(19) |
 |
|
(11) |
EP 1 159 085 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
12.10.2005 Bulletin 2005/41 |
(22) |
Date of filing: 23.02.2000 |
|
(86) |
International application number: |
|
PCT/US2000/004494 |
(87) |
International publication number: |
|
WO 2000/050177 (31.08.2000 Gazette 2000/35) |
|
(54) |
SPRAY DEPOSITION PROCESS
SPRÜHBESCHICHTUNGSVERFAHREN
PROCEDE DE DEPOT PAR PULVERISATION
|
(84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
(30) |
Priority: |
23.02.1999 GB 9903964
|
(43) |
Date of publication of application: |
|
05.12.2001 Bulletin 2001/49 |
(73) |
Proprietors: |
|
- Sprayform Holdings Limited
West Glamorgan SA2 8PP (GB)
- Ford Global Technologies, Inc.
Michigan 48126 (US)
|
|
(72) |
Inventors: |
|
- JORDAN, Richard Michael
Ho ok Norton,
Oxfordshire OX15 5NX (GB)
- BETTS, Jonathan
Treboeth,
Swansea SA3 3DP (GB)
- GRANT, Patrick
Oxford, Oxfordshire (GB)
- ROCHE, Allen Dennis
Saline, MI 48176 (US)
- NEWBERY, Piers
Lewes East Sussex BN7 2BE (GB)
|
(74) |
Representative: Messulam, Alec Moses et al |
|
A. Messulam & Co. Ltd.,
43-45 High Road
Bushey Heath,
Bushey, Herts WD23 1EE Herts WD23 1EE (GB) |
(56) |
References cited: :
EP-A- 0 781 625 US-A- 5 340 090 US-A- 5 817 267
|
US-A- 4 971 133 US-A- 5 718 863
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a spray deposition process and in particular to
a metallurgical spray deposition process.
[0002] The process is also useful for producing thick and thin coatings and other sprayed
metal deposits sprayed onto substrates of all kinds, particularly where some of the
topographical features are difficult to cover or fill due to complex geometries.
[0003] It is known to use metallurgical spray deposition techniques for producing tools,
moulds, dies and other bodies of significant thickness. Problems have been encountered
in using such techniques from the point of view of inherent porosity in the spray
deposited material and internal stresses which arise during the spray deposition processes.
Attempts have been made to deal with these problems and known techniques are described
in, for example, WO-A-96/09421 PCT patent application GB97/00590, and US 5 340 090.
[0004] In a wide variety of commercially important thermal spray processes, the manner in
which sprayed droplets impinge, spread and solidify on deposition is critical in influencing
the subsequent properties of the manufactured coating or deposit. The first droplets
to be deposited will determine the properties at the coating/substrate interface.
In the case of spray forming of free standing shapes for mould tooling, the first
deposited droplets determine the accuracy of replication and tooling wear properties.
As deposition continues, droplet deposition behaviour controls the bulk microstructure
(such as volume fraction, morphology and size of porosity) consequently determining
the coating or deposit bulk properties. At all stages of deposition, droplet rebounding
or splashing leads to a reduction in process yield. Recent experimental evidence suggests
that droplet splashing occurs to a significant and greater extent than previously
believed.
[0005] A further problem with sprayforming onto patterns or substrates having an object
surface of varied (three dimensional) topography arises due to the fact that metal
spray processes are "line of sight" processes in which known effects of shadowing
and bridging occur for certain configurations of object surface topography.
[0006] A further problem occurs at internal and external edges of object surface topography,
where poor quality deposit integrity can occur resulting in poor quality integrity
to the deposit. This can result in flaking or crumbling of the deposit at corners
and edges.
[0007] According to the invention given in claim 1 we provide a process for producing a
metallic tool, mould, die or other body of significant thickness or a coating, the
process comprising directing a spray comprising molten metallic droplets carried by
a propelling gas toward an object surface of a substrate or pattern so as to build
up a metallic deposit or coating comprising the mould, tool, die, body or coating
on the object surface of the substrate or pattern, wherein at one or more predetermined
stages during spraying droplets of a size distributed about a Gaussian mean of 200
microns and above are sprayed and at one or more other stages droplets having a size
below 150 microns are sprayed.
[0008] The larger droplets are initially sprayed onto the object surface of the substrate
or pattern preceding the spraying of relatively smaller droplets. Desirably, where
the substrate or pattern includes topographical relief features, the spraying of the
relatively larger droplets is dependent upon the nature of and/or the location of
the topographical relief features.
[0009] It is a feature of the invention that when spraying over portions of the object surface
comprising topographical features with a depth/width aspect ratio for example, or
into or onto sharp corners or the like, that metallic droplets of relatively large
sizes are sprayed, at least initially, in order to reduce shadowing, bridging, and
poorly defined edge or corner detail which has been found to be a problem with prior
art techniques.
[0010] It has been found that for producing detail and reducing shadowing or bridging, metallic
spray droplets of mean diameters of substantially 200 microns and above (preferably
substantially 350 microns and above) produce highly beneficial results. This result
is surprising because trends in spray deposition research and practices have herebefore
tended to suggest that finely sprayed - droplets and relatively higher droplet spray
velocities should produce improved results during the manufacture of coatings and
most other products when using spray deposition techniques. Smaller droplet sizes
have also been preferred because deposit porosity is minimised by using smaller droplet
sizes. This is one of the premises behind the development of techniques such as plasma
spraying and high velocity oxy-fuel metallic spraying techniques.
[0011] Additionally, spraying of larger droplet sizes for initial deposition (including
for coatings) has been found to result in reduced porosity in the deposited material
immediately adjacent the substrate or pattern.
[0012] It is preferred that the propelling gas of the spray is within a pressure range lower
than that normally recommended for use with a particular metal spraying apparatus.
The operating pressure will therefore be different for different equipment, but is
preferably at or about 3 bar or less. This results in the relatively large droplets
desired, and relatively low droplet velocities compared with known techniques.
[0013] It is preferred that the droplets are produced by arc spraying, because arc spraying
typically produces coarser droplet sizes than other known spray deposition processes.
Conventional arc spraying apparatus has however not been designed for spraying at
the larger droplet sizes of the present invention and modification and frequent cleaning
of arc spray guns during proving of the invention has been found to be necessary.
It is believed that this is strongly indicative of the process of spraying metallic
droplets at the dimensions preferred being novel and inventive per se.
[0014] Preferably relatively high currents are used in the arc spraying process compared
with the currents used in conventional arc spraying techniques.
[0015] It is important to control internal stresses in relatively thick deposited bodies
formed in metallurgical spray deposition processes. WO-A-96/09421 discloses metallurgical
spray deposition techniques which may be used to control internal stresses in deposited
bodies. The relatively large droplet sizes required to improve reproduction of detail
and edge definition from the object surface of the substrate or pattern (and also
to inhibit bridging or shadowing) have however been found not to be suitable for control
of stresses. It is therefore preferred that in the process according to the invention,
process parameters are varied such that the relatively larger droplets are sprayed
during the period and over the areas where detail of the substrate is required to
be reproduced. Relatively smaller droplets are sprayed after the period when the detail
has been replicated as required, and in other portions of the deposit where it is
not required to replicate detail, preferably under conditions to control internal
stresses in the deposit.
[0016] Typically therefore, the process according to the invention may comprise initial
spraying of relatively large droplets onto the object surface of the substrate or
pattern where detail replication is required (such as, for example, edge definition
is to be reproduced, and/or where shadowing is to be avoided), and then subsequent
modification of the spray parameters, (preferably as soon as possible after the said
pattern detail and edge definition have been achieved), so as to spray relatively
smaller droplets onto the object surface of the pattern or substrate. (Preferably
in order to bring stress control into operation, as described, for example, in WO-A-96/09421).
[0017] Alternatively, the process may comprise spraying of relatively large droplets from
one spray source onto the object surface of the substrate or pattern where detail
is required (such as edge definition is to be reproduced, and/or shadowing effects
are to be ameliorated), and introducing a further spray of relatively smaller metallic
droplets from a second spray source (preferably concurrently with the first spray),
the further spray preferably being tailored to minimise internal stresses in the deposit.
[0018] It is preferred that the control step c) is operated by control means (preferably
computer control means) and pre-programmed.
[0019] To achieve the required control, one or more spray guns are preferably mounted on
manipulator means, such as an industrial robot which is preferably programmed, advantageously
together with the spray guns, by the control means. Alternatively, or additionally,
the one or more sprays of metallic droplets generated by the spray guns may be scannable,
in which case the means for scanning the sprays is preferably co-ordinated and controlled,
preferably by the same control means.
[0020] The invention will now be further described, by way of example only, and with reference
to the accompanying drawings in which:
Figures 1(a) and 1(b) are explanatory sectional views of known spray deposition processes,
highlighting the problem of shadowing and bridging known in the prior art.
Figure 2 is a schematic view of apparatus for use in the process according to the
invention.
[0021] Referring to Figure 1(a), there is shown a substrate 101 rotated beneath a pair of
arc-sprayed metallic droplet sprays 103 and 104. The arc sprayed metallic droplets
are sprayed from two arc spray guns mounted on a 6-axis industrial robot (not shown)
to produce a sprayed footprint 102, which is moved over the substrate by the robot
manipulating the guns together, to produce a deposit 105 re-producing the object surface
106 of the substrate 101. The surface topography of object surface 106 is such that
it is provided with a channel 107 having a pair of parallel sides 107a, 107b and a
perpendicular surface 107c. As the spray deposition continued, the sprayed deposit
105 builds up on the object surface 106 eventually bridges the width of channel 107
leaving a void 108, as shown in Figure 1(b) caused by the shadowing effect of the
build up of deposit 105.
[0022] It has been found, surprisingly, that by initial spraying with droplets of larger
size than used conventionally in spray deposition metallurgical techniques, the effects
of shadowing and bridging, in situations where the surface topography of the object
surface 106 is varied, are modified substantially. Furthermore, external and internal
deposited edges (such as edges 105a to 105d) are formed with superior integrity than
would otherwise be the case where droplets of conventional size are used. It has been
found that sprays having droplets distributed about gaussian mean of 200 microns and
above (preferably 350 microns and above) provide significant process advantages. It
is believed that the use of larger droplets may provide enhanced process performance
because one or either of the following occur:
(a) droplets have increased momentum and remain liquid longer with more opportunity
for flow driven by the momentum;
(b) "splashing" of particles on impingement with substrate or deposit lessens "line
of sight" problems.
[0023] Using the apparatus shown in Figure 2 the improved performance of the process according
to the invention can be achieved. The apparatus of Figure 2 comprises arc spray guns
1,2 mounted on a 6-axis industrial robot 10, producing atomised metal sprays 3,4 which
impinge upon pattern or substrate 5. Pattern or substrate 5 sits on a rotating table
6, and is provided with a varied topography object surface 7. A computer control arrangement
8 is used to control manipulation of the robot 10, and also coordinate and control
process parameters of the respective sprays 3,4 produced by guns 1,2 (such as, for
example, the gas spraying pressure, and wire feed rate/current of the respective guns
1,2). The apparatus is completely enclosed within a dustproof acoustic chamber 9,
connected to an appropriate dust and fume extraction system (not shown).
Example
[0024] Both spray guns 1,2 were used to spray low carbon steel (from stock feed wire). For
the particular model of arc spray guns used, an initial spray droplet size of approx.
350 microns could be achieved by means of propelling compressed gas at a pressure
of 2.6 bar. These conditions were maintained for a period of approximately 120 seconds,
for both spray guns. This length of time was sufficient to ensure that all internal
and external edges of the object surface of the substrate were covered by deposited
spray having droplets of average diameter 350 microns approx. Spraying parameters
for both arc spray guns were then adjusted by increasing the pressure of the propelling
gas to 3.5 bar and simultaneously decreasing the current supply in order to decrease
the rate of generation of molten metal in the arc. These conditions were used to produce
a finer droplet size below 150 microns for building up the remainder of the deposit,
and to control stresses according to WO-A-96/09421.
[0025] The deposit was subsequently released from the substrate 5 and found to have improved
edge integrity and less extensive shadowing or bridging defects than would have been
the case when conventionally spraying with droplet sizes of less than 150 microns
throughout the process.
1. A process for producing a metallic tool, mould, die or other body of significant thickness
or a coating, the process comprising directing a spray comprising molten metallic
droplets carried by a propelling gas toward an object surface of a substrate or pattern
so as to build up a metallic deposit or coating comprising the mould, tool, die, body
or coating on the object surface of the substrate or pattern, wherein at one or more
predetermined stages during spraying droplets of a size distributed about a Gaussian
mean of 200 microns and above are sprayed and at one or more other stages droplets
having a size below 150 microns are sprayed and wherein the larger droplets are initially
sprayed onto the object surface of the substrate or pattern.
2. A process according to claim 1 comprising spraying droplets of a size distributed
about a Gaussian mean of 350 microns and at one or more other stages droplets having
a size below 150 microns are sprayed.
3. A process according to any preceding claim, wherein a metallic tool, mould, die or
other body of significant thickness is produced on a substrate or pattern including
topographical relief features, the switching between spraying relatively larger and
smaller droplets being dependent upon the nature of and/or the location of the topographical
relief features.
4. A process according to claims 1 or 2, wherein the relatively larger droplets are sprayed
onto the topographical relief surface, the spray subsequently being switched to spray
the relatively smaller droplets.
5. A process according to any preceding claim, wherein the droplets are produced by arc
spraying.
6. A process according to any preceding claim, wherein when spraying droplets of the
relatively smaller size, spray parameters are tailored to control internal stresses
in the deposited metal.
7. A process according to claim 6, wherein the spray parameters are tailored to effect
phase change or reaction in the deposited metal.
8. A process according to claim 7, wherein the spray 15 parameters are tailored to effect
martensitic phase change in the deposited metal.
9. A process according to any preceding claim, wherein at one stage in the deposition
process substantially only droplets of relatively larger mean size are sprayed.
10. A process according to any preceding claim, further comprising spraying of relatively
large droplets from one spray source onto the object surface of the substrate or pattern
and introducing a further spray of relatively smaller metallic droplets from a second
spray source.
11. A process according to claim 10, wherein the further spray of relatively smaller metallic
droplets is operated concurrently with the first spray.
12. A process according to any preceding claim, wherein a change between spraying of relatively
larger and smaller droplet size sprays is operated by pre-programmed control means.
1. Ein Prozeß zur Erzeugung eines metallischen Werkzeugs, einer Form, eines Stempels
oder eines anderen Körpers wesentlicher Stärke oder einer Beschichtung, wobei der
Prozeß umfaßt einen geschmolzene metallische Tröpfchen umfassenden Sprühnebel, getragen
von einem Treibgas, direkt in Richtung einer Zielfläche eines Substrats oder Musters
zu sprühen, um eine die Form, das Werkzeug, den Stempel, den Körper oder die Beschichtung
auf der Zielfläche des Substrats oder Musters umfassende metallische Ablagerung oder
Beschichtung aufzubauen; worin in einem oder mehreren vorherbestimmten Stadien während
des Sprühens um einen Gaußschen Mittelwert von 200 Mikron und darüber verteilten Tröpfchen
versprüht werden; und worin in einem oder mehreren vorherbestimmten anderen Stadien
Tröpfchen versprüht werden, die eine Größe unterhalb 150 Mikron besitzen; und worin
die größeren Tröpfchen anfänglich auf die Zielfläche des Substrats oder Musters aufgesprüht
werden.
2. Ein Prozeß gemäß Anspruch 1, der es umfaßt Tröpfchen einer um einen Gaußschen Mittelwert
von 350 Mikron verteilten Größe zu versprühen; und in einem oder mehreren Stadien
Tröpfchen, die eine Größe unterhalb von 150 Mikron besitzen.
3. Ein Verfahren gemäß einem der vorstehenden Ansprüche, in dem ein metallisches Werkzeug,
eine Form, ein Stempel oder ein anderer Körper wesentlicher Stärke auf einem topographische
Relief- oder Entlastungsmerkmale einschließenden Substrat oder Muster erzeugt wird,
und die Umschaltung zwischen dem Versprühen relativ großer und kleinerer Tröpfchen
von der Natur und/oder der Lage der topographischen Entlastungsmerkmale abhängt.
4. Ein Prozeß gemäß den Ansprüchen 1 oder 2, in dem die relativ gesehen größeren Tröpfchen
auf die topographischen Relief- oder Entlastungsmerkmale aufgesprüht werden, und der
Sprühnebel nachfolgend umgeschaltet wird, um die relativ gesehen kleineren Tröpfchen
zu versprühen.
5. Ein Prozeß gemäß irgendeinem der vorstehenden Ansprüche, in dem die Tröpfchen durch
Lichtbogensprühen erzeugt werden.
6. Ein Prozeß gemäß irgendeinem der vorstehenden Ansprüche, in dem Sprühparameter zugeschnitten
sind um die inneren Belastungen in dem abgelagerten Metall zu steuern, wenn man die
Tröpfchen relativ kleinerer Größe versprüht.
7. Ein Prozeß gemäß Anspruch 6, in dem die Sprühparameter zugeschnitten sind um einen
Phasenwechsel oder eine Reaktion in dem abgelagerten Metall zu bewirken.
8. Ein Prozeß gemäß Anspruch 7, in dem die Sprühparameter zugeschnitten sind um einen
martensitischen Phasenwechsel in dem abgelagerten Metall zu bewirken.
9. Ein Prozeß gemäß irgendeinem der vorstehenden Ansprüche, in dem während eines Stadiums
des Ablagerungsprozesses im Wesentlichen nur Tröpfchen einer relativ größeren mittleren
Größe versprüht werden.
10. Ein Prozeß gemäß irgendeinem der vorstehenden Ansprüche, der weiterhin das Versprühen
relativ großer Tröpfchen von einer Sprühquelle auf die Zielfläche des Substrats oder
Musters umfaßt, und einen weiteren Sprühnebel von relativ gesehen kleineren metallischen
Tröpfchen von einer zweiten Sprühquelle einzubringen.
11. Ein Prozeß gemäß Anspruch 10, in dem der weitere Sprühnebel von relativ gesehen kleineren
metallischen Tröpfchen gleichzeitig mit dem ersten Sprühnebel betrieben wird.
12. Ein Prozeß gemäß irgendeinem der vorstehenden Ansprüche, indem ein Wechsel zwischen
dem Versprühen von Sprühnebeln relativ gesehen größerer und kleinerer Tröpfchengrößen
durch vorprogrammierte Steuervorrichtungen getätigt wird.
1. Procédé de production d'un outil métallique, d'un moule, d'une matrice ou d'un autre
corps d'épaisseur significative ou d'un revêtement, le procédé consistant à diriger
un jet pulvérisé composé de gouttelettes de métal fondu portées par un gaz propulseur
vers une surface cible d'un substrat ou d'un modèle de façon à réaliser un dépôt ou
un revêtement de métal constituant le moule, l'outil, la matrice, le corps ou le revêtement
sur la surface cible du substrat ou du motif, dans lequel des gouttelettes dont la
taille est répartie autour d'une moyenne Gaussienne égale ou supérieure à 200 microns
sont pulvérisées à un ou plusieurs instants prédéterminés durant la pulvérisation
et des gouttelettes dont la taille est inférieure à 150 microns sont pulvérisées à
un ou plusieurs autres instants, et dans lequel les plus grosses gouttelettes sont
initialement pulvérisées sur la surface cible du substrat ou du modèle.
2. Procédé selon la revendication 1 consistant à pulvériser des gouttelettes ayant une
taille répartie autour d'une moyenne Gaussienne de 350 microns et à pulvériser à un
ou plusieurs autres instants des gouttelettes ayant une taille inférieure à 150 microns.
3. Procédé selon l'une des revendications précédentes, dans lequel est produit un outil
métallique, un moule, une matrice ou un autre corps d'une épaisseur significative
sur un substrat ou un modèle, y compris des détails de relief topographique, le basculement
entre la pulvérisation de gouttelettes relativement plus grosses ou plus petites dépendant
de la nature et/ou de l'emplacement des détails de relief topographique.
4. Procédé selon les revendications 1 ou 2 dans lequel les gouttelettes dont la taille
relative est plus importante sont pulvérisées sur la surface du relief topographique,
et dans lequel les gouttelettes dont la taille relative est la plus faible sont ensuite
pulvérisées.
5. Procédé selon l'une des revendications précédentes, dans lequel les gouttelettes sont
produites par pulvérisation à l'arc.
6. Procédé selon l'une des revendications précédentes, dans lequel, lors de la pulvérisation
des gouttelettes dont la taille relative est la plus faible, les paramètres de pulvérisation
sont adaptés afin de maîtriser les contraintes internes dans le métal déposé.
7. Procédé selon la revendication 6, dans lequel les paramètres de pulvérisation sont
adaptés pour provoquer un changement de phase ou une réaction dans le métal déposé.
8. Procédé selon la revendication 7, dans lequel les paramètres de pulvérisation sont
adaptés pour provoquer un changement de phase martensitique dans le métal déposé.
9. Procédé selon l'une des revendications précédentes, dans lequel, à un moment du processus
de dépôt, sensiblement toutes les gouttelettes pulvérisées sont d'une taille moyenne
relative plus importante.
10. Procédé selon l'une dés revendications précédentes, comprenant en outre la pulvérisation
de gouttelettes relativement grosses par une source de pulvérisation sur la surface
cible du substrat ou du modèle et l'introduction d'une pulvérisation supplémentaire
de gouttelettes relativement petites par une deuxième source de pulvérisation.
11. Procédé selon la revendication 10, dans lequel la pulvérisation supplémentaire de
gouttelettes relativement plus petites est effectuée en même temps que la première
pulvérisation.
12. Procédé selon l'une des revendications précédentes, dans lequel le basculement entre
la pulvérisation de gouttelettes relativement plus grosses et la pulvérisation de
gouttelettes relativement plus petites est effectuée par un moyen de commande préprogrammé.

