Field of the Invention:
[0001] The present invention relates to a process for producing cyclopropanecarboxylates.
Background of the invention
[0002] There have been known a production method of carboxylic acid ester from a carboxylic
acid and an alcohol using a protonic acid catalyst. A production method using sulfuric
acid as a catalyst is disclosed (Japanese Patent Laid-Open Publication No. 9-188649),
and also disclosed is a method of using p-toluenesulfonic acid as a catalyst (Japanese
Patent Laid-Open Publication No. 11-228491 EP-A-0 779 269).
[0003] However, the methods using mineral acid or organic acid having strong acidity cause
significant coloring due to a side reaction, which has made these methods not necessarily
efficient as industrial production methods.
Summary of the Invention
[0004] - According to the present invention, a cyclopropanecarboxylate can be conveniently
produced, through dehydration reaction, from a cyclopropanecarboxylic acid and an
alcohol in the presence of the catalyst as defined below.
[0005] The present invention provides
a process for producing a cyclopropanecarboxylate of formula (1):
which process comprises reacting
a cyclopropanecarboxylic acid of formula (2):
with a monohydroxy compound of formula (3):
R
6OH (3),
in the presence of
a compound comprising an element of Group 4 of the Periodic Table of Elements,
wherein in formula (1) and (2),
R
1, R
2, R
3, R
4, and R
5 independently represent
a hydrogen atom, a halogen atom,
an alkyl group which may be substituted,
an alkenyl group which may be substituted,
an alkynyl group which may be substituted,
an aryl group which may be substituted; and
in formula (1) and (3),
R
6 represents
an alkyl group which may be substituted, or
an aryl group which may be substituted.
Detailed Description of the Invention
[0006] The halogen atom or the term "halo" in the present specification means a fluorine
atom, a chlorine atom, a bromine atom, or an iodine atom in R
1 through R
6.
[0007] The alkyl group which may be substituted and the alkenyl groupwhichmaybe substitutedmaybe
linear, branched, or cyclic.
[0008] The termalkenyl or alkynyl in R
1 through R
6 and substituents that may be present therein means the same group as specified for
R
1 to R
5 below.
[0009] - The aryl group represented by R
1 through R
6 and the "aryl" including those present as the substituent group as in aryloxy, or
haloaryloxy includes a (C6-C14)aryl group such as phenyl, biphenyl, naphthyl, anthracenyl
or the like.
[0010] R
1, R
2, R
3, R
4, and R
5 in the cyclopropanecarboxylic acid (2) and the cyclopropanecarboxylate (1) will be
explained below.
[0011] Examples of the alkyl group which may be substituted represented by R
1, R
2, R
3, R
4, or R
5 include, for example, a (C1-10)alkyl group such as methyl, ethyl, n-propyl, i-propyl,
n-butyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl,
n-nonyl, n-decyl, menthyl and the like.
[0012] Examples of the alkenyl group which may be substituted represented by R
1, R
2, R
3, R
4, or R
5 include, for example, a (C2-C5) alkenyl group such as vinyl, 1-methylvinyl, 1-propenyl,
2-methyl-1-propenyl, 1-butenyl, 3-methyl-2-butenyl or the like.
[0013] The alkyl group, alkenyl and alkynyl groups represented by R
1, R
2, R
3, R
4, or R
5 may be independently substituted with at least one member selected from
a halogen atom, an alkoxy group, an alkoxycarbonyl group,
a haloalkoxycarbonyl group, an aryl group,
a halocycloalkylidene group, an alkoxyimino group,
an alkylsulfonyl group, an alkylsulfonyloxy group, and a hydroxysulfinyl group.
[0014] Examples of the alkenyl group substituted with halogen include, a halo (C2-C5) alkenyl
group such as 2, 2-dichlorovinyl, 2,2-dibromovinyl, 2-chloro-2-fluorovinyl, 2-chloro-2-trifluoromethylvinyl,
2-bromo-2-tribromomethylvinyl, or the like.
[0015] - Examples of the alkynyl group which may be substituted includes a propargyl group
and the like.
[0016] Examples of the alkoxy group include, for example, a (C1-C4)alkoxy group such as
methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, sec-butoxy, or tert-butoxy group
or the like.
[0017] Examples of the alkoxycarbonyl group include, for example, a (C1-C4)alkoxy-carbonyl
such as methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, i-propoxycarbonyl, n-butoxycarbonyl,
sec-butoxycarbonyl, tert-butoxycarbonyl or the like.
[0018] Examples of the haloalkoxycarbonyl group include, for example, a halo(C1-C4)alkoxy-carbonyl
group such as a 2,2,2-trifluoro-1-(trifluoromethyl)ethoxycarbonyl group or the like.
[0019] Preferred aryl group are phenyl, 1-naphthyl, and 2-naphthyl groups and the like.
[0020] Examples of the halocycloalkylidene group include, for example, a halo(C3-C5)cycloalkylidene
group such as difluorocyclopropylidene group or the like.
[0021] Examples of the alkoxyimino group include, for example, a (C1-C3) alkoxy-imino group
such as methoxyimino, ethoxyimino, an n-propoxyimino or the like.
[0022] Examples of the alkylsulfonyl group include, for example, a (C1-C4)alkylsulfonyl
group such as methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, i-propylsulfonyl, tert-butylsulfonyl
or the like.
[0023] Examples of the alkylsulfonyloxy group include, for example, a (C1-C4)alkylsulfonyloxy
group such as methylsulfonyloxy, ethylsulfonyloxy, n-propylsulfonyloxy, i-propylsulfonyloxy,
tert-butylsulfonyloxy or the like.
[0024] The cyclopropanecar-boxylic acid (2) includes any optical isomer or mixture thereof.
[0025] Specific examples of the cyclopropanecarboxylic acid (2) include, for example, cyclopropanecarboxylic
acid,
2-fluorocyclopropanecarboxylic acid,
2,2-dichlorocyclopropanecarboxylic acid,
2,2-dimethyl-3-(dimethoxymethyl)cyclopropanecarboxylic acid,
2,2,3,3-tetramethylcyclopropanecarboxylic acid,
2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(3-methyl-2-butenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2,2,2-trichloroethyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-chloro-2-fluorovinyl)cyclopropane-carboxylic acid,
2,2-dimethyl-3-(2-bromovinyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2,2-dibromovinyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(1,2,2,2-tetrabromoethyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(1,2-dibromo-2,2-dichloroethyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(3,3,3-trifluoro-2-(trifluoromethyl)-1-propenyl)cyclopropanecarboxylic
acid,
2,2-dimethyl-3-(2-phenyl-1-propenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-phenylvinyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-methyl-3-phenyl-2-butenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-{(2,2-difluorocyclopropylidene)methyl}-cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2-(tert-butoxycarbonyl)vinyl}cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2-fluoro-2-(methoxycarbonyl)vinyl}-cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2-fluoro2-(ethoxycarbonyl)vinyl}cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2-fluoro2-(tert-butoxycarbonyl)vinyl}-cyclopropanecarboxylic acid,
2,2-dimethyl-3-[2-{2,2,2-trifluoro-1-(trifluoromethyl)-ethoxycarbonyl}vinyl]cyclopropanecarboxylic
acid,
2,2-dimethyl-3-(2-aza-2-methoxyvinyl)cyclopropanecarboxylic acid,
2,2-di-methyl-3-(4-aza-4-methoxy-3-methylbut-1,3-dienyl)-cyclopropanecarboxylic acid,
2,2-dimethyl-3-[2-((tert-butyl)sulfonyl)-2-(tert-butoxy-carbonyl)vinyl]cyclopropanecarboxylic
acid,
2,2-dimethyl-3-{2,2,2-tribromo-1-(methylsulfonyloxy)ethyl}-cyclopropanecarboxylic
acid,
2,2-dimethyl-3-{2,2-dibromo-2-(hydroxysulfinyl)-1-(methoxy) -ethyl}cyclopropanecarboxylic
acid,
2,2-dimethyl-3-{2,2,2-tribromo-1-(methylsulfonyloxy)ethyl}-cyclopropanecarboxylic
acid,
2-methyl-2-ethyl-3-(1-propenyl)cyclopropanecarboxylic acid,
2,2-diethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylic acid, and
2-methyl-2-phenyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid.
[0026] Preferred are 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylic acid, and
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid.
[0027] Next a description will be made to the monohydroxy compound of formula (3).
[0028] Examples of.the alkyl group, which may be substituted, represented by R
6, include, for example,
a (C1-C10)alkyl group which may be substituted with a member selected from
a halogen atom, a cyano group, a nitro group,
an alkenyl group, a haloalkenyl group, an alkynyl group, or
an aryl or heterocyclic group which may be substituted with at lest one member selected
from
an alkyl group, a haloalkyl group,
an alkoxy group, a haloalkoxy group,
an alkoxyalkyl group,
an alkenyl group, an alkynyl group,
an aryl group, an aryoxy group,
a haloaryloxy group, an aralkyl group(e.g. (C7-C8)aralkyl such as benzyl, phenethyl),
an acyl group(e.g. (C1-C2)acyl such as formyl, acetyl),
a haloacyloxyalkyl group(e.g. trifluoroacetyloxyalkyl),
an amino group, and a halogen atom; or
R
6 represents:
a 1-, or 2-indanyl group which may be substituted with an alkynyl group or an aryl
or heteroaryl group(e.g. 5- or 6-membered heteroaryl group such as thienyl); or
a cycloalkenyl group (e.g., cyclopentenyl) substituted with at least one member selected
from an oxo group, an alkyl group, an alkenyl and an alkynyl group (e.g. 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-one,
4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentene-1-one).
[0029] The term "alkyl" used in the alkyl, haloalkyl, and alkoxyalkyl groups as recited
in the definition of R
6 and substituents thereof includes a C1-C14 alkyl group.
[0030] Examples of the (C1-C14)alkyl group include, for example, methyl, ethyl, n-propyl,
isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, n-octyl,
n-nonyl, n-decyl, undecyl, dodecyl, tridecyl, tetradecyl group and the like.
[0031] Examples of the haloalkyl group include fluoroethyl, difluoroethyl, trifluoroethyl,
tetrafluoroethyl and the like.
[0032] The term "alkoxy" used in the alkoxy, haloalkoxy, and alkoxyalkyl groups includes
a C1-C4 alkoxy group as defined above in this specification.
[0033] - Examples of the alkenyl groups as recited above include a (C2-C5)alkenyl group
(e.g. vinyl, 1-propenyl, 1-methyl-2-propenyl, 1-butenyl, 2-penten-2-yl group or the
like). The haloalkenyl group that may be present on the alkyl group represented by
R
6 means the same haloalkenyl group as described for the haloalkenyl group represented
by R
1 to R
5.
[0034] Examples of the alkynyl groups that may be present on the alkyl group represented
by R
6 include a (C2-C5)alkynyl group (e.g, ethinyl, propynyl, butynyl, pentynyl or the
like).
[0035] Examples of the heterocyclic group which may be substituted, include, for example,
a furyl group, an isoxazolyl group, a pyrrolyl group, a thiazolyl group, an imidazolidine-2,4-dione
group, a 4,5,6,7-tetrahydroisoindole group, an indole group, a pyridyl group, and
further specific examples thereof include aphenoxyfurylgroup, abenzylfurylgroup, a
propargylfuryl group, a methylisoxazolyl group,a trifluoromethylthiazolyl group, a
trifluoromethoxythiazolyl group, a propynylpyrrolyl group, a propynyldioxoimidazolidinyl
group, a dioxotetrahydroisoindolyl group, an oxothiazolyl group, a halopyridyl group
and the like.
[0036] Examples of the aryl group which may be substituted, represented by R
6, include an aryl group, which may be substituted with a phenyl, an alkynyl group,
an acyl group, an alkyl group, an alkoxy group, or a halogen atom.
[0037] The monohydroxy compound of formula (3) includes, for example, following alkyl alcohol,
aralkyl alcohol, aryl alcohol and the like.
[0038] Specific examples of the alkyl alcohol include, methyl alcohol, ethyl alcohol, n-propyl
alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol; tert-butyl alcohol,
n-pentyl alcohol, neopentyl alcohol, n-hexyl alcohol, n-octyl alcohol, n-decyl alcohol,
and the like.
[0039] Specific examples of the alcohol compound of formula (3), wherein R
6 represents the alkyl substituted with a halogen atom include,
fluoroethyl alcohol, difluoroethyl alcohol, trifluoroethyl alcohol, and tetrafluoroethyl
alcohol.
[0040] Specific examples of the alcohol compound of formula (3), wherein R
6 represents a methyl group substituted with a member selected from the alkenyl, haloalkenyl,
or alkynyl group include, 4-methylhept-4-en-1-yn-3-ol, 4-fluorohept-4-en-1-yn-3-ol
and the like.
[0041] Specific examples of the alcohol compound of formula (3), wherein R
6 represents a methyl or ethyl group substituted with the heterocyclic group which
maybe substituted as defined above, include, for example,
2-furylmethyl alcohol, 3-furylmethyl alcohol,
(5-phenoxy-3-furyl)methyl alcohol,
(5-benzyl-3-furyl)methane-1-ol,
(5-(difluoromethyl)-3-furyl)methane-1-ol,
5-propargylfurfuryl alcohol,
(5-methylisoxazole-3-yl)methane-1-ol,
1-{2-(trifluoromethyl)-1,3-thiazole-4-yl}prop-2-yn-1-ol,
1-{2-(trifluoromethoxy)-1,3-thiazole-4-yl}prop-2-yn-1-ol,
1-{1-prop-2-ynyl-5-(trifluoromethyl)pyrrole-3-yl}prop-2-yn-1-ol,
(1-prop-2-ynylpyrrole-3-yl)methane-1-ol,
3-(hydroxymethyl)-1-propynyl-imidazolidine-2,4-dione,
2-(hydroxymethyl)-4,5,6,7-tetrahydroisoindole-1,3-dione,
(1-(2-propynyl)pyrrole-3-yl)methane-1-ol,
5-(hydroxymethyl)-4-methyl-(2-propynyl)-1,3-thiazoline-2-one,
(1-prop-2-ynyl-2-methylindole-3-yl)methane-1-ol,
{1-prop-2-ynyl-2-(trifluoromethyl)indole-3-yl}methane-1-ol,
(2,3,6-trifluoro-4-pyridyl)methane-1-ol,
and the like.
[0042] Specific examples of the alcohol compound of formula (3), wherein R
6 represents a methyl or ethyl group substituted with at least one member selected
from the aryl group which may be substituted as defined above, a cyano group, or the
alkynyl group, include, for example, aralkyl alcohols such as:
benzyl alcohol, 2-methyl-3-phenylbenzyl alcohol,
2,3,5,6-tetrafluozobenzyl alcohol,
2,3,5,6-tetrafluoro-4-methylbenzyl alcohol,
2,3,5,6-tetrafluoro-4-methoxybenzyl alcohol,
2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl alcohol,
2,3,5,6-tetrafluoro-4-propargylbenzyl alcohol,
2,3,5,6-tetrafluoro-4-(difluoromethyl)benzyl alcohol,
2,3,5,6-tetrafluoro-4-(difluoromethoxy)benzyl alcohol,
2,3,5,6-tetrafluoro-4-(2,2,2-trifluoroacetyloxy)methylbenzyl alcohol,
4-(trifluoromethyl)benzyl alcohol,
2,3,4,5-tetrafluoro-6-methylbenzyl alcohol,
3-phenylbenzyl alcohol, 2,6-dichlorobenzyl alcohol,
3-phenoxybenzyl alcohol,
2-hydroxy-2-(3-phenoxyphenyl)ethanenitrile,
2-hydroxy-2-{4-(methoxymethyl)phenyl}ethanenitrile,
2- {3-(4-chlorophenoxy)phenyl}-2-hydroxyethanenitrile,
2-(4-amino-2,3,5,6-tetrafluorophenyl)-2-hydroxyethane-nitrile,
2-(4-fluoro-3-phenoxyphenyl)-2-hydroxyethanenitrile,
(2-methylphenyl)methyl alcohol,
(3-methylphenyl)methyl alcohol,
(4-methylphenyl)methyl alcohol,
(2,3-dimethylphenyl)methyl alcohol,
(2,4-dimethylphenyl)methyl alcohol,
(2,5-dimethylphenyl)methyl alcohol,
(2,6-dimethylphenyl)methyl alcohol,
(3,4-dimethylphenyl)methyl alcohol,
(2,3,4-trimethylphenyl)methyl alcohol,
(2,3,5-trimethylphenyl)methyl alcohol,
(2,3,6-trimethylphenyl)methyl alcohol,
(3,4,5-trimethylphenyl)methyl alcohol,
(2,4,6-trimethylphenyl)methyl alcohol,
(2,3,9,5-tetramethylphenyl)methyl alcohol,
(2,3,4,6-tetramethylphenyl)methyl alcohol,
(2,3,5,6-tetramethylphenyl)methyl alcohol,
(pentamethylphenyl)methyl alcohol,
(ethylphenyl)methyl alcohol, (n-propylphenyl) methyl alcohol,
(isopropylphenyl)methyl alcohol,
-(n-butylphenyl)methyl alcohol,
(sec-butylphenyl)methyl alcohol,
(tert-butylphenyl)methyl alcohol,
(n-pentylphenyl)methyl alcohol,
(neopentylphenyl)methyl alcohol,
(n-hexylphenyl)methyl alcohol,
(n-octylphenyl)methyl alcohol, (n-decylphenyl)methyl alcohol, (n-dodecylphenyl)methyl
alcohol,
(n-tetradecylphenyl)methyl alcohol, naphthylmethyl alcohol, anthracenylmethyl alcohol;
1-phenylethyl alcohol,
1-(1-naphthyl)ethyl alcohol, 1-(2-naphthyl)ethyl alcohol,
4-prop-2-ynylphenyl)methane-1-ol,
3-prop-2-ynylphenyl)methane-1-ol, and the like.
[0043] Examples of the alcohol compound of formula (3), wherein R
6 represents 1-, or 2-indanyl group which may be substituted with an alkynyl group
or an aryl or heteroaryl group (e.g. thienyl) include, for example, 4-prop-2-enylindan-1-ol,
4-phenylindan-2-ol, 4-(2-thienyl)indan-2-ol, and the like.
[0044] Examples of the aryl alcohol includes, phenol, 1-naphthol, 2-naphthol, 4-prop-2-ynylphenol,
3-prop-2-ynylphenol, 4-hydroxyacetophenone, 4-hydroxybenzaldehyde, and the above-described
compounds having aromatic rings substituted with an alkyl group, an alkoxy group,
a halogen atom, or the like.
[0045] Preferred monohydroxy compound (3) are primary alcohols, such as benzyl alcohol,
pentafluoroethyl alcohol, 3,3-dibromo-2-propene-1-ol, perfluoropropyl alcohol, hexafluoroisopropyl
alcohol, perfluorobutyl alcohol, perfluoropentyl alcohol, perfluorohexyl alcohol,
perfluorooctyl alcohol, perfluorodecyl alcohol,
{1-(2-propynyl)-5-(trifluoromethyl)-4-pyrazolyl}methane-1-ol,
1-{1-(2-propynyl)-5-(trifluoromethyl)pyrrole-3-yl}prop-2-yn-1-ol,
1-{2-(trifluoromethyl)-1,3-thiazole-4-yl}prop-2-yn-1-ol,
1-{2-(trifluoromethoxy)-1,3-thiazole-4-yl}prop-2-yn-1-ol,
and 4-fluorohept-4-en-1-yn-3-ol.
[0046] Preferred are aralkyl alcohols and hydroxycyclopentenones, and more preferred are:
3-phenoxybenzyl alcohol;
4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-one; and
4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentene-1-one.
[0047] An asymmetric center (s) may be present in the monohydroxy compound (3), and any
optical isomer or a mixture thereof may be used in the present process to produce
an optically active desiredester(s) (1) with retention of configuration with respect
to the asymmetric center(s) in the alcohol moiety.
[0048] The monohydroxy compound (3) may be used in excess. Preferably, the monohydroxy compound
(3) is used 1 mol or less per mol of the cyclopropanecarboxylic acids (2). After completion
of the reaction, unreacted materials may generally be recovered by such operation
as distillation, extraction, or the like.
[0049] Next, a description will be made to the catalyst compound comprising an element of
Group 4 of the Periodic Table of Elements.
[0050] Examples of the catalyst compound include a zirconium compound, a titanium compound,
a hafnium compound and the like.
[0051] Preferred catalyst compounds are zirconium, titanium, and hafnium compounds having
Lewis acidity, and can be represented by formula (4):
M(O)
m(X)
n(Y)
4-2m-n (4)
wherein M represents an element of Group 4 of the Periodic Table of Elements; X and
Y independently represent a halogen-atom, an alkoxy group, an acetylacetonate group,
an acyloxy group, an amino group which may be substituted with up to two alkyl groups,
or a cyclopentadienyl group; and m is equal to 0 or 1, and n is equal to 0, 1, or
2.
[0052] Specific examples of the titanium and hafnium compounds include, for example, titanium
halide such as titanium tetrafluoride, titanium tetrachloride, titanium tetrabromide,
titanium tetraiodide; titanium acetate, titanium acetylacetonato, titanium ethoxide,
titanium i-propoxide, titanium n-butoxide, titanium t-butoxide; titanium oxychloride;
titanium amide such as tetrakis(dimethylamino)titanium, tetrakis(diethylamino)titanium
or the like; titanocene dichloride, titanocene dimethoxide, decamethyltitanocene dichloride;
hafnium halide such as hafnium tetrafluoride, hafnium tetrachloride, hafnium tetrabromide,
hafnium tetraiodide or the like; hafnium acetate, hafnium acetylacetonate, hafnium
alkoxide such as hafnium ethoxide, hafnium i-propoxide, hafnium n-butoxide, hafnium
t-butoxide or the like; hafnium oxychloride; amide compound of hafnium such as tetrakis(dimethylamino)hafnium,
tetrakis(diethylamino)hafnium or the like; hafnocene dichloride, hafnocene dimethoxide,
and decamethylhafnocene dichloride.
[0053] Among the specific compounds, preferred are titanium tetrachloride, titanium i-propoxide,
titanocene dichloride, hafnium tetrachloride, hafnium t-butoxide, and hafnocene dichloride.
[0054] - Specific examples of the zirconium compound includes, for example, zirconium halide
such as zirconium tetrafluoride, zirconium tetrachloride, zirconium tetrabromide,
zirconium tetraiodide or the like; zirconium acetate, zirconium acetylacetonate; zirconiumalkoxide
such as zirconiumethoxide, zirconium i-propoxide, zirconium n-butoxide, zirconium
t-butoxide or the like; zirconium oxychloride; amide compound of zirconium such as
tetrakis(dimethylamino)zirconium, tetrakis(diethylamino)zirconium or the like; zirconocene
compound such as zirconocene dichloride, zirconocene dimethoxide, and decamethylzirconocene
dichloride. Preferably are zirconium tetrachloride, zirconium t-butoxide, and zirconocene
dichloride.
The compound comprising an element of Group 4 of the Periodic Table of Elements maybe
used as commercially available anhydride or hydrate without any processing. A complex
comprising a compound comprising an element of Group 4 of the Periodic Table of Elements
and a compound having a ligating property such as tetrahydrofuran and tetramethylethylenediamine
may also be used.
[0055] Although any amount of the compound comprising an element of Group 4 of the Periodic
Table of Elements may be used, it is normally catalytic and preferably around 0.001
to 200 mole % per mol of the cyclopropanecarboxylic acid (2), more preferably within
the range of around 0.1 to 20 mole %, and still more preferably within the range of
around 0.1 to 10 mole %.
[0056] The reaction of the cyclopropanecarboxylic acids (2) with the monohydroxy compound
(3) in the presence of the catalyst of the present invention is usually conducted
in an inert gas atmosphere such as argon and nitrogen. The reaction may be performed
under a normal pressure, a pressurized pressure, or a reduced pressure. Preferably,
the reaction is performed under a normal pressure or a reduced pressure. In addition,
it is preferable to perform reaction while continuously removing water, which is formed
as a byproduct of dehydration reaction, from the reaction system by such a method
as distillation or the like.
[0057] The reaction may be performed in the absence of a solvent or in a solvent. The solvent
that may be used includes: halogenated hydrocarbons such as dichloromethane, chloroform,
and 1, 2-dichloroethane, aliphatic hydrocarbons such as hexane, heptane, octane, nonane
or the like; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene
or the like; and ether solvents such as diethyl ether, tetrahydrofuran or the like.
By-produced water may be removed from the reaction system by using a solvent that
forms an azeotrope with the byproduct water.
[0058] Although a reaction temperature is not particularly defined, it is preferably within
a range of around 20 to around 200 °C.
[0059] The catalyst maybe removed by washing the reaction mixture with water or acidic water
makes, and the cyclopropanecarboxylate esters (1) can be isolated by performing normal
operation such as distillation, recrystallization, and column chromatography, if necessary,
from the reaction mixtures.
Examples
[0060] The present invention will be described in detail with the following examples, but
it is not to be construed that the present invention is limited to the examples.
Example 1
[0061] In a 10 ml test tube-type reactor, 0.43 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic
acid (E/Z=80/20), 0.50 g of 3-phenoxybenzyl alcohol, 5.8 mg of zirconium tetrachloride,
and 5 ml of xylene were charged The reactor was equipped with a Dean-Stark trap and
a condenser, and the reaction mixture was stirred under reflux for 8 hours at 145
°C while water generated as a by-product during reaction was being separated and collected
in the trap . A reaction mixture thereof was analyzed with gas chromatography to find
that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate
was obtained in ayieldof 98% (E/Z=84/16, selectivity: 99%) based on the material alcohol.
Example 2
[0062] The reaction was performed in a similar manner as in Example 1 except that 9.4 mg
of a complex of zirconium tetrachloride with 2 tetrahydrofuran was charged instead
of 5.8 mg of zirconium tetrachloride in Example 1.
[0063] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl
2,2-dimethyl-3-(2-methyl-1-propenyl) cyclopropanecarboxylate was obtained in a yield
of 95% (E/Z=85/15, selectivity: 98%) based on the material alcohol.
Example 3
[0064] The reaction was performed in a similar manner as in Example 1-except that 7.3 mg
of zirconocene dichloride was charged instead of 5.8 mg of zirconium tetrachloride
in Example 1.
[0065] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 97% (selectivity: 98%) based on the material alcohol.
Example 4
[0066] The reaction was performed in a similar manner as in Example 1 except that 9.6 mg
of zirconium t-butoxide was charged instead of 5.8 mg of zirconium tetrachloride in
Example 1.
[0067] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)
methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in
a yield of 91% (selectivity: 92%) based on the material alcohol.
Example 5
[0068] The reaction was performed in a similar manner as in Example 1 except that 6.6 mg
of zirconium acetate was charged instead of 5.8 mg of zirconium tetrachloride in Example
1.
[0069] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 95% (selectivity: 96%) based on the material alcohol.
Example 6
[0070] - The reaction was performed in a similar manner as in Example 1 except that 0.47
g of (5-benzyl-3-furyl)methane-1-ol was charged instead of 0.50 g of 3-phenoxybenzyl
alcohol in Example 1.
[0071] A reaction mixture thereof was analyzed with gas chromatography to find that (5-benzyl-3-furyl)methyl
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 92% (selectivity: 99%) based on the material alcohol.
Comparative Example 1
[0072] The reaction was performed in a similar manner as in Example 1 except that 12.5 mg
of concentrated sulfuric acid was charged instead of 5.8 mg of zirconium tetrachloride
in Example 1.
[0073] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 81% (selectivity: 87%) based on the material alcohol.
Comparative Example 2
[0074] The reaction was performed in a similarmanner as in Example 1 except that 23.7 mg
of p-toluenesulfonic acid was charged instead of 5.8 mg of zirconium tetrachloride
in Example 1.
[0075] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 61% (selectivity: 93%) based on the material alcohol.
Example 7
[0076] In a 10 ml test tube-type reactor, 0.43 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic
acid, 0.38 g of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-on, 48.0 mg of
zirconium t-butoxide, and 5 ml of xylene were charged. The reactor was equipped with
a Dean-Stark trap and a condenser, and the.reaction mixture was stirred under reflux
for 8 hours at 145°C while water generated as a by-product during reaction was being
separated and collected in the trap. A reactionmixture thereof was analyzed with gas
chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-
(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 62% (selectivity:
97%) based on the material alcohol.
Example 8
[0077] In a 10 ml test tube-type reactor, 0.85 g of 2,2-dimethyl-3- (2-methyl-1-propenyl)cyclopropanecarboxylic
acid, 0.75 g of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-on, 58 mg of zirconium
tetrachloride, and 5 ml of xylene were charged. The reactor was equipped with a Dean-Stark
trap and a condenser, and the reaction mixture was stirred under reflux for 16 hours
at 145°C while water generated as a by-product during reaction was being separated
and collected in the trap. A reaction mixture thereof was analyzed with gas chromatography
to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3- (2-methyl-1-propenyl)cyclopropanecarboxylate
was obtained in a yield of 85% (selectivity: 90%) based on the material alcohol.
Examples 9 to 11
[0078] Experiments were conducted in a similar manner as in Example 8 except that the following
alcohol compounds and the zirconium compounds- were used in place of the alcohol and
zirconium compounds used in Example 8.
Ex. |
Alcohol compound |
Zirconium compound |
Yield(%) of ester |
Selectivity (%) |
9 |
A |
Zr[OCH (CH3)2]4 |
94 |
94 |
|
|
82 mg |
|
|
10 |
B |
ZrCl4 |
87 |
87 |
|
0.75 g |
|
|
|
11 |
B |
Zr [OCH (CH3)2]4 |
93 |
97 |
|
0.75 g |
82 mg |
|
|
A: 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-on |
B: 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentene-1-on |
Example 12
[0079] In a 10 ml test tube-type reactor, 0.16 g of 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylic
acid, 0.22 g of 2,3,5, 6-tetrafluoro-4-(methoxymethyl) benzyl alcohol, 3.3 mg of zirconium
tetraisopropoxide, and 5 ml of xylene were charged. The reactor was equipped with
a Dean-Stark trap and a condenser, and the reaction mixture was stirred under reflux
for 8 hours at 145°C while water generated as a by-product during reaction was being
separated and collected in the trap. A reaction mixture thereof was analyzed with
gas chromatography to find that 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate
was obtainedinayieldof 83% (selectivity: 98%) based on the material alcohol.
Example 13
[0080] In a 10 ml test tube-type reactor, 0.34 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic
acid, 0.45 g of 2,3,5,6-tetrafluoro-9-(methoxymethyl)benzyl alcohol, 4.7 mg of zirconium
tetrachloride, and 5 ml of xylene were charged. The.reactor was equipped with a Dean-Stark
trap and a condenser, and the reactionmixture was stirred under reflux for 8 hours
at 145°C while water generated as a by-product during reaction was being separated
and collected in the trap. A reaction mixture thereof was analyzed with gas chromatography
to find that 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl 2,2-dimethyl-3-(2-methyl-1-propenyl)
cyclopropanecarboxylate was obtained in a yield of 68% (selectivity: 98%) based on
the material alcohol.
Examples 14 to 18
[0081] Experiments were conducted in a similar manner as in Example 13 except that following
zirconium compounds and amounts.
Ex. |
Zirconium compound |
Yield of ester(%) |
Selectivity (%) |
14 |
(ZrCl4). |
|
|
|
9.3 mg |
92 |
98 |
15 |
ZrBr4 |
|
|
|
8.2 mg |
62 |
96 |
16 |
ZrCl4THF complex |
|
|
|
7.5 mg |
78 |
99 |
17 |
Zr [OCH (CH3)2]4 |
|
|
|
6.5 mg |
74 |
97 |
18 |
Zirconocene dichloride, 8.8 mg |
63 |
99 |
Example 19
[0082] In a 10ml test tube-type reactor, 0.43 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic
acid, 0.50 g of 3-phenoxybenzyl alcohol, 8.0 mg of hafnium tetrachloride, and 5 ml
of xylene were charged. The reactor was equipped with a Dean-Stark trap and a condenser,
and the reaction mixture was stirred under reflux for 8 hours at 145 °C while water
generated as a by-product during reaction was being separated and collected in the
trap. A reaction mixture thereof was analyzed with gas chromatography to find that
(3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl) cyclopropanecarboxylate
was obtained in a yield of 86% (selectivity: 94%) based on the material alcohol.
Example 20
[0083] The reaction was performed in a similar manner as in Example 19 except that 11.6
mg of a hafnium tetrachloride-2 tetrahydrofuran complex was charged instead of 8.0
mg of hafnium tetrachloride in Example 19.
[0084] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 97% (selectivity: 98%) based on the material alcohol.
Example 21
[0085] The reaction was performed in a similar manner as in Example 19 except that 12.0
mg of a hafnium tetrachloride·2pyridine complex was charged instead of 8.0 mg of hafnium
tetrachloride in Example 19.
[0086] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl
2,2-dimethyl-3-(2-methyl-1-propenyl) cyclopropanecarboxylate was obtained in a yield
of 96% (selectivity: 98%) based on the material alcohol.
Example 22
[0087] The reaction was performed in a similar manner as in Example 19 except that 12.5
mg of hafnium tetrabromide was charged instead of 8.0 mg of hafnium tetrachloride
in Example 19.
A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 87% (selectivity: 93%) based on the material alcohol.
Example 23
[0088] The reaction was performed in a similarmanner as in Example 19 except that 10.5 mg
of pentamethylcyclopentadienylhafnium trichloride was charged instead of 8.0 mg of
hafnium tetrachloride in Example 19.
A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl
2',2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 90% (selectivity: 94%) based on the material alcohol.
Example 24
[0089] The reaction was performed in a similar manner as in Example 19 except that 8.9 mg
of tetrakis(diethylamino) hafnium was charged instead of 8.0 mg of hafnium tetrachloride
in Example 19. A reaction mixture thereof was analyzed with gas chromatography, and
the result indicated that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate
was obtained in a yield of 93% (selectivity: 99%) based on the material alcohol.
Comparative Example 3
[0090] The reaction was performed in a similar manner as in Example 19 except that 12. 5
mg of concentrated sulfuric acid was prepared instead of 8.0 mg of hafnium tetrachloride
in Example 19. A reaction mixture thereof was analyzed with gas chromatography to
find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate
was obtained in a yield of 81% (selectivity: 87%) based on the material alcohol.
Comparative Example 4
[0091] The reaction was performed in a similar manner as in Example 19 except that 23.7
mg of p-toluenesulfonic acid was charged instead of 8.0 mg of hafnium tetrachloride
in Example 19. A reaction mixture thereof was analyzed with gas chromatography to
find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate
was obtained in a yield of 61% (selectivity: 93%) based on the material alcohol.
Example 25
[0092] In a 10 ml test tube-type reactor were charged 0.43 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)-cyclopropanecarboxylic
acid, 0.38 g of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-one, 58.1 mg of
a hafnium tetrachloride·2tetrahydrofuran complex, and 5 ml of xylene. The reactor
was equipped with a Dean-Stark trap and a condenser, and the reaction mixture was
stirred under reflux for 8 hours at 145 °C while water generated as a by-product during
reaction was being separated and collected in the trap. The resulting reaction mixture
was analyzed with gas chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 65% (selectivity: 84%) based on the material alcohol
Example 26
[0093] The reaction was performed in a similar manner as in Example 25 except that 62.1
mg of a hafnium tetrachloride·2dioxane complex was charged instead of 58.1 mg of a
hafnium tetrachloride·2 tetrahydrofuran in Example 25. A reaction mixture thereof
was analyzed with gas chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl
2, 2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 59% (selectivity: 80%) based on the material alcohol.
Comparative Example 5
[0094] The reaction was performed in a similar manner as in Example 25 except that 12.5
mg of concentrated sulfuric acid was charged instead of 58.1 mg of a hafnium tetrachloride·2
tetrahydrofuran complex in Example 25. A reaction mixture thereof was analyzed with
gas chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cycloprepanecarboxylate
was obtained in a yield of 30% (selectivity: 31%) based on the material alcohol.
Comparative Example 6
[0095] Reaction was performed in a similar manner as in Example 25 except that 23.7 mg of
p-toluenesulfonic acid was charged instead of 58.1 mg of a hafnium tetrachloride 2
tetrahydrofuran complex in Example 25. A reaction mixture thereof was analyzed with
gas chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-l-propenyl)cyclopropanecarboxylate
was obtained in a yield of 6.4% (selectivity: 8%) based on the material alcohol.
Example 27
[0096] In a 10ml test tube-type reactor, there were prepared 0.43 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)
cyclopropanecarboxylic acid, 0.38 g of 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentene-1-one,
58.1 mg of a complex made of hafnium tetrachloride and 2·tetrahydrofuran, and 5ml
of xylene were charged. The reactor was equipped with a Dean-Stark trap anda condenser,
and the reaction mixture was stirred under reflux for 8 hours at 145 °C while water
generated as a by-product during reaction was being separated and collected in the
trap. A reaction mixture thereof was analyzed with gas chromatography to find that
3-(2-propynyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate
was obtained in a yield of 61% (selectivity: 79%) based on the material alcohol.
Example 28
[0097] The reaction was performed in a similar manner as in Example 27 except that 62.1
mg of a hafnium tetrachloride-2dioxane complex was charged instead of 58.1 mg of a
hafnium tetrachloride-2tetrahydrofuran complex in Example 27.
[0098] A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propynyl)
-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate
was obtained in a yield of 58% (selectivity: 79%) based on the material alcohol.
Comparative Example 7
[0099] The reaction was performed in a similar manner as in Example 27 except that 12.5
mg of concentrated sulfuric acid was charged instead of 58.1 mg of a hafnium tetrachloride·2tetrahydrofuran
complex in Example 27.
[0100] A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propynyl)
-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate
was obtained in a yield of 9.3% (selectivity: 12%) based on the material alcohol.
Comparative Example 8
[0101] The reaction was performed in a similar manner as in Example 27 except that 23.7
mg of p-toluenesulfonic acid was charged instead of 58.1 mg of a hafnium tetrachloride·2tetrahydrofuran
complex in Example 27.
[0102] A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propynyl)
-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate
was obtained in a yield of 0.8% (selectivity: 4.4%) based on the material alcohol.
Example 29
[0103] In a 10 ml test tube-type reactor, 0.16 g of 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylic
acid, 0.22 g of 2, 3, 5, 6-tetrafluoro-4-(methoxymethyl)benzyl alcohol, 4.6 mg of
a hafnium tetrachloride·2tetrahydrofuran complex, and 5 ml of xylene were charged.
The reactor was equipped with a Dean-Stark trap and a condenser, and the reaction
mixture was stirred under reflux for 8 hours at 145°C while water generated as a by-product
during reaction was being separated and collected in the trap. A reaction mixture
thereof was analyzed with gas chromatography to find that 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl
2,2-dimethyl-3-(1-propehyl)cyclopropanecarboxylate was obtained in a yield of 80%
(selectivity: 99%) based on the material alcohol.
Example 30
[0104] The reaction was conducted in a similar manner as in Example 29 except that 5.0 mg
of hafnium tetrabromide was used in place of 4.6 mg of a hafnium tetrachloride·2tetrahydrofuran
complex. Analysis of the reaction mixture showed that the yield of 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl
2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate was 95% (selectivity: 97%) based
on the alcohol.
Example 31
[0105] In a 10 ml test tube-type reactor, 0.34 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic
acid, 0.45 g of 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl alcohol, 18.6 mg of a
hafnium tetrachloride·2tetrahydrofuran complex, and 5 ml of xylene were charged. The
reactor was equipped with a Dean-Stark trap and a condenser, and the reaction mixture
was stirred under reflux for 8 hours at 145°C while water generated as a by product
during reaction was being separated and collected in the trap. A reaction mixture
thereof was analyzed with gas chromatography to find that 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield
of 70% (selectivity: 99%) based on the material alcohol.
Example 32
[0106] The reaction was conducted in a similar manner as in Example 31 except that 19.9
mg of hafnium tetrabromide was used in place of 18.6 mg of a hafnium tetrachloride·2tetrahydrofuran
complex. Analysis of the reaction mixture showed that the yield of 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl
2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate was 81% (selectivity: 87%) based
on the alcohol.
1. A process for producing a cyclopropanecarboxylate of formula (1):
wherein R
1, R
2, R
3, R
4, and R
5 independently represent
a hydrogen atom, a halogen atom,
an alkyl group which may be substituted,
an alkenyl group which may be substituted,
an alkynyl group which may be substituted, or
an aryl group which may be substituted; and
R
6 represents
an alkyl group which may be substituted, or
an aryl group which may be substituted,
which process comprises reacting a cyclopropanecarboxylic acid of formula (2):
with a monohydroxy compound of formula (3):
R
6OH (3),
in the presence of
a catalyst compound comprising an element of group 4 of the Periodic Table of Elements.
2. A process according to claim 1, wherein
R
1, R
2, R
3, R
4, and R
5 independently represent
a hydrogen atom, a halogen atom,
an alkyl group,
an alkenyl group,
an alkynyl group, or
an aryl group, and
wherein the alkyl, alkenyl, and alkynyl groups may be independently substituted with
at least one member selected from
a halogen atom, an alkoxy group,
an alkoxy-carbonyl group,
a haloalkoxy-carbonyl group,
an aryl group,
a halocycloalkylidene group,
an alkoxyimino group,
an alkylsulfonyl group,
an alkylsulfonyloxy group, and
a hydroxysulfinyl group; and
R
6 represents
an alkyl group, which may be substituted with a member selected from
a halogen atom, a cyano group, a nitro group,
an alkenyl group, a haloalkenyl group,
an alkynyl group,
an aryl or heterocyclic group which may be substituted with at lest one member selected
from:
an alkyl group, a haloalkyl group,
an alkoxy group, a haloalkoxy group,
an alkoxyalkyl group,
an alkenyl group, an alkynyl group,
an aryl group, an aryloxy group,
a haloaryloxy group,
an aralkyl group,
an acyl group,
a haloacyloxyalkyl group,
an amino group, and a halogen atom; or
R
6 represents:
a 1-, or 2-indanyl group which may be substituted with an alkynyl group or an aryl
or heteroaryl group;
a cycloalkenyl group substituted with at least one member selected from an oxo group,
an alkyl group, an alkenyl and an alkynyl group; or
an aryl group which may be substituted with a phenyl group, an alkynyl group, an acyl
group, a halogen atom, an alkoxy group, or an alkyl group.
3. A process according to claim 2, wherein
R
1, R
2, R
3, R
4, and R
5 independently represent
a hydrogen atom, a halogen atom,
a (C1-C10)alkyl group,
a (C2-C5)alkenyl group,
a (C2-C5)alkynyl group, or
a. (C6-C14)aryl group, and
wherein the alkyl, alkenyl, and alkynyl groups may be independently substituted with
at least one member selected from
a halogen atom, a (C1-C4)alkoxy group,
a (C1-C4)alkoxy-carbonyl group,
a halo(C1-C4)alkoxy-carbonyl group,
a. (C6-C14)aryl group,
a halo(C3-C5)cycloalkylidene group,
a (C1-C3)alkoxyimino group,
a. (C1-C4)alkylsulfonyl group,
a (C1-C4)alkylsulfonyloxy group, and
a hydroxysulfinyl group; and
R
6 represents
a (C1-C10) alkyl group, which may be substituted with a member selected from
a halogen atom, a cyano group, a nitro group,
a (C2-C5)alkenyl group, a halo(C2-C5)alkenyl group, a (C2-C5)alkynyl group,
a (C6-C14)aryl or heterocyclic group which may be substituted with at least one member
selected from:
a (C1-C14) alkyl group, a halo (C1-C14) alkyl group,
a (C1-C4) alkoxy group, a halo (C1-C4) alkoxy group,
a (C1-C4)alkoxy(C1-C14)alkyl group,
a (C2-C5)alkenyl group, a (C2-C5)alkynyl group,
a (C6-C14)aryl group, a (C6-C14)aryloxy group,
a halo(C6-C14)aryloxy group,
a (C7-C9)aralkyl group,
a (C1-C2)acyl group,
a haloacyloxy(C1-C14)alkyl group,
an amino group, and a halogen atom; or
R
6 represents:
a 1-, or 2-indanyl group which may be substituted with a (C2-C5)alkynyl group or a
(C6-C14)aryl or 5-membered heteroaryl group;
a cycloalkenyl group substituted with at least one member selected from an oxo group,
a (C1-C14)alkyl group, a (C2-C5)alkenyl and a (C2-C5)alkynyl group; or
a (C6-C14)aryl group which may be substituted with a phenyl group, a (C2-C5)alkynyl
group, a (C1-C2)acyl group, a halogen atom, a (C1-C4) alkoxy group, or a (C1-C14)
alkyl group.
4. A process according to any one of claims 1 to 3, wherein the catalyst compound is
a zirconium, hafnium or titanium compound.
5. A process according to claim 4, wherein the catalyst compound is a zirconium, hafnium
or titanium compound having Lewis acidity.
6. A process according to claim 4 or 5, wherein the catalyst compound is a compound of
formula (4):
M(O)-m(X)n(Y)4-2m-n (4)
wherein M represents an element of Group 4 of the Periodic Table of Elements; X and
Y independently represent a halogen atom, an alkoxy group, an acetylacetonate group,
an acyloxy group, an amino group which may be substituted with up to two alkyl groups,
or a cyclopentadienyl group; m is equal to 0 or 1, and n is equal to 0, 1, or 2.
7. A process according to claim 6, wherein M represents zirconium.
8. A process according to claim 6, wherein M represents hafnium or titanium.
9. A process according to claim 7, wherein the compound of formula (4) is zirconium tetrachloride,
a zirconocene compound, or zirconium alkoxide.
10. A process according to claim 8, wherein the compound of formula (4) is hafnium or
titanium halide, a hafnium or titanium alkoxide, or an amide compound of hafnium or
titanium.
11. A process according to any one of claims 1 to 10, wherein the cyclopropanecarboxylic
acid of formula (2) is 2,2-dimethyl-3-(2,2-dichlorovinyl) cyclopropanecarboxylic acid.
12. A process according to any one of claims 1 to 10, wherein the cyclopropanecarboxylic
acid of formula (2) is 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic
acid.
13. A process according to any one of claims 1 to 12, wherein the monohydroxy compound
of formula (3) is a primary alcohol.
14. A process according to any one of Claims 1 to 12, wherein the monohydroxy compound
is a compound of formula (3), wherein R6 represents a methyl or ethyl group substituted with at least one member selected
from the aryl group which may be substituted, a cyano group, and the alkynyl group.
15. A process according to any one of Claims 1 to 13, wherein the monohydroxy compound
of formula (3) is 3-phenoxybenzyl alcohol.
16. A process according to any one of claims 1 to 12, wherein the monohydroxy compound
of formula (3) is 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-one.
17. A process according to any one of claims 1 to 12, wherein the monohydroxy compound
of formula (3) is 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentene-1-one.
1. Verfahren zur Herstellung eines Cyclopropancarboxylats der Formel (1):
wobei R
1, R
2, R
3, R
4 und R
5 unabhängig voneinander
ein Wasserstoffatom, ein Halogenatom,
einen Alkylrest, der substituiert sein kann,
einen Alkenylrest, der substituiert sein kann,
einen Alkinylrest, der substituiert sein kann, oder
einen Arylrest, der substituiert sein kann, darstellen; und
R
6 einen Alkylrest, der substituiert sein kann, oder einen Arylrest, der substituiert
sein kann, darstellt,
wobei das Verfahren das Umsetzen einer Cyclopropancarbonsäure der Formel (2)
mit einer Monohydroxyverbindung der Formel (3)
R
6OH (3)
in Gegenwart einer Katalysatorverbindung, umfassend ein Element der Gruppe 4 des Periodensystems,
umfasst.
2. Verfahren nach Anspruch 1, wobei
R1, R2, R3, R4 und R5 unabhängig voneinander
ein Wasserstoffatom, ein Halogenatom,
einen Alkylrest,
einen Alkenylrest,
einen Alkinylrest oder
einen Arylrest darstellen; und
wobei die Alkyl-, Alkenyl- und Alkinylreste unabhängig voneinander mit mindestens
einem Mitglied, ausgewählt aus
einem Halogenatom, einem Alkoxyrest,
einem Alkoxycarbonylrest,
einem Halogenalkoxycarbonylrest,
einem Arylrest,
einem Halogencycloalkylidenrest,
einem Alkoxyiminorest,
einem Alkylsulfonylrest,
einem Alkylsulfonyloxyrest und
einem Hydroxysulfinylrest, substituiert sein können; und
R6
einen Alkylrest darstellt, der mit einem Mitglied substituiert sein kann, ausgewählt
aus
einem Halogenatom, einem Cyanorest, einem Nitrorest,
einem Alkenylrest, einem Halogenalkenylrest,
einem Alkinylrest,
einem Aryl- oder heterocyclischen Rest, die mit mindestens einem Bestandteil, ausgewählt
aus
einem Alkylrest, einem Halogenalkylrest,
einem Alkoxyrest, einem Halogenalkoxyrest,
einem Alkoxyalkylrest,
einem Alkenylrest, einem Alkinylrest,
einem Arylrest, einem Aryloxyrest,
einem Halogenaryloxyrest,
einem Aralkylrest,
einem Acylrest,
einem Halogenacyloxyalkylrest,
einem Aminorest und einem Halogenatom, substituiert sein können; oder
R6
einen 1- oder 2-Indanylrest, der mit einem Alkinyl- oder einem Aryl- oder einem
Heteroarylrest substituiert sein kann;
einen Cycloalkenylrest, der mit mindestens einem Bestandteil, ausgewählt aus einem
Oxo-, einem Alkyl-, einem Alkenyl- und einem Alkinylrest, substituiert ist; oder
einen Arylrest, der mit einem Phenyl-, einem Alkinyl-, einem Acylrest, einem Halogenatom,
einem Alkoxyrest oder einem Alkylrest substituiert sein kann, darstellt.
3. Verfahren nach Anspruch 2, wobei R1, R2, R3, R4 und R5 unabhängig voneinander
ein Wasserstoffatom, ein Halogenatom,
einen (C1-C10)-Alkylrest,
einen (C2-C5)-Alkenylrest,
einen (C2-C5)-Alkinylrest oder
einen (C6-C14)-Arylrest darstellen, und
wobei die Alkyl-, Alkenyl- und Alkinylreste unabhängig voneinander mit mindestens
einem Bestandteil, ausgewählt aus
einem Halogenatom, einem (C1-C4)-Alkoxyrest,
einem (C1-C4)-Alkoxycarbonylrest,
einem Halogen-(C1-C4)-alkoxycarbonylrest,
einem (C6-C14)-Arylrest,
einem Halogen-(C3-C5)-cycloalkylidenrest,
einem (C1-C3)-Alkoxyiminorest,
einem (C1-C4)-Alkylsulfonylrest,
einem (C1-C4)-Alkylsulfonyloxyrest und
einem Hydroxysulfinylrest, substituiert sein können; und
R6
einen (C1-C10)-Alkylrest, der mit einem Bestandteil substituiert sein kann, ausgewählt
aus
einem Halogenatom, einer Cyanogruppe, einer Nitrogruppe,
einem (C2-C5)-Alkenylrest, einem Halogen-(C2-C5)-alkenylrest,
einem (C2-C5)-Alkinylrest,
einem (C6-C14)-Aryl- oder heterocyclischen Rest, die mit mindestens einem Bestandteil, ausgewählt
aus
einem (C1-C14)-Alkylrest, einem Halogen-(C1-C14)-alkylrest,
einem (C1-C4)-Alkoxyrest, einem Halogen-(C1-C4)-alkoxyrest,
einem (C1-C4)-alkoxy-(C1-C14)-alkylrest,
einem (C2-C5)-Alkenylrest, einem (C2-C5)-Alkinylrest,
einem (C6-C14)-Arylrest, einem (C6-C14)-Aryloxyrest,
einem Halogen-(C6-C14)-aryloxyrest,
einem (C7-C8)-Aralkylrest,
einem (C1-C2)-Acylrest,
einem Halogenacyloxy-(C1-C14)-alkylrest,
einem Aminorest und einem Halogenatom, substituiert sein können; darstellt oder
R6
einen 1- oder 2-Indanylrest, der mit einem (C2-C5)-Alkinylrest oder einem (C6-C14)-Arylrest oder einem 5-gliedrigen Heteroarylrest substituiert sein kann;
einen Cycloalkenylrest, der mit mindestens einem Bestandteil, ausgewählt aus einem
Oxorest, einem (C1-C14)-Alkylrest, einem (C2-C5)-Alkenylrest und einem (C2-C5)-Alkinylrest, substituiert sein kann; oder
einen (C6-C14)-Arylrest, der mit einem Phenylrest, einem (C2-C5)-Alkinylrest, einem (C1-C2)-Acylrest, einem Halogenatom, einem (C1-C4)-Alkoxyrest oder einem (C1-C14)-Alkylrest substituiert sein kann, darstellt.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Katalysatorverbindung eine Zirconium-,
Hafnium- oder Titanverbindung ist.
5. Verfahren nach Anspruch 4, wobei die Katalysatorverbindung eine Zirconium-, Hafnium-
oder Titanverbindung ist, die Lewis-Acidität aufweist, ist.
6. Verfahren nach Anspruch 4 oder 5, wobei die Katalysatorverbindung eine Verbindung
der Formel (4) ist:
M(O)-m(X)4-2m-n (4)
wobei M ein Element der Gruppe 4 des Periodensystems darstellt; X und Y unabhängig
voneinander ein Halogenatom, einen Alkoxyrest, einen Acetylacetonatrest, einen Acyloxyrest,
einen Aminorest, der mit bis zu zwei Alkylresten substituiert sein kann, oder einen
Cyclopentadienylrest darstellen;
m gleich 0 oder 1 ist und n gleich 0, 1 oder 2 ist.
7. Verfahren nach Anspruch 6, wobei M für Zirconium steht.
8. Verfahren nach Anspruch 6, wobei M für Hafnium oder Titan steht.
9. Verfahren nach Anspruch 7, wobei die Verbindung der Formel (4) Zirconiumtetrachlorid,
eine Zirconocenverbindung oder Zirconiumalkoxid darstellt.
10. Verfahren nach Anspruch 8, wobei die Verbindung der Formel (4) für Hafnium- oder Titanhalogenid,
für ein Hafnium- oder Titanalkoxid oder für eine Amidverbindung von Hafnium oder Titan
steht.
11. Verfahren nach einem der Ansprüche 1 bis 10, wobei die Cyclopropancarbonsäure der
Formel (2) 2,2-Dimethyl-3-(2,2-dichlorvinyl)cyclopropancarbonsäure ist.
12. Verfahren nach einem der Ansprüche 1 bis 10, wobei die Cyclopropancarbonsäure der
Formel (2) 2,2-Dimethyl-3-(2-methyl-1-propenyl)cyclopropancarbonsäure ist.
13. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Monohydroxyverbindung der Formel
(3) ein primärer Alkohol ist.
14. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Monohydroxyverbindung eine
Verbindung der Formel (3) ist, wobei R6 einen Methyl- oder Ethylrest darstellt, der mit mindestens einem Bestandteil, ausgewählt
aus dem Arylrest, der substituiert sein kann, einer Cyanogruppe und dem Alkinylrest,
substituiert ist.
15. Verfahren nach einem der Ansprüche 1 bis 13, wobei die Monohydroxyverbindung der Formel
(3) 3-Phenoxybenzylalkohol ist.
16. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Monohydroxyverbindung der Formel
(3) 4-Hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-on ist.
17. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Monohydroxyverbindung der Formel
(3) 4-Hydroxy-3-methyl-2-(2-propinyl)-2-cyclopenten-1-on ist.
1. Procédé pour la production d'un cyclopropanecarboxylate de formule (1) :
dans laquelle R
1, R
2, R
3, R
4 et R
5 représentent indépendamment
un atome d'hydrogène, un atome d'halogène,
un groupe alkyle qui peut être substitué,
un groupe alcényle qui peut être substitué,
un groupe alcynyle qui peut être substitué, ou
un groupe aryle qui peut être substitué ; et
R
6 représente
un groupe alkyle qui peut être substitué, ou
un groupe aryle qui peut être substitué,
lequel procédé comprend la réaction d'un acide cyclopropanecarboxylique de la formule
(2) :
avec un composé monohydroxy de formule (3) :
R
6OH (3),
en présence
d'un composé de catalyseur comprenant un élément du groupe 4 de la Classification
Périodique des Eléments.
2. Procédé selon la revendication 1, dans lequel
R
1, R
2, R
3, R
4 et R
5 représentent indépendamment
un atome d'hydrogène, un atome d'halogène,
un groupe alkyle,
un groupe alcényle,
un groupe alcynyle, ou
un groupe aryle, et
dans lequel les groupes alkyle, alcényle et alcynyle peuvent être indépendamment substitués
avec au moins un élément choisi parmi
un atome d'halogène, un groupe alcoxy,
un groupe alcoxy-carbonyle,
un groupe haloalcoxy-carbonyle,
un groupe aryle,
un groupe halocycloalkylidène,
un groupe alcoxyimino,
un groupe alkylsulfonyle,
un groupe alkylsulfonyloxy, et
un groupe hydroxysulfinyle; et
R
6 représente
un groupe alkyle, qui peut être substitué avec un élément choisi parmi
un atome d'halogène, un groupe cyano, un groupe nitro,
un groupe alcényle, un groupe haloalcényle,
un groupe alcynyle,
un groupe aryle ou hétérocyclique qui peut être substitué avec au moins un élément
choisi parmi :
un groupe alkyle, un groupe haloalkyle,
un groupe alcoxy, un groupe haloalcoxy,
un groupe alcoxyalkyle,
un groupe alcényle, un groupe alcynyle,
un groupe aryle, un groupe aryloxy,
un groupe haloaryloxy,
un groupe aralkyle,
un groupe acyle,
un groupe haloacyloxyalkyle,
un groupe amino et un atome d'halogène ; ou
R
6 représente :
un groupe 1- ou 2-indanyle qui peut être substitué avec un groupe alcynyle ou un groupe
aryle ou hétéroaryle ;
un groupe cycloalcényle substitué avec au moins un élément choisi parmi un groupe
oxo, un groupe alkyle, un groupe alcényle et un groupe alcynyle ; ou
un groupe aryle qui peut être substitué avec un groupe phényle, un groupe alcynyle,
un groupe acyle, un atome d'halogène, un groupe alcoxy ou un groupe alkyle.
3. Procédé selon la revendication 2, dans lequel
R
1 R
2 R
3, R
4 et R
5 représentent indépendamment
un atome d'hydrogène, un atome d'halogène,
un groupe alkyle en C
1-C
10,
un groupe alcényle en C
2-C
5,
un groupe alcynyle en C
2-C
5, ou
un groupe aryle en C
6-C
14, et
dans lequel les groupes alkyle, alcényle et alcynyle peuvent être indépendamment substitués
avec au moins un élément choisi parmi
un atome d'halogène, un groupe alcoxy en C
1-C
4,
un groupe(alcoxy en C
1-C
4)-carbonyle,
un groupe halo(alcoxy en C
1-C
4)-carbonyle,
un groupe aryle en C
6-C
14,
un groupe halo(cycloalkylidène en C
3-C
5),
un groupe (alcoxy en C
1-C
3)imino,
un groupe (alkyle en C
1-C
4)sulfonyle,
un groupe (alkyle en C
1-C
4)sulfonyloxy, et
un groupe hydroxysulfinyle ; et
R
6 représente
un groupe alkyle en C
1-C
10 qui peut être substitué avec un élément choisi parmi
un atome d'halogène, un groupe cyano, un groupe nitro,
un groupe alcényle en C
2-C
5, un groupe halo(alcényle en C
2-C
5), un groupe alcynyle en C
2-C
5,
un groupe aryle en C
6-C
14 ou hétérocyclique qui peut être substitué avec au moins un élément choisi parmi :
un groupe alkyle en C1-C14, un groupe halo(alkyle en C1-C14), un groupe alcoxy en C1-C4, un groupe halo(alcoxy en C1-C4),
un groupe (alcoxy en C1-C4)(alkyle en C1-C14),
un groupe alcényle en C2-C5, un groupe alcynyle en C2-C5,
un groupe aryle en C6-C14, un groupe (aryle en C6-C14)oxy,
un groupe halo(aryle en C6-C14)oxy,
un groupe aralkyle en C7-C8,
un groupe acyle en C1-C2,
un groupe haloacyloxy(alkyle en C1-C14),
un groupe amino et un atome d'halogène ; ou
R
6 représente :
un groupe 1- ou 2-indanyle qui peut être substitué avec un groupe alcynyle en C2-C5 ou un groupe aryle en C6-C14 ou un groupe hétéroaryle à 5 éléments ;
un groupe cycloalcényle substitué avec au moins un élément choisi parmi un groupe
oxo, un groupe alkyle en C1-C14, un groupe alcényle en C2-C5 et un groupe alcynyle en C2-C5 ; ou
un groupe aryle en C6-C14 qui peut être substitué avec un groupe phényle, un groupe alcynyle en C2-C5, un groupe acyle en C1-C2, un atome d'halogène, un groupe alcoxy en C1-C4 ou un groupe alkyle en C1-C14.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le composé de
catalyseur est un composé de zirconium, d'hafnium ou de titane.
5. Procédé selon la revendication 4, dans lequel le composé de catalyseur est un composé
de zirconium, d'hafnium ou de titane ayant une acidité de Lewis.
6. Procédé selon la revendication 4 ou 5, dans lequel le composé de catalyseur est un
composé de la formule (4) :
M(O)m(X)n(Y)4-2m-n (4)
dans laquelle M représente un élément du groupe 4 de la Classification Périodique
des Eléments; X et Y représentent indépendamment un atome d'halogène, un groupe alcoxy,
un groupe acétylacétonate, un groupe acyloxy, un groupe amino qui peut être substitué
avec jusqu'à deux groupes alkyle ou un groupe cyclopentadiényle ; m est égal à 0 ou
à 1, et n est égal à 0, 1 ou 2.
7. Procédé selon, la revendication 6, dans lequel M représente le zirconium.
8. Procédé selon la revendication 6, dans lequel M représente l'hafnium ou le titane.
9. Procédé selon la revendication 7, dans lequel le composé de la formule (4) est le
tétrachlorure de zirconium, un composé de zirconocène ou un alcoxyde de zirconium.
10. Procédé selon la revendication 8, dans lequel le composé de la formule (4) est un
halogénure d'hafnium ou de titane, un alcoxyde d'hafnium ou de titane ou un composé
amide de l'hafnium ou du titane.
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'acide cyclopropanecarboxylique
de la formule (2) est l'acide 2,2-diméthyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylique.
12. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'acide cyclopropanecarboxylique
de la formule (2) est l'acide 2,2-diméthyl-3-(2-méthyl-1-propényl)cyclopropanecarboxylique.
13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel le composé monohydroxy
de la formule (3) est un alcool primaire.
14. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel le composé monohydroxy
est un composé de la formule (3), dans lequel R6 représente un groupe méthyle ou éthyle substitué avec au moins un élément choisi
parmi le groupe aryle qui peut être substitué, un groupe cyano et le groupe alcynyle.
15. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel le composé monohydroxy
de la formule (3) est l'alcool 3-phénoxybenzylique.
16. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel le composé monohydroxy
de la formule (3) est la 4-hydroxy-3-méthyl-2-(2-propényl)-2-cyclopentène-1-one.
17. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel le composé monohydroxy
de la formule (3) est la 4-hydroxy-3-méthyl-2-(2-propynyl)-2-cyclopentène-1-one.