(19) |
 |
|
(11) |
EP 1 240 364 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
02.03.2005 Bulletin 2005/09 |
(22) |
Date of filing: 06.12.2000 |
|
(86) |
International application number: |
|
PCT/IB2000/001814 |
(87) |
International publication number: |
|
WO 2001/042534 (14.06.2001 Gazette 2001/24) |
|
(54) |
METAL-BASED ANODES FOR ALUMINIUM ELECTROWINNING CELLS
ANODEN AUF BASIS VON METALLEN FÜR ELEKTROLYSEZELLEN ZUR ALUMINIUMGEWINNUNG
ANODES A BASE METALLIQUE POUR CELLULES D'EXTRACTION ELECTROLYTIQUE D'ALUMINIUM
|
(84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
(30) |
Priority: |
09.12.1999 WO PCT/IB99/01977
|
(43) |
Date of publication of application: |
|
18.09.2002 Bulletin 2002/38 |
(73) |
Proprietor: MOLTECH Invent S.A. |
|
1520 Luxembourg (LU) |
|
(72) |
Inventors: |
|
- DE NORA, Vittorio
Nassau (BS)
- DURUZ, Jean-Jacques
CH-1204 Geneva (CH)
|
(74) |
Representative: Cronin, Brian et al |
|
c/o Moltech S.A.,
Quai du Mont-Blanc 21 1201 Geneva 1201 Geneva (CH) |
(56) |
References cited: :
EP-A- 0 306 099 US-A- 4 374 050 US-A- 4 582 585 US-A- 5 510 008
|
WO-A-99/36594 US-A- 4 541 912 US-A- 5 284 562 US-A- 5 865 980
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
Field of the Invention
[0001] This invention relates to non-carbon, metal-based, anodes for use in cells for the
electrowinning of aluminium from alumina dissolved in a fluoride-containing molten
electrolyte, methods for their fabrication, and electrowinning cells containing such
anodes and their use to produce aluminium.
Background Art
[0002] The technology for the production of aluminium by the electrolysis of alumina, dissolved
in molten cryolite, at temperatures around 950°C is more than one hundred years old.
[0003] This process, conceived almost simultaneously by Hall and Héroult, has not evolved
as many other electrochemical processes.
[0004] The anodes are still made of carbonaceous material and must be replaced every few
weeks. During electrolysis the oxygen which should evolve on the anode surface combines
with the carbon to form polluting CO
2 and small amounts of CO and fluorine-containing dangerous gases. The actual consumption
of the anode is as much as 450 Kg/Ton of aluminium produced which is more than 1/3
higher than the theoretical amount of 333 Kg/Ton.
[0005] Using metal anodes in aluminium electrowinning cells would drastically improve the
aluminium process by reducing pollution and the cost of aluminium production.
[0006] US Patent 4,374,050 (Ray) discloses inert anodes made of specific multiple metal
compounds which are produced by mixing powders of the metals or their compounds in
given ratios followed by pressing and sintering, or alternatively by plasma spraying
the powders onto an anode substrate. The possibility of obtaining the specific metal
compounds from an alloy containing the metals is mentioned.
[0007] US Patent 4,614,569 (Duruz/Derivaz/Debely/Adorian) describes non-carbon anodes for
aluminium electrowinning coated with a protective coating of cerium oxyfluoride, formed
in-situ in the cell or pre-applied, this coating being maintained by the addition
of a cerium compound to the molten cryolite electrolyte. This made it possible to
have a protection of the surface from the electrolyte attack and to a certain extent
from the gaseous oxygen but not from the nascent monoatomic oxygen.
[0008] EP Patent application 0 306 100 (Nyguen/Lazouni/Doan) describes anodes composed of
a chromium, nickel, cobalt and/or iron based substrate covered with an oxygen barrier
layer and a ceramic coating of nickel, copper and/or manganese oxide which may be
further covered with an in-situ formed protective cerium oxyfluoride layer. Likewise,
US Patents 5,069,771, 4,960,494 and 4,956,068 (all Nyguen/Lazouni/Doan) disclose aluminium
production anodes with an oxidised copper-nickel surface on an alloy substrate with
a protective oxygen barrier layer. However, full protection of the alloy substrate
was difficult to achieve.
[0009] US Patent 5,510,008 (Sekhar/Liu/Duruz) discloses an anode made from an inhomogeneous
porous metallic body obtained by micropyretically reacting a metal powder mixture
of nickel, iron, aluminium and optionally copper. The porous metal is anodically polarised
in-situ to form a dense iron-rich oxide outer portion whose surface is electrochemically
active. Bath materials such as cryolite which may penetrate the porous metallic body
during formation of the oxide layer become sealed off from the electrolyte and from
the active outer surface of the anode where electrolysis takes place, and remain inert
inside the electrochemically-inactive inner metallic part of the anode.
[0010] Metal or metal-based anodes are highly desirable in aluminium electrowinning cells
instead of carbon-based anodes. Many attempts were made to use metallic anodes for
aluminium production, however they were never adopted by the aluminium industry for
commercial aluminium production because their lifetime must still be increased.
Objects of the Invention
[0011] A major object of the invention is to provide an anode for aluminium electrowinning
which has no carbon so as to eliminate carbon-generated pollution and has a long life.
[0012] A further object of the invention is to provide an aluminium electrowinning anode
material with a surface having a high electrochemical activity for the oxidation of
oxygen ions and the formation of bimolecular gaseous oxygen and a low solubility in
the electrolyte.
[0013] Another object of the invention is to provide an anode for the electrowinning of
aluminium which is covered with an adherent electrochemically active layer.
[0014] Yet another object of the invention is to provide an improved anode for the electrowinning
of aluminium which is made of readily available material(s).
[0015] Yet another object of the invention is to provide operating conditions for an aluminium
electrowinning cell under which the contamination of the product aluminium is limited.
Summary of the Invention
[0016] The invention relates to an anode of a cell for the electrowinning of aluminium from
alumina dissolved in a fluoride-containing molten electrolyte. The anode comprises
a nickel-iron alloy substrate having a nickel metal rich outer portion with an integral
nickel-iron oxide containing surface layer which is pervious to electrolyte and adheres
to the nickel metal rich outer portion of the nickel-iron alloy substrate. The electrolyte-pervious
surface layer in use is electrochemically active for the evolution of oxygen gas.
[0017] Cermet anodes which have been described in the past in relation to aluminium production
have an oxide content which forms the major phase of the anode. Such anodes have an
overall electrical conductivity which is higher than that of solid ceramic anodes
but insufficient for industrial commercial production. Moreover, the uniformly distributed
metallic phase is exposed to dissolution into the electrolyte.
[0018] Conversely, anodes predominantly made of metal and protected with a thick oxide outer
layer, e.g. as disclosed in US Patent 5,510,008 (Sekhar/Liu/Duruz), have a higher
conductivity and longer life because the metal is normally shielded from the bath
and resists dissolution therein. However, in case such a thick oxide layer is damaged,
molten electrolyte may penetrate into cracks between the metallic inner part and the
oxide layer. The surfaces of the crack would then form a dipole between the metallic
inner anode part and the oxide layer, causing electrolytic dissolution of the metallic
inner part into the electrolyte contained in the crack and corrosion of the metallic
anode part underneath the thick oxide layer.
[0019] The anode of the present invention provides a solution to this problem. Instead of
being covered with a thick protective oxide layer, during use the nickel-iron alloy
substrate contacts or virtually contacts molten electrolyte circulating through the
electrolyte-pervious surface layer. As opposed to prior art anodes, the electrolyte
close to the nickel-iron alloy substrate, typically at a distance of less than 10
micron, is continuously replenished with dissolved alumina. The electrolysis current
does not dissolve the anode. Instead the entire electrolysis current passed at the
anode surface is used for the electrolysis of alumina by oxidising oxygen-containing
ions directly on the active surfaces or by firstly oxidising fluorine-containing ions
that subsequently react with oxygen-containing ions, as described in PCT/IB99/01976
(Duruz/de Nora).
[0020] Furthermore, the overall electrical conductivity of the metal anode according to
the present invention is substantially higher than that of prior art anodes covered
with a thick oxide protective layer or made of bulk oxide.
[0021] Usually, the metal phase underlying the electrochemically active surface layer of
this anode forms a matrix containing a minor amount of metal compound inclusions,
in particular oxide inclusion resulting from a pre-oxidation treatment in an oxidising
atmosphere, which matrix confers an overall high electrical conductivity to the anode.
[0022] The electrolyte-pervious electrochemically active surface layer of the invention
is usually a very thin one, preferably having a thickness of less than 50, possibly
less than 100 micron or at most 200 micron.
[0023] Such a thin electrolyte-pervious electrochemically active surface layer offers the
advantage of limiting the width of possible pores and/or cracks present in the surface
layer to a small size, usually below about a tenth of the thickness of the surface
layer. When a small pore and/or crack is filled with molten electrolyte, the electrochemical
potential difference in the molten electrolyte across the pore and/or crack is below
the reduction-oxidation potential of any metal oxide of the surface layer present
in the molten electrolyte contained in the pore and/or crack. Therefore, such an electrolyte-pervious
surface layer cannot be dissolved by electrolysis of its constituents within the pores
and/or cracks. Thus, the pores and/or cracks should be so small that when the surface
layer is polarised, the potential differential through each pore or crack is below
the potential for electrolytic dissolution of the oxide of the surface layer.
[0024] This means that, inside the electrolyte-pervious surface layer, no or substantially
no oxide of the surface layer should be able to dissolve electrolytically when the
surface layer is polarised. For instance, the thinness of the oxide surface layer
is such that, when polarised during use, the voltage drop therethrough is below the
potential for electrolytic dissolution of the oxide of the surface layer.
[0025] Another advantage which is derived from a thin electrochemically active and electrolyte-pervious
surface layer can be observed when electrolyte contained in pores and/or cracks of
the surface layer reaches the nickel metal rich outer portion of the nickel-iron alloy.
When this happens, the thinness of the surface layer permits oxygen evolved on the
surface layer to reach the nickel metal rich outer portion, which leads to the formation
of a passive layer of nickel oxide on the nickel metal rich outer portion where contacted
by molten electrolyte, avoiding the dissolution of nickel cations from the nickel
metal rich outer portion into the molten electrolyte.
[0026] Before use, the anode can have a Ni/Fe atomic ratio below 1 or of at least 1, in
particular from 1 to 4.
[0027] The nickel metal rich outer portion may have a porosity obtainable by oxidation in
an oxidising atmosphere before use. This porosity may contain cavities, in particular
round or elongated cavities, which are partly or completely filled with iron compounds,
in particular oxides resulting from an oxidation treatment in an oxidising atmosphere,
and possibly also nickel compounds, such as nickel oxides or iron-nickel oxides, to
form inclusions of iron compounds or iron and nickel compounds.
[0028] The inclusions may be iron-rich nickel-iron oxides, typically containing oxidised
iron and oxidised nickel in an Fe/Ni atomic ratio above 2.
[0029] Usually the nickel metal rich outer portion has a decreasing concentration of iron
metal towards the electrochemically active surface layer. The nickel metal rich outer
portion, where it reaches the surface layer, may comprise nickel metal and iron metal
in an Ni/Fe atomic ratio of about 3 or more.
[0030] The nickel-iron alloy may further comprise a non-porous inner portion which is oxide-free.
[0031] The electrochemically active surface layer usually comprises iron-rich nickel-iron
oxide, such as nickel-ferrite, in particular non-stoichiometric nickel-ferrite. For
instance, the surface layer may comprise nickel-ferrite having an excess of iron or
nickel and/or an oxygen-deficiency.
[0032] The nickel-iron alloy usually comprises nickel metal and iron metal in a total amount
of at least 65 weight%, usually at least 80, 90 or 95 weight%, of the alloy, and further
alloying metals in an amount of up to 35 weight%, in particular up to 5, 10 or 20
weight%, of the alloy. Minor amounts of further elements, such as carbon, boron, sulphur,
phosphorus or nitrogen, may be present in the nickel-iron alloy, usually in a total
amount which does not exceed 2 weight% of the alloy.
[0033] For example, the nickel-iron alloy can comprise at least one further metal selected
from chromium, copper, cobalt, silicon, titanium, tantalum, tungsten, vanadium, zirconium,
yttrium, molybdenum, manganese and niobium in a total amount of up to 5 or 10 weight%
of the alloy. The nickel-iron alloy may also comprise at least one catalyst selected
from iridium, palladium, platinum, rhodium, ruthenium, tin or zinc metals, Mischmetals
and their oxides and metals of the Lanthanide series and their oxides as well as mixtures
and compounds thereof, in a total amount of up to 5 weight% of the alloy. Furthermore,
the nickel-iron alloy may comprise aluminium in an amount less than 20 weight%, in
particular less than 10 weight%, preferably from 1 to 5 or even 6 weight% of the alloy.
The aluminium may form an intermetallic compound with nickel which is known to be
mechanically and chemically well resistant.
[0034] The anode of the invention may comprise an inner core made of an electronically conductive
material, such as metals, alloys, intermetallics, cermets and conductive ceramics,
which core is covered with the nickel-iron alloy substrate as a layer. In particular,
the core may comprise at least one metal selected from copper, chromium, nickel, cobalt,
iron, aluminium, hafnium, molybdenum, niobium, silicon, tantalum, tungsten, vanadium,
yttrium and zirconium, and combinations and compounds thereof. For instance, the core
may consist of an alloy comprising 10 to 30 weight% of chromium, 55 to 90 weight%
of at least one of nickel, cobalt and/or iron and up to 15 weight% of at least one
of aluminium, hafnium, molybdenum, niobium, silicon, tantalum, tungsten, vanadium,
yttrium and zirconium.
[0035] In one embodiment, the core is a non-porous nickel rich nickel-iron alloy, having
a nickel/iron weight ratio that is close to or higher than the nickel/iron weight
ratio of the nickel-iron alloy substrate, for example from 1 to 4 or higher, in particular
above 3. Thus, during use, little or no iron diffuses from the inner core.
[0036] Another aspect of the invention relates to a method of manufacturing an anode as
described above. The method comprises providing a nickel-iron alloy substrate and
oxidising the nickel-iron alloy substrate to produce the electrolyte-pervious electrochemically
active nickel-iron oxide containing surface layer which adheres to the nickel metal
rich outer portion. The oxidation of the nickel-iron alloy substrate comprises one
or more steps at a temperature of 800° to 1200°C, in particular 1050° to 1150°C, for
up to 60 hours in an oxidising atmosphere.
[0037] Preferably, the nickel-iron alloy substrate is oxidised in an oxidising atmosphere
for a short period of time, such as 0.5 to 5 hours.
[0038] The oxidising atmosphere may consist of oxygen or a mixture of oxygen and one or
more inert gases, such as argon; having an oxygen content of at least 10 molar% of
the mixture. Conveniently, the oxidising atmosphere can be air.
[0039] In order to obtain a microstructure of the nickel-iron alloy substrate giving upon
oxidation an optimal electrochemically active surface layer on an optimal nickel metal
rich outer portion, the nickel-iron alloy substrate may be subjected to a thermal-mechanical
treatment for modifying its microstructure before oxidation. Alternatively, it may
be cast, before oxidation, with known casting additives.
[0040] Furthermore, the oxidation of the nickel-iron alloy substrate in an oxidising atmosphere
may be followed by a heat treatment in an inert atmosphere at a temperature of 800°
to 1200°C for up to 60 hours. When oxidation in an oxidising atmosphere is partial,
it may be completed by oxidation in-situ at the beginning of electrolysis.
[0041] As mentioned above, the nickel-iron alloy substrate may be formed as a layer on an
inner core made of an electronically conductive material, such as a nickel-rich nickel-iron
alloy core. Nickel and iron metal may be deposited as such onto the core, or compounds
of nickel and iron may be deposited on the core and then reduced, for example one
or more layers of Fe(OH)
2 and Ni(OH)
2 are deposited onto the core, e.g. as a colloidal slurry, and reduced in a hydrogen
atmosphere. Nickel and iron and/or compounds thereof may be co-deposited onto the
inner core or deposited separately in different layers which are then interdiffused,
e.g. by heat treatment. This heat treatment may take place in an inert atmosphere,
such as argon, if the nickel and iron are applied as metals, or a reducing atmosphere,
such as hydrogen, if nickel and iron compounds are applied onto the core. The nickel
and iron metals and/or compounds may be deposited by electrolytic or chemical deposition,
arc or plasma spraying, painting, dipping or spraying.
[0042] A further aspect of the invention concerns a cell for the electrowinning of aluminium
from alumina dissolved in a fluoride-containing molten electrolyte. The cell according
to the invention comprises at least one anode as described above which faces and is
spaced from at least one cathode.
[0043] The invention also relates to a method of producing aluminium in such a cell. The
method comprises passing an ionic current in the molten electrolyte between the cathode(s)
and the electrochemically active surface layer of the anode(s), thereby evolving at
the anode(s) oxygen gas derived from the dissolved alumina and producing aluminium
on the cathode(s).
[0044] At the beginning of electrolysis, the nickel metal rich outer portion of the anode(s)
may be further oxidised in-situ by atomic and/or molecular oxygen formed on its electrochemically
active surface layer, in particular if the anode comprises a surface which is partly
oxide-free when immersed into the molten electrolyte, until the oxidised nickel metal
rich outer portion of the anode forms an impervious barrier to oxygen.
[0045] Advantageously, the method includes substantially saturating the molten electrolyte
with alumina and species of at least one major metal, usually iron and/or nickel,
present in the electrochemically active surface layer of the anode(s) to inhibit dissolution
of the anode(s). The molten electrolyte may be operated at a temperature sufficiently
low to limit the solubility of the major metal species thereby limiting the contamination
of the product aluminium to an acceptable level.
[0046] A "major metal" refers to a metal which is present in the surface of the metal-based
anode, in an amount of at least 25 atomic% of the total amount of metal present in
the surface of the metal based anode.
[0047] The cell can be operated with the molten electrolyte at a temperature from 730° to
910°C, in particular below 870°C.
[0048] As disclosed in PCT/IB99/01976 (Duruz/de Nora), the electrolyte may contain AlF
3 in such a high concentration that fluorine-containing ions predominantly rather than
oxygen ions are oxidised on the electrochemically active surface, however, only oxygen
is evolved, the evolved oxygen being derived from the dissolved alumina present near
the electrochemically active anode surface.
[0049] Preferably, aluminium is produced on an aluminium-wettable cathode, in particular
on a drained cathode, for instance as disclosed in US Patent 5,683,559 (de Nora) or
in PCT application WO99/02764 (de Nora/Duruz).
[0050] In a modification, the nickel of the nickel-iron alloy, in particular of the integral
oxide containing surface layer, is wholly or predominantly substituted by cobalt.
Detailed Description
[0051] The invention will be further described in the following Examples:
Example 1
[0052] An anode was made by pre-oxidising in air at 1100°C for 1 hour a substrate of a nickel-iron
alloy consisting of 60 weight% nickel and 40 weight% iron, to form a very thin oxide
surface layer on the alloy.
[0053] The surface-oxidised anode was cut perpendicularly to the anode operative surface
and the resulting section of the anode was subjected to microscopic examination.
[0054] The anode before use had an outer portion that comprised an electrolyte-pervious,
electrochemically active iron-rich nickel-iron oxide surface layer having a thickness
of up to 10-20 micron and, underneath, an iron-depleted nickel-iron alloy having a
thickness of about 10-15 micron containing generally round cavities filled with iron-rich
nickel-iron oxide inclusions and having a diameter of about 2 to 5 micron. The nickel-iron
alloy of the outer portion contained about 75 weight% nickel.
[0055] Underneath the outer portion, the nickel-iron alloy had remained substantially unchanged.
Example 2
[0056] An anode prepared as in Example 1 was tested in an aluminium electrowinning cell
containing a molten electrolyte at 870°C consisting essentially of NaF and AlF
3 in a weight ratio NaF/AlF
3 of about 0.7 to 0.8, i.e. an excess of AlF
3 in addition to cryolite of about 26 to 30 weight% of the electrolyte, and approximately
3 weight% alumina. The alumina concentration was maintained at a substantially constant
level throughout the test by adding alumina at a rate adjusted to compensate the cathodic
aluminium reduction. The test was run at a current density of about 0.6 A/cm
2, and the electrical potential of the anode remained substantially constant at 4.2
volts throughout the test.
[0057] During electrolysis aluminium was cathodically produced while oxygen was anodically
evolved which was derived from the dissolved alumina present near the anodes.
[0058] After 72 hours, electrolysis was interrupted and the anode was extracted from the
cell. The external dimensions of the anode had remained unchanged during the test
and the anode showed no signs of damage.
[0059] The anode was cut perpendicularly to the anode operative surface and the resulting
section of the used anode was subjected to microscopic examination, as in Example
1.
[0060] It was observed that the anode had an electrochemically active surface covered with
a discontinuous, non-adherent, macroporous iron oxide external layer of the order
of 100 to 500 micron thick, hereinafter called the "excess iron oxide layer". The
excess iron oxide layer was pervious to and contained molten electrolyte, indicating
that it had been formed during electrolysis.
[0061] The excess iron oxide layer resulted from the excess of iron contained in the portion
of the nickel-iron alloy underlying the electrochemically active surface and which
diffuses therethrough. In other words, the excess iron oxide layer resulted from an
iron migration from inside to outside the anode during the beginning of electrolysis.
[0062] Such an excess iron oxide layer has no or little electrochemical activity. It slowly
diffuses and dissolves into the electrolyte until the portion of the anode underlying
the electrochemically active surface reaches an iron content of about 15-20 weight%
corresponding to an equilibrium under the operating conditions at which iron ceases
to diffuse, and thereafter the iron oxide layer continues to dissolve into the electrolyte.
[0063] The anode's aforementioned outer portion had been transformed during electrolysis.
Its thickness had grown from 10-20 micron to about 300 to 500 micron and the cavities
had also grown in size to vermicular form but were only partly filled with iron and
nickel compounds. No electrolyte was detected in the cavities and no sign of corrosion
appeared throughout the anode.
[0064] The absence of any corrosion demonstrated that the pores and/or cracks in the electrolyte-pervious
electrochemically active oxide layer were sufficiently small that, when polarised
during use, the voltage drop through the pores and/or cracks was below the potential
of electrolytic dissolution of the oxide of the surface layer.
[0065] Underneath the outer portion, the nickel-iron alloy had remained unchanged.
[0066] The shape and external dimensions of the anode had remained unchanged after electrolysis
which demonstrated stability of this anode structure under the operating conditions
in the molten electrolyte.
[0067] In another test a similar anode was operated under the same conditions for several
hundred hours at a substantially constant current and cell voltage which demonstrated
the long anode life compared to known non-carbon anodes.
Example 3
[0068] An anode having a generally circular active structure of 210 mm outer diameter was
made of three concentric rings spaced from one another by gaps of 6 mm. The rings
had a generally triangular cross-section with a base of about 19 mm and were connected
to one another and to a central vertical current supply rod by six members extending
radially from the vertical rod and equally spaced apart from one another around the
vertical rod. The gaps were covered with chimneys for guiding the escape of anodically
evolved gas to promote the circulation of electrolyte and enhance the dissolution
of alumina in the electrolyte as disclosed in PCT publication WO00/40781 (de Nora).
[0069] The anode and the chimneys were made from cast nickel-iron alloy containing 50 weight%
nickel and 50 weight% iron that was heat treated as in Example 1. The anode was then
tested in a laboratory scale cell containing an electrolyte as described in Example
2 except that it contained approximately 4 weight% alumina.
[0070] During the test, a current of approximately 280 A was passed through the anode at
an apparent current density of about 0.8 A/cm
2 on the apparent surface of the anode. The electrical potential of the anode remained
substantially constant at approximately 4.2 volts throughout the test.
[0071] The electrolyte was periodically replenished with alumina to maintain the alumina
content in the electrolyte close to saturation. Every 100 seconds an amount of about
5 g of fine alumina powder was fed to the electrolyte. The alumina feed was periodically
adjusted to the alumina consumption based on the cathode efficiency, which was about
67%.
[0072] As in Examples 2, during electrolysis aluminium was cathodically produced while oxygen
was anodically evolved which was derived from the dissolved alumina present near the
anodes.
[0073] After more than 1000 hours, i.e. 42 days, electrolysis was interrupted and the anode
was extracted from the cell and allowed to cool. The external dimensions of the anode
had not been substantially modified during the test but the anode was covered with
iron-rich oxide and bath. The anode showed no sign of damage.
[0074] The anode was cut perpendicularly to the anode operative surface and the resulting
section of a ring of the active structure was subjected to microscopic examination,
as in Example 1.
[0075] It was observed that the porous outer alloy portion had grown inside the anode ring
to a depth of about 7 mm leaving only an inner portion of about 5 mm diameter unchanged,
i.e. consisting of a non-porous alloy of 50 weight% nickel and 50 weight% iron. The
porous outer portion of the anode had a concentration of nickel varying from 85 to
90 weight% at the anode surface to 70 to 75 weight% nickel close to the non-porous
inner portion, the balance being iron. The iron depletion in the openly porous outer
portion corresponded about to the accumulation of iron present as oxide on the surface
of the anode, which indicated that the iron oxide had not substantially dissolved
into the electrolyte during the test.
[0076] As in the previous Example, the anode showed no sign of corrosion which demonstrated
that the pores and/or cracks in the electrolyte-pervious electrochemically active
oxide layer were sufficiently small that, when polarised during use, the voltage drop
through the pores and/or cracks was below the potential of electrolytic dissolution
of the oxide of the surface layer.
1. An anode of a cell for the electrowinning of' aluminium from alumina dissolved in
a fluoride-containing molten electrolyte, said anode comprising a nickel-iron alloy
substrate having a nickel metal rich outer portion with an integral nickel-iron oxide
containing surface layer which adheres to the nickel metal rich outer portion of the
nickel-iron alloy substrate and which is pervious to electrolyte by the presence of
pores and/or cracks therein, the surface layer in use being electrochemically active
for the evolution of oxygen gas and containing electrolyte in said pores and/or cracks
which are so small that when the surface layer is polarised the potential differential
through the electrolyte-containing pores and/or cracks is below the potential for
electrolytic dissolution of the oxide of the surface layer.
2. The anode of claim 1, wherein the electrochemically active surface layer has a thickness
of less than 50 micron.
3. The anode of claim 1, wherein the electrochemically active surface layer has a thickness
of less than 100 micron.
4. The anode of claim 1, wherein the electrochemically active surface layer has a thickness
of less than 200 micron.
5. The anode of any preceding claim, which has a Ni/Fe atomic ratio below 1 before use.
6. The anode of any one of claims 1 to 4, which has a Ni/Fe atomic ratio above 1, in
particular from 1 to 4, before use.
7. The anode of any preceding claim, wherein the nickel metal rich outer portion has
a porosity containing cavities which are partly or completely filled with iron and
nickel compounds, said porosity being obtainable by oxidation in an oxidising atmosphere
before use.
8. The anode of any preceding claim, wherein the nickel metal rich outer portion has
a decreasing concentration of iron metal towards the electrochemically active surface
layer.
9. The anode of claim 8, wherein the nickel metal rich outer portion comprises nickel
metal and iron metal in an Ni/Fe atomic ratio of more than 3 where it reaches the
electrochemically active surface layer.
10. The anode of any preceding claim, wherein the nickel-iron alloy comprises a non-porous
inner portion which is oxide-free.
11. The anode of any preceding claim, wherein the electrochemically active surface layer
comprises iron-rich nickel-iron oxide.
12. The anode of claim 11, wherein the electrochemically active surface layer comprises
nickel-ferrite.
13. The anode of claim 12, wherein the nickel-ferrite of the electrochemically active
surface layer contains non-stoichiometric nickel-ferrite having an excess of iron
or nickel, and/or an oxygen deficiency.
14. The anode of any preceding claim, wherein the nickel-iron alloy comprises nickel metal
and iron metal in a total amount of at least 65 weight%, in particular at least 80
weight%, preferably at least 90 weight% of the alloy.
15. The anode of claim 14, wherein the nickel-iron alloy comprises at least one further
metal selected from chromium, copper, cobalt, silicon, titanium, tantalum, tungsten,
vanadium, zirconium, yttrium, molybdenum, manganese and niobium in a total amount
of up to 10 weight% of the alloy.
16. The anode of claim 14 or 15, wherein the nickel-iron alloy comprises at least one
catalyst selected from iridium, palladium, platinum, rhodium, ruthenium, tin or zinc
metals, Mischmetals and their oxides and metals of the Lanthanide series and their
oxides as well as mixtures and compounds thereof, in a total amount of up to 5 weight%
of the alloy.
17. The anode of claim 14, 15 or 16, wherein the nickel-iron alloy comprises aluminium
in an amount less than 20 weight%, in particular less than 10 weight%, preferably
from 1 to 6 weight% of the alloy.
18. The anode of any preceding claim, comprising a core made of an electronically conductive
material which is covered with the nickel-iron alloy substrate.
19. The anode of claim 18, wherein the core is made of metals, alloys, intermetallics,
cermets and conductive ceramics.
20. The anode of claim 19, wherein the core is a non-porous nickel rich nickel-iron alloy.
21. A method of manufacturing an anode according to any preceding claim for use in a cell
for the electrowinning of aluminium, comprising providing a nickel-iron alloy substrate
and oxidising the nickel-iron alloy substrate to produce said electrolyte-pervious
electrochemically active nickel-iron oxide containing surface layer which adheres
to the nickel metal rich outer portion, the oxidation of the nickel-iron alloy substrate
comprising one or more steps at a temperature of 800° to 1200°C for up to 60 hours
in an oxidising atmosphere.
22. The method of claim 21, comprising oxidising the nickel-iron alloy substrate in an
oxidising atmosphere for 0.5 to 5 hours.
23. The method of claim 21 or 22, wherein the oxidising atmosphere consists of oxygen
or a mixture of oxygen and one or more inert gases having an oxygen content of at
least 10 molar% of the mixture.
24. The method of claim 21, 22 or 23, wherein the oxidising atmosphere is air.
25. The method of any one of claims 21 to 24, wherein the nickel-iron alloy is oxidised
at a temperature of 1050° to 1150°C.
26. The method of any one of claims 21 to 25, comprising subjecting the nickel-iron alloy
substrate to a thermal-mechanical treatment to modify its microstructure before oxidation.
27. The method of any one of claims 21 to 26, comprising casting the nickel-iron alloy
substrate with additives to provide a microstructure for enhancing oxidation.
28. The method of any one of claims 21 to 27, wherein oxidation in the oxidising atmosphere
is followed by a heat treatment in an inert atmosphere at a temperature of 800° to
1200°C for up to 60 hours.
29. The method of any one of claims 21 to 28, wherein the oxidation in the oxidising atmosphere
is partial and completed in-situ by oxidation at electrolysis start-up.
30. The method of any one of claims 21 to 29, comprising forming the nickel-iron alloy
substrate on a core.
31. The method of claim 30, comprising depositing nickel and iron metal on the core.
32. The method of claim 30, comprising depositing nickel and iron compounds on the core
and then reducing the compounds.
33. The method of claim 32, wherein the nickel and iron compounds are Fe(OH)2 and Ni(OH)2 which are reduced in a hydrogen atmosphere.
34. The method of any one of claims 30 to 33, comprising co-depositing nickel and iron
and/or compounds thereof onto the core.
35. The method of any one of claims 30 to 33, comprising depositing at least one layer
of iron and/or an iron compound and at least one layer of nickel and/or a nickel compound
onto the core, and then interdiffusing the layers.
36. The method of any one of claims 30 to 35, comprising depositing electrolytically or
chemically at least one of nickel, iron and compounds thereof onto the core.
37. The method of any one of claims 30 to 35, comprising arc spraying or plasma spraying
at least one of nickel, iron and compounds thereof onto the core.
38. The method of one of claims 30 to 35, comprising applying at least one of nickel,
iron and compounds thereof by painting, dipping or spraying onto the core.
39. A cell for the electrowinning of aluminium from alumina dissolved in a fluoride-containing
molten electrolyte, the cell comprising at least one anode as defined in any one of
claims 1 to 20 facing and spaced from at least one cathode.
40. A method of producing aluminium in a cell according to claim 39 containing alumina
dissolved in a molten electrolyte, the method comprising passing an ionic current
in the molten electrolyte between the cathode(s) and the electrochemically active
surface layer of the anode(s), thereby evolving at the anode(s) oxygen gas derived
from the dissolved alumina and produce aluminium on the cathode(s).
41. The method of claim 40, comprising further oxidising said nickel metal-rich outer
portion of at least one anode in-situ by atomic and/or molecular oxygen formed on
its electrochemically active surface layer, in particular when the anode comprises
a surface which is partly oxide-free when immersed into the molten electrolyte, until
the oxidised nickel metal rich outer portion of the anode forms a barrier impervious
to oxygen.
42. The method of claim 40 or 41, comprising permanently and uniformly substantially saturating
the molten electrolyte with alumina and species of at least one major metal present
in the electrochemically active surface layer of the anode (s) to inhibit dissolution
of the anode(s).
43. The method of claim 40, 41 or 42, wherein the cell is operated with the molten electrolyte
at a temperature sufficiently low to limit the solubility of said major metal species
thereby limiting the contamination of the product aluminium to an acceptable level.
44. The method of any one of claims 40 to 43, wherein the cell is operated with the molten
electrolyte at a temperature from 730° to 910°C.
45. The method of claim 44, wherein aluminium is produced on an aluminium-wettable cathode,
in particular a drained cathode.
1. Anode einer Zelle für die Elektrogewinnung von Aluminium aus Aluminiumoxid, das in
einem Fluorid enthaltenden geschmolzenen Elektrolyten gelöst ist, wobei jene Anode
ein Substrat aus Nickel-Eisen-Legierung mit einem an Nickelmetall reichen äußeren
Bereich mit einer integralen, Nickel-Eisen-Oxid enthaltenden Oberflächenschicht umfasst,
die an dem an Nickelmetall reichen äußeren Bereich des Nickel-Eisen-Legierungssubstrats
haftet und die durch das Vorhandensein von Poren und/oder Spalten für Elektrolyt durchlässig
ist, wobei die Oberflächenschicht im Betrieb elektrochemisch aktiv für die Entwicklung
von Sauerstoffgas ist und Elektrolyt in den Poren und/oder Spalten enthält, die so
klein sind, dass, wenn die Oberflächenschicht polarisiert ist, die Potentialdifferenz
über die Elektrolyt enthaltenden Poren und/oder Spalten unter dem Potential für die
elektrolytische Lösung des Oxids der Oberflächenschicht liegt.
2. Anode nach Anspruch 1, wobei die elektrochemisch aktive Oberflächenschicht eine Dicke
von weniger als 50 µm hat.
3. Anode nach Anspruch 1, wobei die elektrochemisch aktive Oberflächenschicht eine Dicke
von weniger als 100 µm hat.
4. Anode nach Anspruch 1, wobei die elektrochemisch aktive Oberflächenschicht eine Dicke
von weniger als 200 µm hat.
5. Anode nach einem der vorhergehenden Ansprüche, die ein Ni/Fe-Atomverhältnis unterhalb
von 1 vor der Benutzung hat.
6. Anode nach einem der Ansprüche 1 bis 4, die ein Ni/Fe-Atomverhältnis oberhalb von
1, insbesondere von 1 bis 4, vor der Benutzung hat.
7. Anode nach einem der vorhergehenden Ansprüche, wobei der Nickelmetall-reiche äußere
Bereich eine Porosität hat, die Hohlräume enthält, die teilweise oder vollständig
mit Eisen- und Nickelverbindungen gefüllt sind, wobei die Porosität durch Oxidation
in einer oxidierenden Atmosphäre vor der Benutzung erhältlich ist.
8. Anode nach einem der vorhergehenden Ansprüche, wobei der an Nickelmetall reiche äußere
Bereich in Richtung der elektrochemisch aktiven Oberflächenschicht eine abnehmende
Konzentration an Eisenmetall hat.
9. Anode nach Anspruch 8 wobei der an Nickelmetall reiche äußere Bereich, wo er die elektrochemisch
aktive Oberflächenschicht erreicht, Nickelmetall und Eisenmetall in einem Ni/Fe-Atomverhältnis
von mehr als 3 aufweist.
10. Anode nach einem der vorhergehenden Ansprüche, wobei die Nickel-Eisen-Legierung einen
nicht-porösen inneren Bereich aufweist, der oxidfrei ist.
11. Anode nach einem der vorhergehenden Ansprüche, wobei die elektrochemisch aktive Oberflächenschicht
eisenreiche Nikkel-Eisen-Oxide aufweist.
12. Anode nach Anspruch 11, wobei die elektrochemisch aktive Oberflächenschicht Nickelferrit
aufweist.
13. Anode nach Anspruch 12, wobei das Nickelferrit der elektrochemisch aktiven Oberflächenschicht
ein nichtstöchiometrisches Nickelferrit mit einem Überschuss von Eisen oder Nickel
und/oder einem Sauerstoffdefizit aufweist.
14. Anode nach einem der vorhergehenden Ansprüche, wobei die Nickel-Eisen-Legierung Nickelmetall
und Eisenmetall in einer Gesamtmenge von wenigstens 65 Gew.-%, insbesondere wenigstens
80 Gew.-%, vorzugsweise wenigstens 90 Gew.-%, der Legierung aufweist.
15. Anode nach Anspruch 14, wobei die Nickel-Eisen-Legierung wenigstens ein weiteres Metall
aufweist, das ausgewählt ist aus Chrom, Kupfer, Kobalt, Silicium, Titan, Tantal, Wolfram,
Vanadium, Zirkonium, Yttrium, Molybdän, Mangan und Niob in einer Gesamtmenge von bis
zu 10 Gew.-% der Legierung.
16. Anode nach Anspruch 14 oder 15, wobei die Nickel-Eisen-Legierung wenigstens einen
Katalysator aufweist, der ausgewählt ist aus Iridium-, Palladium-, Platin-, Rhodium-,
Ruthenium-, Zinn- oder Zinkmetallen, Mischmetallen und deren Oxiden und Metallen der
Lanthanidenreihe und deren Oxiden wie auch Gemischen und Verbindungen davon, in einer
Gesamtmenge von bis zu 5 Gew.-% der Legierung.
17. Anode nach Anspruch 14, 15 oder 16, wobei die Nickel-Eisen-Legierung Aluminium in
einer Menge von weniger als 20 Gew.-%, insbesondere weniger als 10 Gew.-%, vorzugsweise
von 1 bis 6 Gew.-%, der Legierung aufweist.
18. Anode nach einem der vorhergehenden Ansprüche, die einen Kern aufweist, der aus einem
elektrisch leitfähigen Material hergestellt ist, das mit dem Nickel-Eisen-Legierungssubstrat
bedeckt ist.
19. Anode nach Anspruch 18, wobei der Kern aus Metallen, Legierungen, intermetallischen
Verbindungen, Cermeten und leitfähigen Keramikmaterialien hergestellt ist.
20. Anode nach Anspruch 19, wobei der Kern eine nicht-poröse, nickelreiche Nickel-Eisen-Legierung
ist.
21. Verfahren zur Herstellung einer Anode nach einem der vorhergehenden Ansprüche für
die Verwendung in einer Zelle für die Elektrogewinnung von Aluminium, wobei bei dem
Verfahren ein Nickel-Eisen-Legierungssubstrat bereitgestellt und das Nickel-Eisen-Legierungssubstrat
oxidiert wird, um die für Elektrolyt durchlässige, elektrochemisch aktive, Nickel-Eisenoxidhaltige
Oberflächenschicht zu erzeugen, die an dem an Nickelmetall reichen äußeren Bereich
haftet, wobei die Oxidation des Nickel-Eisen-Legierungssubstrats einen oder mehrere
Schritte bei einer Temperatur von 800 bis 1200 °C für bis zu 60 Stunden in einer oxidierenden
Atmosphäre umfasst.
22. Verfahren nach Anspruch 21, wobei das Nickel-Eisen-Legierungssubstrat in einer oxidierenden
Atmosphäre für 0,5 bis 5 Stunden oxidiert wird.
23. Verfahren nach Anspruch 21 oder 22, wobei die oxidierende Atmosphäre aus Sauerstoff
oder einem Gemisch aus Sauerstoff und einem oder mehreren inerten Gasen besteht, die
einen Sauerstoffgehalt von wenigstens 10 Mol% des Gemisches haben.
24. Verfahren nach Anspruch 21, 22 oder 23, wobei die oxidierende Atmosphäre Luft ist.
25. Verfahren nach einem der Ansprüche 21 bis 24, wobei die Nickel-Eisen-Legierung bei
einer Temperatur von 1050 bis 1150 °C oxidiert wird.
26. Verfahren nach einem der Ansprüche 21 bis 25, bei dem das Nickel-Eisen-Legierungssubstrat
einer thermischmechanischen Behandlung unterzogen wird, um seine Mikrostruktur vor
der Oxidation zu modifizieren.
27. Verfahren nach einem der Ansprüche 21 bis 26, bei dem das Nickel-Eisen-Legierungssubstrat
mit Additiven gegossen wird, um eine Mikrostruktur zur Verstärkung der Oxidation bereitzustellen.
28. Verfahren nach einem der Ansprüche 21 bis 27, wobei auf die Oxidation in der oxidierenden
Atmosphäre eine Wärmebehandlung in einer inerten Atmosphäre bei einer Temperatur von
800 bis 1200 °C für bis zu 60 Stunden folgt.
29. Verfahren nach einem der Ansprüche 21 bis 28, wobei die Oxidation in der oxidierenden
Atmosphäre teilweise ist und in-situ beim Elektrolysestart abgeschlossen wird.
30. Verfahren nach einem der Ansprüche 21 bis 29, bei dem das Nickel-Eisen-Legierungssubstrat
auf einem Kern gebildet wird.
31. Verfahren nach Anspruch 30, wobei Nickel- und Eisenmetall auf dem Kern abgelagert
werden.
32. Verfahren nach Anspruch 30, wobei Nickel- und Eisenverbindungen auf dem Kern abgelagert
und die Verbindungen dann reduziert werden.
33. Verfahren nach Anspruch 32, wobei die Nickel- und Eisenverbindungen Fe(OH)2 und Ni(OH)2 sind, die in einer Wasserstoffatmosphäre reduziert werden.
34. Verfahren nach einem der Ansprüche 30 bis 33, bei dem Nikkel und Eisen und/oder Verbindungen
davon miteinander auf dem Kern abgeschieden werden.
35. Verfahren nach einem der Ansprüche 30 bis 33, bei dem wenigstens eine Schicht aus
Eisen und/oder einer Eisenverbindung und wenigstens eine Schicht aus Nickel und/oder
einer Nickelverbindung auf dem Kern abgeschieden werden und die Schichten dann ineinander
diffundieren gelassen werden.
36. Verfahren nach einem der Ansprüche 30 bis 35, bei dem wenigstens eines von Nickel,
Eisen und Verbindungen davon elektrolytisch oder chemisch auf dem Kern abgeschieden
wird.
37. Verfahren nach einem der Ansprüche 30 bis 35, bei dem wenigstens eines von Nickel,
Eisen und Verbindungen davon durch Schmelzen im Lichtbogen oder Plasmaspritzen auf
den Kern aufgebracht werden.
38. Verfahren nach einem der Ansprüche 30 bis 35, bei dem wenigstens eines von Nickel,
Eisen und Verbindungen davon durch Bestreichen, Eintauchen oder Spritzen auf den Kern
aufgebracht wird.
39. Zelle für die Elektrogewinnung von Aluminium aus Aluminiumoxid, das in einem Fluorid
enthaltenden geschmolzenen Elektrolyten gelöst ist, wobei die Zelle wenigstens eine
Anode wie in einem der Ansprüche 1 bis 20 definiert aufweist, die zugewandt zu und
auf Abstand zu wenigstens einer Kathode liegt.
40. Verfahren für die Erzeugung von Aluminium in einer Zelle nach Anspruch 39, die Aluminiumoxid
gelöst in einem geschmolzenen Elektrolyten enthält, wobei das Verfahren aufweist:
Leiten eines Ionenstromes in dem geschmolzenen Elektrolyten zwischen der (den) Kathode(n)
und der elektrochemisch aktiven Oberflächenschicht der Anode(n), wodurch an der (den)
Anode(n) Sauerstoffgas, das von dem gelösten Aluminiumoxid stammt, entwickelt wird
und an der (den) Kathode(n) Aluminium erzeugt wird.
41. Verfahren nach Anspruch 40, bei dem weiter der an Nickelmetall reiche äußere Bereich
von wenigstens einer Anode in-situ durch atomaren und/oder molekularen Sauerstoff
oxidiert wird, der an seiner elektrochemisch aktiven Oberflächenschicht gebildet wird,
insbesondere wenn die Anode eine Oberfläche aufweist, die teilweise oxidfrei ist,
wenn sie in den geschmolzenen Elektrolyten eingetaucht wird, bis der oxidierte an
Nickelmetall reiche äußere Bereich der Anode eine Sperre bildet, die für Sauerstoff
undurchlässig ist.
42. Verfahren nach Anspruch 40 oder 41, bei dem der geschmolzene Elektrolyt dauernd und
gleichmäßig mit Aluminiumoxid und mit Spezies von wenigstens einem Hauptmetall, das
in der elektrochemisch aktiven Oberflächenschicht der Anode(n) vorhanden ist, im Wesentlichen
gesättigt gehalten wird, um die Lösung der Anode(n) zu verhindern.
43. Verfahren nach Anspruch 40, 41 oder 42, wobei die Zelle mit dem geschmolzenen Elektrolyt
bei einer Temperatur betrieben wird, die ausreichend niedrig ist, um die Löslichkeit
der Hauptmetallspezies zu begrenzen, wodurch die Verunreinigung des Produktaluminiums
auf ein akzeptables Niveau begrenzt wird.
44. Verfahren nach einem der Ansprüche 40 bis 43, wobei die Zelle mit den geschmolzenen
Elektrolyten bei einer Temperatur von 730 bis 910 °C betrieben wird.
45. Verfahren nach Anspruch 44, wobei Aluminium an einer aluminiumbenetzbaren Kathode,
insbesondere einer Abflusskathode, erzeugt wird.
1. Anode d'une cuve pour l'électro-obtention d'aluminium à partir d'alumine dissoute
dans un électrolyte en fusion contenant du fluorure, ladite anode comprenant un substrat
en alliage nickel-fer ayant une partie externe riche en métal de nickel avec une couche
de surface contenant de l'oxyde nickel-fer intégré qui adhère à la partie externe
riche en métal de nickel du substrat en alliage nickel-fer et qui est perméable à
l'électrolyte par la présence de pores et/ou de criques dans celui-ci, la couche de
surface en utilisation étant électrochimiquement active pour le dégagement de gaz
oxygène et contenant de l'électrolyte dans lesdits pores et/ou criques qui sont petits
de sorte que, quand la couche de surface est polarisée, le différentiel de potentiel
par les pores et/ou les criques contenant de l'électrolyte est au-dessous du potentiel
pour la dissolution électrolytique de l'oxyde de la couche de surface.
2. Anode selon la revendication 1, dans laquelle la couche de surface électrochimiquement
active a une épaisseur inférieure à 50 micromètres.
3. Anode selon la revendication 1, dans laquelle la couche de surface électrochimiquement
active a une épaisseur inférieure à 100 micromètres.
4. Anode selon la revendication 1, dans laquelle la couche de surface électrochimiquement
active a une épaisseur inférieure à 200 micromètres.
5. Anode selon une quelconque revendication précédente, qui a un rapport atomique Ni/Fe
en dessous de 1 avant utilisation.
6. Anode selon une quelconque des revendications 1 à 4, qui a un rapport atomique Ni/Fe
au-dessus de 1, en particulier de 1 à 4, avant utilisation.
7. Anode selon une quelconque revendication précédente, dans laquelle la partie externe
riche en métal de nickel a une porosité contenant des cavités qui sont partiellement
ou complètement remplies de composés de fer et de nickel, ladite porosité pouvant
être obtenue par oxydation dans une atmosphère oxydante avant utilisation.
8. Anode selon une quelconque revendication précédente, dans laquelle la partie externe
riche en métal de nickel a une concentration décroissante de métal de fer vers la
couche de surface électrochimiquement active.
9. Anode selon la revendication 8, dans laquelle la partie externe riche en métal de
nickel comprend du métal de nickel et du métal de fer dans un rapport atomique Ni/Fe
de plus de 3 quand il atteint la couche de surface électrochimiquement active.
10. Anode selon une quelconque revendication précédente, dans laquelle l'alliage nickel-fer
comprend une partie interne non poreuse qui est exempte d'oxyde.
11. Anode selon une quelconque revendication précédente, dans laquelle la couche de surface
électrochimiquement active comprend de l'oxyde nickel-fer riche en fer.
12. Anode selon la revendication 11, dans laquelle la couche de surface électrochimiquement
active comprend du nickel-ferrite.
13. Anode selon la revendication 12, dans laquelle le nickel-ferrite de la couche de surface
électrochimiquement active contient du nickel-ferrite non stoechiométrique ayant un
excès de fer ou de nickel, et/ou un manque d'oxygène.
14. Anode selon une quelconque revendication précédente, dans laquelle l'alliage nickel-fer
comprend du métal de nickel et du métal de fer dans une quantité totale d'au moins
65% en poids, en particulier au moins 80% en poids, de préférence au moins 90% en
poids de l'alliage.
15. Anode selon la revendication 14, dans laquelle l'alliage nickel-fer comprend au moins
un autre métal choisi à partir du chrome, du cuivre, du cobalt, du silicium, du titane,
du tantale, du tungstène, du vanadium, du zirconium, de l'yttrium, du molybdène, du
manganèse et du niobium dans une quantité totale de jusqu'à 10% en poids de l'alliage.
16. Anode selon la revendication 14 ou 15, dans laquelle l'alliage nickel-fer comprend
au moins un catalyseur choisi à partir d'iridium, de palladium, de platine, de rhodium,
de ruthénium, d'étain ou de zinc comme métaux, de mischmétaux et leurs oxydes et de
métaux de la série des lanthanides et leurs oxydes ainsi que des mélanges et composés
de ceux-ci, dans une quantité totale de jusqu'à 5% en poids de l'alliage.
17. Anode selon la revendication 14, 15 ou 16, dans laquelle l'alliage nickel-fer comprend
de l'aluminium dans une quantité inférieure à 20% en poids, en particulier inférieure
à 10% en poids, de préférence de 1 à 6% en poids de l'alliage.
18. Anode selon une quelconque revendication précédente, comprenant un noyau réalisé en
un matériau électroniquement conducteur qui est recouvert du substrat en alliage nickel-fer.
19. Anode selon la revendication 18, dans laquelle le noyau est réalisé en métaux, alliages,
composés intermétalliques, cermets et céramiques conductrices.
20. Anode selon la revendication 19, dans laquelle le noyau est un alliage nickel-fer
riche en nickel non poreux.
21. Procédé pour fabriquer une anode selon une quelconque revendication précédente pour
une utilisation dans une cuve pour l'électro-obtention d'aluminium, consistant à prévoir
un substrat en alliage nickel-fer et à oxyder le substrat en alliage nickel-fer pour
produire ladite couche de surface contenant de l'oxyde nickel-fer électrochimiquement
active perméable à l'électrolyte qui adhère à la partie externe riche en métal de
nickel, l'oxydation du substrat en alliage nickel-fer comprenant une ou plusieurs
étapes à une température de 800°C à 1200°C pendant jusqu'à 60 heures dans une atmosphère
oxydante.
22. Procédé selon la revendication 21, consistant à oxyder le substrat en alliage nickel-fer
dans une atmosphère oxydante pendant 0,5 à 5 heures.
23. Procédé selon la revendication 21 ou 22, dans lequel l'atmosphère oxydante se compose
d'oxygène ou d'un mélange d'oxygène et d'un ou de plusieurs gaz inertes ayant une
teneur en oxygène d'au moins 10% molaire du mélange.
24. Procédé selon la revendication 21, 22 ou 23, dans lequel l'atmosphère oxydante est
de l'air.
25. Procédé selon une quelconque des revendications 21 à 24, dans lequel l'alliage nickel-fer
est oxydé à une température de 1050°C à 1150°C.
26. Procédé selon une quelconque des revendications 21 à 25, consistant à soumettre le
substrat en alliage nickel-fer à un traitement thermique-mécanique pour modifier sa
microstructure avant oxydation.
27. Procédé selon une quelconque des revendications 21 à 26, consistant à couler le substrat
en alliage nickel-fer avec des additifs pour fournir une microstructure pour accroître
l'oxydation.
28. Procédé selon une quelconque des revendications 21 à 27, dans lequel l'oxydation dans
l'atmosphère oxydante est suivie par un traitement thermique dans une atmosphère inerte
à une température de 800°C à 1200°C pendant jusqu'à 60 heures.
29. Procédé selon une quelconque des revendications 21 à 28, dans lequel l'oxydation dans
l'atmosphère oxydante est partielle et achevée in situ par oxydation au départ de
l'électrolyse.
30. Procédé selon une quelconque des revendications 21 à 29, consistant à former le substrat
en alliage nickel-fer sur un noyau.
31. Procédé selon la revendication 30, consistant à déposer des métaux de nickel et de
fer sur le noyau.
32. Procédé selon la revendication 30, consistant à déposer des composés de nickel et
de fer sur le noyau et ensuite à réduire les composés.
33. Procédé selon la revendication 32, dans lequel les composés de nickel et de fer sont
Fe(OH)2 et Ni(OH)2 qui sont réduits dans une atmosphère d'hydrogène.
34. Procédé selon une quelconque des revendications 30 à 33, consistant à co-déposer du
nickel et du fer et/ou des composés de ceux-ci sur le noyau.
35. Procédé selon une quelconque des revendications 30 à 33, consistant à déposer au moins
une couche de fer et/ou d'un composé de fer et au moins une couche de nickel et/ou
d'un composé de nickel sur le noyau, et ensuite à mêler intimement les couches.
36. Procédé selon une quelconque des revendications 30 à 35, consistant à déposer électrolytiquement
ou chimiquement au moins l'un du nickel, du fer et des composés de ceux-ci sur le
noyau.
37. Procédé selon une quelconque des revendications 30 à 35, consistant à soumettre à
une projection à l'arc ou à une projection au plasma au moins l'un du nickel, du fer
et des composés de ceux-ci sur le noyau.
38. Procédé selon l'une des revendications 30 à 35, consistant à appliquer au moins l'un
du nickel, du fer et des composés de ceux-ci par peinture, immersion ou pulvérisation
sur le noyau.
39. Cuve pour l'électro-obtention d'aluminium à partir d'alumine dissoute dans un électrolyte
en fusion contenant du fluorure, la cuve comprenant au moins une anode telle que définie
dans l'une quelconque des revendications 1 à 20, faisant face à au moins une cathode
et espacée de celle-ci.
40. Procédé pour produire de l'aluminium dans une cuve selon la revendication 39 contenant
de l'alumine dissoute dans un électrolyte en fusion, le procédé consistant à faire
passer un courant ionique dans l'électrolyte en fusion entre la cathode(s) et la couche
de surface électrochimiquement active de l'anode(s), en émettant ainsi au niveau de
l'anode(s) du gaz oxygène dérivé de l'alumine dissoute et en produisant de l'aluminium
sur la cathode(s).
41. Procédé selon la revendication 40, consistant de plus à oxyder ladite partie externe
riche en métal de nickel d'au moins une anode in situ par oxygène atomique et/ou moléculaire
formé sur sa couche de surface électrochimiquement active, en particulier quand l'anode
comprend une surface qui est partiellement exempte d'oxyde quand elle est immergée
dans l'électrolyte en fusion, jusqu'à ce que la partie externe riche en métal de nickel
oxydé de l'anode forme une barrière imperméable à l'oxygène.
42. Procédé selon la revendication 40 ou 41, consistant sensiblement à saturer de façon
permanente et uniforme l'électrolyte en fusion avec l'alumine et une espèce d'au moins
un métal principal présent dans la couche de surface électrochimiquement active de
l'anode(s) pour inhiber la dissolution de l'anode(s).
43. Procédé selon la revendication 40, 41 ou 42, dans lequel la cuve fonctionne avec l'électrolyte
en fusion à une température suffisamment basse pour limiter la solubilité de ladite
espèce de métal principal en limitant ainsi la contamination de l'aluminium produit
à un niveau acceptable.
44. Procédé selon une quelconque des revendications 40 à 43, dans lequel la cuve fonctionne
avec l'électrolyte en fusion à une température de 730°C à 910°C.
45. Procédé selon la revendication 44, dans lequel l'aluminium est produit sur une cathode
mouillable par l'aluminium, en particulier une cathode de drainage.