(19) |
 |
|
(11) |
EP 1 444 752 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
02.03.2005 Bulletin 2005/09 |
(22) |
Date of filing: 31.10.2002 |
|
(86) |
International application number: |
|
PCT/EP2002/012281 |
(87) |
International publication number: |
|
WO 2003/043123 (22.05.2003 Gazette 2003/21) |
|
(54) |
A CELLULAR RADIO ADAPTIVE ANTENNA ARRAY
ADAPTIVES ANTENNENARRAY FÜR DEN ZELLULARFUNK
RESEAU CELLULAIRE D'ANTENNES ADAPTATIVES
|
(84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
(30) |
Priority: |
15.11.2001 GB 0127415
|
(43) |
Date of publication of application: |
|
11.08.2004 Bulletin 2004/33 |
(73) |
Proprietor: SIEMENS AKTIENGESELLSCHAFT |
|
80333 München (DE) |
|
(72) |
Inventor: |
|
- TARRAN, Christopher John
Romsey,
Hants SO51 6AR (GB)
|
(74) |
Representative: Payne, Janice Julia et al |
|
Siemens AG,
Postfach 22 16 34 80506 München 80506 München (DE) |
(56) |
References cited: :
EP-A- 0 755 090 EP-A- 1 014 485 US-A- 4 500 883
|
EP-A- 0 917 240 EP-A- 1 050 923
|
|
|
|
|
- OZYILDIRIM A ET AL: "Antenna diversity and adaptive beamforming for CDMA mobile systems"
ICT '98. INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS. BRIDGING EAST AND WEST THROUGH
TELECOMMUNICATIONS, PROCEEDINGS OF ICT'98 - INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS,
CHALKIDIKI, GREECE, 21-25 JUNE 1998, pages 91-95 vol.4, XP002232334 1998, Thessaloniki,
Greece, Aristotle Univ. Thessaloniki, Greece
- JANA R ET AL: "Mobile capacity enhancement using unequally spaced antenna arrays"
VTC2000-SPRING. 2000 IEEE 51ST VEHICULAR TECHNOLOGY CONFERENCE PROCEEDINGS (CAT. NO.00CH37026),
2000 IEEE 51ST VEHICULAR TECHNOLOGY CONFERENCE. PROCEEDINGS. VTC2000-SPRINGER, TOKYO,
JAPAN, 15-18 MAY 2000, pages 1215-1219 vol.2, XP000968063 2000, Piscataway, NJ, USA,
IEEE, USA ISBN: 0-7803-5718-3
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
FIELD OF THE INVENTION
[0001] This invention relates to cellular radio communication systems and in particular
relates to an antenna configuration for future generation cellular radio systems.
BACKGROUND TO THE INVENTION
[0002] Cellular radio systems are currently in widespread use throughout the world providing
telecommunications to mobile users. Cellular radio systems are so-called because they
divide a geographic area into cells; at the centre of each cell there is a base station
through which mobile stations communicate, each base station typically being equipped
with antenna arrays arranged in sectors. The distance between cells is determined
such that co-channel interference is maintained at a tolerable level.
[0003] In order to provide services to an increasing number of wireless communications subscribers,
with concomitant increasing risks of interference, the way forward is believed to
be in adaptive smart antennas. That is to say, by appropriate amplitude and phase
weighting, the base station beams from several antenna elements are steered, whereby
strong beams are formed in the direction of the wireless communications subscriber,
with nulls being steered in the direction of sources of interference. The result can
provide an increase in range and an increase in capacity.
[0004] Whilst the potential advantages of adaptive smart antennas have been known for several
years, there have been many problems encountered in making commercial examples, with
problem such as cost and reliability. The tread nowadays is for increased reliability
as prices are being reduced. Nevertheless, improvements are required in other areas:
diversity gain, to name but one feature. Smart antennas have to date been constructed
with their elements mounted a 0.5 wavelength spacing. This conventional approach provides
for conventional beamforming but results in a small aperture for a given number of
elements and is thus not good for spatial diversity. Alternatively some approaches
have employed two such arrays with a wide spacing to provide diversity gain, however,
such an array is sub optimal for adaptive nulling of interference and diversity gain
is limited to little more that 2 element diversity. EP-A-1050923 (Lucent) discloses
an antenna system having coherent and non-coherent receive characteristics. EP-A-7SS090
(Nortel) provides an antenna downlink beamsteering arrangement.
OBJECT OF THE INVENTION
[0005] The present invention seeks to provide an improved antenna array. In particular the
present invention seeks to provide an antenna array with good diversity, gain and
high directivity.
STATEMENT OF INVENTION
[0006] In accordance with a first aspect of the invention, there is provided an adaptive
antenna adaptive antenna array comprising a plurality of parallel spaced apart linear
antenna arrays, wherein the parallel spaced apart linear antenna arrays are arranged
in adjacent first and second groups, the spacing between the linear antenna arrays
of each group differs between the groups, the separation between the elements of the
first group being of the order of 0.5 wavelength long and the separation of the elements
in the second group being in the range of 1 -10 wavelengths long, characterised in
that the array further comprises a third group of linear antenna arrays, the third
group corresponding in spacing, between elements, to the second array and being positioned
adjacent the first group such that the array is symmetrical about a central axis,
the antennas being connected to a beamformer such that they are operable in both transmit
and receive modes; and wherein the antenna array further comprises two further antenna
arrays, corresponding in spacing, between elements, to the first array, each further
array comprising four parallel linear arrays, and one array being positioned between
two linear antenna arrays of the second and third arrays respectively, the further
arrays being operable in transmit mode to support two-branch spatial diversity to
provide FDD signalling
[0007] The antennas can be dipoles, flat-plate or other types. Preferably a reflector is
provided to improve directivity and, in a sectored array configuration, to reduce
interference between adjacent planar arrays.
[0008] The spacing between the adjacent antenna arrays can be greater than said spacing
between the linear antenna arrays of the first group. The antenna array aperture can
correspond to ten to twenty wavelengths in width.
[0009] The type of antenna elements can be selected from the group comprising, amongst others,
dipole antenna elements and flat-plate antenna elements. A reflector can be provided,
as appropriate, whereby to improve directivity and to reduce interference between
adjacent planar arrays.
[0010] In accordance with a further aspect of the present invention, there is provided a
method of operating an adaptive antenna array comprising a plurality of parallel spaced
apart linear antenna arrays, wherein the parallel spaced apart linear antenna arrays
are arranged in adjacent first, second and third groups, the second and third groups
being arranged symmetrically about the first group, with the spacing between the linear
antenna arrays of the first group being different from that of the second and third
groups, the separation between the elements of the first group being of the order
of 0.5. wavelengths long and the separation of the elements in the second and third
groups being in the range of 1 - 10 wavelengths long, the method comprising the steps,
in a receive mode, of receiving positional data of the subscriber and employing this
data in beam forming means to appropriately determine the phase and amplitude weights
whereby to direct the transmit and receive signals; and wherein there are provided
two further antenna arrays, corresponding in spacing, between elements, to the first
array, each further array comprising four parallel linear arrays, each of the second
and third arrays having two antenna arrays with one further array being positioned
therebetween, respectively wherein, in transmit mode, the antenna arrangement is operable
to support two-branch spatial diversity to provide FDD signalling.
[0011] The present invention provides a novel array geometry for smart antennas having a
large aperture which that provides good diversity gain, high directivity, good adaptive
nulling of interference, good direction of arrival estimates and the ability to form
a good sector beam for broadcast information. All these issues are desirable features
of a cellular radio smart. The invention therefore provides good spatial diversity,
which facilitates good resolution for space division multiple access systems.
BRIEF DESCRIPTION OF FIGURES
[0012] The invention may be understood more readily, and various other aspects and features
of the invention may become apparent, from consideration of the following description
and the accompanying drawing sheets, wherein:
Figure 1 shows a prior art antenna;
Figure 2 shows a schematic representation of a planar array made in accordance of
invention;
Figure 3 shows a view of a first embodiment of the present invention;
Figure 4 is a graph showing comparative diversity gain figures for an antenna made
in accordance with the invention;
Figure 5 shows a further embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
[0013] There will now be described, by way of example, the mode contemplated by the inventors
for carrying out the invention. In the following description, numerous specific details
are set out in order to provide a complete understanding of the present invention.
It will be apparent, however, to those skilled in the art that the present invention
may be put into practice with variations of the specific.
[0014] Figure 1 shows an example of a prior art antenna configuration wherein a base station
100 has three sectors and accordingly has three sets of planar arrays 102, each planar
array comprising of six linear array antennas 104, the linear array antennas 104 being
spaced apart by approximately half a wavelength, the central vertical axes of the
array 102 being separated from each other by a distance of about ten wavelengths.
It ,will be appreciated that these planar arrays 102 will provide adequate antenna
beams but achieve limited diversity gain. That is to say, in a direction normal to
the planar arrays, there will be a large antenna gain with no diversity gain, whereas
in directions between planar arrays there will be a small antenna gain but a large
diversity gain. Variants include the spacing apart of two such antenna arrays or single
linear array antennas, whereby the antennas can provide good spatial diversity: the
spacing between the arrays is typically of the order of ten wavelengths. This array,
however, provides poor beamforming. In directions normal to the two branches for each
sector, there is provided a medium antenna gain with a large diversity gain; in the
direction corresponding to the division of each sector, there is a small antenna gain
but a large diversity gain. Other forms of diversity are possible such as polarisation
diversity. On the downlink, the same beam can be used on each polarisation with transmission
diversity (STTD or TxAA) applied between the polarisations. In a direction normal
to each array there will be a medium antenna gain and a large diversity gain, and,
as above, in the direction between sectors there is a small antenna gain and a large
diversity gain.
[0015] A first embodiment of the present invention shall now be described with reference
to Figure 2, where there is shown an antenna arrangement 200 comprising an eight element
antenna array 202. Each of the eight antenna elements 204 - 218 comprises a linear
array 220 and the linear arrays are spaced in a parallel spaced apart fashion, as
can best be seen from Figure 2. In the example shown in Figures 2 and 3, the antenna
elements comprise co-linear dipole stacks. The array comprises three groups: a first,
central group 230, comprising four antenna elements 208 - 214 which are approximately
half a wavelength spaced apart to provide for a good sector coverage beam with phase
only weighting; and second and third groups, 240, 250, comprising the remaining antenna
elements are spread out from the centre, on either side. Symmetry about the centre
provides for a mechanical centre of gravity at the centre. This can facilitate mounting
of the antenna. Furthermore,. the antenna array, upon installation in the field, will
be subject to extremes of weather: winds - which may be gale force - require the structure
to be particularly stable. The second and third groups assist in providing good spatial
diversity. A calibration network together with power amplifiers and low noise amplifiers
mounted on the array is not shown.
[0016] The first array group 230 may comprise an odd number of linear arrays, and may, for
example, comprise a group of three. The second and third groups may comprise, equally
spaced antennas with two, three, four or more antennas. The particular number is not
limited to the examples shown, but the choice of configuration will be determined
by an appropriate cost performance ratio. In another embodiment, the array is asymmetrical
and there is no third group of antennas. In such an embodiment, there exists on one
side, a first group of closely spaced antennas and a second group of more widely spaced
antennas.
[0017] The diversity gain aspect of the proposed non-uniform (irregular array) is illustrated
in Figure 4. The top curve represents the response where there is a single antenna
element, i.e. there is no smart antenna. The middle curve represents the response
of a conventional 8 element regular array of 0.5 wavelength spacing. The bottom curve
represents the response of an 8 element non-uniform array and considerably lower bit
error rates (BER) can be achieved for a given value of Eb/No.
[0018] In a further embodiment, with reference to Figure 5, further transmit elements are
provided, which could be of benefit for systems operating in a frequency division
duplex mode such as UMTS WCDMA. The further transmit elements 502, 504 are mounted
in the gaps of a basic array, between either the second and third group of antennas,
although other positions would be possible. Two branch antenna diversity is enabled
on the down link, as is required in accordance with the UMTS WCDMA standard. The two
transmit arrays are electronically steered towards a user and then optimally combined
whereby to provide optimal diversity. Four antenna elements are provided in each of
the transmit arrays. As will be appreciated, the use of separate antenna elements
for receive and transmit functions provides isolation and thus eases the design of
the duplex filters.
[0019] In operation, the smart base station is operable to receive positional data from
subscriber stations where by to appropriately phase and amplitude weight transmitted
signals and receive signals, as is known. All of the antenna elements are conveniently
employed, but it may be appropriate to reduce signal power for subscribers in close
proximity, to reduce. radiated power and to reduce operating power of control circuitry
within the base station. It will be appreciated that the wide aperture defined by
the groups of antennas will improve spatial diversity reception in an economic fashion.
[0020] The geometry provides the following advantages: a large aperture (widely spaced elements)
for good spatial diversity; high directivity (high ratio between gain in wanted direction
to integral of gain in all directions); good interference nulling (an irregular array
does not cause grating lobes, interference in the sidelobes can be nulled without
collapse of the main beam); good direction of arrival estimates without ambiguity;
good resolution for SDMA (space division multiple access); and, good 120 degree sector
coverage broadcast beam possible by phase only weighting of the centre 0.5 wavelength
spaced apart four elements
[0021] In Figure 3 the antenna array 230, 240 connects to a bank of digital transceiver
equipments 232. The subsequent multi channel coherent data from each antenna element
is processed by digital signal processing such as to apply phase and amplitude weightings
to the array elements. These weightings can be calculated to apply beam patterns in
the direction of wanted signals whilst providing pattern nulls in the directions of
interference signals. In this way signal to interference plus noise ratio is maximised.
In additions weightings are computed that provide optimum ration combining of the
signals from each antenna.
[0022] In addition direction of arrival estimates are computed from the complete eight element
array. The irregular nature of the array provides for good angle estimation and good
adaptive nulling of interference without problems from grating lobes. The wide aperture
provides for good resolution and good spatial diversity. The centre four elements
of closely spaced elements (of the order of 0.5 lamda) are employed on transmit to
provide a good 120 degree sector coverage beam for broadcast traffic.
[0023] With respect to the embodiment as illustrated in Figure 5, consideration is made
to supporting FDD signals. There is a row of extra duplex filters between the array
and the digital transceivers. On receive, the array operates as described above with
reference to Figure 3. However, on transmit two extra four element arrays 502 and
504 are provided. These arrays facilitate 2 branch spatial downlink diversity which
is a feature of the standard.
1. An adaptive antenna array comprising a plurality of parallel spaced apart linear antenna
arrays, wherein the parallel spaced apart linear antenna arrays are arranged in adjacent
first (230) and second (240) groups, the spacing between the linear antenna arrays
of each group differs between the groups, the separation between the elements of the
first group being of the order of 0.5 wavelength long and the separation of the elements
in the second group being in the range of 1 -10 wavelengths long, characterised in that the array further comprises a third (240) group of linear antenna arrays, the third
group corresponding in spacing, between elements, to the second array and being positioned
adjacent the first group such that the array is symmetrical about a central axis;
and wherein there are provided two further antenna arrays (502, 504), the further
antenna arrays corresponding in spacing, between elements, to the first array, each
further array comprising four parallel linear arrays and one array being positioned
between two linear antenna arrays of the second and third arrays respectively, the
further arrays being operable in transmit mode to support two-branch spatial diversity
to provide FDD signalling.
2. An antenna array according to claim 1, wherein the spacing between the adjacent antenna
arrays is greater than said spacing between the linear antenna arrays of the first
group.
3. An antenna array according to claim 1, wherein the array aperture corresponds to ten
to twenty wavelengths in width.
4. An antenna array in accordance with any preceding- claim, wherein the antenna elements
are selected from the group comprising dipole antenna elements and flat-plate antenna
elements.
5. An antenna configuration according to claim 1 or claim 2, wherein a reflector is provided
whereby to improve directivity and to reduce interference.
6. A method of operating an adaptive antenna array comprising a plurality of parallel
spaced apart linear antenna arrays, wherein the parallel spaced apart linear antenna
arrays are arranged in adjacent first, second and third groups (230, 240), the second
and third groups being arranged symmetrically about the first group, with the spacing
between the linear antenna arrays of the first group being different from that of
the second and third groups, the separation between the elements of the first group
(230) being of the order of 0.5 wavelengths long and the separation of the elements
in the second and third groups (240) being in the range of 1 - 10 wavelengths long,
the method comprising the steps, in a receive mode, of receiving positional data of
the subscriber and employing this data in beam forming means (232) to appropriately
determine the phase and amplitude weights whereby to direct the transmit and receive
signals; and wherein there are provided two further antenna arrays (502, 504), the
further antenna arrays corresponding in spacing, between elements, to the first array,
each further array comprising four parallel linear arrays, each of the second and
third arrays having two antenna arrays with one further array (502, 504) being positioned
therebetween, respectively wherein, in transmit mode, the antenna arrangement is operable
to support two-branch spatial diversity to provide FDD signalling.
1. Adaptives Antennenarray, welches eine Vielzahl von parallelen, in Abständen voneinander
angeordneten linearen Antennenarrays umfasst, wobei die parallelen, in Abständen voneinander
angeordneten linearen Antennenarrays in einer ersten (230) und einer zweiten (240)
Gruppe, die sich nebeneinander befinden, angeordnet sind, wobei der Abstand zwischen
den linearen Antennenarrays in den beiden Gruppen unterschiedlich ist, wobei der Zwischenraum
zwischen den Elementen der ersten Gruppe in der Größenordnung von 0,5 Wellenlängen
liegt und der Zwischenraum der Elemente in der zweiten Gruppe im Bereich von 1 - 10
Wellenlängen liegt, dadurch gekennzeichnet, dass das Array ferner eine dritte (240) Gruppe von linearen Antennenarrays umfasst, wobei
die dritte Gruppe hinsichtlich des Abstands zwischen den Elementen dem zweiten Array
entspricht und so neben der ersten Gruppe angeordnet ist, dass das Array symmetrisch
bezüglich einer Mittelachse ist; und wobei zwei weitere Antennenarrays (502, 504)
vorgesehen sind, wobei die weiteren Antennenarrays hinsichtlich des Abstands zwischen
den Elementen dem ersten Array entsprechen, wobei jedes weitere Array vier parallele
lineare Arrays und ein Array, das zwischen den zwei linearen Antennenarrays des zweiten
bzw. dritten Arrays angeordnet ist, umfasst, wobei die weiteren Arrays im Sendebetrieb
so betrieben werden können, dass sie Raumdiversity mit zwei Zweigen (Two-branch Space
Diversity) unterstützen und damit eine Signalisierung unter Verwendung des Frequenzduplex-Verfahrens
(Frequency Division Duplex, FDD) ermöglichen.
2. Antennenarray nach Anspruch 1, wobei der Abstand zwischen den nebeneinander befindlichen
Antennenarrays größer als der besagte Abstand zwischen den linearen Antennenarrays
der ersten Gruppe ist.
3. Antennenarray nach Anspruch 1, wobei die Apertur des Arrays hinsichtlich der Breite
zehn bis zwanzig Wellenlängen entspricht.
4. Antennenarray nach einem der vorhergehenden Ansprüche, wobei die Antennenelemente
aus der Gruppe gewählt sind, welche Dipolantennen-Elemente und Flachantennen-Elemente
umfasst.
5. Antennenkonfiguration nach Anspruch 1 oder Anspruch 2, wobei ein Reflektor vorgesehen
ist, um dadurch die Richtwirkung zu verbessern und Störbeeinflussungen zu verringern.
6. Verfahren zum Betrieb eines adaptives Antennenarrays, welches eine Vielzahl von parallelen,
in Abständen voneinander angeordneten linearen Antennenarrays umfasst, wobei die parallelen,
in Abständen voneinander angeordneten linearen Antennenarrays in einer ersten, einer
zweiten und einer dritten Gruppe (230, 240), die sich nebeneinander befinden, angeordnet
sind, wobei die zweite und die dritte Gruppe symmetrisch um die erste Gruppe herum
angeordnet sind, wobei der Abstand zwischen den linearen Antennenarrays der ersten
Gruppe von dem der zweiten und dritten Gruppe verschieden ist, wobei der Zwischenraum
zwischen den Elementen der ersten Gruppe (230) in der Größenordnung von 0,5 Wellenlängen
liegt und der Zwischenraum der Elemente in der zweiten und dritten Gruppe (240) im
Bereich von 1 - 10 Wellenlängen liegt, wobei das Verfahren in einem Empfangsbetrieb
die Schritte des Empfangens von Positionsdaten des Teilnehmers und des Verwendens
dieser Daten in Strahlformungsmitteln (232), um auf geeignete Weise die Phasen- und
Amplitudengewichte zu bestimmen und dadurch die Sende- und Empfangssignale zu richten,
umfasst; und wobei zwei weitere Antennenarrays (502, 504) vorgesehen sind, wobei die
weiteren Antennenarrays hinsichtlich des Abstands zwischen den Elementen dem ersten
Array entsprechen, wobei jedes weitere Array vier parallele lineare Arrays umfasst,
wobei das zweite und das dritte Array jeweils zwei Antennenarrays mit einem jeweils
zwischen ihnen angeordneten weiteren Array (502, 504) aufweisen, wobei im Sendebetrieb
die Antennenanordnung in der Lage ist, Raumdiversity mit zwei Zweigen (Two-branch
Space Diversity) zu unterstützen und damit eine FDD-Signalisierung zu ermöglichen.
1. Réseau d'antennes adaptatives consistant en une pluralité de réseaux d'antennes rectilignes
espacés parallèlement les uns des autres, les réseaux d'antennes rectilignes espacés
parallèlement les uns des autres étant agencés en un premier (230) et un deuxième
(240) groupes adjacents, l'espacement entre les réseaux d'antennes rectilignes de
chaque groupe différant entre les groupes, la séparation entre les éléments du premier
groupe étant de l'ordre de 0,5 longueur d'onde de long et la séparation des éléments
du deuxième groupe étant de l'ordre de 1-10 longueurs d'onde de long, caractérisé en ce que le réseau comprend par ailleurs un troisième (240) groupe de réseaux d'antennes rectilignes,
le troisième groupe correspondant par l'espacement, entre les éléments, au deuxième
réseau et étant positionné de façon adjacente au premier groupe de telle sorte que
le réseau est symétrique autour d'un axe central, et deux réseaux d'antennes supplémentaires
(502, 504) étant prévus, les réseaux d'antennes supplémentaires correspondant par
l'espacement, entre les éléments, au premier réseau, chaque réseau supplémentaire
comprenant quatre réseaux rectilignes parallèles et un réseau étant positionné entre
deux réseaux d'antennes rectilignes, respectivement, des deuxième et troisième réseaux,
les réseaux supplémentaires étant utilisables en mode d'émission pour prendre en charge
la diversité d'espace à deux branches pour procurer une signalisation DRF.
2. Réseau d'antennes selon la revendication 1 dans lequel l'espacement entre les réseaux
d'antennes adjacents est plus grand que ledit espacement entre les réseaux d'antennes
rectilignes du premier groupe.
3. Réseau d'antennes selon la revendication 1, dans lequel l'ouverture du réseau correspond
à dix à vingt longueurs d'onde en largeur.
4. Réseau d'antennes selon l'une quelconque des revendications précédentes, dans lequel
les antennes élémentaires sont choisies dans le groupe constitué par des antennes
élémentaires à dipôle et des antennes élémentaires planes.
5. Configuration d'antennes selon la revendication 1 ou la revendication 2, dans laquelle
un réflecteur est prévu au moyen duquel améliorer la directivité et réduire le brouillage.
6. Procédé d'utilisation d'un réseau d'antennes adaptatives consistant en une pluralité
de réseaux d'antennes rectilignes espacés parallèlement les uns des autres, les réseaux
d'antennes rectilignes espacés parallèlement les uns des autres étant agencés en un
premier, un deuxième et un troisième groupes (230, 240) adjacents, les deuxième et
troisième groupes étant agencés symétriquement autour du premier groupe, l'espacement
entre les réseaux d'antennes rectilignes du premier groupe étant différent de celui
des deuxième et troisième groupes, la séparation entre les éléments du premier groupe
(230) étant de l'ordre de 0,5 longueur d'onde de long et la séparation des éléments
des deuxième et troisième groupes (240) étant de l'ordre de 1-10 longueurs d'onde
de long, le procédé comprenant les étapes consistant, en mode de réception, à recevoir
des données positionnelles de l'abonné et à employer ces données dans le moyen de
conformation de faisceau (232) pour déterminer de manière appropriée les pondérations
de phase et d'amplitude avec lesquelles orienter les signaux d'émission et de réception,
et deux réseaux d'antennes supplémentaires (502, 504) étant prévus, les réseaux d'antennes
supplémentaires correspondant par l'espacement, entre les éléments, au premier réseau,
chaque réseau supplémentaire comprenant quatre réseaux rectilignes parallèles, chacun
des deuxième et troisième réseaux comportant deux réseaux d'antennes, un réseau supplémentaire
(502, 504) étant positionné, respectivement, entre eux, l'agencement d'antennes étant,
en mode d'émission, utilisable pour prendre en charge la diversité d'espace à deux
branches pour procurer une signalisation par DRF.