[0001] The present invention is related to a system to deliver a fluid from a delivery tank
to a storage tank, with a delivery line connectable to said delivery tank and to said
storage tank, wherein the system allows to first deliver said fluid to a customer
with a lower grade application and then supply a second customer with high grade fluid
from said delivery tank, comprising a delivery valve in said delivery line and means
to detect the pressure difference between the pressure at a point upstream said delivery
valve and a point downstream said delivery valve, wherein said delivery valve is operable
to open a flow path in said delivery line depending on said detected pressure difference.
Further the invention is directed to a method to deliver a fluid from a delivery tank
to a storage tank through a delivery line connected to said delivery tank and to said
storage tank, wherein said delivery line comprises a delivery valve, wherein a flow
of said fluid from said storage tank to said delivery tank is avoided, comprising
the steps of
- detecting the pressure difference between the pressure at a point upstream said delivery
valve and a point downstream said delivery valve,
- only delivering said fluid to said storage tank if the pressure at said point upstream
said delivery valve exceeds the pressure at said point downstream said delivery valve.
[0002] Carbon dioxide is used for many different applications, some of them being more sensitive
to impurities and quality than the others. For instance, carbon dioxide used in the
food industry has a higher quality demand than in welding or industrial blanketing
applications.
[0003] Carbon dioxide is normally obtained on a large scale basis when recovering waste
carbon dioxide from an industrial production facility or from natural sources in the
ground. The design of the quality in these plants is normally as good to be able to
cover all applications. However, impurities may be introduced during the distribution
of the carbon dioxide, caused by back flow from customer storage tanks into the delivery
tanks of the distribution vehicles.
[0004] Therefore, it has up to now not been possible to first supply a customer using lower
grade carbon dioxide and afterwards to supply a customer needing high grade carbon
dioxide. In this case there has always been the risk that during the first delivery
the remaining carbon dioxide in the delivery tank of the truck is contaminated. So
it has been necessary to use separate delivery trucks for the supply of carbon dioxide
of different quality.
[0005] US 4,887,857 considered as closest prior art, discloses a method and a system for
filling cryogenic liquid containers according to the preamble of claims 1 and 13.
A throttle vent valve is provided at the outlet vent of a container being loaded for
controlling the differential pressure between the storage tank and the container.
[0006] EP 1 146 277 discloses a method for filling compressed gas from a plurality of supply
side containers to a filling containerby utilizing a residual pressure of said supply
side containers.
[0007] It is an object of the invention to provide a method and a corresponding system to
prevent back flow of a fluid during the delivery of that fluid from a delivery tank
to a storage tank.
[0008] This object has been fulfilled by a system according to claim 1.
[0009] According to a second aspect of the present invention, there is provided a method
according to claim 13.
[0010] As used herein the term "fluid" means any kind of gaseous or liquid material and
mixtures thereof. The expression "fluid" includes gases, as for example oxygen, nitrogen
and carbon dioxide, further liquids, in particular liquified gases, and gas-liquid-mixtures,
especially a two-phase flow of a substance in its gaseous and its liquid state.
[0011] As used herein the terms "upstream" and "downstream" are based on the regular flow
of fluid from said delivery tank to said storage tank.
[0012] The invention discloses a system and a method to be able to use a higher grade fluid
to distribute into a lower grade application where impurities may be added to the
fluid. The risk that back flow from the storage tank may cause impurities to be added
into the delivery tank is avoided.
[0013] According to the invention the delivery valve is only opened if the pressure in the
delivery line upstream the delivery valve exceeds the pressure downstream the delivery
valve. Such a pressure gradient assures that there is no flow of fluid, that may be
contaminated, back to the delivery tank. If the pressure in the storage tank is higher
than the pressure in the delivery tank, said delivery valve will remain closed.
[0014] For safety purposes it has been found advantageous to provide a delivery check valve
located in said delivery line downstream said delivery valve. This redundant check
valve gives an additional protection against back flow of contaminated fluid in case
of a failure of the delivery valve. The delivery check valve has preferably a low
opening pressure of less than 1 bar, more preferred less than 0,1 bar and most preferred
close to 0 bar.
[0015] The term "opening pressure" of a check valve means the minimum pressure difference
between upstream and downstream the check valve which causes the check valve to open.
That means in this particular case that as soon as the pressure in the delivery line
downstream the delivery valve reaches the pressure in the storage tank, the fluid
will start flowing through the delivery check valve into said storage tank.
[0016] After completion of the delivery some fluid may remain in the delivery line upstream
the delivery valve. It cold liquified gases, as for example liquid carbon dioxide,
remain in the delivery line, the liquified gases will evaporate. Therefore, it is
preferred to have a bypass conduit between the inlet and the outlet of the delivery
valve, said bypass conduit comprising a check valve. The bypass conduit allows fluid
to flow in the direction to the storage tank to avoid any undesired pressure rise
in the delivery line upstream the delivery valve. It thus works as a safety valve.
On the other hand, the bypass check valve prevents any flow of fluid in the wrong
direction.
[0017] If the bypass is used, its restriction should be small enough to allow for pressure
build-up upstream the delivery valve. Namely, if the bypass restriction is too big,
there will be an important flow through the bypass and pressure conditions, which
cause the delivery valve to open, might never occur.
[0018] It has been found that another way of overcoming this problem is to install a safety
relief valve on the delivery line upstream the delivery valve. The safety relief valve
allows pressure upstream said delivery valve to build above the pressure in the storage
tank when said delivery line is connected to said storage tank and to said delivery
tank. The safety relief valve is preferably vented to the atmosphere. Of course it
is also possible to combine the bypass solution with said safety relief valve.
[0019] The system further comprises a venting line with a venting valve connected to said
delivery line downstream said delivery valve, said venting valve operable depending
on the detected pressure difference. The venting line with the venting valve eliminates
the risk of back-flow that may arise if the delivery valve, the delivery check valve
and / or the check valve in the bypass conduit do not function properly. In such a
case the back-flow of contaminated fluid to the delivery tank is prevented by venting
the fluid through said venting valve and venting line.
[0020] Further a relief valve is provided in said venting line and in particular it is preferred
to locate said relief valve in said venting line downstream said venting valve.
[0021] In a preferred embodiment said venting valve and / or said delivery valve are solenoid
valves. In this case the status of these valves can be easily controlled depending
on the detected pressure difference.
[0022] It has been found advantageous to have switch means that allow to actuate the delivery
valve and / or the venting valve and / or the means to detect the pressure difference.
That switch can be used to open and close these valves or to switch off the pressure
detecting means. The flow path through the delivery line is only open when said switch
is switched on and when the difference between the pressure upstream and the pressure
downstream the delivery valve is positive. It thus takes two conditions to be fulfilled
at the same time to open the flow path and to make a delivery of fluid possible. Thus
the risk that any contaminated fluid flows the wrong way into the delivery tank is
further reduced. The same applies if the means to detect the pressure difference are
switched off. In this case the output of said means to detect the pressure difference
does not cause said delivery valve to open.
[0023] The means to detect the pressure difference preferably comprise a differential pressure
transmitter which is in fluid communication, for example via sensor tubes, with both
a point upstream and a point downstream said delivery valve, for example with the
delivery line upstream the delivery valve and the storage tank.
[0024] It is sufficient if the output of the differential pressure transmitter, or in general
the output of the means to detect the pressure difference, switches between two levels
depending on which of the detected pressures is the higher one. However, it is advantageous
if the output of the means to detect the pressure difference is proportional to the
pressure difference itself. The higher the output signal, the higher is the pressure
difference. Thus, it is for example possible to actuate the delivery valve only if
a predetermined pressure difference is exceeded.
[0025] Most preferably there is provided pressure detecting means that detect the absolute
pressure at a point downstream said delivery valve, for example in said storage tank,
and the absolute pressure in said delivery line upstream said delivery valve. In this
case it is not only possible to determine the pressure difference but also the absolute
values. The risk of back flow of fluid to the delivery tank is further decreased,
since it is possible to open the delivery valve only if both the pressure difference
and the absolute pressure in the delivery line exceed predetermined values.
[0026] The pressure detecting means may be a single instrument which is in fluid communication
with the storage tank and the delivery line or may comprise two separate pressure
detectors. In the later case the output signals of these pressure detectors are then
further processed to determine which of the detected pressures is the higher one or
to obtain the absolute value of the pressure difference.
[0027] In another embodiment the invention further comprises an additional venting line
with an additional venting valve connected to said delivery line upstream said delivery
valve. This feature allows to vent the delivery line upstream the delivery valve to
assure that no contaminated fluid has accumulated.
[0028] The invention is of particular importance in the supply of liquid or liquified gases
to storage tanks, especially of liquid carbon dioxide. As stated earlier carbon dioxide
is used in different qualities, for example high grade carbon dioxide in the food
and beverage industry and low grade carbon dioxide in inerting processes or in heat
treatment applications. The invention allows to first deliver liquid gas to a customer
with a lower grade carbon dioxide application and then supply a second customer with
high grade carbon dioxide from the same delivery tank. In the prior art there was
always the risk that back flow from the tank of the first customer may cause impurities
to be added into the delivery tank. A preferred application of the invention is the
supply of liquid carbon dioxide to dry-cleaning installations.
[0029] In applications where the fluid is contaminated and the contaminated fluid is recovered
after the process, there are normally separate tanks for the storage of fresh fluid
and for the storage of recovered fluid to avoid contaminated fluid flowing back to
the delivery tank during deliveries. An advantage of the invention is that it is possible
to have only one tank to store fresh and recovered fluid instead of a storage tank
and a separate recovery tank. For example a dry-cleaning facility is normally provided
with a storage tank for fresh carbon dioxide and a recovery tank for recovered carbon
dioxide from the dry-cleaning process. The invention allows to store fresh and recovered
carbon dioxide in the same tank.
[0030] The invention will now be illustrated in greater detail with reference to the appended
drawings. It is obvious for the man skilled in the art that the invention may be modified
in many ways and that the invention is not limited to the specific embodiments described
in the following examples.
Figure 1 shows a system according to the invention to supply liquid carbon dioxide
to a dry-cleaning facility.
Figure 2 shows an alternative embodiment of the inventive system.
[0031] In dry-cleaning a mixture of liquid carbon dioxide and additives as detergents, surfactants
or fragrances is used to dean for example workpieces, textiles or garments. The carbon
dioxide solvent and the additives can be premixed and then shipped to the dry-cleaning
facility or the dry-cleaning mixture can be prepared on site. The latter is especially
advantageous when the carbon dioxide is reused after cleaning.
[0032] During the cleaning process both additives and of course dirt are contaminating the
carbon dioxide which is then cleaned by filters and distillation to be used again.
As the storage tank of the dry-cleaning facility is permanently in connection by pipes
with the dry-cleaning machine, normally an industrial grade carbon dioxide is sufficient
for this application.
[0033] Figure 1 shows a system to be able to use a higher grade carbon dioxide, for example
food grade carbon dioxide, to distribute into the storage tank 1 of a dry-cleaning
facility where impurities may be added to the carbon dioxide avoiding risk that back
flow from the storage tank 1 may cause impurities to be added into the delivery tank
2 of the distribution vehicle.
[0034] The delivery hose 3 of the delivery tank 2 is connected to the delivery line 5 of
the dry-deaning facility. The delivery hose 3 and the delivery line 5 have spring
loaded devices 4 at their respective ends which are closed when not connected and
open when connected. Of course, instead of spring loaded devices 4 any other suitable
types of connection can be used. The delivery line 5 comprises a delivery valve 6
which is operable to open or close the flow path from the delivery tank 2 to the storage
tank 1.
[0035] Downstream said delivery valve 6 a check valve 7 is provided which allows carbon
dioxide to flow only in the direction to the storage tank 1. A bypass conduit parallel
to the delivery valve 6 comprises another check valve 8 and a throttle 9. Downstream
the delivery valve 6 a venting line 10 with a venting valve 11 is branching. Downstream
venting valve 11 a relief valve 19 is provided. In this particular case of carbon
dioxide delivery the opening pressure of relief valve 19 is set to about 5 to 6 bar,
that is to about triple point pressure or slightly above triple point pressure. Preferably
relief valve 19 is provided downstream venting valve 11 to avoid trapped liquid. Instead
of using relief valve 19 venting valve 11 may have an opening pressure greater than
zero, thus working as a combined venting and relief valve.
[0036] Another venting tube 14 with a venting valve 15 is connected to the delivery line
5 upstream the delivery valve 6. Check valve 8 and relief valve 19 are spring loaded
with an opening pressure of about the triple point pressure of carbon dioxide. The
opening pressure of delivery check valve 7 is close to zero.
[0037] A differential pressure transmitter 12 is connected to the delivery line 5 upstream
the delivery valve 6. The differential pressure transmitter 12 further reads the pressure
in the storage tank 1 via a sensor tube 13. The ports of the pressure transmitter
12, which are connected to the delivery line 5 and the storage tank 1, respectively,
do not allow a fluid flow between each other. A contamination of the delivery tank
2 via a gas flow through the pressure transmitter 12 is thus prevented. The operation
of delivery valve 6 as well as venting valve 11 depends on the output of the differential
pressure transmitter 12 and is controlled by means receiving the output signal from
the differential pressure transmitter 12. Such means that receive the output signal
from the differential pressure transmitter 12 and that control valves 6 and 11 are
preferably a control unit comprising a programmable logical controller and an electrical
relay.
[0038] Delivery valve 6 and venting valve 11 are also in communication with switch means
16 which control the function of delivery valve 6 and venting valve 11. Delivery valve
6 is a normally closed valve which will only open when said switch means 16 are switched
to the ON status and the output of the pressure transmitter 12 shows that the correct
pressure conditions are fulfilled. On the other hand, venting valve 11 is a normally
open valve which will only close when both above mentioned conditions are fulfilled.
[0039] Figure 2 shows an alternative embodiment of the inventive system. In both figures
1 and 2 same reference numbers refer to same details. The system according to figure
2 differs from the system of figure 1 in the feature that instead of bypass 8, 9 an
additional safety line 17 with a safety relief valve 18 is provided. The set pressure
of safety relief valve 18 is in this case set between 20 and 40 bar, preferably about
30 bars. But a man skilled in the art will adapt the set pressure to the situation,
for example depending on the delivery pressure and the storage pressure.
[0040] The function of the inventive systems will now be described in detail.
[0041] Normally, that is when delivery hose 3 is not connected to delivery line 5, the pressure
in delivery line 5 upstream delivery valve 6 is less than the pressure in the storage
tank 1, if venting fine 15 has been used to vent delivery line 5 upstream delivery
valve 6. As there is no carbon dioxide delivery the switch means 16 are in the OFF
position, causing delivery valve 6 and venting valve 11 to be in their normal status,
that is causing delivery valve 6 to remain closed and venting valve 11 to remain open.
[0042] Spring load device 4 at the end of the delivery line 5 and venting valve 15 are closed.
In the embodiment according to figure 1 any liquid carbon dioxide left in the delivery
line 5 between spring load device 4 arid delivery valve 6 is evaporating and flows
through check valve 8 and throttle 9. The gas will then go through venting valve 11
and venting line 10 to the atmosphere since delivery check valve 7 will close the
flow path to the storage tank 1 because the pressure inside the storage tank 1 is
above atmospheric pressure, normally between 15 and 20 bar, for example 17 bar.
[0043] In the embodiment according to figure 2 any liquid carbon dioxide left in the delivery
line 5 between spring load device 4 and delivery valve 6 will evaporate and cause
a pressure increase in that part of delivery line 5 upstream delivery valve 6. As
soon as pressure exceeds the set pressure of the safety relief valve 18, safety valve
18 will open and gaseous carbon dioxide will flow into venting line 10 and further
on to the atmosphere.
[0044] It is known that when liquid carbon dioxide is expanded into a volume with a pressure
below the triple point of carbon dioxide, there will be a formation of carbon dioxide
dry ice and snow. These particles may cause plugs in tubes and valves. In the embodiment
according to figure 1 the opening pressure of bypass check valve 8 is set to a value
between 5 and 6 bar, preferably about 5,2 bar. The set pressure of safety valve 18
in the embodiment of figure 2 is set to about 30 bars. Therefore, in both cases it
is assured that the pressure in delivery line 5 upstream delivery valve 6 after the
pressurization is above the triple point of carbon dioxide. Thus when liquid carbon
dioxide is delivered from the delivery tank 2 into delivery line 5, formation of carbon
dioxide dry ice and snow is prevented.
[0045] Before connecting delivery hose 3 to the spring load connection device 4 venting
valve 15 is opened for a few seconds to make sure that no contaminated carbon dioxide
has accumulated in this part of the delivery line 5. Then delivery hose 3 is connected
to delivery line 5 and delivery line 5 upstream delivery valve 6 is pressurized with
gaseous carbon dioxide from the delivery tank 2.
[0046] The method to first deliver only gaseous carbon dioxide has the advantage that delivery
line 5 downstream delivery valve 6 will be pressurized by that gas as soon as delivery
valve 6 has been opened, even if for any reason bypass 8 is blocked or if bypass 8
does not exist at all. In this way, ice formation is avoided downstream delivery valve
6.
[0047] Then switch means 16 are flipped in the ON position. In regular operation the pressure
in the delivery line 5 increases to a value which exceeds the pressure inside storage
tank 1. Due to these pressure conditions differential pressure transmitter 12 provides
a signal which causes venting valve 11 to switch to the closed state.
[0048] It is advantageous to wait for 1 to 5 seconds, preferably about 2 seconds, before
venting valve 11 is dosed to make sure that the positive pressure difference between
the pressure in the delivery line 5 and the storage tank 1 was not only an accidental
pressure peak.
[0049] After a certain time delay delivery valve 6 is opened. It has been found that this
time delay should be at least 5 seconds, preferably more than 10 seconds. Closing
venting valve 11 five seconds before opening delivery valve 6 avoids losses of carbon
dioxide through venting valve 11 once the delivery starts.
[0050] When the bypass solution according to figure 1 is used, the time delay further assures
pressurization of the delivery line 5 downstream delivery valve 6 by carbon dioxide
gas, prior to liquid carbon dioxide entering delivery line 5 downstream delivery valve
6. Said carbon dioxide gas upstream delivery valve 6, which flows via the bypass conduit
8, 9 and which is used to increase the pressure downstream delivery valve 6, comes
either from evaporating liquid carbon dioxide already present in delivery line 5 upstream
delivery valve 6 or gaseous carbon dioxide from the delivery tank 2 is used to pressurize
delivery line 5.
[0051] In figure 1 as well as in figure 2 check valve 7, a pressurized storage tank 1 and
dosed venting valve 11 make sure that pressure is built up in delivery line 5 downstream
delivery valve 6. Relief valve 19 has an opening pressure of about the triple point
pressure of carbon dioxide. Between two subsequent deliveries, when delivery valve
6 is closed and venting valve 11 is open, pressure in delivery line 5 downstream delivery
valve 6 does not decrease below the opening pressure of relief valve 19. Therefore,
it is always guaranteed that there will be no formation of ice when liquid carbon
dioxide enters delivery line 5 downstream delivery valve 6.
[0052] After opening delivery valve 6 the flow path from the delivery tank 2, which contains
high quality liquid carbon dioxide, to the storage tank 1, containing carbon dioxide
which might be contaminated, is open. Due to the positive pressure drop liquid carbon
dioxide is delivered to the storage tank 1.
[0053] There may occur different situations which might cause a back flow of carbon dioxide
to the delivery tank 2 thus contaminating tank 2.
[0054] At the initial moment of connecting delivery hose 3 to delivery line 5 gas left in
the delivery line 5 might flow to the delivery tank 2, if the pressure in the delivery
line 5 is higher than in the delivery tank 2.
[0055] According to figure 1 such a back flow is prevented by bypass check valve 8 which
is provided parallel to the delivery valve 6. Any gas remaining in the delivery line
5 will flow via bypass 8, 9 into the storage tank 1. So under normal conditions in
the delivery line 5 pressure will always be less than the pressure in the delivery
tank 2.
[0056] If check valve 8 fails or as it is the case in the embodiment according to figure
2 if bypass 8 does not exist at all, remaining gas in delivery line 5 cannot flow
to the storage tank 1 and the pressure in the delivery line 5 might increase to a
value which at the moment of connection causes gas to flow back to the delivery tank
2. To avoid such a situation venting valve 15 is opened before the delivery hose 3
is connected to the delivery line 5. By venting of the delivery line 5 prior to connecting
the delivery hose 3, there is no excess pressure in delivery line 5.
[0057] During delivery, i.e. when delivery valve 6 is already open, the pressure in the
delivery tank 2 and thus the pressure in delivery line 5 might break down. The differential
pressure monitoring means 12 will note that break down. If the correct pressure conditions
are not fulfilled, the flow path between the delivery tank 2 and the storage tank
1 will automatically be closed and the delivery will be stopped. It is further advantageous
to provide in such a situation signal means that inform, e.g. by optical or acoustical
signals, that a delivery failure has occurred.
[0058] When pressure conditions are fulfilled again, delivery of carbon dioxide will be
restarted automatically. Venting valve 11 will be closed and some time later delivery
valve 6 will be opened. The difference between the initial start situation and the
restart situation is that before the start situation gaseous carbon dioxide can be
supplied into delivery line 5. But at restart liquid carbon dioxide is already present
in delivery line 5 upstream delivery valve 6.
[0059] For that reason relief valve 19 is provided in venting line 10. The set pressure
of relief valve 19 is about the triple point pressure of carbon dioxide. Thus the
pressure in delivery line 5 downstream delivery valve 6 will never decrease below
the triple point pressure of carbon dioxide. When opening delivery valve 6 liquid
carbon dioxide enters delivery line 5 with a pressure above triple point pressure
of carbon dioxide and therefore there is no risk of ice formation.
[0060] The invention is not only useful in the delivery of carbon dioxide to a dry-cleaning
facility as described above. There are also big advantages in other processes where
gas is used and recovered. Further the invention is not limited to carbon dioxide,
but also advantageous in supplying other fluids, in particular liquified gases, e.g.
liquid nitrogen, to storage tanks. It is obvious for a man skilled in the art that
in such cases the opening and set pressures of the check and relief valves used in
the inventive system are adapted to the changed conditions.
1. System to deliver a fluid from a delivery tank to a storage tank, with a delivery
line connectable to said delivery tank and to said storage tank, wherein the system
allows to first deliver said fluid to a customer with a lower grade application and
then supply a second customer with high grade fluid from said delivery tank, comprising
a delivery valve (6) in said delivery line (5) and means (12) to detect the pressure
difference between the pressure at a point upstream said delivery valve (6) and a
point downstream said delivery valve (6), wherein said delivery valve (6) is operable
to open a flow path in said delivery line (5) depending on said detected pressure
difference, characterized by a venting line (10) connected to said delivery line (5) downstream said delivery
valve (6), said venting line (10) comprising a venting valve (11) which is operable
depending on said detected pressure difference and further comprising a relief valve
(19), preferably located downstream said venting valve (11).
2. System according to claim 1, wherein said venting valve (11) and/or said delivery
valve (6) are solenoid valves.
3. System according to any of claims 1 or 2, further comprising switch means to actuate
said delivery valve and I or said venting valve and / or said means to detect said
pressure difference.
4. System according to any of claims 1 to 3, further comprising a delivery check valve
(7) located in said delivery line (5) downstream said delivery valve (6).
5. System according to claim 4, wherein the opening pressure of said delivery check valve
(7) is less than 1 bar, preferably less than 0,1 bar.
6. System according to claim 4 or 5, wherein said delivery check valve (7) is located
downstream the branch of said venting line (10) from said delivery line (5).
7. System according to any of claims 1 to 6, further comprising a bypass conduit between
the inlet and the outlet of said delivery valve (6), said bypass conduit comprising
a bypass check valve (8).
8. System according to claim 7, wherein the opening pressure of said bypass check valve
(8) and / or of said venting valve (11) is more than 5 bar, preferably between 5 and
10 bar.
9. System according to any of claims 1 to 8, further comprising a safety venting line
(17) with a safety relief valve (18) connected to said delivery line (5) upstream
said delivery valve (6).
10. System according to claim 9, wherein the opening pressure of said safety relief valve
(18) is between 20 and 40 bar, preferably between 25 and 35 bar.
11. System according to any of claims 1 to 10, wherein said means (12) to detect said
pressure difference comprise a first pressure detector to detect the absolute pressure
in said delivery line (5) downstream said delivery valve (6), preferably in said storage
tank, and a second pressure detector to detect the absolute pressure in said delivery
line (5) upstream said delivery valve (6).
12. System according to any of claims 1 to 11, further comprising an additional venting
line (14) with an additional venting valve (15) connected to said delivery line (5)
upstream said delivery valve (6).
13. Method to deliver a fluid from a delivery tank (2) to a storage tank (1) through a
delivery line (5) connected to said delivery tank (2) and to said storage tank (1),
wherein said delivery line (5) comprises a delivery valve (6), wherein a flow of said
fluid from said storage tank (1) to said delivery tank (2) is avoided, comprising
the steps of
- detecting the pressure difference between the pressure at a point upstream said
delivery valve (6) and a point downstream said delivery valve (6),
- only delivering said fluid to said storage tank (1) if the pressure at said point
upstream said delivery valve (6) exceeds the pressure at said point downstream said
delivery valve (6),
characterized by
- delivering carbon dioxide, in particular liquid carbon dioxide, from said delivery
tank (2) to said storage tank (1),
- venting carbon dioxide out of said delivery line (5) downstream said delivery valve
(6) through a venting line (10) if the pressure in said delivery line (5) upstream
said delivery valve (6) is lower than the pressure in said delivery line (5) downstream
said delivery valve (6),
- maintaining the pressure in said delivery line (5) downstream said delivery valve
(6) above the triple point pressure of carbon dioxide.
14. Method according to claim 13, wherein said delivery valve (6) is controllable by a
switch and said fluid is only delivered to said storage tank (1) when said switch
is switched on.
15. Method according to claim 13 or 14, wherein, if the pressure in said delivery line
(5) upstream said delivery valve (6) increases above the pressure downstream said
delivery valve (6), first said venting valve (11) is closed and afterwards said delivery
valve (6) is opened.
16. Method according to claim 15, wherein said venting valve (11) is kept open for 1 to
5 seconds, preferably 2 to 4 seconds, after the pressure in said delivery line (5)
upstream said delivery valve (6) has exceeded the pressure downstream said delivery
valve (6).
17. Method according to any of claims 15 or 16, wherein said delivery valve (6) is opened
3 to 10 seconds, preferably 5 to 7 seconds, after said venting valve (11) has been
closed.
18. Method according to any of claims 13 to 16, wherein first a gaseous fluid and afterwards
a liquid fluid is delivered from said delivery tank (2) to said delivery line (5)
19. Method according to any of claims 13 to 18, wherein carbon dioxide is delivered from
said delivery tank (2) to a storage tank (1) of a dry-cleaning facility.
1. Vorrichtung, um ein Fluid aus einem Zuführtank einem Lagertank zuzuführen, mit einer
an den Zuführtank und den Lagertank anschließbaren Zuführleitung, wobei die Vorrichtung
es zuläßt, das Fluid zuerst einem Kunden für eine Anwendung geringerer Qualität zuzuführen
und dann einem zweiten Kunden Fluid hoher Qualität aus dem Zuführtank zuzuführen,
wobei die Vorrichtung ein Zuführventil (6) in der Zuführleitung (5) und Mittel (12)
zur Ermittlung der Druckdifferenz zwischen dem Druck an einem Punkt stromaufwärts
vor dem Zuführventil (6) und einem Punkt stromabwärts hinter dem Zuführventil (6)
umfaßt, wobei das Zuführventil (6) betätigt werden kann, um einen Strömungsweg in
der Zuführleitung (5) in Abhängigkeit von der ermittelten Druckdifferenz zu öffnen,
gekennzeichnet durch eine Entlüftungsleitung (10), die an die Zuführleitung (5) stromabwärts hinter dem
Zuführventil (6) angeschlossen ist, wobei die Entlüftungsleitung (10) ein Entlüftungsventil
(11), das in Abhängigkeit von der ermittelten Druckdifferenz betätigt werden kann,
und weiterhin ein Entlastungsventil (19) umfaßt, das vorzugsweise stromabwärts hinter
dem Entlüftungsventil (11) vorgesehen ist.
2. Vorrichtung nach Anspruch 1, bei der das Entlüftungsventil (11) und/oder das Zuführventil
(6) Magnetventile sind.
3. Vorrichtung nach einem der Ansprüche 1 oder 2, die weiterhin Schaltmittel zur Betätigung
des Zuführventils und/oder des Entlüftungsventils und/oder der Mittel zur Ermittlung
der Druckdifferenz umfaßt.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, die weiterhin ein in der Zuführleitung
(5) stromabwärts hinter dem Zuführventil (6) befindliches Zuführabsperrventil (7)
umfaßt.
5. Vorrichtung nach Anspruch 4, bei der der Öffnungsdruck des Zuführabsperrventils (7)
geringer als 1 bar, vorzugsweise geringer als 0,1 bar, ist.
6. Vorrichtung nach Anspruch 4 oder 5, bei der sich das Zuführabsperrventil (7) stromabwärts
hinter der Abzweigung der Entlüftungsleitung (10) von der Zuführleitung (5) befindet.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, die weiterhin eine Bypassdurchführung
zwischen dem Einlaß und dem Auslaß des Zuführventils (6) umfaßt, wobei die Bypassdurchführung
ein Bypassabsperrventil (8) umfaßt.
8. Vorrichtung nach Anspruch 7, bei der der Öffnungsdruck des Bypassabsperrventils (8)
und/oder des Entlüftungsventils (11) mehr als 5 bar, vorzugsweise zwischen 5 und 10
bar, beträgt.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, die weiterhin eine Sicherheitsentlüftungsleitung
(17) mit einem Sicherheitsentlastungsventil (18) umfaßt, das an die Zuführleitung
(5) stromaufwärts vor dem Zuführventil (6) angeschlossen ist.
10. Vorrichtung nach Anspruch 9, bei der der Öffnungsdruck des Sicherheitsentlastungsventils
(18) zwischen 20 und 40 bar, vorzugsweise zwischen 25 und 35 bar, beträgt.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, bei der die Mittel (12) zur Ermittlung
der Druckdifferenz einen ersten Druckdetektor zur Ermittlung des absoluten Drucks
in der Zuführleitung (5) stromabwärts hinter dem Zuführventil (6), vorzugsweise im
Lagertank, sowie einen zweiten Druckdetektor zur Ermittlung des absoluten Drucks in
der Zuführleitung (5) stromaufwärts vor dem Zuführventil (6) umfassen.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, die weiterhin eine zusätzliche Entlüftungsleitung
(14) mit einem zusätzlichen Entlüftungsventil (15) umfaßt, das an die Zuführleitung
(5) stromaufwärts vor dem Zuführventil (6) angeschlossen ist.
13. Verfahren, um ein Fluid aus einem Zuführtank (2) einem Lagertank (1) durch eine Zuführleitung
(5) zuzuführen, die an den Zuführtank (2) und den Lagertank (1) angeschlossen ist,
wobei die Zuführleitung (5) ein Zuführventil (6) umfaßt, wobei eine Strömung des Fluids
aus dem Lagertank (1) zum Zuführtank (2) vermieden wird, wobei das Verfahren folgende
Schritte umfaßt:
- Ermitteln der Druckdifferenz zwischen dem Druck an einem Punkt stromaufwärts vor
dem Zuführventil (6) und einem Punkt stromabwärts hinter dem Zuführventil (6);
- Zuführen des Fluids zum Lagertank (1) nur dann, wenn der Druck am Punkt stromaufwärts
vor dem Zuführventil (6) den Druck am Punkt stromabwärts hinter dem Zuführventil (6)
überschreitet;
gekennzeichnet durch
- Zuführen von Kohlendioxid, insbesondere von flüssigem Kohlendioxid, aus dem Zuführtank
(2) zum Lagertank (1);
- Entlüften von Kohlendioxid aus der Zuführleitung (5) stromabwärts hinter dem Zuführventil
(6) durch eine Entlüftungsleitung (10), wenn der Druck in der Zuführleitung (5) stromaufwärts
vor dem Zuführventil (6) niedriger als der Druck in der Zuführleitung (5) stromabwärts
hinter dem Zuführventil (6) ist; und
- Aufrechterhalten des Drucks in der Zuführleitung (5) stromabwärts hinter dem Zuführventil
(6) über dem Tripelpunktdruck von Kohlendioxid.
14. Verfahren nach Anspruch 13, bei dem das Zuführventil (6) durch einen Schalter steuerbar
ist und das Fluid dem Lagertank (1) nur dann zugeführt wird, wenn der Schalter eingeschaltet
wird.
15. Verfahren nach Anspruch 13 oder 14, bei dem, wenn der Druck in der Zuführleitung (5)
stromaufwärts vor dem Zuführventil (6) über den Druck stromabwärts hinter dem Zuführventil
(6) ansteigt, das Entlüftungsventil (11) zunächst geschlossen und danach das Zuführventil
(6) geöffnet wird.
16. Verfahren nach Anspruch 15, bei dem das Entlüftungsventil (11) 1 bis 5 Sekunden lang,
vorzugsweise 2 bis 4 Sekunden lang, offengehalten wird, nachdem der Druck in der Zuführleitung
(5) stromaufwärts vor dem Zuführventil (6) den Druck stromabwärts hinter dem Zuführventil
(6) überschritten hat.
17. Verfahren nach einem der Ansprüche 15 oder 16, bei dem das Zuführventil (6) 3 bis
10 Sekunden lang, vorzugsweise 5 bis 7 Sekunden lang, geöffnet wird, nachdem das Entlüftungsventil
(11) geschlossen wurde.
18. Verfahren nach einem der Ansprüche 13 bis 16, bei dem zuerst ein gasförmiges Fluid
und danach ein flüssiges Fluid aus dem Zuführtank (2) der Zuführleitung (5) zugeführt
wird.
19. Verfahren nach einem der Ansprüche 13 bis 18, bei dem Kohlendioxid aus dem Zuführtank
(2) einem Lagertank (1) einer chemischen Reinigung zugeführt wird.
1. Système pour distribuer un fluide d'un réservoir de distribution à un réservoir de
stockage, avec une conduite de distribution qui peut être raccordée audit réservoir
de distribution et audit réservoir de stockage, dans lequel ce système permet de distribuer
tout d'abord ledit fluide à un client avec une exigence de qualité inférieure et de
fournir ensuite à un deuxième client un fluide de haute qualité à partir dudit réservoir
de distribution, comprenant une soupape de distribution (6) dans ladite conduite de
distribution (5) et un moyen (12) pour détecter la différence de pression entre la
pression à un endroit en amont de ladite soupape de distribution (6) et un endroit
en aval de ladite soupape de distribution (6), dans lequel ladite soupape de distribution
(6) peut être actionnée pour ouvrir un circuit d'écoulement dans ladite conduite de
distribution (5) en fonction de ladite différence de pression détectée, caractérisé par une conduite de mise à l'air libre (10) raccordée à ladite conduite de distribution
(5) en aval de ladite soupape de distribution (6), ladite conduite de mise à l'air
libre (10) comprenant une soupape de mise à l'air libre (11) qui peut être actionnée
en fonction de ladite différence de pression détectée et comprenant également une
soupape de décharge (19), située préférablement en aval de ladite soupape de mise
à l'air libre (11).
2. Système selon la revendication 1, dans lequel ladite soupape de mise à l'air libre
(11) et / ou ladite soupape de distribution (6) sont des électrovannes.
3. Système selon l'une quelconque des revendications 1 ou 2, comprenant également un
moyen commutateur pour actionner ladite soupape de distribution et /ou ladite soupape
de mise à l'air libre et / ou ledit moyen pour détecter ladite différence de pression.
4. Système selon l'une quelconque des revendications 1 à 3, comprenant également une
soupape de retenue de distribution (7) située dans ladite conduite de distribution
(5) en aval de ladite soupape de distribution (6).
5. Système selon la revendication 4, dans lequel la pression d'ouverture de ladite soupape
de retenue de distribution (7) est inférieure à 1 bar, préférablement inférieure à
0,1 bar.
6. Système selon la revendication 4 ou 5, dans lequel ladite soupape de retenue de distribution
(7) est située en aval du branchement de ladite conduite de mise à l'air libre (10)
sur ladite conduite de distribution (5).
7. Système selon l'une quelconque des revendications 1 à 6, comprenant également un conduit
de dérivation entre l'entrée et la sortie de ladite soupape de distribution (6), ledit
conduit de dérivation comprenant une soupape de retenue de dérivation (8).
8. Système selon la revendication 7, dans lequel la pression d'ouverture de ladite soupape
de retenue de dérivation (8) et / ou de ladite soupape de mise à l'air libre (11)
est supérieure à 5 bars, préférablement entre 5 et 10 bars.
9. Système selon l'une quelconque des revendications 1 à 8, comprenant également une
conduite de mise à l'air libre de sûreté (17) avec une soupape de décharge de sûreté
(18) raccordée à ladite conduite de distribution (5) en amont de ladite soupape de
distribution (6).
10. Système selon la revendication 9, dans lequel la pression d'ouverture de ladite soupape
de décharge de sûreté (18) est située entre 20 et 40 bars, préférablement entre 25
et 35 bars.
11. Système selon l'une quelconque des revendications 1 à 10, dans lequel ledit moyen
(12) pour détecter ladite différence de pression comprend un premier détecteur de
pression pour détecter la pression absolue dans ladite conduite de distribution (5)
en aval de ladite soupape de distribution (6), préférablement dans ledit réservoir
de stockage, et un deuxième détecteur de pression pour détecter la pression absolue
dans ladite conduite de distribution (5) en amont de ladite soupape de distribution
(6).
12. Système selon l'une quelconque des revendications 1 à 11, comprenant également une
conduite de mise à l'air libre supplémentaire (14) avec une soupape de mise à l'air
libre supplémentaire (15) raccordée à ladite conduite de distribution (5) en amont
de ladite soupape de distribution (6).
13. Méthode pour distribuer un fluide d'un réservoir de distribution (2) à un réservoir
de stockage (1) par une conduite de distribution (5) raccordée audit réservoir de
distribution (2) et audit réservoir de stockage (1), dans laquelle ladite conduite
de distribution (5) comprend une soupape de distribution (6), dans laquelle un écoulement
dudit fluide dudit réservoir de stockage (1) audit réservoir de distribution (2) est
évité, comprenant les opérations suivantes :
- la détection de la différence de pression entre la pression à un endroit en amont
de ladite soupape de distribution (6) et un endroit en aval de ladite soupape de distribution
(6),
- la distribution dudit fluide audit réservoir de stockage (1) uniquement si la pression
audit endroit en amont de ladite soupape de distribution (6) dépasse la pression audit
endroit en aval de ladite soupape de distribution (6),
caractérisée par
- la distribution du dioxyde de carbone, en particulier du dioxyde de carbone liquide,
dudit réservoir de distribution (2) audit réservoir de stockage (1),
- la mise à l'air libre du dioxyde de carbone hors de ladite conduite de distribution
(5) en aval de ladite soupape de distribution (6) par une conduite de mise à l'air
libre (10) si la pression dans ladite conduite de distribution (5) en amont de ladite
soupape de distribution (6) est inférieure à la pression dans ladite conduite de distribution
(5) en aval de ladite soupape de distribution (6),
- le maintien de la pression dans ladite conduite de distribution (5) en aval de ladite
soupape de distribution (6) au-dessus de la pression du point triple du dioxyde de
carbone.
14. Méthode selon la revendication 13, dans laquelle ladite soupape de distribution (6)
peut être commandée par un commutateur et ledit fluide n'est distribué audit réservoir
de stockage (1) que lorsque ledit commutateur est mis en circuit.
15. Méthode selon la revendication 13 ou 14, dans laquelle, si la pression dans ladite
conduite de distribution (5) en amont de ladite soupape de distribution (6) augmente
au-dessus de la pression en aval de ladite soupape de distribution (6), ladite première
soupape de mise à l'air libre (11) est fermée et ensuite ladite soupape de distribution
(6) est ouverte.
16. Méthode selon la revendication 15, dans laquelle ladite soupape de mise à l'air libre
(11) est maintenue ouverte pendant 1 à 5 secondes, préférablement 2 à 4 secondes,
après que la pression dans ladite conduite de distribution (5) en amont de ladite
soupape de distribution (6) a dépassé la pression en aval de ladite soupape de distribution
(6).
17. Méthode selon l'une quelconque des revendications 15 ou 16, dans laquelle ladite soupape
de distribution (6) est ouverte pendant 3 à 10 secondes, préférablement 5 à 7 secondes,
après que ladite soupape de mise à l'air libre (11) a été fermée.
18. Méthode selon l'une quelconque des revendications 13 à 16, dans laquelle tout d'abord
un fluide gazeux puis ensuite un fluide liquide sont distribués dudit réservoir de
distribution (2) à ladite conduite de distribution (5).
19. Méthode selon l'une quelconque des revendications 13 à 18, dans laquelle le dioxyde
de carbone est distribué dudit réservoir de distribution (2) à un réservoir de stockage
(1) d'une installation de nettoyage à sec.