(19) |
 |
|
(11) |
EP 1 157 165 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
21.04.2004 Bulletin 2004/17 |
(22) |
Date of filing: 31.01.2000 |
|
(86) |
International application number: |
|
PCT/SE2000/000187 |
(87) |
International publication number: |
|
WO 2000/044985 (03.08.2000 Gazette 2000/31) |
|
(54) |
METHOD AND ARRANGEMENT FOR THE PRODUCTION OF LIGNOCELLULOSE-CONTAINING BOARDS
VERFAHREN UND VORRICHTUNG ZUR HERSTELLUNG VON LIGNOCELLULOSE ENTHALTENDEN PLATTEN
PROCEDE ET DISPOSITIF DE FABRICATION DE PLANCHES LIGNOCELLULOSIQUES
|
(84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
(30) |
Priority: |
01.02.1999 SE 9900332
|
(43) |
Date of publication of application: |
|
28.11.2001 Bulletin 2001/48 |
(73) |
Proprietor: Valmet Fibertech Aktiebolag |
|
851 94 Sundsvall (SE) |
|
(72) |
Inventors: |
|
- ERIKSSON, N., Lennart
S-856 53 Sundsvall (SE)
- SISLEGARD, Lars-Otto
S-855 90 Sundsvall (SE)
- SCHEDIN, Kurt
S-856 31 Sundsvall (SE)
|
(74) |
Representative: Johansson Webjörn, Ingmari |
|
L.A. Groth & Co KB Patentbyra,
P.O. Box 6107 102 32 Stockholm 102 32 Stockholm (SE) |
(56) |
References cited: :
WO-A1-98/50208
|
SE-C2- 504 638
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a method of producing continuously lignocellulose-containing
boards in accordance with the preamble of claim 1, and to an arrangement for carrying
out the method in accordance with the preamble of claim 4.
[0002] Methods of producing lignocellulose-containing board are well known to the art and
have found wide use in practice (see WO-A-9850208). The manufacture of such boards
includes the following main method steps: disintegration of the raw material into
particles and/or fibres of appropriate size, drying the particles and/or fibres to
a determined moisture quotient and glue-coating the material either prior to or subsequent
to said drying process, shaping the glue-coated material to form a mat, which may
comprise several layers, and optionally cold pre-pressing the mat, pre-heating said
mat, water-spraying mat surfaces, etc., and heat pressing the mat in a discontinuous
press or in a continuous press while subjecting the material simultaneously to pressure
and heat so as to obtain a finished board. It is difficult to control the quality
of the boards produced in accordance with this known method with respect to the moisture
content, temperature and dimensional stability of the boards. When the boards leave
the heat pressing in the production process, they have a temperature in excess of
100°C and a corresponding vapour pressure. The temperature of the board surfaces falls
rapidly to beneath 100°C as the enclosed moisture is vaporised by virtue of a so-called
flash effect. The boards are then cooled in so-called cooling wheels. As a result,
the boards will obtain a moisture content of about 6-7% after intermediate storage
of the board over a day or two. In many applications this creates a problem in environments
that have a higher average relative humidity, since the boards will take up moisture
when used and therewith undergo dimensional changes, as in the case of all lignocellulose-containing
materials. One way of counteracting this is to spray water on the boards as they leave
the press.
[0003] Another known phenomena is that boards produced in this way obtain mutually different
moisture contents in the surface layers relative to the core layer. If the boards
are used for some type of surface treatment for instance, such as lamination, without
having earlier equalised the difference in moisture content, the dimensions of the
board may change when this equalisation takes place in time so that the surface layer
loosens. In order to achieve desired equalisation between the various layers, it is
customary to store the boards for a number of weeks.
[0004] Another known problem is that the boards are not dimensionally stable when they leave
the press. This is noticeable primarily because the boards shrink or swell over a
process that can take one or more days. Consequently, calibration grinding of the
boards is not normally undertaken until the boards have been stored in intermediate
storage locations over a number of days.
[0005] Another known problem is that the boards are too hot to be stacked and stored when
leaving the hot press. If the boards are too hot when stacked, the glue joints may
begin to break down and the boards consequently weakened. This problem is normally
alleviated by keeping the boards in a so-called cooling wheel in which the board temperature
is lowered by natural convection.
[0006] It will be evident from the aforegoing that the conventionally used press technique
and board production technique involve a number of cost-inducing handling stages and
intermediate storage subsequent to the actual board manufacturing process. Accordingly,
the object of the present invention is to stabilise a board with respect to its moisture
content, temperature and dimensional stability in a continuous process, and therewith
avoid cost-inducing handling and storage of the board. Because dimensional stability
is achieved, the boards may also be ground or sanded down to a final thickness directly
after manufacture. This object is achieved with the method and the apparatus defined
in the characterizing clauses of respective claims.
[0007] The invention will now be described in more detail with reference to the accompanying
drawing, which is a schematic longitudinal section view of plant constructed in accordance
with the invention.
[0008] The plant illustrated in the drawing is based on the plant disclosed in SE 504 638,
which describes a continuous steam injection process. A mat 1 formed from lignocellulose-containing
material is fed into a continuous steam injection press 2 and there pressed into boards
3. The boards exiting from the continuous steam injection press 2 enter an after-conditioning
zone 4. In the illustrated example, the zone 4 includes two after-conditioning units
5 and 6. The boards can be transferred directly to a grinder 7 from the after-conditioning
zone 4, for grinding of the board to a final thickness.
[0009] In accordance with the invention, each after-conditioning unit 5, 6 comprises an
air supply unit 8 that includes a suction fan 9 and a heater 10. A steam or water
supply device 11 may also be provided for moistening the air. The air is sucked into
the two air supply units at 12. As will be seen from the drawing, the air is delivered
from above in the case of the after-conditioning unit 5, and from beneath in the case
of the after-conditioning unit 6.
[0010] Thus, as the boards exit from the continuous steam injection press 2 they pass into
the after-conditioning zone 4 in which air is sucked through the boards with the aid
of negative pressure in an amount determined in relation to board production and at
a specific moisture content and temperature. In the first after-conditioning unit
5, the air is sucked down through the board, whereas in the after-conditioning unit
6 the air is sucked through the board in the opposite direction, i.e. upwards. However,
this double air flow in mutually opposite directions is not necessary in order to
achieve an effect since in certain cases the throughflow of air in only one direction
will suffice, meaning that only one after-conditioning unit will be required.
[0011] It can be mentioned by way of example that a board having a density of 600 kg/m
3 and a thickness of 16.6 mm is cooled from 100 to 60°C in 60 seconds when applying
a subpressure of 15 kPa. By way of another example, it can be mentioned that a board
having a density of 600 kg/m
3 and a thickness of 32 mm is correspondingly cooled in 80 seconds.
[0012] It will also be noted that board having a thickness of 10 mm and a density of 650
kg/m
3 and produced in accordance with the invention in a pilot plant obtained a stable
thickness after having passed through the after-conditioning zone. Measurements made
one or more days after manufacture showed that boards which had passed through the
after-conditioning zone retained their thickness, whereas boards that had not passed
through said zone were often liable to shrink up to 1 mm within a day or two, in the
same way as conventionally manufactured board shrinks.
[0013] Conventionally produced boards have an enhanced density at their surfaces. However,
because it is possible to produce in the steam injection press boards that do not
have an enhanced surface density, the air throughflow and therewith conditioning of
the board and lowering of its temperature can be effected more quickly than in the
case of conventional board handling techniques.
1. A method of continuously producing lignocellulose-containing board in which the material
is disintegrated into particle and/or fibre form, glue-coated, dried and formed into
a mat (1) which is pressed into board form (3) in a continuous steam-injection press
(2), and in which the board is thereafter passed through an after-conditioning unit
(4), characterized by drawing a determined volume of air of given moisture content and temperature through
the board in the after-conditioning zone (4) by suction, and grinding the board (3)
to a final thickness directly after having left the after-conditioning zone (4).
2. A method according to claim 1, characterized in that said air is first sucked through the board (3) in one direction and then in the opposite
direction.
3. A method according to claim 1 or 2, characterized in that the surface layers of the board (3) are given the same density as that of the centre
layer in the steam injection press.
4. An arrangement for applying the method according to any one of claims 1 - 3 and comprising
a steam injection press (2) and an after-conditioning zone (4), characterized in that the after-conditioning zone (4) includes at least one after-conditioning unit (5)
that has an air supply unit (8) for the passage of air through a by-passing board,
and in that a grinding machine (7) is positioned downstream of the after-conditioning zone (4)
and functioning to grind the board (3) to its final thickness.
5. An arrangement according to claim 4, characterized in that the after-conditioning zone (4) includes two after-conditioning units (5 and 6) which
are each provided with an air supply unit for the passage of air through said board
(3) from mutually opposite directions.
1. Verfahren zum kontinuierlichen Herstellen einer Lignocellulose enthaltenden Platte,
in welchem das Material in Partikel- und/oder Faserform zerteilt, mit Leim bedeckt,
getrocknet und in eine Matte (1) geformt wird, welche in einer kontinuierlichen Dampfeinspritzpresse
(2) in Plattenform (3) gepresst wird, und in welchem die Platte anschließend eine
Nachkonditionierungseinheit (4) durchläuft,
gekennzeichnet durch
Ziehen eines vorbestimmten Volumens von Luft mit gegebenem Dampfinhalt und gegebener
Temperatur durch die Platte in der Nachkonditionierungszone (4) durch Ansaugen, und Schleifen der Platte (3) auf eine Enddicke direkt nachdem diese die
Nachkonditionierungszone (4) verlassen hat.
2. Verfahren gemäß Anspruch 1,
dadurch gekennzeichnet, dass die Luft zunächst durch die Platte (3) in eine Richtung und dann in die entgegengesetzte
Richtung gesaugt wird.
3. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass den Oberflächenlagen der Platte (3) in der Dampfeinspritzpresse dieselbe Dichte gegeben
wird wie die der mittleren Lage.
4. Anordnung zur Anwendung des Verfahrens gemäß einem der Ansprüche 1 bis 3 und umfassend
eine Dampfeinspritzpresse (2) und eine Nachkonditionierungszone (4),
dadurch gekennzeichnet, dass die Nachkonditionierungszone (4) zumindest eine Nachkonditionierungseinheit (5) enthält,
die eine Luftzufuhreinheit (8) zum Durchtritt von Luft durch eine durchlaufende Platte
aufweist, und dass eine Schleifmaschine (7) stromabwärts der Nachkonditionierungszone
(4) angeordnet ist und zum Schleifen der Platte (3) auf ihre Enddicke wirkt.
5. Anordnung gemäß Anspruch 4,
dadurch gekennzeichnet, dass die Nachkonditionierungszone (4) zwei Nachkonditionierungseinheiten (5) und (6) enthält,
wobei jede von ihnen mit einer Luftzufuhreinheit für den Durchtritt von Luft durch
die Platte (3) von wechselseitig gegenüberliegenden Richtungen versehen sind.
1. Procédé de production en continu d'une plaque contenant de la lignocellulose dans
laquelle le matériau est désintégré sous une forme de particule et/ou de fibre, recouvert
de colle, séché et transformé en un matelas (1) qui est comprimé en forme de plaque
(3) dans une presse à injection de vapeur en continu (2) et dans lequel la plaque
traverse par la suite une unité de post-conditionnement (4), caractérisé par l'extraction à travers la plaque, par aspiration, d'un volume déterminé d'air d'une
teneur en humidité donnée et d'une température donnée dans la zone de post-conditionnement
(4) et le meulage de la plaque (3) à une épaisseur finale directement après avoir
quitté la zone de post-conditionnement (4).
2. Procédé selon la revendication 1, caractérisé en ce que ledit air est d'abord aspiré à travers la plaque (3) suivant une direction et ensuite
dans la direction opposée.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les couches superficielles de la plaque (3) présentent la même densité que celle
de la couche centrale dans la presse à injection de vapeur.
4. Dispositif pour appliquer le procédé selon l'une quelconque des revendications 1 à
3 et comprenant une presse à injection de vapeur (2) et une zone de post-conditionnement
(4), caractérisé en ce que la zone de post-conditionnement (4) comprend au moins une unité de post-conditionnement
(5) qui comporte une unité d'alimentation en air (8) pour le passage d'air à travers
une plaque en cours de traversée et en ce qu'une machine à meuler (7) est positionnée en aval de la zone de post-conditionnement
(4) et opère pour écraser la plaque (3) à son épaisseur finale.
5. Dispositif selon la revendication 4, caractérisé en ce que la zone de post-conditionnement (4) comprend deux unités de post-conditionnement
(5 et 6) qui sont, chacune, pourvues d'une unité d'alimentation en air pour le passage
de l'air à travers ladite plaque (3) à partir de directions mutuellement opposées.
