[0001] The present invention relates to a gas compressor mounted in a vehicle as a part
of an automotive air conditioner system or mounted in an exterior unit as a part of
an air conditioning system and, in particular, to a gas compressor in which the pressure
loss of an oil containing high-pressure refrigerant gas is reduced to thereby achieve
an improvement in compressor performance.
[0002] As shown in Fig. 3, an example of a gas compressor of this type has a cylinder 1
having a substantially elliptical inner peripheral configuration, side blocks 2 and
3 being respectively mounted to the end surfaces of the cylinder 1. A rotor 4 is arranged
inside the cylinder 1 between the front and rear side blocks 2 and 3. The rotor 4
is horizontally positioned so as to be rotatable through a rotor shaft 5 integrally
provided at its axial center and bearings 6 and 7 of the side blocks 2 and 3 supporting
the same.
[0003] As shown in Fig. 4, five slit-like vane grooves 8 are formed radially in the rotor
4, and vanes 9 are respectively attached to these vane grooves 8, the vanes 9 being
capable of jutting out from the outer peripheral surface of the rotor 4 toward the
inner wall of the cylinder 1 and retracting into the rotor 4.
[0004] The interior of the cylinder 1 is divided into a plurality of small chambers by the
inner wall of the cylinder 1, the inner surfaces of the side blocks 2 and 3, the outer
peripheral surface of the rotor 4, and the side surfaces of the forward end portions
of the vanes 9. The small chambers thus defined constitute compression chambers 10,
whose volume is repeatedly varied as the rotor.4 rotates in the direction of the arrow
RD.
[0005] In the case where the volume of the compression chamber 10 varies, at the time of
increasing the volume of the compression chambers 10, the oil containing low-pressure
refrigerant gas in a suction chamber 11 is introduced into the compression chambers
10 through suction passages 12 of the cylinder 1 and inlets 13 of the side blocks
2 and 3. Then, when the volume of the compression chambers 10 starts to decrease,
the refrigerant gas in the compression chambers 10 starts to be compressed due to
the volume reduction effect. Thereafter, when the volume of the compression chambers
10 approaches to its minimum, discharge valves 15 of cylinder discharge holes 14 provided
near the elliptically short diameter portion of the cylinder 1 are opened by the pressure
of the compressed oil containing high-pressure refrigerant gas. As a result, the oil
containing high-pressure refrigerant gas in the compression chambers 10 are discharged
through the cylinder discharge holes 14.
[0006] The oil containing high-pressure refrigerant gas discharged through the cylinder
discharge holes 14 flows through discharge chambers 16 and discharge gas passages
24 in the outer periphery of the cylinder 1 before it is led to oil separation filters
18-1 of an oil separator 18 mounted to the rear portion of the side block 3.
[0007] The oil containing high-pressure refrigerant gas led to the oil separation filters
18-1 is separated into an oil component and a gas component as a result, for example,
of striking against wire-meshes constituting the oil separation filters 18-1. The
gas component flows into a discharge chamber 19, and is then supplied from the discharge
chamber 19 to the condenser side of the air conditioning system by way of a discharge
port of a compressor case (not shown). On the other hand, after the separation, the
oil component drips down into an oil sump 20 at the bottom of the discharge chamber
19 to be stored, and is supplied to portions where oil is required through an oil
passage 21 of the side blocks 2 and 3 and the cylinder 1. Examples of the portions
where the oil is required include the clearances of the bearings 6 and 7, flat grooves
22 formed on the sides of the side blocks 2 and 3 facing the cylinder, and vane back
pressure spaces 23 at the bottom of the vanes 9 communicating therewith.
[0008] However, as shown in Fig. 5, the above-described conventional gas compressor adopts
a structure in which, to enhance the oil separation performance, the discharge gas
passages 24 of the oil separator 18 are bent twice at right angles to thereby cause
the oil containing high-pressure refrigerant gas to strike against the inner walls
of the gas passages 24 twice. This striking construction provides little or no effect
of improving the oil separation performance. Rather, it involves an increase in the
pressure loss of the oil containing high-pressure refrigerant gas, which leads to
deterioration in the compressor performance.
[0009] Gas compressors of this type are disclosed in JP-A-2000297773, JP-A-07151083 and
JP-A-57148097.
[0010] The present invention has been made with a view toward solving the above problem
in the prior art. It is an object of the present invention to provide a gas compressor
which can reduce the pressure loss of the oil containing high-pressure refrigerant
gas to thereby achieve an improvement in compressor performance.
[0011] To achieve the above object, the present invention relates to a gas compressor comprising
a cylinder arranged between a pair of side blocks, a rotor horizontally arranged in
the cylinder so as to be rotatable, vanes provided so as to be capable of jutting
out toward the inner wall of the cylinder from the outer peripheral surface of the
rotor and retracting therein, compression chambers defined by the cylinder, the side
blocks, the rotor, and the vanes, cylinder discharge holes for discharging refrigerant
gas from the compression chambers, a discharge chamber for temporarily storing the
refrigerant gas discharged from the cylinder discharge holes, a linear discharge gas
passage for guiding the refrigerant gas from the discharge chamber to the downstream
side of the discharge chamber, an oil separator arranged on the downstream side of
the discharge gas passage and having an oil separation filter for separating the refrigerant
gas and the oil from each other, and a discharge chamber for temporarily storing the
refrigerant gas and the oil separated by the oil separation filter.
[0012] Then, according to the present invention, the discharge gas passage is made linear,
whereby the oil containing high-pressure refrigerant gas flows smoothly through the
discharge gas passage, thereby reducing the pressure loss of the oil containing high-pressure
refrigerant gas.
[0013] Further, present invention relates to a gas compressor, wherein the height of an
outlet opening on the oil separator side of the discharge gas passage is set to be
the same as the height of an inlet opening of the discharge gas passage, whereby the
discharge gas passage extends horizontally.
[0014] Then, according to the present invention, the oil separator side opening of the discharge
gas passage communicating with the discharge chamber is set to be of the same height
as the inlet opening thereof, whereby the discharge gas passage extends horizontally
and is of the shortest length, whereby it is possible to further reduce the pressure
loss of the oil containing high-pressure refrigerant gas.
[0015] Further, the present invention relates to a gas compressor, wherein the oil separation
filter of the oil separator is positioned above the outlet opening of the discharge
gas passage.
[0016] Then, according to the present invention, the oil separation filter of the oil separator
is positioned above the outlet opening of the discharge gas passage, so that a large
space can be secured for the oil sump below the oil separation filter.
[0017] Embodiments of the present invention will now be described by way of further example
only and with reference to the accompanying drawings, in which:-
Fig. 1A, 1B, and 1C are an explanatory drawing showing a main portion of a gas compressor
according to the present invention, Fig. 1A is a front view of a built-in oil separator
in the gas compressor, Fig. 1B is a rear view thereof, and Fig. 1C is a sectional
view taken along the line B-B of Fig. 1B.
Fig. 2A, 2B, and 2C are an explanatory drawing showing a main portion of a gas compressor
in accordance with another embodiment of the present invention, Fig. 2A is a front
view of a built-in oil separator in the gas compressor, Fig. 2B is a rear view thereof,
and Fig. 2C is a sectional view taken along the line B-B of Fig. 2B.
Fig. 3 is a sectional view of a gas compressor according to the present invention.
Fig. 4 is a sectional view taken along the line A-A of Fig. 3.
Fig. 5A, Fig. 5B, and Fig. 5C are an explanatory drawing showing an oil separator
mounted in the conventional gas compressor, Fig. 5A is a front view of the oil separator,
Fig. 5B is a rear view thereof, and Fig. 5C is a sectional view taken along the line
B-B of Fig. 5B.
[0018] A gas compressor in accordance with an embodiment of the present invention will now
be described in detail with reference to the accompanying drawings.
[0019] The basic construction of the gas compressor of this embodiment is the same as that
of the gas compressor shown in Figs. 3 and 4, in which the cylinder 1 is arranged
between a pair of side blocks 2 and 3 and in which the rotor 4 is horizontally arranged
inside the cylinder 1 so as to be rotatable, the vanes 9 being provided so as to be
capable of jutting out toward the inner wall of the cylinder 1 from the outer peripheral
surface of the rotor 4 and retracting therein. Inside the cylinder 1, the compression
chambers 10 defined by the vanes 9, etc. are provided, and the volume of the compression
chambers 10 repeatedly increases and decreases as the rotor 4 rotates, whereby the
oil containing low-pressure refrigerant gas in the suction chamber is taken in and
compressed. Further, the compressed oil containing high-pressure refrigerant gas is
discharged through the cylinder discharge holes 14 as previously described. Thus,
the component which are the same as those of the described gas compressor will be
indicated by the same reference numerals, and a detailed description of such components
will be omitted.
[0020] In the gas compressor of this embodiment also, the oil containing high-pressure refrigerant
gas discharged through the cylinder discharge holes 14 as described above flows through
the discharge chamber 16 and the discharge gas passages 24 and is led to the oil separation
filters 18-1 attached to the oil separator 18. As shown in Fig. 1, in the gas compressor
of this embodiment, such discharge gas passages 24 are formed into a linear shape
so as to realize linearization thereof.
[0021] That is, one end 24a of each discharge gas passage 24 opens on the discharge chamber
16 side, and the other end 24b thereof opens on the oil separation filter 18-1 side
of the oil separation filter 18. The section between one end (inlet opening) 24a of
each discharge gas passage 24 and the other end (outlet opening) 24b thereof extends
in a completely straight line, without being bent anywhere. Further particular explaining,
the discharge gas passage 24 is formed linear whichever direction from seen, for example,
front or rear view shown in Fig. 1B, plane view like shown in Fig. 1C, and side view
like shown in Fig. 3.
[0022] Each discharge gas passage 24 is formed extending from the discharge chambers 16
to the oil separator 18 through the rear side block 3 in a punching manner. In this
embodiment, the angle at which the discharge gas passage 24 reaches the oil separator
18 is not also changed.
[0023] That is, as shown in Fig. 5, each discharge gas passage 24 in the conventional gas
compressor is bent substantially at right angles immediately after entering the oil
separator 18 through the rear side block 3, whereas, as shown in Fig. 1, each discharge
gas passage 24 of the gas compressor of this embodiment is not bent immediately after
entering the oil separator 18 through the rear side block 3, and is formed linear.
[0024] Referring to Fig. 4, in the case of the gas compressor of this embodiment, two cylinder
discharge holes 14, two discharge chambers 16, two discharge gas passages 24, and
two oil separation filters 18-1 of the oil separator 18 are provided. This is due
to the substantially elliptical inner peripheral configuration of the cylinder 1 and
due to the structure in which five vanes 9 are provided. When the rotor 4 makes one
rotation, intake operation and compressing operation are executed at two positions
in the cylinder 1, and the portions of the oil containing high-pressure refrigerant
gas respectively compressed at the two positions are separately guided to the oil
separator 18.
[0025] As stated above, the two discharge gas passages 24 and 24 are both linear. However,
they are not parallel to each other but are in a V-shaped arrangement in which they
are directed toward the two oil separation filters 18-1 and 18-1 arranged side by
side at the center of the oil separator 18.
[0026] In the gas compressor of this embodiment also, the oil containing high-pressure refrigerant
gas discharged through the cylinder discharge holes 14 is led to the oil separation
filters 18-1 of the oil separator 18 through the discharge chambers 16 and the discharge
gas passages 24. When, as in this embodiment, the discharge gas passages 24 are attempted
to be linear, the oil containing high-pressure refrigerant gas can be smoothly transferred
from the cylinder discharge holes 14 to the oil separation filters 18-1, whereby the
pressure loss of the oil containing high-pressure refrigerant gas is reduced, and
the compressor performance is improved.
[0027] It is to be noted that the pressure loss of the oil containing high-pressure refrigerant
gas also depends on the sectional area of the discharge gas passages 24; the larger
the sectional area of the discharge gas passages 24, the less the pressure loss of
the oil containing high-pressure refrigerant gas. Thus, it is desirable that the sectional
area of the discharge gas passages 24 be set to be as large as possible.
[0028] Fig. 2 shows a configuration of a gas compressor in accordance with another embodiment
of the present invention. Fig. 2A is a rear elevational view of an oil separator as
seen from the rear side, Fig. 2B is an elevational view of the oil separator as seen
from the side abutting the rear side block, and Fig. 2C is a sectional view taken
along the line B-B of Fig. 2B.
[0029] In this embodiment, in order to further reduce the pressure loss of the oil containing
high-pressure refrigerant gas, the height of one end 24a of each discharge gas passage
24, that is, the height of the discharge chamber 16 side inlet opening constituting
the inlet of the discharge gas passage 24, is set to be the same as the height of
the other end 24b of the discharge gas passage 24, that is, the height of the oil
separator 18 side outlet opening, whereby each discharge gas passage 24 connecting
the inlet and outlet openings 24a and 24b extends horizontally and is of the shortest
length.
[0030] Thus, in this embodiment, in which the discharge gas passages 24 are of the shortest
length, it is possible to restrain at a low level the pressure loss of the oil containing
high-pressure refrigerant gas, which is discharged from the cylinder discharge holes
14 and led from the discharge chambers 16 to the oil separation filters 18-1 of the
oil separator 18 through the discharge gas passages 24.
[0031] Further, since the discharge gas passages 24 extend horizontally, it is possible
to minimize the resistance when passing the high-pressure refrigerant gas therethrough,
which also leads to a reduction in pressure loss, thereby achieving a further improvement
in compressor function.
[0032] As described above, in the gas compressor of the present invention, the discharge
gas passages are linear, so that the oil containing high-pressure refrigerant gas
flows smoothly from the cylinder discharge holes to the oil separation filters of
the oil separator through the discharge gas passages, whereby the pressure loss of
the oil containing high-pressure refrigerant gas of this type is reduced, thereby
achieving an improvement in compressor performance.
[0033] Further, in the gas compressor of the present invention, the discharge gas passages
are formed linearly, and the height of the inlet opening communicating with the discharge
chamber is set to be the same as the height of the outlet opening on the oil separator
side, whereby the discharge gas passages extend horizontally and are of the shortest
length, thereby further reducing the pressure loss of the oil containing high-pressure
refrigerant gas passing through the discharge gas passages to thereby achieve a further
improvement in compressor performance.
1. A gas compressor, comprising:
a cylinder (1) arranged between a pair of side blocks (2, 3);
a rotor (4) arranged, in the normal position of use of the compressor, horizontally
in the cylinder (1) so as to be rotatable;
vanes (9) arranged in the rotor so as to jut out from the outer peripheral surface
of the rotor (4) towards the inner wall of the cylinder (1) and to be retractable
into the rotor (4);
compression chambers (10) defined by the cylinder (1), side blocks (2, 3), rotor (4)
and vanes (9);
cylinder discharge holes (14) for discharging refrigerant gas from the compression
chambers (10);
a first discharge chamber (16) for temporarily storing the refrigerant gas discharged
from the cylinder discharge holes (14);
an oil separator (18) arranged downstream of the first discharge chamber (16) and
having an oil separation filter (18-1), which is set in a cylindrical filter space
such as to occupy a major part of an axial length thereof, the filter being for separating
oil from the cyclonically whirling refrigerant gas;
a second discharge chamber (19), having the oil separator (18) therein, for temporarily
storing the refrigerant gas and the oil separated by the oil separation filter;
a discharge gas passage (24) for guiding the refrigerant gas from the first discharge
gas chamber (16) directly to the cylindrical filter space in a direction substantially
tangential to the cylindrical filter space, and
an oil sump (20) arranged, in the normal position of use of the compressor, below
the oil separator at the bottom of the second discharge chamber (19); characterized in that:
the discharge gas passage (24) extends linearly between an inlet opening (24a) of
the discharge gas passage (24) communicating with the first discharge chamber (16)
and an outlet opening (24b) of the discharge gas passage (24) communicating with the
oil separator (18), thereby allowing the discharge gas from the discharge gas passage
(24) to whirl strongly in cyclonic fashion through the filter in the cylindrical filter
space.
2. A gas compressor according to claim 1, wherein, in the normal position of use of the
compressor, the discharge gas passage (24) is horizontal from its inlet opening (24a)
to its outlet opening (24b), so as to reduce the length of the discharge gas passage
(24), thereby minimizing the pressure loss of discharge gas and enabling a strong
cyclonic whirl.
3. A gas compressor according to claim 2, wherein the oil separation filter (18-1) is
positioned above the discharge gas passage (24), thereby increasing the space between
the oil separation filter (18-1) and the oil sump (20).
4. A gas compressor according to any one of the preceding claims, wherein the oil separation
filter (18-1) is constituted of wire meshes.
1. Gaskompressor, umfassend:
einen Zylinder (1), welcher zwischen einem Paar von Seitenblöcken (2, 3) angeordnet
ist;
einen Rotor (4), welcher in der normalen Verwendungsposition des Kompressors horizontal
im Zylinder (1) angeordnet ist, so dass er drehbar ist;
Schaufeln (9), welche im Rotor derart angeordnet sind, dass sie von der äußeren Umfangsfläche
des Rotors (4) zur inneren Wand des Zylinders (1) hin vorstehen und dass sie in den
Rotor (4) einfahrbar sind;
Kompressionskammern (10), welche durch den Zylinder (1), die Seitenblöcke (2, 3),
den Rotor (4) und die Schaufeln (9) definiert werden;
Zylinderauslasslöcher (14), um Kühlgas aus den Kompressionskammern (10) auszulassen;
eine erste Auslasskammer (16), um das aus den Zylinderauslasslöchern (14) ausgelassene
Kühlgas zwischenzeitlich zu speichern;
einen Ölabscheider (18), welcher stromabwärts von der ersten Auslasskammer (16) angeordnet
ist und einen Ölabscheidefilter (18-1) umfasst, welcher in einen zylindrischen Filterraum
derart eingesetzt ist, dass er einen größeren Teil einer axialen Länge desselben belegt,
wobei der Filter zum Abscheiden von Öl aus dem zyklonartig wirbelnden Kühlgas vorgesehen
ist;
eine zweite Auslasskammer (19), welche einen Ölabscheider (18) in dieser aufweist,
um das Kühlgas und das durch den Ölabscheidefilter abgeschiedene Öl zwischenzeitlich
zu speichern;
einen Auslassgasdurchgang (24), um das Kühlgas aus der ersten Auslassgaskammer (16)
direkt in den zylindrischen Filterraum in einer zum zylindrischen Filterraum im wesentlichen
tangentialen Richtung zu führen; und
einen Ölsumpf (20), welcher in der normalen Verwendungsposition des Kompressors unter
dem Ölabscheider am Boden der zweiten Auslasskammer (19) angeordnet ist;
dadurch gekennzeichnet, dass
der Auslassgasdurchgang (24) linear zwischen einer mit der ersten Auslasskammer (16)
in Verbindung stehenden Einlassöffnung (24a) des Auslassgasdurchgangs (24) und einer
mit dem Ölabscheider (18) in Verbindung stehenden Auslassöffnung (24b) des Auslassgasdurchgangs
(24) verläuft, wodurch dem Auslassgas aus dem Auslassgasdurchgang (24) erlaubt wird,
durch den Filter im zylindrischen Filterraum zyklonartig stark zu wirbeln.
2. Gaskompressor nach Anspruch 1, wobei in der normalen Verwendungsposition des Kompressors
der Auslassgasdurchgang (24) von seiner Einlassöffnung (24a) zu seiner Auslassöffnung
(24b) horizontal ist, so dass die Länge des Auslassgasdurchgangs (24) reduziert ist,
wodurch der Druckverlust des Auslassgases minimiert ist und ein starker zyklonartiger
Wirbel ermöglicht ist.
3. Gaskompressor nach Anspruch 2, wobei den Ölabscheidefilter (18-1) über dem Auslassgasdurchgang
(24) angeordnet ist, wodurch der Raum zwischen dem Ölabscheidefilter (18-1) und dem
Ölsumpf (20) vergrößert ist.
4. Gaskompressor nach einem der vorhergehenden Ansprüche, wobei der Ölabscheidefilter
(18-1) aus Drahtmaschen gebildet ist.
1. Compresseur à gaz, comprenant :
un cylindre (1), agencé entre une paire de blocs latéraux (2, 3) ;
un rotor (4), agencé horizontalement dans le cylindre (1), dans la position normale
d'utilisation du compresseur, de façon à pouvoir être mis en rotation ;
des aubes (9), agencées dans le rotor de façon à saillir à partir de la surface périphérique
externe du rotor (4) vers la paroi interne du cylindre (1), et de pouvoir se rétracter
à l'intérieur du rotor (4) ;
des chambres de compression (10), définies par le cylindre (1), les blocs latéraux
(2, 3), le rotor (4), et les aubes (9) ;
des trous de décharge de cylindre (14), destinés à décharger le gaz réfrigérant depuis
les chambres de compression (10) ;
une première chambre de décharge (16), destinée à stocker temporairement le gaz réfrigérant
déchargé des trous de décharge de cylindre (14) ;
un séparateur d'huile (18), agencé en aval de la première chambre de décharge (16)
et comportant un filtre de séparation d'huile (18-1), lequel est placé dans un espace
de filtre cylindrique de telle sorte à occuper une majeure partie d'une longueur axiale
de celui-ci, le filtre étant destiné à séparer l'huile du gaz réfrigérant tourbillonnant
de manière cyclonique ;
une seconde chambre de décharge (19), comportant en son intérieur le séparateur d'huile
(18), destinée à stocker temporairement le gaz réfrigérant et l'huile séparés par
le filtre de séparation d'huile ;
un passage de décharge de gaz (24), destiné à guider le gaz réfrigérant depuis la
première chambre de décharge de gaz (16) directement jusqu'à l'espace de filtre cylindrique
dans une direction sensiblement tangentielle à l'espace de filtre cylindrique ; et
un puisard d'huile (20), agencé, dans la position normale d'utilisation du compresseur,
en dessous du séparateur d'huile au fond de la seconde chambre de décharge (19) ;
caractérisé en ce que :
le passage de décharge de gaz (24) s'étend linéairement entre une ouverture d'orifice
d'entrée (24a) du passage de décharge de gaz (24) communiquant avec la première chambre
de décharge (16), et une ouverture d'orifice de sortie (24b) du passage de décharge
de gaz (24) communiquant avec le séparateur d'huile (18), permettant de ce fait au
gaz de décharge provenant du passage de décharge de gaz (24) de tourbillonner fortement
et de manière cyclonique à travers le filtre dans l'espace de filtre cylindrique.
2. Compresseur à gaz selon la revendication 1, dans lequel, dans la position normale
d'utilisation du compresseur, le passage de décharge de gaz (24) est horizontal depuis
son ouverture d'orifice d'entrée (24a) jusqu'à son ouverture d'orifice de sortie (24b),
de façon à réduire la longueur du passage de décharge de gaz (24), minimalisant, de
ce fait, la perte de pression du gaz de décharge, et autorisant un tourbillon cyclonique
fort.
3. Compresseur à gaz selon la revendication 2, dans lequel le filtre de séparation d'huile
(18-1) est positionné au-dessus du passage de décharge de gaz (24), augmentant de
ce fait l'espace entre le filtre de séparation d'huile (18-1) et le puisard d'huile
(20).
4. Compresseur à gaz selon l'une quelconque des revendications précédentes, dans lequel
le filtre de séparation d'huile (18-1) est constitué d'un treillis de crépine.