 shows an example of mobile station reception result. In this figure, QPSK and
8PSK show a match between the MCS pilot signal and known symbol pattern, while in
16QAM and 64QAM, the MCS pilot signal and known symbol pattern do not match. The reception
result is "1" (OK) in QPSK and 8PSK, and in 16QAM and 64QAM, the reception result
is "0" (NG). Incidentally, although this will be described later, base station 49,
upon receiving the mobile station reception result, selects the modulation scheme
of the maximum receivable modulation level, which is 8PSK in the example of FIG.8,
and reports the result (that is, the modulation scheme to switch to, and the timing
to switch) to mobile station apparatus 99.
[0034] Now returning to FIG.6, using spreading code PN0, despreader 104 dispreads the baseband
received data and extracts the received information, which is then input into channel
estimator 105 and distortion corrector 106. Based on the received information input
from despreader 104, channel estimator 105 estimates the shift (distortion) in IQ
component, and inputs the result into each of distortion corrector 106 and distortion
corrector 120 - distortion corrector 123 of MCS pilot channel modulator 103. Distortion
corrector 106 performs the distortion correction of the received information from
despreader 104 using the channel estimation value input from channel estimator 105.
The distortion-corrected received information is input into adaptive demodulator 108.
Adaptive demodulator 108 demodulates the distortion-corrected received information
using the demodulation scheme selected in selector 107, and obtains the transmission
data sent from base station apparatus 49. Then, the obtained transmission data is
input into separator 109. Separator 109 isolates the received data and the control
data from the transmission data input from adaptive demodulator 108. The control data
here contains information that specifies the modulation scheme . This isolated control
data is input into selector 107.
[0035] Selector 107 selects the demodulation scheme based on the control data input from
separator 109. That is, the demodulation scheme is selected based on the result of
acknowledgement from base station apparatus 49 (acknowledgement of the above-described
mobile station reception result), and the selected demodulation scheme is reported
to adaptive demodulator 108. Multiplexer 110 multiplexes the transmission data that
is to be sent to base station apparatus 49 with the comparison results (i.e. mobile
station reception results) from comparator 130 - comparator 134 of MCS pilot channel
demodulator 103, and inputs these into modulator 111. FIG.9 shows an example of multiplexed
mobile station reception result. Although the figure shows multiplexing in the time-axis
direction, it is still possible to perform IQ multiplex with communication data and
ACK (Acknowledgment) data.
[0036] Returning to FIG. 6, modulator 111 performs the first modulation of the multiplex
data input from multiplexer 110, and inputs the first modulation wave into spreader
112. Using spreading code PN0, spreader 112 performs a second modulation of the first
modulation wave input from modulator 11. Transmitter 113 up-converts the second modulation
wave from spreader 112, which is then power-amplified to a given level and transmitted
as a radio signal from antenna 100 via duplexer 101.
[0037] Next, with reference to FIG.10 - FIG.12, the operation for switching the modulation
scheme of base station apparatus 49 and mobile station apparatus 99 will be described.
[0038] FIG.10 shows a flow chart of the operation of changing the modulation scheme in base
station 49. In this figure, first, MCS pilot signals that respectively correspond
to the modulation schemes of QPSK, 8PSK, 16QAM, and 64QAM are code-multiplexed and
transmitted (ST10). When an ACK is received (ST12) in response tomobile station reception
result from mobile station apparatus 99 (although there are cases where there is only
one unit, usually there are several) after the code-multiplexed MCS pilot signals
corresponding to the respective modulation schemes have been sent out, according to
this mobile station reception result, the modulation scheme of the maximum receivable
modulation level is selected for every mobile station apparatus 99 (ST14). Incidentally,
it is possible to use one slot of ACK signal from each mobile station apparatus 99
as a parameter in the modulation scheme selection for every mobile station apparatus
99. It is also possible to use the average ACK signal of several slots as a parameter.
In this case, the signal noted as "AVERAGING CONTROL SWITCH" (which is input into
selector 58 of base station apparatus 49) in FIG.5 indicates the average of several
slots. When the "AVERAGING CONTROL SWITCH" signal is input, selector 58 averages several
slots of ACK signals from mobile station apparatus 99. Then, with the average ACK
signal serving as a parameter, the modulation scheme is selected.
[0039] Returning to FIG.10, base station apparatus 49 selects the modulation scheme of the
optimum modulation level for every mobile station apparatus in ST 14, and thereafter
reports the modulation scheme and the timing of switch (ST 16) . After this report,
the modulation scheme for the downlink signals switches by the specified timing (ST
18).
[0040] Next, FIG.11 shows a flow chart of the operation of switching the modulation scheme
of mobile station apparatus 99. Referring to the figure, a code-multiplexed MCS pilot
signal transmitted from base station apparatus 49 is received (ST 20). After the code
multiplexed MCS pilot signal is received, a comparison is drawn between the demodulation
results of the MCS pilot signals and known symbol patterns corresponding to the respective
modulation scheme (ST 22). After this comparison, the mobile station reception result
is reported to base station apparatus 49 (ST 24). Thereafter, when the modulation
scheme and the timing of switch are specified by base station apparatus 49 (ST 26),
the demodulation scheme switches to the specified one by the specified timing (ST
28).
[0041] Next, FIG.12 is a sequence diagram showing the process of switching the transmission
rate between base station apparatus 49 and two mobile station apparatus 99-1 and mobile
station apparatus 99-2.
[0042] When mobile station apparatus 99-1 and mobile station apparatus 99-2 receive the
code-multiplexed MCS pilot signal transmitted from base station apparatus 49, mobile
station apparatus 99-1 and mobile station apparatus 99-2 draw a comparison with a
known symbol pattern for every modulation scheme's MCS pilot signal, and the MCS pilot
signal that show a match is reported to base station apparatus 49 as a mobile station
reception result. Assume that in this context the initial modulation scheme inmobile
station apparatus 99-1 andmobile station apparatus 99-2 is QPSK.
[0043] Base station apparatus 49 receives the reception result report from mobile station
apparatus 99-1 and mobile station apparatus 99-2, and, according to the condition
of reception in mobile station apparatus 99-1 and mobile station apparatus 99-2, selects
a modulation scheme for each. Then, the selected modulation schemes and switch-start
timings are reported to mobile station apparatus 99-1 and mobile station apparatus
99-2. When the report is made from base station apparatus 49, mobile station apparatus
99-1 and mobile station apparatus 99-2 check the presence/absence of a modulation
scheme change.
[0044] Base station apparatus 49 switches the modulation scheme by the switch-start timing
reported to mobile station apparatus 99-1 and mobile station apparatus 99-2. In addition,
by the same switch timing, mobile station apparatus 99-1 and mobile station apparatus
99-2 switch the modulation scheme. If, for instance, the modulation scheme of the
maximum receivable modulation value for mobile station apparatus 99-1 and mobile station
apparatus 99-2 is 8PSK according to the reception result report from mobile station
apparatus 99-1 and mobile station apparatus 99-2, the current QPSK switches to 8PSK.
After switching the modulation scheme, base station apparatus 49 once again transmits
MCS pilot signals that correspond to the respective modulation schemes, and performs
the same processing as described above in relationship to mobile station apparatus
99-1 and mobile station apparatus 99-2.
[0045] On the other hand, when there is no need to switch the current modulation scheme,
the MCS pilot signals are transmitted by the same timing as the switch start timing.
That is, the MCS pilot signals are transmitted on a given interval to decide whether
there is a need to switch the modulation scheme, which, if a change is needed, switches
to new modulation schemes. If there is no need for such change, the current modulation
scheme is sustained until next MCS pilot signals are transmitted.
[0046] As described above, according to the wireless communication system of the present
embodiment, base station apparatus 49, in addition to transmitting known pilot signals
used for channel estimation, transmits dedicated MCS pilot signals for performing
adaptive modulation in accordance with each of several modulation schemes (e.g. QPSK,
8PSK, 16QAM, 64QAM). From a received signal, mobile station apparatus 99 extracts
each of the code-multiplexed MCS pilot signals through despreading, compares each
with a known symbol pattern, and, if there is an MCS pilot signal that shows a match,
reports this as a mobile station reception result to base station apparatus 49. Upon
receiving the report of mobile station reception result from mobile station apparatus
99, base station apparatus 49 selects the modulation scheme of the optimum modulation
level for the downlink signals from the modulation schemes corresponding to the MCS
pilot signals that show a match with known symbol patterns, and reports the selected
modulation scheme to mobile station apparatus 99 and meanwhile performs communication
with mobile station apparatus 99 by this modulation scheme.
[0047] Thus, the modulation scheme is selected based on the mobile station reception result,
which refers to determinations as to the result of a dedicated MCS pilot signal received
and demodulated in mobile station apparatus 99 is receivable, thereby enabling more
accurate modulation scheme selection than modulation scheme selection using SIR (CIR)
measurement results and improving channel quality. Moreover, unlike the methods that
change the symbol rate, radio resources are not wasted.
[0048] Although Embodiment 1 above is configured such that MCS pilot signals are transmitted
on a per slot basis at the same power level, such configuration is also possible where
transmission is first performed at a low power level and then at gradually higher
power levels.
[0049] In addition, according to Embodiment 1 above, since base station apparatus 49 code-multiplexes
and transmits MCS pilot signals corresponding to all of the modulation schemes QPSK,
8PSK, 16QAM, and 64QAM, some interference between codes cannot be helped. However,
as shown in FIG. 13, by making no transmission in relationship to QPSK, which corresponds
to the smallest modulation level, inter-code interference can be reduced by that proportion.
[0050] Moreover, although Embodiment 1 above is configured such that ACK's from mobile station
apparatus are multiplexed in the time axis direction as shown in FIG. 9, multiplexing
in the code direction is also possible as shown in FIG. 14. This allows a slot to
transmit a greater volume of transmission data comparing to the case of multiplexing
in the time axis direction.
[0051] Furthermore, although Embodiment 1 above provides four types of modulation schemes,
namely PSK, 8PSK, 16QAM, and 64QAM, other modulation schemes (e.g. 16PSK) can certainly
be added.
(Embodiment 2)
[0052] FIG.15 is a block diagram showing a configuration of an MCS pilot channel demodulator
139 in mobile station apparatus under the wireless communication system of the second
embodiment of the present invention. Parts in this figure identical to those inMCS
pilot channel demodulator 103 of FIG. 6 are assigned the same numerals without further
explanations. In addition, since parts besides MCS pilot channel demodulator 139 are
identical, reference will be made to FIG. 6 as it is. Moreover, as for the numerals
assigned to the base station apparatus and the mobile station terminal apparatus,
these will be "49" for the base station apparatus and "99" for the mobile station
apparatus, as in Embodiment 1.
[0053] As shown in FIG.15, mobile station apparatus 99 of the present embodiment comprises
MCS pilot channel demodulator 139 that further comprises BER measurer 140 - BER measurer
143 that obtains the number of errors or the bit rate from output of each of demodulator
125 - demodulator 128. Mobile station apparatus 99 reports the results measured in
BER measurer 140 - BER measurer 143, that is, BER measurement results, to base station
apparatus 49. In this case, BERmeasurer 140 - BER measurer 143 draw a comparison between
received data demodulated by respective demodulation schemes and known signal patterns,
count the number of bit errors (bit error number) , and output the result. The count
value is transmitted with transmission data as the mobile station reception result
to base station apparatus 49.
[0054] Using the bit error number reported from mobile station apparatus 99 as a parameter,
base station apparatus 49 selects the modulation scheme for the downlink signals.
Incidentally, it is also possible to divide the number of bit errors by the number
of transmission bits, and obtain the error rate in mobile station apparatus 99 or
base station apparatus 49 and use it as a parameter. For instance, when selecting
the modulation scheme on the basis of bit error rate, base station apparatus 49 receives
a report on the number of bit errors as an acknowledgement result from mobile station
apparatus 99, and thereupon performs the calculation of dividing the bit error number
by the transmission bit number, and obtains the bit error rate. Then, from the obtained
bit error rate, the modulation scheme is selected with reference to a table of prescribed
corresponding bit error rates andmodulation schemes (see in FIG. 16 an example of
a table of corresponding bit error rates and modulation schemes). Then, the selected
modulation scheme and the timing to perform the change are reported to mobile station
apparatus 99. Upon receiving this report, mobile station apparatus 99 switches to
the specified modulation scheme by the above switch timing. Now assume a case where
the bit error rates obtained in base station apparatus 49 corresponding to the respective
modulation schemes based on the mobile station reception result from mobile station
apparatus 99 are:




[0055] Referring to the table of FIG.16, QPSK alone has a satisfactory bit error rate, and
accordingly the modulation scheme switches to 8PSK.
[0056] As described above, according to the present embodiment, mobile station apparatus
99 obtains the numbers of bit errors from the demodulation result of the MCS pilot
signals and sends the result to base station apparatus 49. Base station apparatus
49 obtains the bit error rates based on the bit error numbers from mobile station
apparatus 99, and the modulation scheme for the downlink signals is selected according
to the obtained bit error rates. As a result, as in Embodiment 1, more accurate modulation
scheme selection than modulation scheme selection using SIR (CIR) measurement results
is made possible for improved channel quality. Moreover, unlike the methods that change
the symbol rate, radio resources are not wasted. More notably, the present embodiment
is configured such that the modulation scheme for the downlink signals is selected
on the basis of bit error rate, so that more delicate modulation scheme selection
control that is in accordance with reception performance (decoding performance) of
a mobile station is made possible, compared to cases where the modulation scheme is
selected on the determination basis of an either-or nature such as whether the pilot
patterns match or do not match, or whether a CRC result is good or poor.
[0057] Furthermore, although the present embodiment is configured such that the optimum
modulation scheme is selected based on the bit error rates of several MCS pilot signals
corresponding to the respective modulation schemes, such configuration is also possible
where focus is upon MCS pilot signals using minimum one modulation scheme, in order
to simplify the process of the above. Focusing on QPSK, for instance, when the bit
error rate is 6.5×10
-4, this falls below 9.0×10
-4 according to the table of FIG.16, and so 16QAM is selected. By thus looking at only
one MCS pilot signal utilizing a modulation scheme, the process can be simplified
and the number of MCS pilot transmission patterns can be reduced, for simplified transmission
circuit and reduced inter-code interference.
(Embodiment 3)
[0058] FIG.17 is a block diagram showing a configuration of an MCS pilot channel generator
149 in base station apparatus under the wireless communication system of the third
embodiment of the present invention. FIG.18 is a block diagram showing a configuration
of an MCS pilot channel demodulator 169 in mobile station apparatus under the wireless
communication system of the third embodiment. In these figures, parts identical between
MCS pilot channel generator 63 of the aforementioned FIG. 5 and MCS pilot channel
demodulator 103 of FIG.6 are assigned the same numerals without further explanations.
As for parts besides MCS pilot channel generator 63, reference will be made to FIG.5.
Similarly, reference will be made to FIG.6 regarding those parts besides MCS pilot
channel demodulator 103. Moreover, as for the numerals assigned to the base station
apparatus and the mobile station terminal apparatus, these will be "49" for the base
station apparatus and "99" for the mobile station apparatus, as in Embodiment 1.
[0059] Base station apparatus 49 of the present embodiment has the function of selecting
the modulation scheme according to error detection CRC (Cyclic Redundancy Check) results
from mobile station apparatus 99. As shown in FIG.17, base station apparatus 49 comprises
CRC assigner 150 - CRC assigner 153 that attach CRC codes to each MCS pilot signal
that is output from MCS pilot signal output 69 and that corresponds to respective
modulation schemes, and MCS pilot channel generator 149 that further comprises encoder
155 - encoder 158 that perform the error correction coding (ECC: Error Correction
Code) of outputs from respective CRC assigner 150 - CRC assigner 153. FIG. 19 shows
a transmission format for error-correction coded MCS pilot signals, which are output
from each of encoder 155 - encoder 158, and the configuration shown is such that a
CRC and an ECC are appended to an MCS pilot signal.
[0060] Meanwhile, mobile station apparatus 99 of the present embodiment has the function
of reporting to base station apparatus 49 the CRC determination result of the received
data demodulated by the respective demodulation schemes in an ACK signal. As shown
in FIG. 18, mobile station apparatus 99 comprises error correction demodulator 170
- error correction demodulator 173 that perform the error correction modulation of
outputs from respective demodulator 125 - demodulator 128, and MCS pilot channel demodulator
169 that further comprises CRC determination unit 175 - CRC determination unit 178
that make CRC (error detection) determinations of outputs from respective error correction
demodulator 170 - error correction demodulator 173 and output the results. The CRC
determination results from CRC determination unit 175 - CRC determination unit 178
are reported to base station apparatus 49.
[0061] From mobile station apparatus 99, the CRC determination results of received data
modulated by respective modulation schemes are reported to base station apparatus
49 as an ACK signal. This report is made in the same manner as in Embodiment 1, except
that "Reception result" in FIG.8 has to be replaced by "CRC determination result."
With the CRC determination result serving as a parameter, base station apparatus 49
selects the modulation scheme of the optimum modulation level with a good CRC determination
result, and reports to mobile station apparatus 99 the modulation scheme to switch
to and the timing to switch. In addition, it is also possible to average momentary
CRC determination results over several slots and use the average CRC determination
result as a parameter for modulation scheme selection.
[0062] As described above, according to the present embodiment, base station apparatus 49
assigns a CRC code to MCS pilot signals that correspond to respective modulation schemes
and performs error correction encoding, and sends the result to mobile station apparatus
99. Mobile station apparatus 99 makes CRC determinations in respect to the MCS pilot
signals after despreading and error correction decoding processing, and sends the
result to base station apparatus 49. Based on the CRC determination result from mobile
station apparatus 99, base station apparatus 49 selects the modulation scheme. By
this means, the same advantage is achieved as by Embodiment 1.
(Embodiment 4)
[0063] FIG.20 is a block diagram showing a configuration of base station apparatus under
the wireless communication system of the fourth embodiment of the present invention.
FIG.21 is a block diagram showing a configuration of mobile station apparatus under
the wireless communication system of the fourth embodiment. Parts in these figures
identical to those of base station apparatus 49 of FIG.5 and mobile station apparatus
99 of FIG.6 are assigned the same numerals without further explanations. As for the
numerals assigned to the base station apparatus and the mobile station terminal apparatus,
the base station apparatus is "49" and the mobile station apparatus is "99," as in
Embodiment 1.
[0064] Base station apparatus 49 of the present embodiment has the function of selecting
the coding rate in error detection coding in accordance with the condition of reception
in mobile station apparatus 99. As shown in FIG.20, base station apparatus 49 comprises
selector 190 that selects the modulation scheme and coding rate based on mobile station
reception result, and encoder 191 that performs the error correction coding of transmission
data according to the result of the coding rate selection from selector 190. The transmission
data error-correction coded in encoder 191 is input into adaptive modulator 59.
[0065] Mobile station apparatus 99 of the present embodiment has the function of performing
error correction coding based on the coding rate selected in base station apparatus
49. As shown in FIG.21, mobile station apparatus 99 comprises selector 193 that selects
the coding rate and demodulation scheme according to the control data isolated in
separator 109, and decoder 194 that performs the error correction decoding of received
data at the coding rate selected in selector 193.
[0066] Selector 193 of base station apparatus 49 is provided with an error correction coding
rate and modulation scheme selectiontablethatlistscorrespondingerrorcorrection coding
rates andmodulation schemes in the form of a table, with reference to which the error
coding rate and the modulation scheme are selected. FIG.22 shows an example of a table
of corresponding bit error rates, coding rates, and modulation schemes.
[0068] FIG.23 is a sequence diagram showing the process of changing the transmission rate
between wireless communication apparatus and base station apparatus under the wireless
communication system of the fourth embodiment. Referring to this figure, when an MCS
pilot signal transmitted from base station apparatus 49 is received in mobile station
apparatus 99-1 and in mobile station apparatus 99-2, mobile station apparatus 99-1
and in mobile station apparatus 99-2 draw a comparison with a known symbol pattern
for every modulation scheme's MCS pilot signal, and reports the number of bit errors
under each modulation scheme to base station apparatus 49. Assume that the initial
modulation scheme for mobile station apparatus 99-1 and mobile station apparatus 99-2
is QPSK with the coding rate K of 1/4.
[0069] Upon receiving from mobile station apparatus 99-1 and mobile station apparatus 99-2
the report on bit error numbers under the respective modulation schemes, base station
apparatus 49 obtains the bit error rates from the reported bit error numbers, and
selects the modulation schemes and the error correction coding rates for mobile station
apparatus 99-1 and mobile station apparatus 99-2 from the table of corresponding bit
error rates, coding rates, and modulation schemes (see FIG.22). Then, the selected
modulation schemes, error correction coding rates, and the timings to start switching
these are reported to mobile station apparatus 99-1 and mobile station apparatus 99-2.
Upon receiving this report from base station apparatus 49, mobile station apparatus
99-1 and mobile station apparatus 99-2 determine, based on the report, as to whether
or not the modulation schemes need to be switched.
[0070] When the timing reported to mobile station apparatus 99-1 and mobile station apparatus
99-2 to start performing the switch comes, base station apparatus 49 switches the
modulation scheme and the error correction coding rate. Mobile station apparatus 99-1
and mobile station apparatus 99-2 also switch the modulation scheme and error correction
coding rate by the specified timing. For instance, if the modulation scheme of the
maximum receivable modulation level for mobile station apparatus 99-1 and mobile station
apparatus 99-2 is 8PSK and the error correction coding rate K is 3/4 according to
a reception result reported from mobile station apparatus 99-1 and mobile station
apparatus 99-2, the current QPSK with K=1/4 switches to 8PSK with K=3/4.
[0071] After having thus switched the modulation scheme and error correction coding rate,
base station apparatus 49 once again transmits MCS pilot signals and performs the
same processings as above in relationship to mobile station apparatus 99-1 and mobile
station apparatus 99-2. On the other hand, when there is no need to switch the current
modulation scheme and error correction coding rate, MCS pilot signals are transmitted
by the same timing as the switch-start timing. That is, MCS pilot signals are transmitted
on a given interval, and a determination is made as to whether the modulation scheme
and error correction coding rate needs to be switched. If such change is needed, the
modulation scheme and error correction coding rate switch to new ones, and if such
change is not needed, the present modulation scheme and error correction coding rate
are sustained until the next MCS pilot signals are transmitted.
[0072] As described above, according to the present embodiment, mobile station apparatus
99 obtains the number of bit errors from the demodulation result of MCS pilot signals,
and sends this result to base station apparatus 49. Base station apparatus 49 obtains
the bit error rate from the bit error number from mobile station apparatus 99, and
selects, according to the obtained bit error rate, and the coding rate in error correction
coding for the downlink signals. By this means, data reception at the optimum transmission
rate is possible.
[0073] Although the present embodiment above is configured such that the number of bit errors
is used as the information on mobile station reception result from mobile station
apparatus 99, the bit error rate, CRC determination result, result of match/nonmatch
between MCS pilot signals and known symbol patterns, and various others can be used
as well.
[0074] Moreover, as described in Embodiment 2, the coding rate in error correction coding
does not need to be selected based on the bit error rates under modulation schemes
that correspond to respective MCS pilot signals, and it is possible to select the
error coding rate in error correction coding based on the bit error rate of minimum
one modulation scheme. Focusing on QPSK, for instance, when the bit error rate is
6.5×10
-4, this falls below 9.0×10
-4 according to the table of FIG.22, and so 16QAM with the coding rate of 3/4 is selected.
By thus looking at minimum one MCS pilot signal utilizing a modulation scheme, the
process can be simplified and the number of MCS pilot transmission patterns can be
reduced, for simplified transmission circuit and reduced inter-code interference.
[0075] Incidentally, the present embodiment allows the use of one slot of ACK signal from
each mobile station apparatus 99 for a parameter. It is also possible to average several
slots of ACK signals and use the average ACK signal as a parameter. Referring to FIG.20,
the signal noted as "AVERAGING CONTROL SWITCH" indicates the average of several slots,
and when this "AVERAGING CONTROL SWITCH" signal is input, selector 190 averages several
slots of ACK signals from mobile station apparatus 99, and, with the averaged ACK
signal serving as a parameter, selects the coding rate in error correction decoding
and the modulation scheme.
(Embodiment 5)
[0076] FIG.24 is a block diagram showing a configuration of base station apparatus under
the wireless communication system of the fifth embodiment of the present invention.
Parts in this figure identical to those in base station apparatus 49 of FIG.5 are
assigned the same codes without further explanations. The numeral assigned for the
base station apparatus will be "49" as in Embodiment 1. As for the mobile station
apparatus, reference will be made to FIG.5.
[0077] Base station apparatus 49 of the present embodiment has the function of packet scheduling
based on bit error rate. Mobile station apparatus 99 obtains the numbers of bit errors
by comparing MCS pilot signals demodulated by respective modulation schemes with known
symbol patterns, and reports the result to base station apparatus 49. In user selector
(packet scheduler) 199, base station apparatus 49 receives the report on the number
of bit errors and obtains the bit error rate, and this bit error rate is memorized
for every mobile station apparatus 99. Then of those mobile station apparatus 99'
s transmitting unempty packet data, transmission data 1, 2, ...n are distributed to
users in the order of mobile station apparatus 99's giving good error rates.
[0078] Thus according to the present embodiment, packet scheduling is performed based on
modulation performance of mobile station apparatus 99, and high priority is assigned
to those mobile station apparatus 99 of high success rates of reception, so that retransmission
due to transmission errors can be reduced for improved throughput.
(Embodiment 6)
[0079] FIG.25 is a block diagram showing a configuration of MCS pilot channel generator
200 in base station apparatus under the wireless communication system of the sixth
embodiment of the present invention. Parts in this figure identical to those of MCS
pilot channel generator 63 of FIG.5 are assigned the same codes without further explanations.
As for parts besides MCS pilot channel generator 200, reference will be made to FIG.5.
Moreover, the numerals assigned to the base station apparatus and the mobile station
terminal apparatus will be "49" for the base station apparatus and "99" for the mobile
station apparatus, as in Embodiment 1.
[0080] When MCS pilot signals of the respective modulation schemes of 64QAM, 16QAM, and
QPSK are multiplexed, provided a configuration shown in FIG.26 where the four nearest
points to the origin are transmitted as MCS pilot signals, QPSK can generate dummy
MCS pilot signals of 16QAM and 64QAM by only changing the output amplitude, thereby
simplifying the MCS pilot channel generator. As shown in FIG.25, as for an MCS pilot
signal of QPSK, a signal from spreader 75 is output as it is, while for an MCS pilot
signal of 16QAM, a signal from spreader 77 is adjusted in amplifier 202 from the output
level of spreader 75 to the output level of 16QAM (specifically, 0.33 times) . As
for an MCS pilot signal of 64QAM, a signal from spreader 78 is adjusted in amplifier
203 from the output level of spreader 75 to the output level of 64QAM (specifically,
0.14 times)
[0081] Output from spreader 75 and output from amplifier 202 are added in adder 204, while
output from adder 204 and output from amplifier 203 are added in adder 205. As for
an MCS pilot signal by 8PSK, modulator 71 and spreader 78 dedicated thereto are provided,
so that output from spreader 76 and output from adder 205 are added in adder 206.
[0082] As described above, the present embodiment is configured such that in base station
apparatus 49, MCS pilot signals respectively corresponding to 16QAM and 64QAM are
fictitiously generated from demodulated MCS pilot signals corresponding to QPSK, so
that modulators for 16QAM and 64QAM become unnecessary, and cost reduction is possible.
[0083] Furthermore, by applying frequency-directional multicarrier communications scheme
to each of the above embodiments, MCS pilot signals can be sent in parallel also in
the frequency direction as shown in FIG.27, so that the time to transmit MCS pilot
signals can be reduced.
[0084] As explained above, the present invention provides wireless communication systems
whereby the modulation schemes can be switched accurately and easily without wasting
radio resources.
[0085] The present application is based on Japanese Patent Application No. 2001-214531 filedon
July 13, 2001, entire content of which is incorporated herein for reference.
INDUSTRIAL APPLICABILITY
[0086] The present invention is applicable to mobile communication systems for mobile telephones.
1. Abase station apparatus comprising a pilot channel generator that code multiplexes
and outputs dedicated pilot signals respectively corresponding to a plurality of modulation
schemes, and a transmitter that transmits a code multiplex signal generated in said
pilot channel generator.
2. The base station apparatus according to claim 1, further comprising a modulation scheme
selector, wherein, when a mobile station reception result is sent from a mobile station
apparatus after said transmitter transmits the code multiplex signal, said modulation
scheme selector selects a modulation scheme of an optimum modulation level frommodulation
schemes that saidmobile station is capable of receiving, where the selection is based
on the mobile station reception result that indicates whether a plurality of the dedicated
pilot signals in the code multiplex signal have been each successfully received.
3. The base station apparatus according to claim 2,
wherein a comparison is drawn between the plurality of dedicated signals and known
symbol patterns respectively corresponding to said dedicated pilot signals, and the
mobile station reception result indicates the modulation scheme that shows a matching
relationship in the comparison; and
wherein said modulation scheme selector selects the modulation scheme of the optimum
modulation level from the modulation schemes that show the matching relationship.
4. The base station apparatus according to claim 2,
wherein the mobile station reception result indicates the number of bit errors
acquired from the comparison of the plurality of dedicated signals and the known symbol
patterns respectively corresponding to said dedicated pilot signals; and
wherein, based on the number of bit errors, said modulation scheme selector selects
the modulation scheme of the optimum modulation level from the modulation schemes
that said mobile station is capable of receiving.
5. The base station apparatus according to claim 2, further comprising a correspondence
table showing a plurality of respectively corresponding modulation schemes and bit
error rates,
wherein said pilot channel generator outputs at least one dedicated pilot signal
corresponding to a bit rate modulation scheme; and
wherein said modulation scheme selector refers to said correspondence table and
selects the modulation scheme of the optimummodulation level from the modulation schemes
that said mobile station is capable of receiving, where the mobile station reception
result indicates a bit error rate acquired from the comparison of the at least one
dedicated signal and a known symbol pattern corresponding to said dedicated pilot
signal; and
wherein said modulation scheme selector refers to said correspondence table and
selects the modulation scheme of the optimummodulation level from the modulation schemes
that said mobile station is capable of receiving.
6. The base station apparatus according to claim 2,
wherein said pilot channel generator performs error detection and error correction
coding processing for each of the plurality of dedicated pilot signals; and
wherein, when the mobile station reception result indicates an error detection
determination result, said modulation scheme selector selects the modulation scheme
of the optimum modulation level based on the error detection determination result.
7. The base station apparatus according to claim 2,
wherein said modulation scheme selector selects the modulation scheme and meantime
selects a coding rate for error correction coding of a downlink signal.
8. The base station apparatus according to clam 2,
wherein said pilot channel generator generates the code multiplex signal wherein the
dedicated pilot signal corresponding to the modulation scheme of a minimum modulation
level is removed.
9. The base station apparatus according to claim 2,
further comprising a packet scheduler that memorizes the mobile station reception
result from said mobile station apparatus for every mobile station apparatus,
wherein packet scheduling is performed for mobile station apparatus transmitting
nonempty packets and performed in order from those mobile station apparatus corresponding
to a good mobile station reception result.
10. A base station apparatus comprising:
a modulator that modulates a dedicated signal;
a plurality of spreaders that each spread output from said modulator by a spreading
code corresponding to said modulator;
a plurality of output level adjusters that adjust an output levels of one spreader
from the plurality of spreaders to the output levels bymodulation schemes that respectively
correspond to the other spreaders,
an adder that adds output of the one spreader and output of at least one of the plurality
of output level adjusters; and
a transmitter that transmits a code multiplex signal from said adder.
11. A mobile station apparatus comprising:
a demodulator that demodulates dedicated pilot signals out of a received code multiplex
signal, where said dedicated pilot signals respectively correspond to a plurality
of modulation schemes;
a reception result output that compares a plurality of the dedicated pilot signals
demodulated in said demodulator with known symbol patterns respectively corresponding
to said dedicated pilot signals, and that outputs a mobile station reception result
indicating whether or not said dedicated pilot signals have been each successfully
received; and
a transmitter that transmits the mobile station reception result from said reception
result output.
12. The mobile station apparatus according to claim 11,
wherein said reception result output determines whether or not the plurality of the
dedicated pilot signals demodulated in said demodulator and the known symbol patterns
respectively corresponding to said dedicated pilot signals match in comparison, and
outputs a determination result as the mobile station reception result.
13. The mobile station apparatus according to claim 11,
wherein said reception result output compares the plurality of the dedicated pilot
signals demodulated in said demodulator with the known symbol patterns respectively
corresponding to said dedicated pilot signals and obtains the number of bit errors,
and outputs the numbers of bit errors acquired respectively corresponding to said
dedicated pilot signals as the mobile station reception result.
14. The mobile station apparatus according to claim 11,
wherein said reception result output compares the dedicated pilot signals demodulated
in said demodulator with the known symbol patterns respectively corresponding to said
dedicated pilot signals and obtains the number of bit errors, and outputs the number
of bit errors as the mobile station reception result.
15. A mobile station apparatus comprising:
a demodulator that demodulates dedicated pilot signals out of a received code multiplex
signal, where said dedicated pilot signals respectively correspond to a plurality
of modulation schemes;
an error correction determination processor that performs error correction decoding
processing for each of the dedicated pilot signals demodulated in said demodulator;
an error detection determiner that makes an error detection determination for each
of the dedicated pilot signals after the error correction decoding processing in said
error correction decoding processor, and outputs a result thereof as a mobile station
reception result; and
a transmitter that transmits the mobile station reception result from said error detection
determiner.
16. A wireless communication system comprising a base station apparatus and a mobile station
apparatus,
wherein said base station apparatus comprises:
a pilot cannel generator that code multiplexes and outputs dedicated pilot signals
respectively corresponding to a plurality of modulation schemes; and
a transmitter that transmits the code multiplex signal generated in said pilot channel
generator,
and, wherein said mobile station apparatus comprises:
a demodulator that demodulates dedicated pilot signals out of the code multiplex signal,
where said dedicated pilot signals respectively correspond to the plurality of modulation
schemes;
a reception result output that compares a plurality of the dedicated pilot signals
demodulated in said demodulator with known symbol patterns respectively corresponding
to said dedicated pilot signals, and that outputs a mobile station reception result
indicating whether or not said dedicated pilot signals have been each successfully
received; and
a transmitter that transmits the mobile station reception result from said reception
result output.
17. A wireless communication system comprising a base station apparatus and a mobile station
apparatus,
wherein said base station apparatus comprises:
a pilot channel generator that multiplexes and outputs dedicated pilot signals respectively
corresponding to a plurality of modulation schemes;
a transmitter that transmits the code multiplex signal generated in said pilot channel
generator; and
a modulation scheme selector that, when a mobile station reception result is sent
from a mobile station apparatus after said transmitter transmits the code multiplex
signal, selects a modulation scheme of an optimum modulation level from modulation
schemes that said mobile station is capable of receiving, where the selection is based
on the mobile station reception result that indicates whether a plurality of the dedicated
pilot signals in the code multiplex signal have been each successfully received,
and wherein said mobile station apparatus comprises:
a demodulator that demodulates the dedicated pilot signals out of the code multiplex
signal, where said dedicated pilot signals respectively correspond to the plurality
of modulation schemes;
a reception result output that compares the plurality of the dedicated pilot signals
demodulated in said demodulator with known symbol patterns respectively corresponding
to said dedicated pilot signals, and outputs the mobile station reception result indicating
whether said dedicated signals have been each successfully received; and
a transmitter that transmits the mobile station reception result from said reception
result output.
18. A wireless communication method comprising:
in a base station apparatus:
generating dedicated pilot signals used to perform adaptive modulations respectively
corresponding to a plurality of modulation schemes; and
code multiplexing and transmitting a plurality of the dedicated pilot signals;
and in a mobile station apparatus:
despreading and extracting the respective dedicated pilot signals out of a code multiplex
signal;
comparing each of the extracted dedicated signals with a known symbol pattern;
reporting to the base station apparatus a determination result of match and nonmatch
for each modulation scheme, where the plurality of the dedicated pilot signals and
the known symbol patterns provided respectively corresponding to said dedicated pilot
signals are compared for a match and nonmatch determination;
acquiring the number of bit errors by comparing the plurality of the dedicated pilot
signals and the known symbol patterns provided respectively corresponding to said
dedicated pilot signals; and
determining the number of bit errors for each dedicated pilot signal, and reporting
the number of bit errors under each modulation scheme to the base station apparatus;
wherein, upon receiving the report from the mobile station apparatus, the base
station apparatus selects a modulation scheme of an optimum modulation level from
modulation schemes that said mobile station is capable of receiving, where the selection
is based on the determination result of match and nonmatch and the number of bit errors.
19. A wireless communication method comprising:
in a base station apparatus:
generating dedicated pilot signals used to perform adaptive modulations respectively
corresponding to a plurality of modulation schemes;
assigning an error correction code to each of the generated dedicated pilot signals
and performing error correction coding;
code multiplexing and transmitting each of the dedicated pilot signals after the error
correction coding;
and in a mobile station apparatus:
despreading and extracting the dedicated pilot signals out of a code multiplex signal
from the base station apparatus; and
for each of the extracted dedicated signals, performing error correction decoding
and thereafter making error detection determination, and reporting a result thereof
to the base station apparatus;
wherein, upon receiving the report from the mobile station apparatus, the base
station apparatus selects a modulation scheme of an optimum modulation level from
modulation schemes that said mobile station apparatus is capable of receiving, based
on the error detection determination result.