[0001] The invention relates to granular detergent compositions comprising cationic surfactant
and anionic surfactant and/or anionic hydrotrope.
[0002] Water-soluble cationic surfactants are commercially available as aqueous solutions,
typically up to 35% or 40% active (by weight). However any attempts to granulate these
aqueous solutions result in granular components having low cationic surfactant content.
[0003] DE 2449354 discloses dishwashing compositions containing cationic surfactants and
anionic suds suppressors. EP 234717 also discloses suds controllers containing cationic
compounds, whereby anionic surfactants can be present in the composition. JP 57137397
discloses powders made by blending anionic soaps into a molten cationic softener.
[0004] EP-A 000 225, published on 10th January 1979, discloses compositions comprising water-soluble
cationic surfactant and anionic surfactant. The surfactants are combined together
with other detergent ingredients, such as builders, in a crutcher mix and spray-dried.
It is an essential feature that there is a molar excess of anionic surfactant over
cationic surfactant. The examples disclose up to a maximum of about 8% by weight of
cationic surfactant in the spray dried component.
[0005] EP 547722 discloses spray-dried compositions containing cationic softeners and high
levels of urea and additional surfactant.
[0006] Attempts to increase cationic surfactant content of granular compositions by first
concentrating the aqueous solution have proved very difficult because viscous gel
phases of concentrated cationic surfactant make further processing extremely difficult
on a commercial scale.
[0007] The present invention aims to provide granular detergent components or compositions
having a higher level of water-soluble cationic surfactant than prior art components.
[0008] This is achieved by mixing small amounts of anionic surfactant with the aqueous solution
of the cationic surfactant, and subsequently drying and granulating, either simultaneously
or sequentially. The addition of the anionic surfactant permit more concentrated cationic
solutions to be processed without entering a viscous gel phase. Consequently more
concentrated granular surfactant components or compositions can be produced.
Summary of the Invention
[0009] The present invention concerns a granular detergent composition or component as defined
in claim 1.
[0010] The granular detergent composition or component preferably comprises the cationic
surfactant at a level of at least 30% by weight of the composition or component, and
the anionic surfactant at a level of from 1% to 20% by weight the composition or component.
[0011] A highly preferred granular detergent composition or component is substantially free
of anionic polymer, and comprises:
(a) from 35% to 50% by weight of water-soluble cationic surfactant;
(b) from 1% to 5% by weight of anionic surfactant; and
(c) from 40% to 60% by weight of sodium aluminosilicate.
[0012] Another aspect of the present invention is a process for making the composition or
component as defined in claim 4.
[0013] Hereby, the granulating step may be subsequentay carried out and comprises the step
of mixing the concentrated solution with a detergent builder selected from the group
consisting of aluminosilicate, silicate, carbonate, citrate, phosphate or mixtures
thereof.
[0014] Optionally a suds suppressing agent is added to the mixing step (i).
[0015] The drying step may be carried out by means of an evaporation step.
[0016] Alternatively the drying and granulating steps may be carried out simultaneously,
preferably by means of spray drying.
Detailed Description of the Invention
[0017] The cationic surfactant component of the composition is water-soluble. By water solubility
we refer in this context to the solubility of cationic surfactant in monomeric form,
the limit of solubility being determined by the onset of micellisation and measured
in terms of the critical micelle concentration (CMC). The cationic surfactant should
thus have a CMC for the pure material greater than about 200ppm and preferably greater
than about 500ppm, specified at 30°C and in distilled water (Critical Micelle Concentrations
of Aqueous Surfactant Systems, P. Mukerjee and K.J. Mysels, NSRDS-NBS, (1971)).
[0018] Useful cationic surfactants include water-soluble quaternary ammonium compounds of
the form R
1R
2R
3R
4N
+X
-, wherein R
1 is alkyl having from 10 to 20, preferably from 12-18 carbon atoms, and R
2, R
3 and R
4 are each C
1 to C
7 alkyl, or hydroxyalkyl, preferably methyl; X
- is an anion, e.g. chloride. Examples of such quaternary ammonium compounds include
C
12-14 alkyl trimethyl ammonium chloride, C
12-14 alkyl dimethyl ethoxy ammonium chloride and cocalkyl trimethyl ammonium methosulfate.
Other useful cationic surfactants are described in US Pat No. 4,222,905, Cockrell,
issued Sept 16, 1990 and in US Pat No 4,239,659, Murphy, issued Dec. 16, 1980.
[0019] Another group of useful cationic compounds are the polyammonium salts of the general
formula :

wherein R
3 is selected from C
8 to C
20 alkyl, alkenyl and alkaryl groups; each R
4 is C
1-C
4 alkyl; n is from 1 to 6; and m is from 1 to 3.
[0020] A specific example of a material in this group is :

[0021] A further preferred type of cationic component, has the formula :

wherein R
1 is C
1 to C
4 alkyl; R
2 is C
5 to C
30 straight or branched chain alkyl or alkenyl, alkyl benzene, or

wherein s is from 0 to 5, R
3 is C1 to C20 alkyl or alkenyl; a is 0 or 1; n is 0 or 1; m is from 1 to 5; Z- and
Z2 are each selected from the group consisting of :

and wherein at least one of said groups is selected from the group consisting of
ester, reverse ester, amide and reverse amide; and X is an anion which makes the compound
water-soluble, preferably selected from the group consisting of amide, methyl sulfate,
hydroxide, and nitrate preferably chloride, bromide or iodine.
[0022] In addition to the advantages of the other cationic surfactants disclosed herein,
this particular cationic component is evironmentally desirable, since it is biodegradable,
both in terms of its long alkyl chain and its nitrogen containing segment.
Choline esters :
[0023] Preferred choline ester derivatives having the following formula :

wherein R is a C
5 to C
30 straight chain or branched chain alkyl or alkenyl, group and X is an anion, which
makes the compound at least water-dispersible, preferably selected from the group
consisting of halide, methyl sulfate, sulfate, and nitrate, preferably methyl sulfate,
chloride, bromide or iodide, as well as those wherein the ester linkage in the above
formula is replaced with a reverse ester, amide or reverse amide linkage.
[0024] Particularly preferred examples of this type of cationic surfactant include stearoyl
choline ester quaternary ammonium halides (R
1=C
17 alkyl), palmitoyl choline ester quaternary ammonium halides (R
1=C
15 alkyl), mystiroyl choline ester quaternary ammonium halides (R
1=C
13 alkyl), lauroyl choline ester ammonium halides (R
1=C
11 alkyl), as well as coconut and tallow choline ester quaternary ammonium halides (R
1=C
15-C
17 alkyl and C
19-C
13 alkyl, respectively).
[0025] Additional preferred cationic components of the choline ester variety are given by
the structural formulas below, wherein p may be from 0 to 20.

[0026] The preferred choline-derivative cationic substances, discussed above, may be prepared
by the direct esterification of a fatty acid of the desired chain length with dimethylaminoethanol,
in the presence of an acid catalyst. The reaction product is then quaternized with
a methyl halide, forming the desired cationic material.
[0027] The choline-derived cationic materials may also be prepared by the direct esterification
of a long chain fatty acid of the desired chain length together with 2-haloethanol,
in the presence of an acid catalyst material. The reaction product is then used to
quaternize.
Anionic Surfactant
[0029] The anionic surfactant component of the present invention include water-soluble salts
of the higher fatty acids, i.e., "soaps". This includes alkali metal soaps such as
the sodium, potassium, ammonium, and alkylammonium salts of higher fatty acids containing
from 8 to 24 carbon atoms, and preferably from 12 to 18 carbon atoms. Soaps can be
made by direct saponification of fats and oils or by the neutralization of free fatty
acids. Particularly useful are the sodium and potassium salts of the mixtures of fatty
acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut
soap.
[0030] Useful anionic surfactants also include the water-soluble salts, preferably the alkali
metal, ammonium and alkylolammonium salts, of organic sulfuric reaction products having
in their molecular structure an alkyl group containing from 10 to 20 carbon atoms
and a sulfonic acid or sulfuric acid ester group. (Included in the term "alkyl" is
the alkyl portion of acyl groups.) Examples of this group of synthetic surfactants
are the sodium and potassium alkyl sulfates, especially those obtained by sulfating
the higher alcohols (C
8-C
18 carbon atoms) such as those produced by reducing the glycerides of tallow or coconut
oil; and the sodium and potassium alkyl benzene sulfonates in which the alkyl group
contains from 9 to 15 carbon atoms, in straight or branched chain configuration, e.g.,
those of the type described in U.S. Pat. Nos. 2,220,099 and 2,477,383. Especially
valuable are linear straight chain alkyl benzene sulfonates in which the average number
of carbon atoms in the alkyl group is from 11 to 13, abbreviated as C
11-C
13 LAS.
[0031] Other useful anionic surfactants herein include the water-soluble salts of esters
of alpha-sulfonated fatty acids containing from 6 to 20 carbon atoms in the fatty
acid group and from 1 to 10 carbon atoms in the ester group; water-soluble salts of
2-acyloxy-alkane-1-sulfonic acids containing from 2 to 9 carbon atoms in the acyl
group and from 9 to 23 carbon atoms in the alkane moiety; alkyl ether sulfates containing
from 10 to 20 carbon atoms in the alkyl group and from 1 to 30 moles of ethylene oxide;
watersoluble salts of olefin sulfonates containing from 12 to 24 carbon atoms; and
beta-alkyloxy alkane sulfonates containing from 1 to 3 carbon atoms in the alkyl group
and from 8 to 20 carbon atoms in the alkane moiety.
[0032] Also considered as anionic surfactants useful in the present invention are hydrotropes
such as aryl sulphonates. Preferred are sodium or potassium salts of benzene, toluene,
xylene or cumene sulphonate.
Suds Suppressing Agent
[0033] A suds suppressing agent is useful in the present invention as a process aid, to
control suds at the stage of mixing the cationic surfactant solution with the anionic
surfactant.
[0034] A wide variety of materials may be used as suds suppressing agents such as monocarboxylic
fatty acids and their soluble salts, high molecular weight hydrocarbons such as paraffin,
fatty acid esters, fatty acid esters of monovalent alcohols, aliphatic C1-C40 ketones,
N-alkoxylated amino triazines, propylene oxide, and monstearyl phosphates and phosphate
esters. Another preferred category of suds suppressing agents comprises silicone suds
suppressors.
[0035] This category includes the use of polyorganosiloxane oils, such as polydimethyl siloxane,
dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of
polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed
or fused onto the silica. Silicone suds suppressors are well-known in the art and
are, for example, disclosed in US-A-4 265 779, issued May 5th 1981. Other silicone
suds suppressors are disclosed in US-A-3 455 839 and German Patent Application DE-A-21
24 526.
[0036] The detergent compositions herein can contain crystalline aluminosilicate ion exchange
material of the formula
Na
z[(AlO
2)
z · (SiO
2)
y] · xH
2O
wherein z and y are at least 6, the molar ratio of z to y is from 1.0 to 0.4 and z
is from 10 to 264. Amorphous hydrated aluminosilicate materials useful herein have
the empirical formula
M
z(zAlO
2 · ySiO
2)
wherein M is sodium, potassium, ammonium or substituted ammonium, z is from 0.5 to
2 and y is 1, said material having a magnesium ion exchange capacity of at least 50
milligram equivalents of CaCO
3 hardness per gram of anhydrous aluminosilicate. Hydrated sodium Zeolite A with a
particle size of from 1 to 10 microns is preferred.
[0037] The aluminosilicate ion exchange builder materials herein are in hydrated form and
contain from 10% to 28% of water by weight if crystalline, and potentially even higher
amounts of water if amorphous. Highly preferred crystalline aluminosilicate ion exchange
materials contain from 18% to 22% water in their crystal matrix. The crystalline aluminosilicate
ion exchange materials are further characterized by a particle size diameter of from
0.1 micrometer to 10 micrometers. Amorphous materials are often smaller, e.g., down
to less than 0.01 micrometer. Preferred ion exchange materials have a particle size
diameter of from 0.2 micrometer to 4 micrometers. The term "particle size diameter"
herein represents the average particle size diameter by weight of a given ion exchange
material as determined by conventional analytical techniques such as, for example,
microscopic determination utilizing a scanning electron microscope. The crystalline
aluminosilicate ion exchange materials herein are usually further characterized by
their calcium ion exchange capacity, which is at least 200 mg equivalent of CaCO
3 water hardness/g of aluminosilicate, calculated on an anhydrous basis, and which
generally is in the range of from 300 mg eq./g to 352 mg eq./g.
[0038] The amorphous aluminosilicate ion exchange materials usually have a Mg
++ exchange of at least 50 mg eq. CaCO
3/g (12 mg Mg
++/g). Amorphous materials do not exhibit an observable diffraction pattern when examined
by Cu radiation (1.54 Angstrom Units).
[0039] Aluminosilicate ion exchange materials useful in the practice of this invention are
commercially available. The aluminosilicates useful in this invention can be crystalline
or amorphous in structure and can be naturally occurring aluminosilicates or synthetically
derived. A method for producing aluminosilicate ion exchange materials is discussed
in U.S. Pat. No. 3,985,669, Krummel et al., issued Oct. 12, 1976. Preferred synthetic
crystalline aluminosilicate ion exchange materials useful herein are available under
the designations Zeolite A, Zeolite B, Zeolite P, Zeolite MAP and Zeolite X. In an
especially preferred embodiment, the crystalline aluminosilicate ion exchange material
has the formula
Na
12[(AlO
2)
12(SiO2)
12] • xH
2O
wherein x is from 20 to 30, especially 27 and has a particle size generally less than
5 µm.
[0040] The granular detergents of the present invention can contain neutral or alkaline
salts which have a pH in solution of seven or greater, and can be either organic or
inorganic in nature. The builder salt assists in providing the desired density and
bulk to the detergent granules herein. While some of the salts are inert, many of
them also function as detergency builder materials in the laundering solution.
[0041] Examples of neutral water-soluble salts include the alkali metal, ammonium or substituted
ammonium chlorides, fluorides and sulfates. The alkali metal, and especially sodium,
salts of the above are preferred. Sodium sulfate is typically used in detergent granules
and is a particularly preferred salt. Citric acid and, in general, any other organic
or inorganic acid may be incorporated into the granular detergents of the present
invention as long as it is chemically compatible with the rest of the agglomerate
composition.
[0042] Specific inorganic phosphate builders are sodium and potassium tripolyphosphate,
pyrophosphate and polymeric metaphosphate having a degree of polymerization of from
6 to 21. Examples of polyphosphonate builders are the sodium and potassium salts of
ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-1,1-diphosphonic
acid and the sodium and potassium salts of ethane, 1,1,2-triphosphonic acid. Other
phosphorus builder compounds are disclosed in U.S. Pat. Nos. 3,159,581; 3,213,030;
3,422,021; 3,422,137; 3,400,176 and 3,400,148.
[0043] Examples of nonphosphorus, inorganic builders are sodium and potassium carbonate,
bicarbonate, sesquicarbonate, tetraborate decahydrate, and silicate having a molar
ratio of SiO
2 to alkali metal oxide of from 0.5 to 4.0, preferably from 1.0 to 2.4. The compositions
made by the process of the present invention does not require excess carbonate for
processing, and preferably does not contain over 2% finely divided calcium carbonate
as disclosed in U.S. Pat. No. 4,196,093, Clarke et al., issued Apr.1, 1980, and is
preferably free of the latter.
Softening Clay
[0044] Softening clay is a particularly useful component which may be optionally incorporated
into the compositions of the present invention. When used, the clay may be incorporated
into the cationic surfactant containing particle of the present invention, however
it is preferred that the clay is incorporated into a particle separate from the cationic
surfactant. The cationic surfactant containing particles and the clay containing particles
may then be mixed together, usually with other particulate components comprising conventional
detergent ingredients to give a finished commerial laundry detergent product.
[0045] Softening clays may be either unmodified or organically modified. Those clays which
are not organically modified can be described as expandable, three-layered clays,
i.e., aluminosilicates and magnesium silicates, having an ion exchange capacity of
at least 50 meq/100g. of clay and preferably at least 60 meq/100 g. of clay. The starting
clays for the organically modified clays can be similarly described. The term "expandable"
as used to describe clays relates to the ability of the layered clay structure to
be swollen, or expanded, on contact with water. The three-layer expandable clays used
herein are those materials classified geologically as smectites.
[0046] There are two distinct classes of smectite-type clays that can be broadly differentiated
on the basis of the numbers of octahedral metal-oxygen arrangements in the central
layer for a given number of silicon-oxygen atoms in outer layers. A more complete
description of clay minerals is given in "Clay Colloid Chemistry" by H. van Olphen,
John Wiley & Sons (Interscience Publishers), New York, 1963. Chapter 6, especially
pages 66-69.
[0047] The family of smectite (or montmorillonoid) clays includes the following trioctahedral
minerals: talc; hectorite; saponite; sauconite; vermiculite; and the following dioctahedral
minerals: prophyllite; montmorillonite; volchonskoite and nontronite.
[0048] The clays employed in these compositions contain cationic counterions such as protons,
sodium ions, potassium ions, calcium ions, and lithium ions. It is customary to distinguish
between clays on the basis of one cation predominantly or exclusively absorbed. For
example, a sodium clay is one in which the absorbed cation is predominantly sodium.
Such absorbed cations can become involved in exchange reactions with cations present
in aqueous solutions. A typical exchange reaction involving a smectite-type clay is
expressed by the following equation :

Since in the foregoing equilibrium reaction, an equivalent weight of ammonium ion
replaces an equivalent weight of sodium, it is customary to measure cation exchange
capacity (sometimes termed "base exchange capacity") in terms of milliequivalents
per 100 g. of clay (meq/100g). The cation exchange capacity of clays can be measured
in several ways, including by electrodialysis, by exchange with ammonium ion followed
by titration, or by a methylene blue procedure, all as fully set forth in Grimshaw,
"The Chemistry and Physics of Clays", pp. 264-265, Interscience (1971).
[0049] The cation exchange capacity of a clay material relates to such factors as the expandable
properties of the clay, the charge of the clay (which in turn is determined at least
in part by the lattice structure), and the like. The ion exchange capacity of clays
varies widely in the range form 2 meq/100 g. of kaolinites to 150 meq/100 g., and
greater, for certain smectite clays.
[0050] Preferred smectite-type clays are sodium montmorillonite, potassium montmorillonite,
sodium hectorite and potassium hectorite. The clays used herein have a particle size
range of up to 1 µm.
[0051] Any of the clays used herein may be either naturally or synthetically derived.
Examples
[0052] In the following examples
Cationic surfactant is C12-14 alkyl dimethyl hydroxyethyl
ammonium chloride Sodium (C12-14) alkyl ether (3) sulphate is the sodium salt of a
C12-14 ethoxylated alcohol having an average of 3 moles of ether per mole.
Suds Suppressing Agent is poly dimethyl siloxane (85%) and hydrophobic silica (15%)
[0053] The following composition was made :
|
% by weight |
Cationic Surfactant |
40 |
Sodium (C12-14) alkyl sulphate |
1.6 |
Sodium (C12-14) alkyl ether (3) sulphate |
0.4 |
Zeolite A (hydrated) |
54.9 |
Suds Suppressing Agent |
0.1 |
Water |
3 |
Example 1
[0054] The above composition was prepared by mixing a 40% aqueous solution of the cationic
surfactant with a 79% aqueous paste of the mixture of anionic surfactants, and with
the antifoam. The mixture was then evaporated to form a 60% cationic surfactant active
paste. The paste was fed into a high shear mixer (a Loedige CB®) where it was granulated
with the Zeolite A. The resulting granules were further treated in a low shear mixer
(a Loedige KM®) and subsequently dried in a fluid bed dryer to a moisture level of
3% (free) water.
Example 2
[0055] The above composition was prepared by mixing a 40% aqueous solution of the cationic
surfactant with a 79% aqueous paste of the mixture of anionic surfactants. The Zeolite
A was also added to the mixture and a homogeneous crutcher mix formed. The crutcher
mix was then spray dried using hot air in a conventional counter-current spray dry
tower to give the finished granular composition.
Comparative Example A
[0056] A 40% aqueous solution of the cationic surfactant was fed into a high shear-mixer
(Loedige CB®) and agglomerated with a fixed amount of Zeolite A powder. The feed was
stopped just before over-agglomeration occurred (the point where the liquid level
exceeds the capacity of the powder, leading to the formation of an un-processable
'dough'). The resultant wet agglomerate was then dried in a fluid-bed dryer giving
a product with the following composition :-
|
% by weight |
Cationic Surfactant |
15 |
Sodium (C12-14) alkyl sulphate |
- |
Sodium (C12-14) alkyl ether (3) sulphate |
- |
Zeolite A (hydrated) |
82 |
Water |
3 |
[0057] This particle is not suitable for inclusion in 'compact-type' products due to the
low cationic surfactant activity.
Comparative Example B
[0058] A 40% aqueous solution of the cationic surfactant was dried by evaporation to form
a 60% cationic surfactant active paste. The paste became a highly viscous gel and
no further useful processing was possible.
1. A granular detergent composition or component comprising anionic surfactant or anionic
hydrotrope, water-soluble cationic surfactant having in its pure form a CMC (critical
micelle concentration) of greater than 200 ppm, at 30°C in distilled water, and less
than 10% by weight of anionic polymer
characterised in that
the cationic surfactant is at a level of at least 20% by weight of the composition
or component and the molar ratio of anionic surfactant and/or anionic hydrotrope to
cationic surfactant is less than 1:1, and the composition or component comprises from
10% to 69% by weight of a detergent builder selected from the group consisting of
aluminosilicate, silicate, carbonate, citrate, phosphate or mixtures thereof, provided
that any phosphate in the composition or component is selected from sodium and potassium
tripolyphosphate, pyrophosphate and polymeric metaphosphate having a degree of polymerisation
of from 6 to 21. .
2. A granular detergent composition or component according to claim 1 wherein the cationic
surfactant is at a level of at least 30% by weight of the composition or component,
and the anionic surfactant is at a level of from 1% to 20% by weight the composition
or component and the molar ratio of anionic surfactant to cationic surfactant is less
than 0.5:1.
3. A granular detergent composition or component according to claim 2, which is substantially
free of anionic polymer, comprising:
(a) from 35% to 50% by weight of water-soluble cationic surfactant;
(b) from 1% to 5% by weight of anionic surfactant; and
(c) from 40% to 60% by weight of sodium aluminosilicate.
4. A process for making the composition or component of any of claims 1 to 3 comprising
the steps of
(i) mixing an aqueous solution comprising water-soluble cationic surfactant having
in its pure form a CMC (critical micelle concentration) of greater than 200 ppm, at
30°C in distilled water, anionic surfactant or anionic hydrotrope preferably an anionic
surfactant, and less than 10% by weight of anionic polymer
(ii) drying the mixture to form a concentrated solution having a solids level of at
least 50% by weight, and
(iii) granulating the concentrated solution;
characterised in that
the cationic surfactant is at a level of at least 20% by weight of the composition
or component and the molar ratio of anionic surfactant and/or anionic hydrotrope to
cationic surfactant is less than 1:1, and the composition or component comprises from
10% to 69% by weight of a detergent builder selected from the group consisting of
aluminosilicate, silicate, carbonate, citrate, phosphate or mixtures thereof, provided
that any phosphate in the composition or component is selected from sodium and potassium
tripolyphosphate, pyrophosphate and polymeric metaphosphate having a degree of polymerisation
of from 6 to 21.
5. A process according to claim 4 wherein a suds suppressing agent is added to the mixing
step (i).
6. A process according to either of claims 4 or 5 wherein the drying step is carried
out by means of an evaporation step, and that the granulating step is subsequently
carried out by mixing the concentrated solution with a detergent builder selected
from the group consisting of aluminosilicate, silicate, carbonate, citrate, phosphate
or mixtures thereof.
7. A process according to claim 4 wherein the drying and granulating steps are carried
out simultaneously, preferably by means of spray drying.
1. Granuläre Reinigungsmittelzusammensetzung oder -komponente, umfassend anionisches
Tensid oder anionisches Hydrotrop. wasserlösliches, kationisches Tensid, das in seiner
reinen Form eine CMC (kritische Micellenkonzentration) von mehr als 200 ppm, bei 30°C
in destilliertem Wasser, aufweist, und weniger als 10 Gew.-% anionisches Polymer,
dadurch gekennzeichnet, daß das kationische Tensid in einem Anteil von mindestens 20 Gew.-% der Zusammensetzung
oder Komponente vorliegt und das Molverhältnis von anionischem Tensid und/oder anionischem
Hydrotrop zu kationischem Tensid weniger als 1:1 beträgt, und daß die Zusammensetzung
oder Komponente 10 bis 69 Gew.-% eines Waschmittelbuilders umfaßt, gewählt aus der
Gruppe, bestehend aus Aluminosilicat, Silicat, Carbonat, Citrat, Phosphat oder Mischungen
hiervon, mit der Maßgabe. daß jedwedes Phosphat in der Zusammensetzung oder Komponente
gewählt ist aus Natrium- und Kaliumtripolyphosphat, Pyrophosphat und polymerem Metaphosphat
mit einem Polymerisationsgrad von 6 bis 21.
2. Granuläre Reinigungsmittelzusammensetzung oder -komponente nach Anspruch 1, wobei
das kationische Tensid in einem Anteil von mindestens 30 Gew.-% der Zusammensetzung
oder Komponente vorliegt, und das anionische Tensid in einem Anteil von 1 bis 20 Gew.-%
der Zusammensetzung oder Komponente vorliegt, und das Molverhältnis von anionischem
Tensid zu kationischem Tensid weniger als 0.5:1 beträgt.
3. Granuläre Reinigungsmittelzusammensetzung oder -komponente nach Anspruch 2. welche
im wesentlichen frei ist an anionischem Polymer. umfassend:
(a) 35 bis 50 Gew.-% wasserlösliches, kationisches Tensid;
(b) 1 bis 5 Gew.-% anionisches Tensid: und
(c) 40 bis 60 Gew.-% Natriumaluminosilicat.
4. Verfahren zur Herstellung der Zusammensetzung oder Komponente nach mindestens einem
der Ansprüche 1 bis 3. umfassend die Schritte
(i) Mischen einer wäßrigen Lösung, umfassend ein wasserlösliches, kationisches Tensid,
das in seiner reinen Form eine CMC (kritische Micellenkonzentration) von mehr als
200 ppm. bei 30°C in destilliertem Wasser, aufweist, anionisches Tensid oder anionisches
Hydrotrop, vorzugsweise anionisches Tensid, und weniger als 10 Gew.-% anionisches
Polymer:
(ii) Trocknen der Mischung unter Bildung einer konzentrierten Lösung mit einem Feststoffanteil
von mindestens 50 Gew.-%: und
(iii) Granulieren der konzentrierten Lösung:
dadurch gekennzeichnet, daß das kationische Tensid in einem Anteil von mindestens 20 Gew.-% der Zusammensetzung
oder Komponente vorliegt und das Molverhälmis von anionischem Tensid und/oder anionischem
Hydrotrop zu kationischem Tensid weniger als 1:1 beträgt, und die Zusammensetzung
oder Komponente 10 bis 69 Gew.-% eines Waschmittelbuilders umfaßt. gewählt aus der
Gruppe, bestehend aus Aluminosilicat, Silicat, Carbonat, Citrat, Phosphat oder Mischungen
hiervon, mit der Maßgabe. daß jedwedes Phosphat in der Zusammensetzung oder Komponente
gewählt ist aus Natrium- und Kaliumtripolyphosphat, Pyrophosphat und polymerem Metaphosphat
mit einem Polymerisationsgrad von 6 bis 21.
5. Verfahren nach Anspruch 4, wobei ein Schaumunterdrückungsmittel beim Mischschritt
(i) zugesetzt wird.
6. Verfahren nach Anspruch 4 und/oder 5. wobei der Trocknungsschritt mittels eines Verdampfungsschrittes
durchgeführt wird, und wobei der Granulierungsschritt anschließend durchgeführt wird
durch Mischen der konzentrierten Lösung mit einem Waschmittelbuilder, gewählt aus
der Gruppe, bestehend aus Aluminosilicat, Silicat. Carbonat, Citrat, Phosphat oder
Mischungen hiervon.
7. Verfahren nach Anspruch 4, wobei die Trocknungs- und Granulierungsschritte gleichzeitig
durchgeführt werden, vorzugsweise mittels Sprühtrocknung.
1. Composition ou composant détergent(e) granulaire comprenant un agent tensioactif anionique
ou un hydrotrope anionique, un agent tensioactif cationique soluble dans l'eau ayant
dans sa forme pure une CMC (concentration critique en micelles) de plus de 200 ppm
à 30 °C dans de l'eau distillée, et moins de 10% en poids d'un polymère anionique,
caractérisé(e) en ce que l'agent tensioactif cationique est présent à un niveau d'au
moins 20 % en poids de la composition ou du composant et le rapport molaire de l'agent
tensioactif anionique et/ou de l'hydrotrope anionique à l'agent tensioactif cationique
est inférieur à 1:1, et la composition ou le composant comprend 10 % à 69 % en poids
d'un adjuvant détergent choisi dans le groupe constitué d'un aluminosilicate, d'un
silicate, d'un carbonate, d'un citrate, d'un phosphate ou de leurs mélanges, pourvu
que n'importe quel phosphate dans la composition ou composant soit choisi parmi le
tripolyphosphate, le pyrophosphate et le métaphosphate polymère de sodium et de potassium
ayant un degré de polymérisation de 6 à 21.
2. Composition ou composant détergent(e) granulaire selon la revendication 1, dans laquelle
ou lequel l'agent tensioactif cationique est présent à un niveau d'au moins 30 % en
poids de la composition ou du composant et l'agent tensioactif anionique est présent
à un niveau de 1 % à 20 % en poids de la composition ou du composant et le rapport
molaire de l'agent tensioactif anionique à l'agent tensioactif cationique est inférieur
à 0,5:1.
3. Composition ou composant détergent(e) granulaire selon la revendication 2, qui est
sensiblement exempt(e) d'un polymère anionique, comprenant :
(a) 35 % à 50 % en poids d'un agent tensioactif cationique soluble dans l'eau,
(b) 1 % à 5 % en poids d'un agent tensioactif anionique, et
(c) 40 % à 60 % en poids d'aluminosilicate de sodium.
4. Procédé de préparation de la composition ou du composant selon l'une quelconque des
revendications 1 à 3, comprenant les étapes consistant :
(i) à mélanger une solution aqueuse comprenant un agent tensioactif cationique soluble
dans l'eau ayant dans sa forme pure une CMC (concentration critique en micelles) de
plus de 200 ppm à 30 °C dans de l'eau distillée, un agent tensioactif anionique ou
un hydrotrope anionique, de préférence un agent tensioactif anionique, et moins de
10 % en poids d'un polymère anionique,
(ii) à sécher le mélange pour former une solution concentrée ayant une teneur en solides
d'au moins 50 % en poids, et
(iii) à granuler la solution concentrée,
caractérisé en ce que l'agent tensioactif cationique est présent à un niveau d'au moins 20 % en poids de
la composition ou du composant et le rapport molaire de l'agent tensioactif anionique
et/ou de l'hydrotrope anionique à l'agent tensioactif cationique est inférieur à 1:1,
et la composition ou le composant comprend 10 % à 69 % en poids d'un adjuvant détergent
choisi dans le groupe constitué d'un aluminosilicate, d'un silicate, d'un carbonate,
d'un citrate, d'un phosphate ou de leurs mélanges, pourvu que n'importe quel phosphate
dans la composition ou composant soit choisi parmi le tripolyphosphate, le pyrophosphate
et le métaphosphate polymère de sodium et de potassium ayant un degré de polymérisation
de 6 à 21.
5. Procédé selon la revendication 4, dans lequel un agent suppresseur de mousse est ajouté
à l'étape de mélange (i).
6. Procédé selon l'une quelconque des revendications 4 ou 5, dans lequel l'étape de séchage
est effectuée au moyen d'une étape d'évaporation et l'étape de granulation est ensuite
effectuée en mélangeant la solution concentrée avec un adjuvant détergent choisi dans
le groupe constitué d'un aluminosilicate, d'un silicate, d'un carbonate, d'un citrate,
d'un phosphate ou de leurs mélanges.
7. Procédé selon la revendication 4 dans lequel les étapes de séchage et de granulation
sont effectuées simultanément, de préférence par séchage par pulvérisation.