Prior state of art:
[0001] This invention is related to planar reflector antennas, as an alternative to parabolic
or shaped reflectors that are used in radar systems, in terrestrial and satellite
communications, in both earth and flight segments.
[0002] Planar reflectors have been used previously and are known as "reflectarrays." A reflectarray
consists of an array of radiating elements on a plane with a certain adjustment that
allows a collimated reflected electromagnetic field to be obtained when it is illuminated
by a feed (figure 1) in a similar way to that of a parabolic antenna. This is equivalent
to obtaining a reflected field with a planar wave front, i.e. with a progressive phase
distribution on the planar surface. The reflectarray concept is old, as it can be
seen in a number of references, [D. G. Berry, R. G. Malech W. A. Kennedy, 'The Reflectarray
Antenna ', IEEE Trans. on Antennas and Propagat., Vol. AP-11, 1963, pp.646-651] and
[M. I. Skolnik, 'Radar Handbook', McGraw Hill, 1970, pp. 11.54-11.60]. The reflectarrays
described in these references are built using waveguides as radiating elements, resulting
in heavy and bulky reflectors. More recently, printed reflectarrays have been used
[R. E. Munson, H. A. Haddad, J. W. Hanlen, 'Microstrip Reflectarray for Satellite
Communications and RCS Enhancement or Reduction ', patent US4684952, August 1987],
[R. D. Javor, X.. D. Wu, K. Chang, 'Design and Performance of to Microstrip Reflectarray
Antenna ', IEEE Trans. on Antennas and Propagat., Vol. 43, No. 9 Sept 1995, pp.932-938]
and [D. M. Pozar, S. D. Targonski, 'A Microstrip Reflectarray Using Crossed Dipoles
', 1998 IEEE Intl. Symposium on Antennas and Propagat., pp. 1008-1011] that use rectangular
or cross-shaped metallic patches on a grounded dielectric, called microstrip antennas,
as radiating elements. An array of 3x3 square patches is shown in figure 2.
[0003] Microstrip antenna arrays are well-known [R. J. Mailloux, J. F. McIlvenna, N. P.
Kernweis, 'Microstrip Array Technology ', IEEE Trans. on Antennas and Propagat., Vol.
29, No. 1 Jan. 1981, pp. 25-37], and they are used as high-gain antennas as an alternative
to reflectors. Microstrip arrays consist of a group of printed metallic patches that
are fed individually by means of a complicated feeding network to get the progressive
phase distribution on the array surface. These arrays have advantages over reflectors
as their low profile, low volume and weight, low cross polarisation and ease of manufacture
by conventional photo-etching techniques. However, the frequency band is narrow and
the antenna efficiency is reduced at microwave frequencies, due to the losses in the
complex feeding network.
[0004] In the reflectarray, since the feeding is the same as that of reflectors, the inconveniences
of microstrip arrays as a result of the feeding network are eliminated, i.e. the design
and manufacture processes are simplified, losses are reduced and the antenna efficiency
is improved. Compared to reflectors, the reflectarrays have the advantage of their
low profile, smaller distortion and lower levels of cross polarisation, at the cost
of a very narrow band, as described in [J. Huang, 'Bandwidth study of Microstrip Reflectarray
and a Novel Phased Reflectarray Concept ', 1995 IEEE Intl. Symposium on Antennas and
Propagat., pp. 582-585].
[0005] The classic implementation of the adjustment in rectangular microstrip patches to
get a progressive phase distribution consists of connecting transmission line segments
of different lengths to the printed elements, as shown in patent [US4684952, 'Microstrip
Reflectarray for...']. In this configuration, each patch receives the signal from
the feed, which is propagated along the transmission line until the end, which can
be either a short or open circuit, where it is reflected, propagated back and radiated
by the microstrip patch with a phase shift proportional to twice the line length.
The printed line segments generate dissipative losses and spurious radiation that
cause a reduction in the antenna efficiency and an increase in the cross polarisation
levels.
[0006] Other techniques have also been used to get the phase adjustment in each element
of the reflectarray, such as the size variation of the resonant patches [D. M. Pozar,
T. Metzler, 'Analysis of to Reflectarray Antenna Using Microstrip Patches Variable
of Size ', Electronic Letters, 15th April 1993 Vol. 29 No. 8, pp. 657-658], the use
of phase shifters [J. R. Profera, E. Charles, 'Active Reflectarray Antenna for Communication
Satellite Frequency Re-use', patent US5280297, January 1994], or by the polarisation
voltage control in diodes connected to the radiating elements [F. Gautier, et al.,
'Phased Reflector Array and an Antenna Including such an Array ', patent US5148182,
September 1992]. In the patent [US5280297, 'Active Reflectarray Antenna.... '] an
active reflectarray is described, where signal processing is carried out in each element
by using devices such as, circulator, amplifier and phase shifter. The inclusion of
active devices allows the reflected signal to be amplified, but the reflector manufacturing
process is significantly more complex. In patent [US5148182, 'Phased Reflector Array....']
a reflectarray is described in monolithic integrated circuit technology for applications
in millimetre wave bands, where varactor diodes are integrated together with the radiating
elements. The diode capacity is varied to get the adjustment in the phase of the reflected
field. This technology requires very sophisticated production processes and it is
reduced to applications at very high frequencies, and for small-sized reflectors.
[0007] The phase adjustment by means of the variation of the resonant patch length, as shown
in figure 3, is very easy to carry out by using dielectric sheets with printed metallic
patches. Also the inconveniences due to the printed lines, that appear in reflectarrays
with line segments, are eliminated in this implementation.
[0008] The operating principle of the reflectarrays of variable-sized printed elements is
based on the fact that the phase of the reflected wave varies with the resonant length
of the elements. A microstrip patch is a resonant antenna, so that its length should
be approximately half a wavelength in the dielectric. If the patch length is modified
in an array of identical rectangular patches on a ground plane, as shown in figure
2, the module of the reflection coefficient remains equal to one, owing to the ground
plane, but the phase of the reflected wave changes. The total range of phase variation
that can be achieved by varying the length of the patches depends on the separation
between patches and ground plane, i.e. the thickness of the substrate (210). For thicknesses
smaller than a tenth of wavelength, a 330° range can be achieved, which is enough
for carrying out practical designs, but this range diminishes for thicker substrates.
Because of this, the reflectarrays based on this adjustment technique use thin dielectric
substrates. However, the phase variation versus the length is strongly non-linear,
exhibiting very rapid variations near the resonance, and very slow in the extreme
values, as can be seen in figure 6. The rapid phase variation makes the phase distribution
very sensitive to manufacturing tolerance errors. Because of the non-linear behaviour,
the phase is very sensitive to variations in frequency, significantly reducing the
working band of the reflectarray.
[0009] An important application of reflectarrays is their use as dual polarisation reflectors
for frequency reuse. In a communications satellite with frequency reuse, independent
signals are transmitted and received through the different channels, with an overlap
in their frequency bands. The adjacent channels are transmitted or received in orthogonal
polarisations, to allow frequency reuse. Although the two orthogonal polarisations
can be circular, clockwise and anti clockwise, the most common case is to use two
linear polarisations, designated as vertical and horizontal. The frequency reuse requires
a very high isolation between polarisations, which cannot be achieved with parabolic
or shaped reflectors. To obtain this isolation between polarisations, two superposed
grid reflectors with a separate feed for each polarisation can be used. Each grid
reflector is made up of parallel metallic strips on a parabolic or conformal surface,
so that it is transparent to one of the polarisations and acts as a reflector for
the orthogonal one.
[0010] A reflectarray acting as a dual polarisation reflector for frequency reuse has been
patented [J. R. Profera, E. Charles, 'Reflectarray Antenna for Communication Satellite
Frequency Re-use Applications ', patent US5543809, August 1996], which is made up
of two arrays of orthogonal dipoles of variable lengths. The array of vertical dipoles
acts as a reflector for the vertical polarisation and that of horizontal dipoles for
the other polarisation. The invention includes reflectarrays in both, printed and
non-printed technology, and also the possibility of including segments of transmission
lines to obtain phase adjustment in the 360° range. But, like all reflectarrays based
on radiating elements of variable sizes, this reflectarray has the inconvenience of
a very small bandwidth, and is not suitable for most commercial applications.
[0011] Keeping in mind that the more restrictive limitation for both microstrip arrays and
reflectarrays is their narrow band operation, multilayer arrays have been used to
increase the working frequency band, as shown in [J. T. Aberle, D. M. Pozar, J. Manges,
'Phased Arrays of Probe-Fed Stacked Microstrip Patches ', IEEE Trans. on Antennas
and Propagat., Vol. 42, No. 7 July. 1994, pp. 920-927]. These arrays are made up of
two or more stacked layers of patch arrays. An application of stacked reflectarrays
was also proposed, in which the phase adjustment is carried out in a single dimension
for two separate frequencies [J. A. Encinar, "Design of a dual frequency reflectarray
using microstrip stacked patches of variable size", Electronics Letters, 6th June
1996 Vol. 32 No. 12 pp. 1049-1050]. In this reference, two stacked arrays are used,
with patches of very different sizes, which are designed independently for each frequency,
so that, the bandwidth limitations are kept the same as that of single layer reflectarrays.
Previous to this invention, and to the author's knowledge, multilayer reflectarrays
have not been proposed for improving the electrical characteristics with respect to
single layer reflectarrays.
[0012] For the analysis of multilayer structures with periodic metalizaciones, different
techniques based on numerical methods in electromagnetism have been proposed. From
all of them, the reference [Ch. Wan and J. A. Encinar, 'Efficient Computation of Generalized
Scattering Matrix for Analyzing Multilayered Periodic Structures', IEEE Trans. Antennas
and Propagat., Vol. 43 No. 11, Nov. 1995, pp.1233-1242] must be mentioned, which uses
the Moments Method, and it is very efficient and flexible for the analysis of multilayer
configurations, because the analysis of each layer is carried out separately. These
techniques have been used in the analysis and design of Frequency Selective Surfaces,
and multilayer microstrip arrays, but not in the design of multilayer planar reflectors
with similar characteristics to parabolic or shaped reflectors.
[0013] As mentioned in the previous section, the planar reflectors based on printed circuit
technology that exist until now have several disadvantages. On the one hand, the reflectarrays
that use segments of microstrip line for phase adjustment have a lower efficiency
and a higher level of cross polarisation owing to the losses and the spurious radiation
of the lines respectively. The reflectarrays with variable sized radiating elements
do not present these problems, but on the other hand they are very sensitive to errors
in manufacturing tolerance, and their operation is limited to a very narrow band,
because of the rapid variation of the phase with the length in a range limited to
330°. The same limitations apply to the configuration proposed for dual frequency
operation [J. A. Encinar, "Design of a dual frequency reflectarray using microstrip
stacked patches of variable size", Electronics Letters, 6th June 1996 Vol. 32 No.
12 pp. 1049-1050].
[0014] A way to achieve a smoother behaviour of the phase as a function of the length consists
of increasing the thickness of the substrate (210), but this significantly reduces
the total phase range. It must be kept in mind, that for the design of a reflectarray,
phases of the reflection coefficient are required in the range from 0 to 360°, and
they cannot be achieved for a thicker substrate.
Description of the Invention
[0015] In this invention, a reflectarray configuration that consists of two or more array
layers with patches of variable sizes (Figs. 4, 5 and 8) is proposed, in which the
thickness of layers and the patch dimensions are chosen to produce a more linear behaviour
of the phase versus size in a range larger than 360°, in order to achieve realisations
less sensitive to manufacturing tolerances and with a larger bandwidth.
[0016] The innovation of stacking two or more array layers allows the phase shift in the
reflected field to be increased to values greater than the 360° required for the reflectarray
design. An array of rectangular metallic patches behaves as a resonant circuit, in
which the phase of the reflected field varies with the size of the patches in a range
of up to 180°. When the array is placed on a metallic plane, as in figure 2, the maximum
range of phase shift approaches 360°, if the separation between the patches and the
plane is very small (much smaller than λ, λ being the wavelength). Figure 6 shows
the phase as a function of the side for an array of square patches at frequencies
11.5, 12 and 12.5 GHz. In this case, the phase range is 305°, for a separator substrate
(210) with dielectric constant 1.05 and 1 mm. thick (0,04λ). The phase shift range
decreases as the separation increases between patches and metallic plane, i.e. the
thickness of the substrate (210). When two or more array layers are used, each of
them behaves like a resonant circuit, and the phase of the reflected field varies
with the patch size in a similar way to that of one layer, but the phase shift can
reach values of several times 360°. Therefore, with several array layers, the separation
between them, and the separation between the first array and the metallic plane, can
be increased to achieve a smoother and more linear behaviour of the phase as a function
of the patch size, maintaining a range for phase shift greater than 360°. Figure 7
shows the phase curves as a function of the square patch size at the same frequencies
for two stacked arrays on a ground plane, in which two 3-mm. thick separators, (420)
and (430) have been used.
[0017] An object of this invention is a planar reflector, or reflectarray, in multilayer
printed circuit technology for bandwidth improvement. Figure 4 shows a simplified
lateral view of the multilayer reflectarray. This configuration allows the feed to
be located at any angle and to redirect the reflected beam in any direction of the
space (
θ0,
ϕ0), being
θ0 and
ϕ0 the usual angles in spherical co-ordinates, by means of an appropriate design of
the reflection coefficient phase in each element of the reflectarray. This planar
reflector reflects the electromagnetic field coming from a feed (110) located at a
focal point, forming a collimated beam in a given direction at a given frequency.
In a reciprocal way, the reflector receives a collimated beam from a direction at
a given frequency and reflects it, concentrating it at the focal point where the feed
(110) is located. As a particular case, the phase in each element can be adjusted
so that the planar reflector exhibits the same radiation characteristics as a parabolic
reflector. The phase control is carried out by adjusting the dimensions in each radiating
element. Each element of the reflectarray consists of several stacked layers of conductive
patches separated by dielectric sheets, all of them above a conductor plane, as shown
in figure 5 for the case of 2 layers. This description is based on rectangular shaped
patches, but the same effect is obtained using conductive patches with other geometric
shapes, in which at least two dimensions can be independently adjusted to control
the phase of the reflection coefficient for the two orthogonal polarisations of the
incident field on the reflector. For example, cross-shaped metalisations can be used,
controlling the phase for each polarisation with the length of each arm of the cross.
[0018] For the analysis of the structure, a local periodicity approach is considered, which
assumes each element with its dimensions, but in a periodic environment, and the phase
of the reflection coefficient is calculated as a function of the patch side. The periodic
structure is analysed by a previously developed full wave method, which is based on
the Moments Method in the spectral domain.
[0019] This invention allows the realisation of planar reflectors so that their characteristics
are not sensitive to manufacturing tolerance errors. In the proposed reflectarray,
the required precision is not greater than 0.1mm, making the manufacturing processes
both simpler and cheaper. An object of this invention consists of manufacturing each
layer of the planar reflector, made up of printed rectangular metallisations on sheets
of dielectric material, by means of conventional photo-etching procedures, such as
those used in the production of printed-circuit boards. These processes consist of
the selective elimination of conductive material starting from a dielectric sheet
covered with a conductive film, by photo-etching and chemical etching techniques.
The selective elimination of the conductive material can also be carried out by laser,
or by cutting the conductive patches with a cutting plotter, and then removing the
conductive material from between the patches. In the manufacturing process, the planar
array of conductive patches can be deposited either, directly onto the dielectric
separator, or onto a support made up of one or more layers of dielectric material.
[0020] For some of the reflector antenna applications, in which they should be attached
to existing surfaces, in the manufacturing process of the multilayer reflector, the
use of flexible materials allows the reflector to be shaped, in order to fit pre-existing
curved surfaces.
[0021] Another characteristic of the multilayer reflectarray compared with those of a single
layer is that it allows the working frequency band to be increased. The frequency
band of conventional reflectarrays is very narrow, avoiding their use in a large number
of commercial applications. A factor that produces the band limitation is the difference
in propagating distance for the rays that propagates from the feed (110) to the wave
front (150), as shown in figure 9. In the reflectarray, the difference in propagating
distances is compensated at the central frequency by means of a phase shift in each
element. However, for other frequencies slightly separated from the central frequency,
the phase compensation should be slightly different, since the wavelength changes,
and the error will be bigger for larger difference of distances to be compensated.
This error can diminish, and therefore to improve the bandwidth, with an appropriate
choice of both the position of the feed and the direction of radiation. Figure 9 shows
the lateral view of a configuration, in which the surface of the planar reflector
(100) has been chosen as the aperture plane of an equivalent parabolic reflector (140)
and the feed (110) has been located at the focus of the paraboloid. Therefore the
propagating distances (160) and (170) are equal, i.e. the distances are the same in
the whole contour of the reflectarray, minimising the phase to be compensated in the
planar reflector and consequently a larger bandwidth is achieved. The other significant
limitation in the band for reflectarrays based on patches of variable sizes is imposed
by the strong dependence of the phase
versus patch-size curves with frequency variations. The use of several array layers allows
phase curves as a function of the size to be less sensitive to frequency variations,
which produces an increase in bandwidth. Additionally, an adjustment in the dimensions
of each element of the reflectarray can be carried out to improve the behaviour in
the whole working band.
[0022] Because of the larger bandwidth of the multilayer configuration, and taking advantage
of the low level of cross polarisation of the reflectarrays, another object of this
invention consists of its application as dual polarisation reflectarrays as an alternative
to grid reflectors. The phase correction in the reflectarray is carried out independently
for each polarisation, allowing the use of two separate feeds (110) and (111) of linear
polarisation, as shown in figure 10. The dimensions can also be adjusted in order
to generate two collimated beams in different directions, one for each polarisation.
[0023] Another object of the invention consists of the use of the planar reflector as an
antenna with multiple beams. To do that, the dimensions are adjusted in each element
in order to obtain a phase distribution of the reflected field that provides several
collimated beams in different directions, as shown in figure 11.
[0024] Another object of this invention is its application in the construction of folding
reflectors. In some terrestrial or satellite communications applications, large reflectors
that should be folded for transportation are required. Also folding reflectors are
used in mobile terminal equipment. The multilayer planar reflector can be built in
four or more pieces that can be stacked for transportation for later assembly. The
assembly is not critical, since there is no electric contact between the metalisations
of the reflectarray. The folding reflectors also have an important application field
in onboard satellite reflectors, so that the reflector is folded during the launch
and deployed in space.
[0025] A second main object of the invention is the procedure for designing a multilayer
reflectarray in a given frequency band. This procedure provides the dimensions of
all the metalisations and therefore the photo-etching masks, and it consists of the
following steps:
- 1) Definition of the phase shift in each element. Once the working frequency, the position of the feed (110), or feeds (110) and (111),
and the direction of radiation shown by arrows (130a) and (130b) are determined, the
phase shift that should introduce each reflectarray element to achieve a reflected
wave with a progressive phase distribution is computed. This phase distribution is
defined for any polarisation, or for two orthogonal polarisations, of the incident
field. If the two polarisations come from a feed located at a focal point, the phase
distribution is the same for the two polarisations, but if they come from two feeds
located at different focal points, a phase distribution is defined for each polarisation.
A phase distribution that produces a collimated reflected beam with a different polarisation
to that of the incident field coming from the feed can also be defined. For example,
a linear polarised feed can be considered and the phase distribution that produces
a circular polarised collimated beam is defined, or vice versa. To do that, two different
phase distributions must be defined, one for the linear polarisation with a field
component in the direction of one side of the patches and the other with the incident
field in the orthogonal direction, which differ by 90°. Other phase distributions
can also be defined to produce two collimated beams in different directions, one for
each polarisation, or several collimated beams in different directions, in the case
of multiple beam antennas.
- 2) Adjusting the dimensions of each element at the central frequency. In this step the dimensions of the patches are determined to achieve the phase shift
defined in the previous step for each radiating element at the given frequency. First,
the curves of phase versus size are analysed at several frequencies for a periodic
array of two or more layers on a metallic plane. In this step, square patches are
considered in the two layers, as shown in figure 5, with those of the external layer
being slightly smaller. Some geometry parameters are also determined at this step,
as the thickness of the dielectric separators (420) and (430) between layers, the
period a and the relative size of the patches in each layer in order to achieve a
behaviour of the phase versus size which is smooth and less sensitive to frequency
variations, as shown in figure 7. Next, the dimensions of each patch are determined
using an iterative routine for zero finding. This routine calls the analysis program
and adjusts the dimensions of each element until the phase defined in the step 1)
is achieved. The procedure is repeated for each polarisation.
- 3) Performing fine adjustment to meet specifications in the working frequency band. Starting from the dimensions obtained in the previous step, a new adjustment of the
conductive patch dimensions is carried out by using an optimisation routine. In this
step, all the dimensions of the patches are adjusted simultaneously in order to meet
the phase specifications defined in stage 1), for one or two polarisations, at one
or several frequencies within the working band of the reflectarray.
[0026] Another object of this invention is the use of the multilayer planar reflector as
a polariser, since it allows the phase in each element of the planar reflector to
be adjusted in order to generate a collimated beam with a different polarisation than
the incident field coming from the feed. An interesting application consists of generating
a circular polarised beam from a linear polarisation feed, which is easier to build,
or to receive a circular polarised beam concentrating it at the feed with linear polarisation.
[0027] Another object of the invention is its use as a conformal beam reflector. A conformal
beam reflector such as those used in satellites for direct broadcast TV, consists
of a reflector with deformities on its surface, so that the radiation diagram illuminates
a certain geographical area. The design and construction of conformal beam reflectors
should be carried out specifically for each application. For the construction of the
conformal beam reflectors, moulds, which are very expensive to manufacture, are required
and they cannot be reused for other antennas. The multilayer reflectarray and its
design procedure can be used to adjust the phase in each element so that a conformal
beam is achieved, with the same characteristics as that of a shaped reflector. The
design procedure is the one described previously, but in the first step the phase
shift at each element is defined to get a conformal beam, instead of a progressive
phase. The construction of the conformal beam planar reflector is carried out by means
of simple photo-etching techniques, which produce a significant reduction in the production
costs by eliminating the expensive conformal moulds.
[0028] The planar reflector for collimated or conformal beam can be built for space applications,
using the technology developed for the dichroic subreflectors. This technology uses
materials qualified for space that basically consist of arrays of copper or aluminium
metalisations (400 and 410) on very thin (between 25 and 160 microns) Kapton or Kevlar
sheets (450 and 460) as shown in figure 8. As a dielectric separator (420 and 430)
between different array layers, a kevlar core with a honeycomb structure can be used,
which exhibits a very low dielectric constant (of approximately 1.05) and very low
losses (loss tangent in the order of 10
-3). These materials are flexible and they allow a multilayer structure with metalisations
that fit a curved surface to be built. Later on they are subjected to a curing process
in which they acquire enough rigidity for their use in space applications.
[0029] In order to obtain a further bandwidth improvement in the conformal beam reflectors
based on multilayer reflectarrays, they can be built in the shape of a parabolic reflector,
and the phase is adjusted by varying the metalisation size only for the small phase
differences that produce the conformal beam. Although the planar characteristic of
the reflector is lost in this configuration, and consequently the manufacturing process
is more complicated, conformal beam reflectors can be built with parabolic moulds,
which are reusable for several applications and don't require such a rigorous technology
as those with a conformal surface. Additionally, two independent feeds can be used,
one for each linear polarisation, which are located in the vicinities of the paraboloid
focus, and the dimensions of the conductive patches are adjusted in each element to
compensate each feed position and to conform the beam in the two polarisations.
Explanation of the drawings
[0030]
Fig. 1. Lateral view of a planar reflector (100) illuminated by a feed (110). In each element
(120) of the reflector, an adjustment is introduced in the phase of the reflected
field so that the divergent field coming from the feed (110) is reflected as a collimated
beam in the direction of the arrows (130a) and (130b).
Fig. 2. Perspective of a planar array of conductive patches (200) deposited onto a sheet
(210) of thickness b, made of dielectric material, also known as substrate, which is covered on the lower
side by a conductor (230). The period is a.
Fig. 3. Perspective of a planar array of conductive patches (200) on a dielectric sheet and
conductive plane, where the size of the patches (200) is different to get an adjustment
in the phase of the reflected field. The period is a.
Fig. 4. Lateral view of a multilayer planar reflector illuminated by a feed (110) to produce
a collimated beam in the direction of the arrows (130a) and (130b) defined by the
angles θ0, φ0 used in spherical co-ordinates. The planar reflector is made up of two layers of
conductive patches (400) and (410) on dielectric material sheets, or substrate, (420)
and (430), on a conductive plane (440). The two-layer element (300) represents a generic
element l.
Fig. 5. Lateral and frontal views of a square periodic cell of side a, used as element in the multilayer planar reflectors for the phase adjustment. The
structure of the multilayer periodic element consists of a first rectangular conductive
patch (400) of dimensions a1xb1, a dielectric separator (420) of thickness h1, a second rectangular conductive patch (410) of dimensions a2xb2, a second separator (430) of thickness b2, and a conductor plane (440).
Fig. 6. Phase of the reflection coefficient at normal incidence for a periodic array of square
conductive patches on a ground plane, as shown in figures 2, as a function of the
patch side, at three different frequencies, 11.5 (- - -), 12 (-----) and 12.5 (-----)
GHz. The following data are assumed: periodic cell side a=14mm. and separator of relative dielectric constant 1.05 and thickness h=1mm.
Fig. 7. Phase of the reflection coefficient at normal incidence for a multilayer periodic
array with periodic elements as shown in figure 5 as a function of the patch size
at three different frequencies, 11.5 (- - -), 12 (-----) and 12.5 (-----) GHz. The
following data are assumed: Square patches on the external layer 0.7 times the size
of those on the intermediate layer (a1=b1, a2=b2, a1=0.7a2), separators of dielectric constant 1.05 and thickness h1 = h2=3 mm and side of periodic cell, a=14mm.
Fig. 8. Perspective of the different layers that make up a multilayer planar reflector. From
the upper layer to the lower one, first array of rectangular conductive patches (400)
of different sizes, first dielectric substrate layer (450) onto which the patches
are deposited, first dielectric separator (420), second array of patches (410), second
substrate (460), second separator (430) and metallic plane (440).
Fig. 9. Lateral view of a configuration of planar reflector in which the propagation distances
for a wave propagating from the feed (110) to the wave front (150) are same in the
contour of the planar reflector. These distances are the same for all the points of
a parabolic reflector (140) with the feed (110) located at the focus.
Fig. 10. Lateral view of a multilayer planar reflector illuminated by two feeds (110) and
(111) of different polarisation in which the adjustment of the dimensions of the conductive
patches is carried out to generate a collimated beam in the direction of the arrows
(130a) and (130b) for the two polarisations.
Fig. 11. Lateral view of a multilayer planar reflector illuminated by a feed (110) in which
the adjustment of the dimensions of the conductive patches is carried out to produce
two collimated beams in the directions shown by the arrows (130a-b) and (131a-b),
respectively.
Fig. 12. Mask obtained by AUTOCAD to scale 1:4 with the contour of the patches (400) of variable
sizes for the first layer of a planar reflector designed to produce a collimated beam
in the direction address θ0=19°, φ0=0° at 11.95 GHz.
Fig. 13. Mask obtained by AUTOCAD to scale 1:4 with the contour of the patches (410) of variable
sizes for the second layer of a planar reflector designed to produce a collimated
beam in the direction address θ0=19°, φ0=0° at 11.95 GFHz.
Fig. 14. Photograph of the two layer planar reflector with arrays of patches of variable sizes
which was designed, built and measured in an anechoic chamber.
Details of the preferred embodiment:
[0031] In this section the steps for carrying out the design and construction of a planar
reflector based on multilayer printed technology for dual polarisation are described.
[0032] First, the technology and the materials to be used in the realisation of the reflector
are chosen. In the example that is described, a commercial foam, known as ROHACELL
51, has been chosen as the material for the separators between the layers with metalisations
which has a relative dielectric constant of 1.05 and a loss tangent of 10
-3. The arrays of rectangular metallic patches are built starting from a metallised
dielectric support of small thickness, such as for example, a 25 micron Kapton film
with an 18 micron copper cladding. The Kapton has a relative dielectric constant of
3.5 and a loss tangent of 3x10
-3, although owing to its small thickness its effect is negligible.
[0033] Once the materials have been chosen, a multilayer periodic structure is analysed,
which is made up of two or more stacked layers of metallic patches on a metallic plane,
separated by dielectric separators. A periodic cell is shown in figure 5 for the case
of two layers. For the analysis of the multilayer periodic structure, a full wave
method is used such as the well-known Moments Method in spectral domain, and the phase
of the reflection coefficient is computed for the two possible polarisations of the
incident field as a function of the different geometric parameters and excitation.
Arrays of square resonant patches with the side of approximately half a wavelength
are considered as starting point and the size is modified continuously to study the
behaviour of the phase versus the resonant length. The size of the patches is varied
simultaneously in all the layers maintaining a fixed ratio between the sizes in each
layer and a fixed period in all the layers. It has been proven that the array closer
to the ground plane should be made up of slightly larger patches. The variation in
the reflection coefficient phase is analysed for each one of the two orthogonal polarizations,
i.e. for an incident electric field with
x component (E
x), and for an electric field with
y component (
Ey), for different angles of incidence and for several frequencies within the working
band.
[0034] At this stage some geometric parameters, such as the patch repetition period
a, the thickness of separators
h1 and
h2, and the relative size of the patches in each layer are adjusted in order to achieve
a sufficiently linear phase variation as a function of the patch dimensions for different
angles of incidence, for different frequencies and which cover at least a 360° phase
range. For the implementation that is described, a design frequency f=11.95 GHz has
been chosen, a structure of 2 layers of conductive patches has been considered and
the following geometric values have been chosen:
- Thickness of ROHACELL: 3 mm.
- Repetition period: 14 mm.
- Relative size of patches top/bottom: 0.7
[0035] For these values, the curves of the reflection coefficient phase for the two polarisations,
at normal incidence, are shown in figure 7, at frequencies 11.5, 12 and 12.5 GHz.
[0036] Next, the position of the feed with respect to the reflector, the size of the reflector
and the direction of radiation are fixed. For this implementation, a circular reflector
of 40cm in diameter has been considered, and a commercial feed used in satellite television
receivers from the company SATELITE ROVER, with reference FOLWR75, has been used.
The reflector is located on the
XY plane with its centre in the origin of the co-ordinates, the centre of the feed aperture
is placed at co-ordinates, x
r = -116, y
r = 0, z
f = 340mm., and the angle of radiation is fixed to θ
0=19°, φ
0=0°, in spherical co-ordinates.
[0037] With these data the design of the reflector in printed technology is carried out
to determine the photo-etching mask for the patches in each layer. The process consists
of three steps:
- 1) Defining the phase shift in each element. Once the position of the feed (110) and the direction of radiation, defined by the
angles θ0, φ0 in spherical co-ordinates are determined, the phase shift that should be introduced
at each element (300) of the reflectarray is computed to get a progressive phase distribution
of the reflected wave. Since the reflector is in the far field zone of the feed, the
phase of the incident field on each element l (300) of the reflectarray is the product of the wave number K0 by the distance from the feed to the element l, known as d1. To obtain a field reflected in the direction (θ0, φ0) its phase on the surface of the reflector should be,

(x,y) being the co-ordinates of each point on the surface of the reflector. To get this
phase distribution, each element l of the reflector should introduce a phase shift in the reflection coefficient,

where (x1,y1) are the co-ordinates of the centre of element l. This is the objective phase of the reflection coefficient that should be obtained
for the two orthogonal polarisations if only one feed is used.
- 2) Adjusting the dimensions of each element at the central frequency. In this stage the dimensions of the patches are determined in order to achieve the
phase shift defined in the previous step in each radiating element at the central
frequency.
If the direction of the incident field in the reflector were perpendicular to this,
the phase of the reflection coefficient would be the same for the two polarisations.
However, in the reflectarray the incidence is oblique in each element and the phases
for each polarisation will be different. Therefore, to obtain a progressive phase
in the reflected field for the two orthogonal polarisations, Ex and Ey, the two dimensions of each patch should be adjusted. Since the phase for each polarisation
practically depends on the resonant dimensions only, first square patches are assumed
and the dimensions a1 and a2 are adjusted, see figure 5, to obtain the required phase for the Ex polarisation. Later, b1 and b2 are adjusted, also assuming square patches, for the phase of Ey.
For the analysis of the reflectarray, the phase of the reflection coefficient is computed
for each polarisation in every period assuming local periodicity, i.e. analysing each
element with its dimensions in a periodic environment.
To determine the dimensions of each patch, an iterative routine based on the 'false
position' method is used. The routine calls the analysis program and adjusts the dimensions
of each element until the required phase is obtained. The iterative procedure is applied
for square patches to get the phase distribution defined in the previous step for
Ex field polarisation and the dimensions a1 a2 are obtained. Next, the procedure is applied for Ey field polarisation and the dimensions b1 b2 are obtained. The patch dimensions a1, b1, a2 and b2 in each element of the reflector provide, within a very good approximation, the phase
distributions defined in stage 1) for the two polarisations.
- 3) Performing fine adjustment to meet the specifications in the working frequency band. Starting from the dimensions obtained in the previous stage, a new adjustment of
the dimensions is carried by using an optimisation routine in order to meet the phase
specifications in each element for the two orthogonal polarisations at several frequencies
within the reflectarray working band. To do this, an objective phase for the reflection
coefficient is determined at each frequency, for each element of the reflector, and
a phase error is defined for each polarisation as the difference between this objective
phase and the phase computed by the Moments Method. An error function is defined as
the sum of the square of the phase errors for each polarisation at every frequency.
The optimisation routine adjusts all the dimensions of the patches (a1, a2, b1 and b2) in each element to minimise the error function. This process provides all the dimensions
of the metallic patches in the two layers which allow the photo-etching mask to be
generated.
[0038] For the technological implementation of the reflectarray, the traditional photo-etching
techniques used in the production of printed circuits can be used. In the implementation
here described, the photo-etching masks for each reflectarray layer have been generated
with AUTOCAD from the file with the dimensions of the patches obtained in the design
stage. Figures 12 and 13 show the masks to scale 1:4 with the contours of the rectangular
patches for the first and second array layers, respectively. The rectangular patches
have been cut from a copper-clad Kapton sheet by a cutting plotter using the AUTOCAD
files. Afterwards, the patches are transferred to a 100 micron adhesive film, and
this sheet is then adhered to the ROHACELL which acts as separator. A copper-clad
Kapton sheet has been used as the metallic plane.
[0039] This prototype has been built and measured in an anechoic chamber. A photograph of
the two layer planar reflector with its feed is shown in figure 14. The measured characteristics
of the reflector meet the specifications considered in the design. The radiation patterns
are practically the same for the two linear polarisations and they coincide with those
obtained by the analysis method. The gain is 31 dB, with ±0.15dB gain variations in
the 11.5 to 12.4 GHz band. The cross polarisation is below -33dB.
Industrial application
[0040] As already mentioned in previous sections, this invention can be applied to reflector
antennas in radar and both terrestrial and satellite communications, with significant
advantages compared to conventional parabolic reflectors. Because of the planar characteristic,
it can be built in several pieces to be folded and later deployed, being of great
use in applications in which large reflectors that need transporting are required.
Owing to the fact that is a planar reflector with the possibility of redirecting the
beam, the reflector surface can be fitted to existing structures, such as building
walls, structural planes in communication satellites, etc. It can be used as a dual
polarisation reflector with an isolation level between polarisations better than those
obtained with conventional reflectors.
[0041] The present invention can be built using space qualified materials and a technology
already developed in space applications for the manufacture of dichroic subreflectors.
Therefore, this type of multilayer planar reflectors is very suitable for a significant
range of applications in the space industry as an alternative to the different types
of onboard reflectors in satellites, such as parabolic, grid or shaped reflectors.
1. A planar reflector in printed circuit technology that reflects the electromagnetic
energy coming from a feed (110) located at a focal point, forming a collimated beam
in a given direction at a given frequency, or that receives a collimated beam from
a given direction at a given frequency and reflects it by concentrating it at the
focal point where the feed is located, having a multilayer array formed by: a conductive
plane (440), a sheet of dielectric material called a separator (430), a thin film
of dielectric material (460) that supports a planar array of rectangular conductive
patches (410), a new separator layer (420) and a new layer of conductive patches (400)
on a dielectric support (450),
characterised in that the thickness of separators (420 and 430) and the relative size of patches (400,
410) in each layer are chosen to achieve a variation of phase as a function of patch
dimensions in a range larger than 360°, and in that the dimensions of the conductive patches in each layer are adjusted individually
to achieve a phase shift in the reflected field to collimate the electromagnetic field
coming from the feed (110) or to concentrate the collimated beam incident onto the
reflector at the feed (110), at a given frequency.
2. Planar reflector according to claim 1, wherein the conductive patches (400, 410) are
deposited directly onto the dielectric separators (420, 430).
3. Planar reflector according to claim 1, characterised by having more than two layers of dielectric material between the conductor plane (440)
and the conductive patches (410), or between the planar arrays of patches (400 and
410).
4. Planar reflector according to claims 1, 2 or 3, built in materials qualified for space
applications.
5. Planar reflector according to claims 1, 2, 3 or 4, characterised by having more than two layers of conductive patch arrays (400, 410) and stacked dielectric
sheets (420, 450 or 430, 460).
6. Planar reflector as in claims 1, 2, 3, 4 or 5, wherein the conductive patches (400,
410) in any layer are square, rectangular or in the shape of a cross.
7. Planar reflector according to claim 6, wherein the patch array (400, 410) in each
layer is manufactured by means of selective elimination of conductive material from
a dielectric sheet covered by a conductive film, by means of photo-etching and chemical
etching techniques, or by selective elimination of the conductive material by laser,
or cutting the conductive patches (400, 410) by using a cutting plotter and removing
the conductive material between the patches.
8. Planar reflector according to claim 6 or 7, characterised by being built in several pieces to be folded and deployed.
9. Planar reflector according to claim 6 or 7, characterised by being built in flexible materials to be fitted to curved surfaces.
10. Planar reflector according to claim 6, wherein the dimensions of the patches (400,
410) are adjusted in each element to collimate the beam coming from the feed (110),
or to concentrate the collimated beam incident on the reflector at the focal point
where the feed (110) is located, with the same characteristics as those of a parabolic
reflector.
11. Planar reflector according to claim 6, wherein the dimensions of the conductive patches
(400, 410) in each layer are adjusted to collimate the beam coming from the feed (110),
or to concentrate the collimated beam incident on the reflector at the focal point
of the feed, for two polarisations of the electromagnetic field simultaneously.
12. Planar reflector according to claim 6 with one or two feeds (110, 111) working in
two orthogonal polarisations, characterised by generating or receiving two collimated beams, one for each polarisation of the incident
field, in different directions.
13. Planar reflector according to claim 6, wherein the dimensions of the conductive patches
(400, 410) are adjusted in each layer to get a collimated reflected beam with circular
polarisation when a linear polarised field coming from the feed (110) is incident,
or to concentrate at the focal point of the feed (110) a linear polarised field when
a collimated field with circular polarisation impinges on the reflector.
14. Planar reflector according to claims 6, 11 or 13 wherein the dimensions of the conductive
patches (400, 410) in each element are adjusted to achieve the electric characteristics
of a conformal beam reflector.
15. Multilayer Reflector according to claim 14, having parabolic shape, instead of planar,
with the feed (110) or feeds (110 and 111) near the focus of the paraboloid, wherein
the dimensions of the conductive patches (400 and 410) in each element are adjusted
to achieve the electric characteristics of a conformal beam reflector, for single
or dual polarisation.
16. Planar reflector according to claim 6, with a feed working in single or dual polarisation,
characterised by generating several collimated beams in different directions as shown in figure 11,
or to receive electromagnetic signals from different directions and to concentrate
them at the focal point where the feed (110) is located.
17. Method for design to obtain the photo-etching masks for the construction of a planar
reflector according to any of the previous claims based on Moments Method routine
for the analysis of multilayer periodic structures,
characterised by comprising the following steps: 1) defining the phase of the reflection coefficient
for each element so that the electromagnetic energy of a certain frequency coming
from a feed (110) located at a focal point is reflected forming a collimated beam
in a certain direction, where each element is made up of two or more stacked conductive
patches (400, 410) above a conductor plane separated from each other by dielectric
sheets; 2) determination of the patch dimensions so that the phase of the reflection
coefficient in each element defined in the previous stage is achieved, by using an
iterative routine for zero searching that adjusts the patch dimensions and computes
the reflection coefficient by the analysis routine, until the required phase is achieved;
3) fine adjustment of the conductive patch dimensions in each element of the multilayer
reflector, by means of an optimisation routine, to achieve the phase defined in stage
1) for an incident field with any polarisation type for one or several frequencies
within the working band of the reflector.
18. Method for design according to claim 17, wherein the adjustment of the dimensions
of the conductive patches (400, 410) in each element in stages 2) and 3) is carried
out simultaneously for two independent orthogonal polarisations of the incident field.
19. Method for design according to claim 18, wherein the phase of the reflection coefficient
is defined in stage 1) so that the field coming from one feed (110) or two feeds (110
and 111) is reflected forming two collimated beams, one for each polarisation of the
incident field, in different directions.
20. Method for design according to claim 17, wherein the phase of the reflection coefficient
is defined in stage 1) so that the field coming from the feed (110) is reflected forming
a collimated beam with a different polarisation than that of the incident field.
21. Method for design according to claims 17, 18, or 20 wherein the phase of the reflection
coefficient is defined in stage 1) so that the field coming from the feed (110) or
feeds (110 and 111) is reflected forming a conformal beam, instead of a collimated
beam.
22. Method for design according to claim 17 or 18, wherein the phase of the reflection
coefficient is defined in stage 1) so that the field coming from the feed (110) is
reflected forming several collimated beams in different directions.
1. Planarreflektor in der Leiterplattentechnik, der die elektromagnetische Energie, die
aus einem Feed (110), der sich an einem Brennpunkt befindet, kommt, reflektiert und
dabei einen kollimierten Strahl in einer vorgegebenen Richtung bei einer vorgegebenen
Frequenz bildet, oder der einen kollimierten Strahl aus einer vorgegeben Richtung
bei einer vorgegebenen Frequenz empfängt und reflektiert, indem er ihn am Brennpunkt,
wo sich der Feed befindet konzentriert, der eine mehrschichtige Matrix aufweist, die
gebildet ist aus: einer leitenden Ebene (440), einem Blatt aus dielektrischem Material,
welches ein Separator (430) genannt wird, einem dünnen Film aus dielektrischem Material
(460), der eine planare Matrix aus rektangulären leitenden Teilflächen (410) trägt,
einer neuen Separatorschicht (420), und einer neuen Schicht leitender Teilflächen
(400) auf einer dielektrischen Auflage (450),
dadurch gekennzeichnet, dass die Dicke des Separators (420 und 430) und die relative Größe der Teilflächen (400,
410) in jeder Schicht so gewählt sind, dass eine Änderung der Phase in Abhängigkeit
von den Ausmaßen der Teilflächen in einem Bereich, der größer als 360° ist, erreicht
wird, und dass die Ausmaße der leitenden Teilflächen in jeder Schicht individuell
angepasst sind, um eine Phasenverschiebung in dem reflektierten Feld zu erhalten,
um das elektromagnetische Feld, das aus dem Feed (110) kommt, zu kollimieren, oder
um den kollimierten Strahl, der bei dem Feed (110) auf den Reflektor einfällt, bei
einer vorgegebenen Frequenz zu konzentrieren.
2. Planarreflektor nach Anspruch 1, wobei die leitenden Teilflächen (400,410) direkt
auf die dielektrischen Separatoren (420, 430) aufgelegt werden.
3. Planarreflektor nach Anspruch 1, dadurch gekennzeichnet, dass er mehr als zwei Schichten von dielektrischem Material zwischen der Leiterebene (440)
und den leitenden Teilflächen (410) oder zwischen den Planarmatrixen der Teilflächen
(400 und 410) aufweist.
4. Planarreflektor nach Ansprüchen 1, 2 oder 3, der aus Materialien gefertigt ist, die
für Anwendungen im Weltraum geeignet sind.
5. Planarreflektor nach Ansprüchen 1, 2, 3 oder 4,
dadurch gekennzeichnet, dass er mehr als zwei Lagen von Matrixen von leitenden Teilflächen (400, 410) und gestapelten
dielektrischen Blättern (420, 450 oder 430, 460) aufweist.
6. Planarreflektor nach Ansprüchen 1, 2, 3, 4 oder 5, wobei die leitenden Teilflächen
(400, 410) in jeder beliebigen Schicht quadratisch, rektangulär oder in der Form eines
Kreuzes sind.
7. Planarreflektor nach Anspruch 6, wobei die Teilflächenmatrix (400, 410) in jeder Schicht
durch selektives Eliminieren von leitendem Material aus einem dielektrischen Blatt,
bedeckt von einem leitenden Film, durch Photoätzen und chemische Ätztechniken hergestellt
wird, oder durch das selektive Eliminieren des leitenden Materials durch einen Laser,
oder durch das Schneiden der leitenden Teilflächen (400, 410), indem man einen Schneideplotter
gebraucht und das leitende Material zwischen den Teilflächen entfernt.
8. Planarreflektor nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass er aus mehreren Teilen hergestellt ist, um gefaltet und entfaltet werden zu können.
9. Planarreflektor nach Ansprüchen 6 oder 7, dadurch gekennzeichnet, dass er aus flexiblen Materialien hergestellt ist, um an gekrümmte Flächen angepasst werden
zu können.
10. Planarreflektor nach Anspruch 6, wobei die Ausmaße der Teilflächen (400, 410) in jedem
Element angepasst sind, um den Strahl, der von dem Feed (110) kommt, zu kollimieren,
oder den kollimierten Strahl, der am Brennpunkt, wo sich der Feed (110) befindet,
auf den Reflektor einfällt, zu konzentrieren, mit den gleichen Merkmalen wie denen
eines parabolischen Reflektors.
11. Planarreflektor nach Anspruch 6, wobei die Ausmaße der leitenden Teilflächen (400,
410) in jeder Schicht angepasst sind, um den Strahl, der von dem Feed (110) kommt,
zu kollimieren, oder den kollimierten Strahl, der am Brennpunkt des Feeds (110) auf
den Reflektor einfällt, für zwei Polarisationen des elektromagnetischen Feldes gleichzeitig
zu konzentrieren.
12. Planarreflektor nach Anspruch 6 mit einem oder zwei Feeds (110, 111), die in zwei
orthogonalen Polarisationen funktionieren, dadurch gekennzeichnet, dass er zwei kollimierte Strahlen, einen für jede Polarisation des einfallenden Feldes,
in verschiedenen Richtungen erzeugt oder empfängt.
13. Planarreflektor nach Anspruch 6, wobei die Ausmaße der leitenden Teilflächen (400,
410) in jeder Schicht angepasst sind, um einen kollimierten, reflektierten Strahl
mit Zirkularpolarisation zu bekommen, wenn ein vom Feed (110) kommendes lineares polarisiertes
Feld einfällt, oder um ein lineares polarisiertes Feld am Brennpunkt des Feeds (110)
zu konzentrieren, wenn ein kollimiertes Feld mit Zirkularpolarisation auf den Reflektor
auftrifft.
14. Planarreflektor nach Anspruch 6, 11 oder 13, wobei die Ausmaße der leitenden Teilflächen
(400, 410) in jedem Element angepasst sind, um die elektrischen Merkmale eines konformen
Stahlenreflektors zu erreichen.
15. Mehrschichtiger Reflektor nach Anspruch 14, der, anstelle einer planaren, eine parabolische
Form aufweist, wobei der Feed (110) oder die Feeds (110 und 111) nahe dem Fokus des
Paraboloids liegen, wobei die Ausmaße der leitenden Teilflächen (400, 410) in jedem
Element angepasst sind, um die elektrischen Merkmale eines konformen Strahlenreflektors
für einfache oder doppelte Polarisation zu erreichen.
16. Planarreflektor nach Anspruch 6, bei dem ein Feed in einfacher oder doppelter Polarisation
funktioniert, dadurch gekennzeichnet, dass er mehrere kollimierte Strahlen in verschiedenen Richtungen, wie in Figur 11 gezeigt,
erzeugt, oder elektromagnetische Signale aus verschiedenen Richtungen empfängt und
sie am Brennpunkt, wo sich der Feed (110) befindet, konzentriert.
17. Verfahren für den Entwurf, um die Photoätzmasken zur Herstellung eines Planarreflektors
zu erhalten, nach jedem beliebigen der vorhergehenden Ansprüche, basierend auf der
Routine der Momentenmethode für die Analyse von mehrschichtigen periodischen Strukturen,
dadurch gekennzeichnet, dass es die folgenden Schritte umfasst: 1) Definieren der Phase des Reflektionskoeffizienten
für jedes Element, so dass die elektromagnetische Energie einer bestimmten Frequenz,
die von einem Feed (110) kommt, der sich an einem Brennpunkt befindet, reflektiert
wird und einen kollimierten Strahl in einer bestimmten Richtung bildet, wobei jedes
Element aus zwei oder mehreren übereinander gestapelten leitenden Teilflächen (400,
410) über einer Leiterebene und voneinander durch dielektrische Blätter getrennt besteht;
2) Bestimmen der Teilflächenausmaße, so dass die im vorhergehenden Schritt definierte
Phase des Reflektionskoeffizienten in jedem Element erreicht wird, indem eine iterative
Routine für Zero-Searching verwendet wird, die die Teilflächenausmaße anpasst und
den Reflektionskoeffizienten durch die Analyseroutine errechnet, bis die erwünschte
Phase erreicht ist; 3) Genaue Anpassung der Ausmaße der leitenden Teilflächen in jedem
Element des mehrschichtigen Reflektors, durch eine Optimierungsroutine, um die in
Schritt 1) definierte Phase für ein einfallendes Feld mit jedem beliebigen Polarisationstyp
für eine oder mehrere Frequenzen innerhalb des Funktionsbereichs des Reflektors zu
erreichen.
18. Verfahren für den Entwurf nach Anspruch 17, wobei die Anpassung der Ausmaße der leitenden
Teilflächen (400, 410) in jedem Element in den Schritten 2) und 3) gleichzeitig für
zwei unabhängige orthogonale Polarisationen des einfallenden Feldes ausgeführt wird.
19. Verfahren für den Entwurf nach Anspruch 18, wobei die Phase des Reflektionskoeffizienten
in Schritt 1) definiert ist, so dass das Feld, das aus einem Feed (110) oder zwei
Feeds (110, 111) kommt, reflektiert wird und zwei kollimierte Strahlen, einen für
jede Polarisation des einfallenden Feldes, in verschiedenen Richtungen bildet.
20. Verfahren für den Entwurf nach Anspruch 17, wobei die Phase des Reflektionskoeffizienten
in Schritt 1) definiert wird, so dass das Feld, das von dem Feed (110) kommt, reflektiert
wird und einen kollimierten Strahl mit einer anderen Polarisation als der des einfallenden
Feldes bildet.
21. Verfahren für den Entwurf nach den Ansprüchen 17, 18 oder 20, wobei die Phase des
Reflektionskoeffizienten in Schritt 1 definiert wird, so dass das Feld, das von dem
Feed (110) oder den Feeds (110, 111) kommt, reflektiert wird und, anstelle eines kollimierten
Strahls, einen konformen Strahl bildet.
22. Verfahren für den Entwurf nach Anspruch 17 oder 18, wobei die Phase des Reflektionskoeffizienten
in Schritt 1) definiert wird, so dass das Feld, das von dem Feed (110) kommt, reflektiert
wird und mehrere kollimierte Strahlen in verschiedenen Richtungen bildet.
1. Un réflecteur plan en technologie des circuits imprimés qui réfléchit l'énergie électromagnétique
provenant d'une alimentation (110) située en un point focal, formant un faisceau colimaté
dans une direction donnée à une fréquence donnée, ou qui reçoit un faisceau colimaté
provenant d'une direction donnée à une fréquence donnée et la réfléchit en la concentrant
au niveau du point focal où l'alimentation est située, ayant un réseau multicouche
formé par un plan conducteur (440), une feuille de matériau diélectrique appelée un
séparateur (430), un film mince de matériau diélectrique (460) qui supporte un réseau
plan de plages conductrices rectangulaires (410), une nouvelle couche de séparateur
(420) et une nouvelle couche de plages conductrices (400) sur un support diélectrique
(450),
caractérisé en ce que l'épaisseur des séparateurs (420 et 430) et la taille relative des plages (400, 410)
dans chaque couche sont choisies pour avoir une variation de phase en fonction des
dimensions de plages dans une gamme plus grande que 360 °, qui donne une plus petite
sensibilité aux tolérances de fabrication et une plus grande largeur de bande pour
l'antenne de réseau de réflexion, et en ce que les dimensions des plages conductrices dans chaque couche sont ajustées individuellement
pour atteindre un déphasage dans le champ réfléchi pour colimater le champ électromagnétique
provenant de l'alimentation (110) ou pour concentrer le faisceau colimaté incident
sur le réflecteur au niveau de l'alimentation (110), à une fréquence donnée.
2. Réflecteur plan selon la revendication 1, dans lequel les plages conductrices (400,
410) sont déposées directement sur les séparateurs dits électriques (420, 430).
3. Réflecteur plan selon la revendication 1, caractérisé en ce qu'il comporte plus de deux couches de matériau diélectriques entre le plan conducteur
(440) et les plages conductrices (410) ou entre les réseaux plans de plages (400 et
410).
4. Réflecteur plan selon la revendication 1, 2 ou 3, construit dans les matériaux qualifiés
pour des applications spatiales.
5. Réflecteur plan selon la revendication 1, 2, 3 ou 4, caractérisé en ce qu'il comporte plus de deux couches de réseaux de plages conductrices (400, 410) et de
feuilles diélectriques empilées (420, 450 ou 430, 460).
6. Réflecteur plan selon la revendication 1, 2, 3, 4 ou 5, dans lequel les plages conductrices
(400, 410) dans toute couche sont carrées, rectangulaires ou en forme de croix.
7. Réflecteur plan selon la revendication 6, dans lequel le réseau de plages (400, 410)
dans chaque couche est fabriqué au moyen d'une élimination sélective de matériau conducteur
à partir d'une feuille diélectrique couverte par un film conducteur, au moyen de techniques
de photo-gravure et de gravure chimique, ou par élimination sélective du matériau
conducteur par laser, ou en coupant les plages conductrices (400, 410) en utilisant
un traceur coupant et en éliminant le matériau conducteur entre les plages.
8. Réflecteur plan selon la revendication 6 ou 7, caractérisé en ce qu'il est construit en plusieurs pièces à plier et déployer.
9. Réflecteur plan selon la revendication 6 ou 7, caractérisé en ce qu'il est construit dans des matériaux flexibles à ajuster sur les surfaces incurvées.
10. Réflecteur plan selon la revendication 6, dans lequel les dimensions des plages (400,
410) sont ajustées dans chaque élément pour colimater le faisceau provenant de l'alimentation
(110), ou pour concentrer le faisceau colimaté incident sur le réflecteur au niveau
du point focal où l'alimentation (110) est située, avec les mêmes caractéristiques
que celles d'un réflecteur parabolique.
11. Réflecteur plan selon la revendication 6, dans lequel les dimensions des plages conductrices
(400, 410) dans chaque couche sont ajustées pour colimater le faisceau provenant de
l'alimentation (110) ou pour concentrer le faisceau colimaté incident sur le réflecteur
au niveau du plan focal de l'alimentation, pour deux polarisations du champ électromagnétique
simultanément.
12. Réflecteur plan selon la revendication 6, avec une ou deux alimentations (110, 111)
fonctionnant dans deux polarisations orthogonales, caractérisé par la génération ou la réception de deux faisceaux colimatés, un pour chaque polarisation
du champ incident, dans différentes directions.
13. Réflecteur plan selon la revendication 6, dans lequel les dimensions des plages conductrices
(400, 410) sont ajustées dans chaque couche pour obtenir un faisceau réfléchi colimaté
avec une polarisation circulaire lorsqu'un champ polarisé linéaire provenant de l'alimentation
(110) est incident ou pour concentrer au niveau du point focal de l'alimentation (110)
un champ polarisé linéaire lorsqu'un champ colimaté avec une polarisation circulaire
heurte le réflecteur.
14. Réflecteur plan selon les revendications 6, 11 ou 13, dans lequel les dimensions des
plages conductrices (400, 410) dans chaque élément sont ajustées pour atteindre les
caractéristiques électriques d'un réflecteur de faisceau conforme.
15. Réflecteur multicouche selon la revendication 14, ayant une forme parabolique, au
lieu de plane, avec l'alimentation (110) ou les alimentations (110 et 111) près du
foyer de la paraboloïde, dans lequel les dimensions des plages conductrices (400 et
410) dans chaque élément sont ajustées pour atteindre les caractéristiques électriques
d'un réflecteur de faisceau conforme, pour une polarisation unique ou double.
16. Réflecteur plan selon la revendication 6, avec une alimentation fonctionnant en polarisation
unique ou double, caractérisé par la génération de plusieurs faisceaux colimatés dans différentes directions comme
montrées sur la figure 11, ou pour recevoir des signaux électromagnétiques de différentes
directions et pour les concentrer au niveau du point focal où l'alimentation (110)
est située.
17. Procédé de conception pour obtenir les masques de photo-gravure pour la construction
d'un réflecteur plan selon l'une quelconque des revendications précédentes, basées
sur le programme du procédé des moments pour l'analyse des structures périodiques
multicouches,
caractérisé en ce qu'il comprend les étapes suivantes consistant à : 1) définir la phase du coefficient
de réflexion pour chaque élément de sorte que l'énergie électromagnétique d'une certaine
fréquence provenant d'une alimentation (110) située en un point focal est réfléchie
formant un faisceau colimaté dans une certaine direction, où chaque élément est constitué
de deux ou plusieurs plages conductrices empilées (400, 410) au-dessus d'un plan conducteur
séparé l'un de l'autre par des feuilles diélectriques ; 2) déterminer les dimensions
de la plage de sorte que la phase du coefficient de réflexion dans chaque élément
défini dans l'étage précédent est atteint en utilisant un programme itératif pour
la recherche de zéro qui ajuste les dimensions de la plage et calcule le coefficient
de réflexion par le programme d'analyse, jusqu'à ce que la phase requise soit atteinte
; 3) ajuster finement les dimensions de la plage conductrice dans chaque élément du
réflecteur multicouche, au moyen d'un programme d'optimisation, pour atteindre la
phase définie dans l'étage 1) pour un champ incident avec tout type de polarisation
pour une ou plusieurs fréquences dans la bande de travail du réflecteur.
18. Procédé de conception selon la revendication 17, dans lequel l'ajustement des dimensions
des plages conductrices (400, 410) dans chaque élément dans les étages 2) et 3) est
réalisé simultanément pour deux polarisations orthogonales indépendantes du champ
incident.
19. Procédé de conception selon la revendication 18, dans lequel la phase du coefficient
de réflexion est définie dans l'étage 1) de sorte que le champ provenant d'une alimentation
(110) ou de deux alimentations (110 et 111) est réfléchi, formant deux faisceaux colimatés,
un pour chaque polarisation du champ incident, dans différentes directions.
20. Procédé de conception selon la revendication 17, dans lequel la phase du coefficient
de réflexion est définie dans l'étage 1) de sorte que le champ provenant de l'alimentation
(110) est réfléchi formant un faisceau colimaté avec une polarisation différente de
celle du champ incident.
21. Procédé de conception selon la revendication 17, 18 ou 20, dans lequel la phase du
coefficient de réflexion est définie dans l'étage 1) de sorte que le champ provenant
de l'alimentation (110) ou des alimentations (110 et 111) est réfléchi formant un
faisceau conforme, au lieu d'un faisceau colimaté.
22. Procédé de conception selon la revendication 17 ou 18, dans lequel la phase du coefficient
de réflexion est définie dans l'étage 1) de sorte que le champ provenant de l'alimentation
(110) est réfléchi, formant plusieurs faisceaux colimatés dans différentes directions.