(19)
(11) EP 1 227 077 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
22.03.2006 Bulletin 2006/12

(21) Application number: 02250487.2

(22) Date of filing: 24.01.2002
(51) International Patent Classification (IPC): 
C07C 67/08(2006.01)
C07C 69/74(2006.01)
C07C 69/747(2006.01)
C07D 307/42(2006.01)

(54)

Process for producing cyclopropanecarboxylates

Verfahren zur Herstellung von Zyklopropankarboxylaten

Procédé de préparation de carboxylates du cyclopropane


(84) Designated Contracting States:
DE FR GB IT

(30) Priority: 24.01.2001 JP 2001016107
24.01.2001 JP 2001016106

(43) Date of publication of application:
31.07.2002 Bulletin 2002/31

(73) Proprietor: Sumitomo Chemical Company, Limited
Tokyo 104-8260 (JP)

(72) Inventors:
  • Souda, Hiroshi
    Takatsuki, Osaka (JP)
  • Iwakura, Kazunori
    Ibaraki-shi, Osaka (JP)

(74) Representative: Cresswell, Thomas Anthony 
J.A. Kemp & Co. 14 South Square Gray's Inn
London WC1R 5JJ
London WC1R 5JJ (GB)


(56) References cited: : 
EP-A- 0 779 269
   
  • ARMIN DE MEIJERE ET.AL.: "A New General Approach to Bicyclopropylidenes" J.ORG.CHEM., vol. 58, 1993, pages 502-505, XP002251165
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention:



[0001] The present invention relates to a process for producing cyclopropanecarboxylates.

Background of the invention



[0002] There have been known a production method of carboxylic acid ester from a carboxylic acid and an alcohol using a protonic acid catalyst. A production method using sulfuric acid as a catalyst is disclosed (Japanese Patent Laid-Open Publication No. 9-188649), and also disclosed is a method of using p-toluenesulfonic acid as a catalyst (Japanese Patent Laid-Open Publication No. 11-228491 EP-A-0 779 269).

[0003] However, the methods using mineral acid or organic acid having strong acidity cause significant coloring due to a side reaction, which has made these methods not necessarily efficient as industrial production methods.

Summary of the Invention



[0004] - According to the present invention, a cyclopropanecarboxylate can be conveniently produced, through dehydration reaction, from a cyclopropanecarboxylic acid and an alcohol in the presence of the catalyst as defined below.

[0005] The present invention provides
a process for producing a cyclopropanecarboxylate of formula (1):

which process comprises reacting
a cyclopropanecarboxylic acid of formula (2):

with a monohydroxy compound of formula (3):

        R6OH     (3),

in the presence of
a compound comprising an element of Group 4 of the Periodic Table of Elements,
wherein in formula (1) and (2),
R1, R2, R3, R4, and R5 independently represent
a hydrogen atom, a halogen atom,
an alkyl group which may be substituted,
an alkenyl group which may be substituted,
an alkynyl group which may be substituted,
an aryl group which may be substituted; and
in formula (1) and (3),
R6 represents
an alkyl group which may be substituted, or
an aryl group which may be substituted.

Detailed Description of the Invention



[0006] The halogen atom or the term "halo" in the present specification means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom in R1 through R6.

[0007] The alkyl group which may be substituted and the alkenyl groupwhichmaybe substitutedmaybe linear, branched, or cyclic.

[0008] The termalkenyl or alkynyl in R1 through R6 and substituents that may be present therein means the same group as specified for R1 to R5 below.

[0009] - The aryl group represented by R1 through R6 and the "aryl" including those present as the substituent group as in aryloxy, or haloaryloxy includes a (C6-C14)aryl group such as phenyl, biphenyl, naphthyl, anthracenyl or the like.

[0010] R1, R2, R3, R4, and R5 in the cyclopropanecarboxylic acid (2) and the cyclopropanecarboxylate (1) will be explained below.

[0011] Examples of the alkyl group which may be substituted represented by R1, R2, R3, R4, or R5 include, for example, a (C1-10)alkyl group such as methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, menthyl and the like.

[0012] Examples of the alkenyl group which may be substituted represented by R1, R2, R3, R4, or R5 include, for example, a (C2-C5) alkenyl group such as vinyl, 1-methylvinyl, 1-propenyl, 2-methyl-1-propenyl, 1-butenyl, 3-methyl-2-butenyl or the like.

[0013] The alkyl group, alkenyl and alkynyl groups represented by R1, R2, R3, R4, or R5 may be independently substituted with at least one member selected from
a halogen atom, an alkoxy group, an alkoxycarbonyl group,
a haloalkoxycarbonyl group, an aryl group,
a halocycloalkylidene group, an alkoxyimino group,
an alkylsulfonyl group, an alkylsulfonyloxy group, and a hydroxysulfinyl group.

[0014] Examples of the alkenyl group substituted with halogen include, a halo (C2-C5) alkenyl group such as 2, 2-dichlorovinyl, 2,2-dibromovinyl, 2-chloro-2-fluorovinyl, 2-chloro-2-trifluoromethylvinyl, 2-bromo-2-tribromomethylvinyl, or the like.

[0015] - Examples of the alkynyl group which may be substituted includes a propargyl group and the like.

[0016] Examples of the alkoxy group include, for example, a (C1-C4)alkoxy group such as methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, sec-butoxy, or tert-butoxy group or the like.

[0017] Examples of the alkoxycarbonyl group include, for example, a (C1-C4)alkoxy-carbonyl such as methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, i-propoxycarbonyl, n-butoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl or the like.

[0018] Examples of the haloalkoxycarbonyl group include, for example, a halo(C1-C4)alkoxy-carbonyl group such as a 2,2,2-trifluoro-1-(trifluoromethyl)ethoxycarbonyl group or the like.

[0019] Preferred aryl group are phenyl, 1-naphthyl, and 2-naphthyl groups and the like.

[0020] Examples of the halocycloalkylidene group include, for example, a halo(C3-C5)cycloalkylidene group such as difluorocyclopropylidene group or the like.

[0021] Examples of the alkoxyimino group include, for example, a (C1-C3) alkoxy-imino group such as methoxyimino, ethoxyimino, an n-propoxyimino or the like.

[0022] Examples of the alkylsulfonyl group include, for example, a (C1-C4)alkylsulfonyl group such as methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, i-propylsulfonyl, tert-butylsulfonyl or the like.

[0023] Examples of the alkylsulfonyloxy group include, for example, a (C1-C4)alkylsulfonyloxy group such as methylsulfonyloxy, ethylsulfonyloxy, n-propylsulfonyloxy, i-propylsulfonyloxy, tert-butylsulfonyloxy or the like.

[0024] The cyclopropanecar-boxylic acid (2) includes any optical isomer or mixture thereof.

[0025] Specific examples of the cyclopropanecarboxylic acid (2) include, for example, cyclopropanecarboxylic acid,
2-fluorocyclopropanecarboxylic acid,
2,2-dichlorocyclopropanecarboxylic acid,
2,2-dimethyl-3-(dimethoxymethyl)cyclopropanecarboxylic acid,
2,2,3,3-tetramethylcyclopropanecarboxylic acid,
2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(3-methyl-2-butenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2,2,2-trichloroethyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-chloro-2-fluorovinyl)cyclopropane-carboxylic acid,
2,2-dimethyl-3-(2-bromovinyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2,2-dibromovinyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(1,2,2,2-tetrabromoethyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(1,2-dibromo-2,2-dichloroethyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(3,3,3-trifluoro-2-(trifluoromethyl)-1-propenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-phenyl-1-propenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-phenylvinyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-methyl-3-phenyl-2-butenyl)cyclopropanecarboxylic acid,
2,2-dimethyl-3-{(2,2-difluorocyclopropylidene)methyl}-cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2-(tert-butoxycarbonyl)vinyl}cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2-fluoro-2-(methoxycarbonyl)vinyl}-cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2-fluoro2-(ethoxycarbonyl)vinyl}cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2-fluoro2-(tert-butoxycarbonyl)vinyl}-cyclopropanecarboxylic acid,
2,2-dimethyl-3-[2-{2,2,2-trifluoro-1-(trifluoromethyl)-ethoxycarbonyl}vinyl]cyclopropanecarboxylic acid,
2,2-dimethyl-3-(2-aza-2-methoxyvinyl)cyclopropanecarboxylic acid,
2,2-di-methyl-3-(4-aza-4-methoxy-3-methylbut-1,3-dienyl)-cyclopropanecarboxylic acid,
2,2-dimethyl-3-[2-((tert-butyl)sulfonyl)-2-(tert-butoxy-carbonyl)vinyl]cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2,2,2-tribromo-1-(methylsulfonyloxy)ethyl}-cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2,2-dibromo-2-(hydroxysulfinyl)-1-(methoxy) -ethyl}cyclopropanecarboxylic acid,
2,2-dimethyl-3-{2,2,2-tribromo-1-(methylsulfonyloxy)ethyl}-cyclopropanecarboxylic acid,
2-methyl-2-ethyl-3-(1-propenyl)cyclopropanecarboxylic acid,
2,2-diethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylic acid, and
2-methyl-2-phenyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid.

[0026] Preferred are 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylic acid, and 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid.

[0027] Next a description will be made to the monohydroxy compound of formula (3).

[0028] Examples of.the alkyl group, which may be substituted, represented by R6, include, for example,
a (C1-C10)alkyl group which may be substituted with a member selected from
a halogen atom, a cyano group, a nitro group,
an alkenyl group, a haloalkenyl group, an alkynyl group, or
an aryl or heterocyclic group which may be substituted with at lest one member selected from
an alkyl group, a haloalkyl group,
an alkoxy group, a haloalkoxy group,
an alkoxyalkyl group,
an alkenyl group, an alkynyl group,
an aryl group, an aryoxy group,
a haloaryloxy group, an aralkyl group(e.g. (C7-C8)aralkyl such as benzyl, phenethyl),
an acyl group(e.g. (C1-C2)acyl such as formyl, acetyl),
a haloacyloxyalkyl group(e.g. trifluoroacetyloxyalkyl),
an amino group, and a halogen atom; or
R6 represents:

a 1-, or 2-indanyl group which may be substituted with an alkynyl group or an aryl or heteroaryl group(e.g. 5- or 6-membered heteroaryl group such as thienyl); or

a cycloalkenyl group (e.g., cyclopentenyl) substituted with at least one member selected from an oxo group, an alkyl group, an alkenyl and an alkynyl group (e.g. 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-one, 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentene-1-one).



[0029] The term "alkyl" used in the alkyl, haloalkyl, and alkoxyalkyl groups as recited in the definition of R6 and substituents thereof includes a C1-C14 alkyl group.

[0030] Examples of the (C1-C14)alkyl group include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, n-octyl, n-nonyl, n-decyl, undecyl, dodecyl, tridecyl, tetradecyl group and the like.

[0031] Examples of the haloalkyl group include fluoroethyl, difluoroethyl, trifluoroethyl, tetrafluoroethyl and the like.

[0032] The term "alkoxy" used in the alkoxy, haloalkoxy, and alkoxyalkyl groups includes a C1-C4 alkoxy group as defined above in this specification.

[0033] - Examples of the alkenyl groups as recited above include a (C2-C5)alkenyl group (e.g. vinyl, 1-propenyl, 1-methyl-2-propenyl, 1-butenyl, 2-penten-2-yl group or the like). The haloalkenyl group that may be present on the alkyl group represented by R6 means the same haloalkenyl group as described for the haloalkenyl group represented by R1 to R5.

[0034] Examples of the alkynyl groups that may be present on the alkyl group represented by R6 include a (C2-C5)alkynyl group (e.g, ethinyl, propynyl, butynyl, pentynyl or the like).

[0035] Examples of the heterocyclic group which may be substituted, include, for example, a furyl group, an isoxazolyl group, a pyrrolyl group, a thiazolyl group, an imidazolidine-2,4-dione group, a 4,5,6,7-tetrahydroisoindole group, an indole group, a pyridyl group, and further specific examples thereof include aphenoxyfurylgroup, abenzylfurylgroup, a propargylfuryl group, a methylisoxazolyl group,a trifluoromethylthiazolyl group, a trifluoromethoxythiazolyl group, a propynylpyrrolyl group, a propynyldioxoimidazolidinyl group, a dioxotetrahydroisoindolyl group, an oxothiazolyl group, a halopyridyl group and the like.

[0036] Examples of the aryl group which may be substituted, represented by R6, include an aryl group, which may be substituted with a phenyl, an alkynyl group, an acyl group, an alkyl group, an alkoxy group, or a halogen atom.

[0037] The monohydroxy compound of formula (3) includes, for example, following alkyl alcohol, aralkyl alcohol, aryl alcohol and the like.

[0038] Specific examples of the alkyl alcohol include, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol; tert-butyl alcohol, n-pentyl alcohol, neopentyl alcohol, n-hexyl alcohol, n-octyl alcohol, n-decyl alcohol, and the like.

[0039] Specific examples of the alcohol compound of formula (3), wherein R6 represents the alkyl substituted with a halogen atom include,
fluoroethyl alcohol, difluoroethyl alcohol, trifluoroethyl alcohol, and tetrafluoroethyl alcohol.

[0040] Specific examples of the alcohol compound of formula (3), wherein R6 represents a methyl group substituted with a member selected from the alkenyl, haloalkenyl, or alkynyl group include, 4-methylhept-4-en-1-yn-3-ol, 4-fluorohept-4-en-1-yn-3-ol and the like.

[0041] Specific examples of the alcohol compound of formula (3), wherein R6 represents a methyl or ethyl group substituted with the heterocyclic group which maybe substituted as defined above, include, for example,
2-furylmethyl alcohol, 3-furylmethyl alcohol,
(5-phenoxy-3-furyl)methyl alcohol,
(5-benzyl-3-furyl)methane-1-ol,
(5-(difluoromethyl)-3-furyl)methane-1-ol,
5-propargylfurfuryl alcohol,
(5-methylisoxazole-3-yl)methane-1-ol,
1-{2-(trifluoromethyl)-1,3-thiazole-4-yl}prop-2-yn-1-ol,
1-{2-(trifluoromethoxy)-1,3-thiazole-4-yl}prop-2-yn-1-ol,
1-{1-prop-2-ynyl-5-(trifluoromethyl)pyrrole-3-yl}prop-2-yn-1-ol,
(1-prop-2-ynylpyrrole-3-yl)methane-1-ol,
3-(hydroxymethyl)-1-propynyl-imidazolidine-2,4-dione,
2-(hydroxymethyl)-4,5,6,7-tetrahydroisoindole-1,3-dione,
(1-(2-propynyl)pyrrole-3-yl)methane-1-ol,
5-(hydroxymethyl)-4-methyl-(2-propynyl)-1,3-thiazoline-2-one,
(1-prop-2-ynyl-2-methylindole-3-yl)methane-1-ol,
{1-prop-2-ynyl-2-(trifluoromethyl)indole-3-yl}methane-1-ol,
(2,3,6-trifluoro-4-pyridyl)methane-1-ol,
and the like.

[0042] Specific examples of the alcohol compound of formula (3), wherein R6 represents a methyl or ethyl group substituted with at least one member selected from the aryl group which may be substituted as defined above, a cyano group, or the alkynyl group, include, for example, aralkyl alcohols such as:

benzyl alcohol, 2-methyl-3-phenylbenzyl alcohol,

2,3,5,6-tetrafluozobenzyl alcohol,

2,3,5,6-tetrafluoro-4-methylbenzyl alcohol,

2,3,5,6-tetrafluoro-4-methoxybenzyl alcohol,

2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl alcohol,

2,3,5,6-tetrafluoro-4-propargylbenzyl alcohol,

2,3,5,6-tetrafluoro-4-(difluoromethyl)benzyl alcohol,

2,3,5,6-tetrafluoro-4-(difluoromethoxy)benzyl alcohol,

2,3,5,6-tetrafluoro-4-(2,2,2-trifluoroacetyloxy)methylbenzyl alcohol,

4-(trifluoromethyl)benzyl alcohol,

2,3,4,5-tetrafluoro-6-methylbenzyl alcohol,

3-phenylbenzyl alcohol, 2,6-dichlorobenzyl alcohol,

3-phenoxybenzyl alcohol,

2-hydroxy-2-(3-phenoxyphenyl)ethanenitrile,

2-hydroxy-2-{4-(methoxymethyl)phenyl}ethanenitrile,

2- {3-(4-chlorophenoxy)phenyl}-2-hydroxyethanenitrile,

2-(4-amino-2,3,5,6-tetrafluorophenyl)-2-hydroxyethane-nitrile,

2-(4-fluoro-3-phenoxyphenyl)-2-hydroxyethanenitrile,

(2-methylphenyl)methyl alcohol,

(3-methylphenyl)methyl alcohol,

(4-methylphenyl)methyl alcohol,

(2,3-dimethylphenyl)methyl alcohol,

(2,4-dimethylphenyl)methyl alcohol,

(2,5-dimethylphenyl)methyl alcohol,

(2,6-dimethylphenyl)methyl alcohol,

(3,4-dimethylphenyl)methyl alcohol,

(2,3,4-trimethylphenyl)methyl alcohol,

(2,3,5-trimethylphenyl)methyl alcohol,

(2,3,6-trimethylphenyl)methyl alcohol,

(3,4,5-trimethylphenyl)methyl alcohol,

(2,4,6-trimethylphenyl)methyl alcohol,

(2,3,9,5-tetramethylphenyl)methyl alcohol,

(2,3,4,6-tetramethylphenyl)methyl alcohol,

(2,3,5,6-tetramethylphenyl)methyl alcohol,
(pentamethylphenyl)methyl alcohol,

(ethylphenyl)methyl alcohol, (n-propylphenyl) methyl alcohol,

(isopropylphenyl)methyl alcohol,

-(n-butylphenyl)methyl alcohol,

(sec-butylphenyl)methyl alcohol,

(tert-butylphenyl)methyl alcohol,

(n-pentylphenyl)methyl alcohol,

(neopentylphenyl)methyl alcohol,

(n-hexylphenyl)methyl alcohol,

(n-octylphenyl)methyl alcohol, (n-decylphenyl)methyl alcohol, (n-dodecylphenyl)methyl alcohol,

(n-tetradecylphenyl)methyl alcohol, naphthylmethyl alcohol, anthracenylmethyl alcohol; 1-phenylethyl alcohol,

1-(1-naphthyl)ethyl alcohol, 1-(2-naphthyl)ethyl alcohol,

4-prop-2-ynylphenyl)methane-1-ol,

3-prop-2-ynylphenyl)methane-1-ol, and the like.



[0043] Examples of the alcohol compound of formula (3), wherein R6 represents 1-, or 2-indanyl group which may be substituted with an alkynyl group or an aryl or heteroaryl group (e.g. thienyl) include, for example, 4-prop-2-enylindan-1-ol, 4-phenylindan-2-ol, 4-(2-thienyl)indan-2-ol, and the like.

[0044] Examples of the aryl alcohol includes, phenol, 1-naphthol, 2-naphthol, 4-prop-2-ynylphenol, 3-prop-2-ynylphenol, 4-hydroxyacetophenone, 4-hydroxybenzaldehyde, and the above-described compounds having aromatic rings substituted with an alkyl group, an alkoxy group, a halogen atom, or the like.

[0045] Preferred monohydroxy compound (3) are primary alcohols, such as benzyl alcohol, pentafluoroethyl alcohol, 3,3-dibromo-2-propene-1-ol, perfluoropropyl alcohol, hexafluoroisopropyl alcohol, perfluorobutyl alcohol, perfluoropentyl alcohol, perfluorohexyl alcohol, perfluorooctyl alcohol, perfluorodecyl alcohol,
{1-(2-propynyl)-5-(trifluoromethyl)-4-pyrazolyl}methane-1-ol,
1-{1-(2-propynyl)-5-(trifluoromethyl)pyrrole-3-yl}prop-2-yn-1-ol,
1-{2-(trifluoromethyl)-1,3-thiazole-4-yl}prop-2-yn-1-ol,
1-{2-(trifluoromethoxy)-1,3-thiazole-4-yl}prop-2-yn-1-ol,
and 4-fluorohept-4-en-1-yn-3-ol.

[0046] Preferred are aralkyl alcohols and hydroxycyclopentenones, and more preferred are:

3-phenoxybenzyl alcohol;

4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-one; and

4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentene-1-one.



[0047] An asymmetric center (s) may be present in the monohydroxy compound (3), and any optical isomer or a mixture thereof may be used in the present process to produce an optically active desiredester(s) (1) with retention of configuration with respect to the asymmetric center(s) in the alcohol moiety.

[0048] The monohydroxy compound (3) may be used in excess. Preferably, the monohydroxy compound (3) is used 1 mol or less per mol of the cyclopropanecarboxylic acids (2). After completion of the reaction, unreacted materials may generally be recovered by such operation as distillation, extraction, or the like.

[0049] Next, a description will be made to the catalyst compound comprising an element of Group 4 of the Periodic Table of Elements.

[0050] Examples of the catalyst compound include a zirconium compound, a titanium compound, a hafnium compound and the like.

[0051] Preferred catalyst compounds are zirconium, titanium, and hafnium compounds having Lewis acidity, and can be represented by formula (4):

        M(O)m(X)n(Y)4-2m-n     (4)

wherein M represents an element of Group 4 of the Periodic Table of Elements; X and Y independently represent a halogen-atom, an alkoxy group, an acetylacetonate group, an acyloxy group, an amino group which may be substituted with up to two alkyl groups, or a cyclopentadienyl group; and m is equal to 0 or 1, and n is equal to 0, 1, or 2.

[0052] Specific examples of the titanium and hafnium compounds include, for example, titanium halide such as titanium tetrafluoride, titanium tetrachloride, titanium tetrabromide, titanium tetraiodide; titanium acetate, titanium acetylacetonato, titanium ethoxide, titanium i-propoxide, titanium n-butoxide, titanium t-butoxide; titanium oxychloride; titanium amide such as tetrakis(dimethylamino)titanium, tetrakis(diethylamino)titanium or the like; titanocene dichloride, titanocene dimethoxide, decamethyltitanocene dichloride; hafnium halide such as hafnium tetrafluoride, hafnium tetrachloride, hafnium tetrabromide, hafnium tetraiodide or the like; hafnium acetate, hafnium acetylacetonate, hafnium alkoxide such as hafnium ethoxide, hafnium i-propoxide, hafnium n-butoxide, hafnium t-butoxide or the like; hafnium oxychloride; amide compound of hafnium such as tetrakis(dimethylamino)hafnium, tetrakis(diethylamino)hafnium or the like; hafnocene dichloride, hafnocene dimethoxide, and decamethylhafnocene dichloride.

[0053] Among the specific compounds, preferred are titanium tetrachloride, titanium i-propoxide, titanocene dichloride, hafnium tetrachloride, hafnium t-butoxide, and hafnocene dichloride.

[0054] - Specific examples of the zirconium compound includes, for example, zirconium halide such as zirconium tetrafluoride, zirconium tetrachloride, zirconium tetrabromide, zirconium tetraiodide or the like; zirconium acetate, zirconium acetylacetonate; zirconiumalkoxide such as zirconiumethoxide, zirconium i-propoxide, zirconium n-butoxide, zirconium t-butoxide or the like; zirconium oxychloride; amide compound of zirconium such as tetrakis(dimethylamino)zirconium, tetrakis(diethylamino)zirconium or the like; zirconocene compound such as zirconocene dichloride, zirconocene dimethoxide, and decamethylzirconocene dichloride. Preferably are zirconium tetrachloride, zirconium t-butoxide, and zirconocene dichloride.
The compound comprising an element of Group 4 of the Periodic Table of Elements maybe used as commercially available anhydride or hydrate without any processing. A complex comprising a compound comprising an element of Group 4 of the Periodic Table of Elements and a compound having a ligating property such as tetrahydrofuran and tetramethylethylenediamine may also be used.

[0055] Although any amount of the compound comprising an element of Group 4 of the Periodic Table of Elements may be used, it is normally catalytic and preferably around 0.001 to 200 mole % per mol of the cyclopropanecarboxylic acid (2), more preferably within the range of around 0.1 to 20 mole %, and still more preferably within the range of around 0.1 to 10 mole %.

[0056] The reaction of the cyclopropanecarboxylic acids (2) with the monohydroxy compound (3) in the presence of the catalyst of the present invention is usually conducted in an inert gas atmosphere such as argon and nitrogen. The reaction may be performed under a normal pressure, a pressurized pressure, or a reduced pressure. Preferably, the reaction is performed under a normal pressure or a reduced pressure. In addition, it is preferable to perform reaction while continuously removing water, which is formed as a byproduct of dehydration reaction, from the reaction system by such a method as distillation or the like.

[0057] The reaction may be performed in the absence of a solvent or in a solvent. The solvent that may be used includes: halogenated hydrocarbons such as dichloromethane, chloroform, and 1, 2-dichloroethane, aliphatic hydrocarbons such as hexane, heptane, octane, nonane or the like; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene or the like; and ether solvents such as diethyl ether, tetrahydrofuran or the like. By-produced water may be removed from the reaction system by using a solvent that forms an azeotrope with the byproduct water.

[0058] Although a reaction temperature is not particularly defined, it is preferably within a range of around 20 to around 200 °C.

[0059] The catalyst maybe removed by washing the reaction mixture with water or acidic water makes, and the cyclopropanecarboxylate esters (1) can be isolated by performing normal operation such as distillation, recrystallization, and column chromatography, if necessary, from the reaction mixtures.

Examples



[0060] The present invention will be described in detail with the following examples, but it is not to be construed that the present invention is limited to the examples.

Example 1



[0061] In a 10 ml test tube-type reactor, 0.43 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid (E/Z=80/20), 0.50 g of 3-phenoxybenzyl alcohol, 5.8 mg of zirconium tetrachloride, and 5 ml of xylene were charged The reactor was equipped with a Dean-Stark trap and a condenser, and the reaction mixture was stirred under reflux for 8 hours at 145 °C while water generated as a by-product during reaction was being separated and collected in the trap . A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in ayieldof 98% (E/Z=84/16, selectivity: 99%) based on the material alcohol.

Example 2



[0062] The reaction was performed in a similar manner as in Example 1 except that 9.4 mg of a complex of zirconium tetrachloride with 2 tetrahydrofuran was charged instead of 5.8 mg of zirconium tetrachloride in Example 1.

[0063] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl) cyclopropanecarboxylate was obtained in a yield of 95% (E/Z=85/15, selectivity: 98%) based on the material alcohol.

Example 3



[0064] The reaction was performed in a similar manner as in Example 1-except that 7.3 mg of zirconocene dichloride was charged instead of 5.8 mg of zirconium tetrachloride in Example 1.

[0065] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 97% (selectivity: 98%) based on the material alcohol.

Example 4



[0066] The reaction was performed in a similar manner as in Example 1 except that 9.6 mg of zirconium t-butoxide was charged instead of 5.8 mg of zirconium tetrachloride in Example 1.

[0067] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl) methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 91% (selectivity: 92%) based on the material alcohol.

Example 5



[0068] The reaction was performed in a similar manner as in Example 1 except that 6.6 mg of zirconium acetate was charged instead of 5.8 mg of zirconium tetrachloride in Example 1.

[0069] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 95% (selectivity: 96%) based on the material alcohol.

Example 6



[0070] - The reaction was performed in a similar manner as in Example 1 except that 0.47 g of (5-benzyl-3-furyl)methane-1-ol was charged instead of 0.50 g of 3-phenoxybenzyl alcohol in Example 1.

[0071] A reaction mixture thereof was analyzed with gas chromatography to find that (5-benzyl-3-furyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 92% (selectivity: 99%) based on the material alcohol.

Comparative Example 1



[0072] The reaction was performed in a similar manner as in Example 1 except that 12.5 mg of concentrated sulfuric acid was charged instead of 5.8 mg of zirconium tetrachloride in Example 1.

[0073] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 81% (selectivity: 87%) based on the material alcohol.

Comparative Example 2



[0074] The reaction was performed in a similarmanner as in Example 1 except that 23.7 mg of p-toluenesulfonic acid was charged instead of 5.8 mg of zirconium tetrachloride in Example 1.

[0075] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 61% (selectivity: 93%) based on the material alcohol.

Example 7



[0076] In a 10 ml test tube-type reactor, 0.43 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid, 0.38 g of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-on, 48.0 mg of zirconium t-butoxide, and 5 ml of xylene were charged. The reactor was equipped with a Dean-Stark trap and a condenser, and the.reaction mixture was stirred under reflux for 8 hours at 145°C while water generated as a by-product during reaction was being separated and collected in the trap. A reactionmixture thereof was analyzed with gas chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3- (2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 62% (selectivity: 97%) based on the material alcohol.

Example 8



[0077] In a 10 ml test tube-type reactor, 0.85 g of 2,2-dimethyl-3- (2-methyl-1-propenyl)cyclopropanecarboxylic acid, 0.75 g of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-on, 58 mg of zirconium tetrachloride, and 5 ml of xylene were charged. The reactor was equipped with a Dean-Stark trap and a condenser, and the reaction mixture was stirred under reflux for 16 hours at 145°C while water generated as a by-product during reaction was being separated and collected in the trap. A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3- (2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 85% (selectivity: 90%) based on the material alcohol.

Examples 9 to 11



[0078] Experiments were conducted in a similar manner as in Example 8 except that the following alcohol compounds and the zirconium compounds- were used in place of the alcohol and zirconium compounds used in Example 8.
Ex. Alcohol compound Zirconium compound Yield(%) of ester Selectivity (%)
9 A Zr[OCH (CH3)2]4 94 94
    82 mg    
10 B ZrCl4 87 87
  0.75 g      
11 B Zr [OCH (CH3)2]4 93 97
  0.75 g 82 mg    
A: 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-on
B: 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentene-1-on

Example 12



[0079] In a 10 ml test tube-type reactor, 0.16 g of 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylic acid, 0.22 g of 2,3,5, 6-tetrafluoro-4-(methoxymethyl) benzyl alcohol, 3.3 mg of zirconium tetraisopropoxide, and 5 ml of xylene were charged. The reactor was equipped with a Dean-Stark trap and a condenser, and the reaction mixture was stirred under reflux for 8 hours at 145°C while water generated as a by-product during reaction was being separated and collected in the trap. A reaction mixture thereof was analyzed with gas chromatography to find that 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate was obtainedinayieldof 83% (selectivity: 98%) based on the material alcohol.

Example 13



[0080] In a 10 ml test tube-type reactor, 0.34 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid, 0.45 g of 2,3,5,6-tetrafluoro-9-(methoxymethyl)benzyl alcohol, 4.7 mg of zirconium tetrachloride, and 5 ml of xylene were charged. The.reactor was equipped with a Dean-Stark trap and a condenser, and the reactionmixture was stirred under reflux for 8 hours at 145°C while water generated as a by-product during reaction was being separated and collected in the trap. A reaction mixture thereof was analyzed with gas chromatography to find that 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl 2,2-dimethyl-3-(2-methyl-1-propenyl) cyclopropanecarboxylate was obtained in a yield of 68% (selectivity: 98%) based on the material alcohol.

Examples 14 to 18



[0081] Experiments were conducted in a similar manner as in Example 13 except that following zirconium compounds and amounts.
Ex. Zirconium compound Yield of ester(%) Selectivity (%)
14 (ZrCl4).    
  9.3 mg 92 98
15 ZrBr4    
  8.2 mg 62 96
16 ZrCl4THF complex    
  7.5 mg 78 99
17 Zr [OCH (CH3)2]4    
  6.5 mg 74 97
18 Zirconocene dichloride, 8.8 mg 63 99

Example 19



[0082] In a 10ml test tube-type reactor, 0.43 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid, 0.50 g of 3-phenoxybenzyl alcohol, 8.0 mg of hafnium tetrachloride, and 5 ml of xylene were charged. The reactor was equipped with a Dean-Stark trap and a condenser, and the reaction mixture was stirred under reflux for 8 hours at 145 °C while water generated as a by-product during reaction was being separated and collected in the trap. A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl) cyclopropanecarboxylate was obtained in a yield of 86% (selectivity: 94%) based on the material alcohol.

Example 20



[0083] The reaction was performed in a similar manner as in Example 19 except that 11.6 mg of a hafnium tetrachloride-2 tetrahydrofuran complex was charged instead of 8.0 mg of hafnium tetrachloride in Example 19.

[0084] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 97% (selectivity: 98%) based on the material alcohol.

Example 21



[0085] The reaction was performed in a similar manner as in Example 19 except that 12.0 mg of a hafnium tetrachloride·2pyridine complex was charged instead of 8.0 mg of hafnium tetrachloride in Example 19.

[0086] A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl) cyclopropanecarboxylate was obtained in a yield of 96% (selectivity: 98%) based on the material alcohol.

Example 22



[0087] The reaction was performed in a similar manner as in Example 19 except that 12.5 mg of hafnium tetrabromide was charged instead of 8.0 mg of hafnium tetrachloride in Example 19.
A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 87% (selectivity: 93%) based on the material alcohol.

Example 23



[0088] The reaction was performed in a similarmanner as in Example 19 except that 10.5 mg of pentamethylcyclopentadienylhafnium trichloride was charged instead of 8.0 mg of hafnium tetrachloride in Example 19.
A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2',2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 90% (selectivity: 94%) based on the material alcohol.

Example 24



[0089] The reaction was performed in a similar manner as in Example 19 except that 8.9 mg of tetrakis(diethylamino) hafnium was charged instead of 8.0 mg of hafnium tetrachloride in Example 19. A reaction mixture thereof was analyzed with gas chromatography, and the result indicated that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 93% (selectivity: 99%) based on the material alcohol.

Comparative Example 3



[0090] The reaction was performed in a similar manner as in Example 19 except that 12. 5 mg of concentrated sulfuric acid was prepared instead of 8.0 mg of hafnium tetrachloride in Example 19. A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 81% (selectivity: 87%) based on the material alcohol.

Comparative Example 4



[0091] The reaction was performed in a similar manner as in Example 19 except that 23.7 mg of p-toluenesulfonic acid was charged instead of 8.0 mg of hafnium tetrachloride in Example 19. A reaction mixture thereof was analyzed with gas chromatography to find that (3-phenoxyphenyl)methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 61% (selectivity: 93%) based on the material alcohol.

Example 25



[0092] In a 10 ml test tube-type reactor were charged 0.43 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)-cyclopropanecarboxylic acid, 0.38 g of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-one, 58.1 mg of a hafnium tetrachloride·2tetrahydrofuran complex, and 5 ml of xylene. The reactor was equipped with a Dean-Stark trap and a condenser, and the reaction mixture was stirred under reflux for 8 hours at 145 °C while water generated as a by-product during reaction was being separated and collected in the trap. The resulting reaction mixture was analyzed with gas chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 65% (selectivity: 84%) based on the material alcohol

Example 26



[0093] The reaction was performed in a similar manner as in Example 25 except that 62.1 mg of a hafnium tetrachloride·2dioxane complex was charged instead of 58.1 mg of a hafnium tetrachloride·2 tetrahydrofuran in Example 25. A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2, 2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 59% (selectivity: 80%) based on the material alcohol.

Comparative Example 5



[0094] The reaction was performed in a similar manner as in Example 25 except that 12.5 mg of concentrated sulfuric acid was charged instead of 58.1 mg of a hafnium tetrachloride·2 tetrahydrofuran complex in Example 25. A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cycloprepanecarboxylate was obtained in a yield of 30% (selectivity: 31%) based on the material alcohol.

Comparative Example 6



[0095] Reaction was performed in a similar manner as in Example 25 except that 23.7 mg of p-toluenesulfonic acid was charged instead of 58.1 mg of a hafnium tetrachloride 2 tetrahydrofuran complex in Example 25. A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-l-propenyl)cyclopropanecarboxylate was obtained in a yield of 6.4% (selectivity: 8%) based on the material alcohol.

Example 27



[0096] In a 10ml test tube-type reactor, there were prepared 0.43 g of 2,2-dimethyl-3-(2-methyl-1-propenyl) cyclopropanecarboxylic acid, 0.38 g of 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentene-1-one, 58.1 mg of a complex made of hafnium tetrachloride and 2·tetrahydrofuran, and 5ml of xylene were charged. The reactor was equipped with a Dean-Stark trap anda condenser, and the reaction mixture was stirred under reflux for 8 hours at 145 °C while water generated as a by-product during reaction was being separated and collected in the trap. A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propynyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 61% (selectivity: 79%) based on the material alcohol.

Example 28



[0097] The reaction was performed in a similar manner as in Example 27 except that 62.1 mg of a hafnium tetrachloride-2dioxane complex was charged instead of 58.1 mg of a hafnium tetrachloride-2tetrahydrofuran complex in Example 27.

[0098] A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propynyl) -2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 58% (selectivity: 79%) based on the material alcohol.

Comparative Example 7



[0099] The reaction was performed in a similar manner as in Example 27 except that 12.5 mg of concentrated sulfuric acid was charged instead of 58.1 mg of a hafnium tetrachloride·2tetrahydrofuran complex in Example 27.

[0100] A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propynyl) -2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 9.3% (selectivity: 12%) based on the material alcohol.

Comparative Example 8



[0101] The reaction was performed in a similar manner as in Example 27 except that 23.7 mg of p-toluenesulfonic acid was charged instead of 58.1 mg of a hafnium tetrachloride·2tetrahydrofuran complex in Example 27.

[0102] A reaction mixture thereof was analyzed with gas chromatography to find that 3-(2-propynyl) -2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 0.8% (selectivity: 4.4%) based on the material alcohol.

Example 29



[0103] In a 10 ml test tube-type reactor, 0.16 g of 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylic acid, 0.22 g of 2, 3, 5, 6-tetrafluoro-4-(methoxymethyl)benzyl alcohol, 4.6 mg of a hafnium tetrachloride·2tetrahydrofuran complex, and 5 ml of xylene were charged. The reactor was equipped with a Dean-Stark trap and a condenser, and the reaction mixture was stirred under reflux for 8 hours at 145°C while water generated as a by-product during reaction was being separated and collected in the trap. A reaction mixture thereof was analyzed with gas chromatography to find that 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl 2,2-dimethyl-3-(1-propehyl)cyclopropanecarboxylate was obtained in a yield of 80% (selectivity: 99%) based on the material alcohol.

Example 30



[0104] The reaction was conducted in a similar manner as in Example 29 except that 5.0 mg of hafnium tetrabromide was used in place of 4.6 mg of a hafnium tetrachloride·2tetrahydrofuran complex. Analysis of the reaction mixture showed that the yield of 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate was 95% (selectivity: 97%) based on the alcohol.

Example 31



[0105] In a 10 ml test tube-type reactor, 0.34 g of 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid, 0.45 g of 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl alcohol, 18.6 mg of a hafnium tetrachloride·2tetrahydrofuran complex, and 5 ml of xylene were charged. The reactor was equipped with a Dean-Stark trap and a condenser, and the reaction mixture was stirred under reflux for 8 hours at 145°C while water generated as a by product during reaction was being separated and collected in the trap. A reaction mixture thereof was analyzed with gas chromatography to find that 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate was obtained in a yield of 70% (selectivity: 99%) based on the material alcohol.

Example 32



[0106] The reaction was conducted in a similar manner as in Example 31 except that 19.9 mg of hafnium tetrabromide was used in place of 18.6 mg of a hafnium tetrachloride·2tetrahydrofuran complex. Analysis of the reaction mixture showed that the yield of 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate was 81% (selectivity: 87%) based on the alcohol.


Claims

1. A process for producing a cyclopropanecarboxylate of formula (1):

wherein R1, R2, R3, R4, and R5 independently represent
a hydrogen atom, a halogen atom,
an alkyl group which may be substituted,
an alkenyl group which may be substituted,
an alkynyl group which may be substituted, or
an aryl group which may be substituted; and
R6 represents
an alkyl group which may be substituted, or
an aryl group which may be substituted,
which process comprises reacting a cyclopropanecarboxylic acid of formula (2):

with a monohydroxy compound of formula (3):

        R6OH     (3),

in the presence of
a catalyst compound comprising an element of group 4 of the Periodic Table of Elements.
 
2. A process according to claim 1, wherein
R1, R2, R3, R4, and R5 independently represent
a hydrogen atom, a halogen atom,
an alkyl group,
an alkenyl group,
an alkynyl group, or
an aryl group, and
wherein the alkyl, alkenyl, and alkynyl groups may be independently substituted with at least one member selected from
a halogen atom, an alkoxy group,
an alkoxy-carbonyl group,
a haloalkoxy-carbonyl group,
an aryl group,
a halocycloalkylidene group,
an alkoxyimino group,
an alkylsulfonyl group,
an alkylsulfonyloxy group, and
a hydroxysulfinyl group; and
R6 represents
an alkyl group, which may be substituted with a member selected from
a halogen atom, a cyano group, a nitro group,
an alkenyl group, a haloalkenyl group,
an alkynyl group,
an aryl or heterocyclic group which may be substituted with at lest one member selected from:

an alkyl group, a haloalkyl group,

an alkoxy group, a haloalkoxy group,

an alkoxyalkyl group,

an alkenyl group, an alkynyl group,

an aryl group, an aryloxy group,

a haloaryloxy group,

an aralkyl group,

an acyl group,

a haloacyloxyalkyl group,

an amino group, and a halogen atom; or

R6 represents:

a 1-, or 2-indanyl group which may be substituted with an alkynyl group or an aryl or heteroaryl group;

a cycloalkenyl group substituted with at least one member selected from an oxo group, an alkyl group, an alkenyl and an alkynyl group; or

an aryl group which may be substituted with a phenyl group, an alkynyl group, an acyl group, a halogen atom, an alkoxy group, or an alkyl group.


 
3. A process according to claim 2, wherein
R1, R2, R3, R4, and R5 independently represent
a hydrogen atom, a halogen atom,
a (C1-C10)alkyl group,
a (C2-C5)alkenyl group,
a (C2-C5)alkynyl group, or
a. (C6-C14)aryl group, and
wherein the alkyl, alkenyl, and alkynyl groups may be independently substituted with at least one member selected from
a halogen atom, a (C1-C4)alkoxy group,
a (C1-C4)alkoxy-carbonyl group,
a halo(C1-C4)alkoxy-carbonyl group,
a. (C6-C14)aryl group,
a halo(C3-C5)cycloalkylidene group,
a (C1-C3)alkoxyimino group,
a. (C1-C4)alkylsulfonyl group,
a (C1-C4)alkylsulfonyloxy group, and
a hydroxysulfinyl group; and
R6 represents
a (C1-C10) alkyl group, which may be substituted with a member selected from
a halogen atom, a cyano group, a nitro group,
a (C2-C5)alkenyl group, a halo(C2-C5)alkenyl group, a (C2-C5)alkynyl group,
a (C6-C14)aryl or heterocyclic group which may be substituted with at least one member selected from:

a (C1-C14) alkyl group, a halo (C1-C14) alkyl group,

a (C1-C4) alkoxy group, a halo (C1-C4) alkoxy group,

a (C1-C4)alkoxy(C1-C14)alkyl group,

a (C2-C5)alkenyl group, a (C2-C5)alkynyl group,

a (C6-C14)aryl group, a (C6-C14)aryloxy group,

a halo(C6-C14)aryloxy group,

a (C7-C9)aralkyl group,

a (C1-C2)acyl group,

a haloacyloxy(C1-C14)alkyl group,

an amino group, and a halogen atom; or

R6 represents:

a 1-, or 2-indanyl group which may be substituted with a (C2-C5)alkynyl group or a (C6-C14)aryl or 5-membered heteroaryl group;

a cycloalkenyl group substituted with at least one member selected from an oxo group, a (C1-C14)alkyl group, a (C2-C5)alkenyl and a (C2-C5)alkynyl group; or

a (C6-C14)aryl group which may be substituted with a phenyl group, a (C2-C5)alkynyl group, a (C1-C2)acyl group, a halogen atom, a (C1-C4) alkoxy group, or a (C1-C14) alkyl group.


 
4. A process according to any one of claims 1 to 3, wherein the catalyst compound is a zirconium, hafnium or titanium compound.
 
5. A process according to claim 4, wherein the catalyst compound is a zirconium, hafnium or titanium compound having Lewis acidity.
 
6. A process according to claim 4 or 5, wherein the catalyst compound is a compound of formula (4):

        M(O)-m(X)n(Y)4-2m-n     (4)

wherein M represents an element of Group 4 of the Periodic Table of Elements; X and Y independently represent a halogen atom, an alkoxy group, an acetylacetonate group, an acyloxy group, an amino group which may be substituted with up to two alkyl groups, or a cyclopentadienyl group; m is equal to 0 or 1, and n is equal to 0, 1, or 2.
 
7. A process according to claim 6, wherein M represents zirconium.
 
8. A process according to claim 6, wherein M represents hafnium or titanium.
 
9. A process according to claim 7, wherein the compound of formula (4) is zirconium tetrachloride, a zirconocene compound, or zirconium alkoxide.
 
10. A process according to claim 8, wherein the compound of formula (4) is hafnium or titanium halide, a hafnium or titanium alkoxide, or an amide compound of hafnium or titanium.
 
11. A process according to any one of claims 1 to 10, wherein the cyclopropanecarboxylic acid of formula (2) is 2,2-dimethyl-3-(2,2-dichlorovinyl) cyclopropanecarboxylic acid.
 
12. A process according to any one of claims 1 to 10, wherein the cyclopropanecarboxylic acid of formula (2) is 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylic acid.
 
13. A process according to any one of claims 1 to 12, wherein the monohydroxy compound of formula (3) is a primary alcohol.
 
14. A process according to any one of Claims 1 to 12, wherein the monohydroxy compound is a compound of formula (3), wherein R6 represents a methyl or ethyl group substituted with at least one member selected from the aryl group which may be substituted, a cyano group, and the alkynyl group.
 
15. A process according to any one of Claims 1 to 13, wherein the monohydroxy compound of formula (3) is 3-phenoxybenzyl alcohol.
 
16. A process according to any one of claims 1 to 12, wherein the monohydroxy compound of formula (3) is 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopentene-1-one.
 
17. A process according to any one of claims 1 to 12, wherein the monohydroxy compound of formula (3) is 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentene-1-one.
 


Ansprüche

1. Verfahren zur Herstellung eines Cyclopropancarboxylats der Formel (1):

wobei R1, R2, R3, R4 und R5 unabhängig voneinander
ein Wasserstoffatom, ein Halogenatom,
einen Alkylrest, der substituiert sein kann,
einen Alkenylrest, der substituiert sein kann,
einen Alkinylrest, der substituiert sein kann, oder
einen Arylrest, der substituiert sein kann, darstellen; und
R6 einen Alkylrest, der substituiert sein kann, oder einen Arylrest, der substituiert sein kann, darstellt,
wobei das Verfahren das Umsetzen einer Cyclopropancarbonsäure der Formel (2)

mit einer Monohydroxyverbindung der Formel (3)

        R6OH     (3)

in Gegenwart einer Katalysatorverbindung, umfassend ein Element der Gruppe 4 des Periodensystems, umfasst.
 
2. Verfahren nach Anspruch 1, wobei
R1, R2, R3, R4 und R5 unabhängig voneinander
ein Wasserstoffatom, ein Halogenatom,
einen Alkylrest,
einen Alkenylrest,
einen Alkinylrest oder
einen Arylrest darstellen; und
wobei die Alkyl-, Alkenyl- und Alkinylreste unabhängig voneinander mit mindestens einem Mitglied, ausgewählt aus
einem Halogenatom, einem Alkoxyrest,
einem Alkoxycarbonylrest,
einem Halogenalkoxycarbonylrest,
einem Arylrest,
einem Halogencycloalkylidenrest,
einem Alkoxyiminorest,
einem Alkylsulfonylrest,
einem Alkylsulfonyloxyrest und
einem Hydroxysulfinylrest, substituiert sein können; und
R6
einen Alkylrest darstellt, der mit einem Mitglied substituiert sein kann, ausgewählt aus
einem Halogenatom, einem Cyanorest, einem Nitrorest,
einem Alkenylrest, einem Halogenalkenylrest,
einem Alkinylrest,
einem Aryl- oder heterocyclischen Rest, die mit mindestens einem Bestandteil, ausgewählt aus
einem Alkylrest, einem Halogenalkylrest,
einem Alkoxyrest, einem Halogenalkoxyrest,
einem Alkoxyalkylrest,
einem Alkenylrest, einem Alkinylrest,
einem Arylrest, einem Aryloxyrest,
einem Halogenaryloxyrest,
einem Aralkylrest,
einem Acylrest,
einem Halogenacyloxyalkylrest,
einem Aminorest und einem Halogenatom, substituiert sein können; oder
R6
einen 1- oder 2-Indanylrest, der mit einem Alkinyl- oder einem Aryl- oder einem
Heteroarylrest substituiert sein kann;
einen Cycloalkenylrest, der mit mindestens einem Bestandteil, ausgewählt aus einem Oxo-, einem Alkyl-, einem Alkenyl- und einem Alkinylrest, substituiert ist; oder
einen Arylrest, der mit einem Phenyl-, einem Alkinyl-, einem Acylrest, einem Halogenatom, einem Alkoxyrest oder einem Alkylrest substituiert sein kann, darstellt.
 
3. Verfahren nach Anspruch 2, wobei R1, R2, R3, R4 und R5 unabhängig voneinander
ein Wasserstoffatom, ein Halogenatom,
einen (C1-C10)-Alkylrest,
einen (C2-C5)-Alkenylrest,
einen (C2-C5)-Alkinylrest oder
einen (C6-C14)-Arylrest darstellen, und
wobei die Alkyl-, Alkenyl- und Alkinylreste unabhängig voneinander mit mindestens einem Bestandteil, ausgewählt aus
einem Halogenatom, einem (C1-C4)-Alkoxyrest,
einem (C1-C4)-Alkoxycarbonylrest,
einem Halogen-(C1-C4)-alkoxycarbonylrest,
einem (C6-C14)-Arylrest,
einem Halogen-(C3-C5)-cycloalkylidenrest,
einem (C1-C3)-Alkoxyiminorest,
einem (C1-C4)-Alkylsulfonylrest,
einem (C1-C4)-Alkylsulfonyloxyrest und
einem Hydroxysulfinylrest, substituiert sein können; und
R6
einen (C1-C10)-Alkylrest, der mit einem Bestandteil substituiert sein kann, ausgewählt
aus
einem Halogenatom, einer Cyanogruppe, einer Nitrogruppe,
einem (C2-C5)-Alkenylrest, einem Halogen-(C2-C5)-alkenylrest,
einem (C2-C5)-Alkinylrest,
einem (C6-C14)-Aryl- oder heterocyclischen Rest, die mit mindestens einem Bestandteil, ausgewählt aus
einem (C1-C14)-Alkylrest, einem Halogen-(C1-C14)-alkylrest,
einem (C1-C4)-Alkoxyrest, einem Halogen-(C1-C4)-alkoxyrest,
einem (C1-C4)-alkoxy-(C1-C14)-alkylrest,
einem (C2-C5)-Alkenylrest, einem (C2-C5)-Alkinylrest,
einem (C6-C14)-Arylrest, einem (C6-C14)-Aryloxyrest,
einem Halogen-(C6-C14)-aryloxyrest,
einem (C7-C8)-Aralkylrest,
einem (C1-C2)-Acylrest,
einem Halogenacyloxy-(C1-C14)-alkylrest,
einem Aminorest und einem Halogenatom, substituiert sein können; darstellt oder
R6
einen 1- oder 2-Indanylrest, der mit einem (C2-C5)-Alkinylrest oder einem (C6-C14)-Arylrest oder einem 5-gliedrigen Heteroarylrest substituiert sein kann;
einen Cycloalkenylrest, der mit mindestens einem Bestandteil, ausgewählt aus einem Oxorest, einem (C1-C14)-Alkylrest, einem (C2-C5)-Alkenylrest und einem (C2-C5)-Alkinylrest, substituiert sein kann; oder
einen (C6-C14)-Arylrest, der mit einem Phenylrest, einem (C2-C5)-Alkinylrest, einem (C1-C2)-Acylrest, einem Halogenatom, einem (C1-C4)-Alkoxyrest oder einem (C1-C14)-Alkylrest substituiert sein kann, darstellt.
 
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Katalysatorverbindung eine Zirconium-, Hafnium- oder Titanverbindung ist.
 
5. Verfahren nach Anspruch 4, wobei die Katalysatorverbindung eine Zirconium-, Hafnium- oder Titanverbindung ist, die Lewis-Acidität aufweist, ist.
 
6. Verfahren nach Anspruch 4 oder 5, wobei die Katalysatorverbindung eine Verbindung
der Formel (4) ist:

        M(O)-m(X)4-2m-n     (4)

wobei M ein Element der Gruppe 4 des Periodensystems darstellt; X und Y unabhängig voneinander ein Halogenatom, einen Alkoxyrest, einen Acetylacetonatrest, einen Acyloxyrest, einen Aminorest, der mit bis zu zwei Alkylresten substituiert sein kann, oder einen Cyclopentadienylrest darstellen;
m gleich 0 oder 1 ist und n gleich 0, 1 oder 2 ist.
 
7. Verfahren nach Anspruch 6, wobei M für Zirconium steht.
 
8. Verfahren nach Anspruch 6, wobei M für Hafnium oder Titan steht.
 
9. Verfahren nach Anspruch 7, wobei die Verbindung der Formel (4) Zirconiumtetrachlorid, eine Zirconocenverbindung oder Zirconiumalkoxid darstellt.
 
10. Verfahren nach Anspruch 8, wobei die Verbindung der Formel (4) für Hafnium- oder Titanhalogenid, für ein Hafnium- oder Titanalkoxid oder für eine Amidverbindung von Hafnium oder Titan steht.
 
11. Verfahren nach einem der Ansprüche 1 bis 10, wobei die Cyclopropancarbonsäure der Formel (2) 2,2-Dimethyl-3-(2,2-dichlorvinyl)cyclopropancarbonsäure ist.
 
12. Verfahren nach einem der Ansprüche 1 bis 10, wobei die Cyclopropancarbonsäure der Formel (2) 2,2-Dimethyl-3-(2-methyl-1-propenyl)cyclopropancarbonsäure ist.
 
13. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Monohydroxyverbindung der Formel (3) ein primärer Alkohol ist.
 
14. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Monohydroxyverbindung eine Verbindung der Formel (3) ist, wobei R6 einen Methyl- oder Ethylrest darstellt, der mit mindestens einem Bestandteil, ausgewählt aus dem Arylrest, der substituiert sein kann, einer Cyanogruppe und dem Alkinylrest, substituiert ist.
 
15. Verfahren nach einem der Ansprüche 1 bis 13, wobei die Monohydroxyverbindung der Formel (3) 3-Phenoxybenzylalkohol ist.
 
16. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Monohydroxyverbindung der Formel (3) 4-Hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-on ist.
 
17. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Monohydroxyverbindung der Formel (3) 4-Hydroxy-3-methyl-2-(2-propinyl)-2-cyclopenten-1-on ist.
 


Revendications

1. Procédé pour la production d'un cyclopropanecarboxylate de formule (1) :

dans laquelle R1, R2, R3, R4 et R5 représentent indépendamment
un atome d'hydrogène, un atome d'halogène,
un groupe alkyle qui peut être substitué,
un groupe alcényle qui peut être substitué,
un groupe alcynyle qui peut être substitué, ou
un groupe aryle qui peut être substitué ; et
R6 représente
un groupe alkyle qui peut être substitué, ou
un groupe aryle qui peut être substitué,
lequel procédé comprend la réaction d'un acide cyclopropanecarboxylique de la formule (2) :

avec un composé monohydroxy de formule (3) :

        R6OH     (3),

en présence
d'un composé de catalyseur comprenant un élément du groupe 4 de la Classification Périodique des Eléments.
 
2. Procédé selon la revendication 1, dans lequel
R1, R2, R3, R4 et R5 représentent indépendamment
un atome d'hydrogène, un atome d'halogène,
un groupe alkyle,
un groupe alcényle,
un groupe alcynyle, ou
un groupe aryle, et
dans lequel les groupes alkyle, alcényle et alcynyle peuvent être indépendamment substitués avec au moins un élément choisi parmi
un atome d'halogène, un groupe alcoxy,
un groupe alcoxy-carbonyle,
un groupe haloalcoxy-carbonyle,
un groupe aryle,
un groupe halocycloalkylidène,
un groupe alcoxyimino,
un groupe alkylsulfonyle,
un groupe alkylsulfonyloxy, et
un groupe hydroxysulfinyle; et
R6 représente
un groupe alkyle, qui peut être substitué avec un élément choisi parmi
un atome d'halogène, un groupe cyano, un groupe nitro,
un groupe alcényle, un groupe haloalcényle,
un groupe alcynyle,
un groupe aryle ou hétérocyclique qui peut être substitué avec au moins un élément choisi parmi :

un groupe alkyle, un groupe haloalkyle,

un groupe alcoxy, un groupe haloalcoxy,

un groupe alcoxyalkyle,

un groupe alcényle, un groupe alcynyle,

un groupe aryle, un groupe aryloxy,

un groupe haloaryloxy,

un groupe aralkyle,

un groupe acyle,

un groupe haloacyloxyalkyle,

un groupe amino et un atome d'halogène ; ou

R6 représente :

un groupe 1- ou 2-indanyle qui peut être substitué avec un groupe alcynyle ou un groupe aryle ou hétéroaryle ;

un groupe cycloalcényle substitué avec au moins un élément choisi parmi un groupe oxo, un groupe alkyle, un groupe alcényle et un groupe alcynyle ; ou

un groupe aryle qui peut être substitué avec un groupe phényle, un groupe alcynyle, un groupe acyle, un atome d'halogène, un groupe alcoxy ou un groupe alkyle.


 
3. Procédé selon la revendication 2, dans lequel
R1 R2 R3, R4 et R5 représentent indépendamment
un atome d'hydrogène, un atome d'halogène,
un groupe alkyle en C1-C10,
un groupe alcényle en C2-C5,
un groupe alcynyle en C2-C5, ou
un groupe aryle en C6-C14, et
dans lequel les groupes alkyle, alcényle et alcynyle peuvent être indépendamment substitués avec au moins un élément choisi parmi
un atome d'halogène, un groupe alcoxy en C1-C4,
un groupe(alcoxy en C1-C4)-carbonyle,
un groupe halo(alcoxy en C1-C4)-carbonyle,
un groupe aryle en C6-C14,
un groupe halo(cycloalkylidène en C3-C5),
un groupe (alcoxy en C1-C3)imino,
un groupe (alkyle en C1-C4)sulfonyle,
un groupe (alkyle en C1-C4)sulfonyloxy, et
un groupe hydroxysulfinyle ; et
R6 représente
un groupe alkyle en C1-C10 qui peut être substitué avec un élément choisi parmi
un atome d'halogène, un groupe cyano, un groupe nitro,
un groupe alcényle en C2-C5, un groupe halo(alcényle en C2-C5), un groupe alcynyle en C2-C5,
un groupe aryle en C6-C14 ou hétérocyclique qui peut être substitué avec au moins un élément choisi parmi :

un groupe alkyle en C1-C14, un groupe halo(alkyle en C1-C14), un groupe alcoxy en C1-C4, un groupe halo(alcoxy en C1-C4),

un groupe (alcoxy en C1-C4)(alkyle en C1-C14),

un groupe alcényle en C2-C5, un groupe alcynyle en C2-C5,

un groupe aryle en C6-C14, un groupe (aryle en C6-C14)oxy,

un groupe halo(aryle en C6-C14)oxy,

un groupe aralkyle en C7-C8,

un groupe acyle en C1-C2,

un groupe haloacyloxy(alkyle en C1-C14),

un groupe amino et un atome d'halogène ; ou

R6 représente :

un groupe 1- ou 2-indanyle qui peut être substitué avec un groupe alcynyle en C2-C5 ou un groupe aryle en C6-C14 ou un groupe hétéroaryle à 5 éléments ;

un groupe cycloalcényle substitué avec au moins un élément choisi parmi un groupe oxo, un groupe alkyle en C1-C14, un groupe alcényle en C2-C5 et un groupe alcynyle en C2-C5 ; ou

un groupe aryle en C6-C14 qui peut être substitué avec un groupe phényle, un groupe alcynyle en C2-C5, un groupe acyle en C1-C2, un atome d'halogène, un groupe alcoxy en C1-C4 ou un groupe alkyle en C1-C14.


 
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le composé de catalyseur est un composé de zirconium, d'hafnium ou de titane.
 
5. Procédé selon la revendication 4, dans lequel le composé de catalyseur est un composé de zirconium, d'hafnium ou de titane ayant une acidité de Lewis.
 
6. Procédé selon la revendication 4 ou 5, dans lequel le composé de catalyseur est un composé de la formule (4) :

        M(O)m(X)n(Y)4-2m-n     (4)

dans laquelle M représente un élément du groupe 4 de la Classification Périodique des Eléments; X et Y représentent indépendamment un atome d'halogène, un groupe alcoxy, un groupe acétylacétonate, un groupe acyloxy, un groupe amino qui peut être substitué avec jusqu'à deux groupes alkyle ou un groupe cyclopentadiényle ; m est égal à 0 ou à 1, et n est égal à 0, 1 ou 2.
 
7. Procédé selon, la revendication 6, dans lequel M représente le zirconium.
 
8. Procédé selon la revendication 6, dans lequel M représente l'hafnium ou le titane.
 
9. Procédé selon la revendication 7, dans lequel le composé de la formule (4) est le tétrachlorure de zirconium, un composé de zirconocène ou un alcoxyde de zirconium.
 
10. Procédé selon la revendication 8, dans lequel le composé de la formule (4) est un halogénure d'hafnium ou de titane, un alcoxyde d'hafnium ou de titane ou un composé amide de l'hafnium ou du titane.
 
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'acide cyclopropanecarboxylique de la formule (2) est l'acide 2,2-diméthyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylique.
 
12. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'acide cyclopropanecarboxylique de la formule (2) est l'acide 2,2-diméthyl-3-(2-méthyl-1-propényl)cyclopropanecarboxylique.
 
13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel le composé monohydroxy de la formule (3) est un alcool primaire.
 
14. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel le composé monohydroxy est un composé de la formule (3), dans lequel R6 représente un groupe méthyle ou éthyle substitué avec au moins un élément choisi parmi le groupe aryle qui peut être substitué, un groupe cyano et le groupe alcynyle.
 
15. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel le composé monohydroxy de la formule (3) est l'alcool 3-phénoxybenzylique.
 
16. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel le composé monohydroxy de la formule (3) est la 4-hydroxy-3-méthyl-2-(2-propényl)-2-cyclopentène-1-one.
 
17. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel le composé monohydroxy de la formule (3) est la 4-hydroxy-3-méthyl-2-(2-propynyl)-2-cyclopentène-1-one.