BACKGROUND OF THE INVENTION
Field of the Invention
[0001] This invention relates to a transfer sheet. More particularly, it relates to a transfer
sheet for electrophotography which is a transfer material to which, in electrophotographic
apparatus or electrostatic printers, a toner image obtained by forming an electrostatic
latent image on an image-bearing member such as a photosensitive member and developing
the electrostatic latent image is transferred, and an electrophotographic image-forming
method making use of such a transfer sheet.
Related Background Art
[0002] In an electrophotographic apparatus, after an electrostatic latent image has been
formed on a photosensitive member, the toner of a developer is made to adhere electrostatically
to the electrostatic latent image to form a toner image, and this toner image is transferred
to a transfer sheet (paper) by means of a transfer assembly. As transfer assemblies
of this type, electrostatic transfer means such as corona transfer means and roller
transfer means are known in the art.
[0003] Progress of electrophotography has started on copying machines. With spread of its
application to output machinery such as page printers and facsimile machines, it has
made advance from analog systems to digital systems and is increasingly demanded to
achieve higher function, more coloration and higher image quality.
[0004] Nowadays, in most electrophotographic apparatus, the toner image held on the photosensitive
member is transferred to plain paper by an electrostatic transfer means as mentioned
above, where images may greatly deteriorate at the time of transfer. This point gives
a great cause of their inferiority to images formed by printing and ink-jet recording.
[0005] Recently, in the field of ink-jet recording other than the electrophotography, it
was really shocking that replacement of sheets with special exclusive sheets has brought
about a dramatic improvement in image quality.
[0006] In respect of transfer sheets for electrophotography, too, proposals have been made
in variety in order to improve transfer performance and image quality. In particular,
properties having energetically been on studies include electrical properties such
as volume resistivity and surface resistivity of sheets. For example, in Japanese
Patent Publications No. 41-20152 and No. 43-4151, it has been proposed to maintain
volume resistivity within a stated range; in Japanese Patent Application Laid-open
No. 50-117435, to provide a resin layer having a volume resistivity of 3 × 10
13 Ω·cm or above on the surface of transfer paper; and in Japanese Patent Application
Laid-open No. 56-16143, to provide on a transfer paper's base layer firstly a low-resistance
layer and then at the outermost surface a high-resistance layer to make up a transfer
sheet. In actual service environment, however, it has been difficult to control moisture
in air so that it was not possible to stabilize electrical resistance of transfer
sheets. Accordingly, as disclosed in Japanese Patent Application Laid-open No. 5-53363,
it is proposed to incorporate in a sheet a synthetic hectorite having a specific crystal
structure, attempting to make resistance value stable to environment. Even this proposal,
however, can not provide images on the level comparable to the level of those formed
by ink-jet recording or by printing.
[0007] As an approach from a different aspect, there has been a method in which an elastomer
is coated on the surface of transfer paper, as disclosed in Japanese Patent Application
Laid-open No. 49-126334. In an attempt to make image evaluation on a color electrophotographic
apparatus by actually coating on transfer paper the material disclosed therein, no
remarkable effect was observable with regard to the reproduction of a photographic
image on a 400 dpi digital printer.
[0008] As the cause of image deterioration in the transfer process as stated above, it can
be concluded that, a dithered pattern formed as a result of image processing employed
by recent printers or a toner image formed of continuous minute individual dots by
PWM (pulse width modulation) stands scattered when digital data are outputted. This
tends more remarkably in the case of, e.g., very fine dots of a screen on which small
characters or image data are formed. A one-dot toner image that constitutes binary
image data of 400 dpi has a size of about 64 µm. As for the improvement in dot reproducibility
about such size, it can not be expected at all by any conventional means stated above,
showing capability not different at all from ordinary transfer sheets. More specifically,
in conventional means, ink-jet recording enables reproduction of 800 dpi photographic
images, whereas electrophotographic processing has been unsatisfactory in any effort
to reproduce true 400 dpi photographic images, because of the image deterioration
(a decrease in gradation) caused in the transfer process.
[0009] However, even though the means disclosed in the above Japanese Patent Application
Laid-open No. 49-126334 is old, we have been interested in that its means relies on
a mechanical phenomenon which may hardly be affected by environmental factors, different
from other resistance values or the like. It, however, has been found that, even for
soft elastomers used at present in, e.g., intermediate transfer members of the latest
color copying machines, it is difficult to transfer binary images (toner images) of
400 dpi without scattering.
[0010] Japanese Patent Application Laid-open No. 9-170190 discloses a transfer sheet made
to have a fibrous surface as a recording sheet for output machinery of various types.
This publication discloses that its fibers exhibit a cushioning performance and hence
can make dry-process electrophotographic toner images sharp. However, as also shown
in its Examples, the thickness of the fiber used, though fairly as small as 0.5 denier,
is only on the level of the particle size of electrophotographic toners. Hence, the
cushioning performance exhibited by fibers which mutually slide as so described in
the above publication may be expectable for making large-size characters or the like
sharp at best, but is not so expectable as to absorb kinetic energy of individual
toner particles as aimed in the present invention. Materials disclosed as examples
in the above publication are celluloses and polyester resins, which are materials
of the same nature as, or harder than, those of toners, and hence, as the materials
alone, they are not expectable at all for any cushioning performance on individual
toner particles.
[0011] Document EP-A-0 490 293 discloses an OHP sheet having a base layer made of a transparent
plastic film. According to the disclosure of this document, a transparent surface
layer composed of a resin which can be dissolved in the solvent contained in a liquid
developer is formed on the base layer. This results in that good solvent absorptivity
can be realized so that an undesirable run of a transferred toner image can be prevented.
Such an undesirable run of a transferred toner image appears with ordinary OHP sheets
for use in a wet-type copying machine because these cannot satisfactorily absorb the
solvent contained in the liquid developer. Moreover, this document teaches forming
on the base layer a surface layer composed mainly of a rubber type resin. The rubber
type resin shall sufficiently surround the toner particles of a transferred toner
image and thus fix the toner particles onto the surface of the sheet so that the transferred
toner particles are not easily separated from the sheet as is the case in ordinary
OHP sheets for use in a dry-type copying machine.
[0012] Document US-A-5 366 837 discloses an image receiving sheet having a support layer
and an absorbing layer which is formed thereon and which includes fine particles having
a heat-meltable of thermoplastic property. The absorbing layer serves to absorb color-forming
material in fine spaces defined among the fine particles of the absorbing layer.
Accordingly, the image receiving sheet according to this document is not a transfer
sheet for electrophotography. At the time of forming an image, a load of 200 kg/cm
2 is applied on the image receiving sheet, and despite this load, the fine particles
in the absorbing layer are not broken up. In other words, the absorbing layer having
the fine particles therein has a hard surface.
[0013] Document JP-A-1197763 relates to a synthetic paper having an oriented polyolefin
film as a substrate. According to this document, fine organic powder is contained
in the surface layer of the synthetic paper in such an amount that the surface hardness
is increased.
[0014] A transfer sheet for electrophotography comprising the features summarized in the
preamble of claim 1 is known from document EP-A-0 621 510. According to Examples 1
to 5 of this document, the transfer sheet is produced by a cast coating method. In
the cast coating method, pressure is conventionally applied in the process of preparing
the transfer sheet. According to Example 6 of this document, the transfer sheet is
supercalandered. In supercalandering, pressure is necessarily applied on both sides
of the sheet.
[0015] Due to the application of pressure in the manufacturing process of the transfer sheets
according to this document, these transfer sheets have a dense and comparatively hard
surface layer. When forming an image on these conventional transfer sheets by transferring
a toner image to the transfer sheet, the image is deteriorated due to toner scattering
in the transfer process. The scattering of the toner in the transfer process is in
particular detrimental if a high image resolution is desired.
SUMMARY OF THE INVENTION
[0016] It is an object of the present invention to provide a transfer sheet for eletrophotography
which has a superior effect of keeping dot toner images from scattering at the time
of transfer, and an electrophotographic image-forming method making use of the improved
transfer sheet.
[0017] To achieve the above object, the present invention provides the transfer sheet defined
in claim 1 and the electrophotographic image-forming method defined in claim 8.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018]
Fig. 1 is a cross-sectional view of a printer according to an embodiment of an image-forming
apparatus in which the present invention is applied.
Fig. 2 is a cross-sectional view of a developing unit of the printer according to
an embodiment of an image-forming apparatus in which the present invention is applied.
Fig. 3 illustrates the results of image reproduction in Embodiment 1 according to
the present invention.
Fig. 4 is a graph showing changes in reflection density with respect to area gradation
in Embodiment 1 according to the present invention.
Fig. 5 is a cross-sectional view of a printer according to another embodiment of an
image-forming apparatus in which the present invention is applied.
Fig. 6 illustrates a rotary developing unit shown in Fig. 5.
Fig. 7 is a graph showing changes in the square of indentation depth A with respect
to load P in Embodiment 1 according to the present invention.
Fig. 8 is a diagrammatic view of a full-color printer used in Embodiment 6 of the
present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0019] The present invention will be described below in detail by giving preferred embodiments
of the present invention.
[0020] The present inventors made extensive studies in order to more improve the mechanical
cushioning performance of transfer sheets to toners. As the result, they have discovered
that, in the case of binary images of 600 dpi, the performance can be improved so
far as no scattering occurs at all on dot toner images at the time of transfer where
an ethylene-propylene copolymer resin, which has never been studied in view of cost
and solubility, is coated on the surface of a transfer sheet.
[0021] To investigate the reason therefor, a thin-film physical properties evaluation apparatus
MH4000, manufactured by NEC, was used to examine the relationship between depth and
load of the indentation to a transfer sheet, of a diamond triangular pyramid penetrator
having a dihedral angle of 80°. As the result, it has been elucidated that, the load
necessary for indenting the penetrator by 1 µm is 0.25 mN in the case of ordinary
transfer paper, whereas a value of 0.01 mN or smaller is shown in the case of a transfer
surface formed by coating on the surface of a transfer sheet the ethylene-propylene
copolymer resin having the effect of keeping dot toner image from scattering at the
time of transfer.
[0022] The surface of a transfer paper as a transfer sheet having such characteristic features
can sufficiently be soft even against individual toner particles having a slight weight,
and hence the effect of keeping toner images from loosing their shape or scattering
can be attained because the surface can embrace individual toner particles or the
toner is not flipped on the transfer sheet surface, as so presumed.
[0023] The transfer sheet of the present invention which can have such an effect is required
to have a base layer and a surface layer in which, in a plot graph with load P (mN)
as ordinate and the square of indentation depth A (µm) as abscissa, plotted when the
tip of a diamond triangular pyramid penetrator having a dihedral angle of 80° is pressed
in on the side of the surface layer, the graph has, in a first region extending to
zero from a first flexing point that appears first, a gradient H of 0.09 mN/µm
2 or smaller.
[0024] The gradient H of the graph in the first region may be smaller than any gradient
of the graph in its second-and-further region. This is preferable because the transfer
sheet can have a proper mechanical strength.
[0025] The gradient of the graph in its second-and-further region is defined, in the case
when the graph has a second flexing point, to be a gradient of the graph extending
from the first flexing point to the second flexing point; and, in the case when the
graph has no second flexing point, to be an average value of the gradient of the graph
at its points subsequent to the first flexing point because the base layer is uniform
and hence the gradient of the graph in the second-and-further region extends basically
in a straight line.
[0026] The gradient H according to the present invention can be materialized with ease by
providing as the surface layer a desired resin or elastomer coating layer on the transfer
surface of the transfer sheet. The constitution, operation and effect of the present
invention and also preferred embodiments thereof will be described in detail in the
following Examples.
[0027] The transfer sheet of the present invention is basically comprised of a base layer
and a surface layer formed on at least one surface of the base layer.
[0028] Tha base layer comprises paper made from pulp. In the present invention, it is particularly
effective to use paper which hardly provides sheet stiffness itself.
[0029] As the surface layer, a resin or an elastomer may be used.
Example 1
[0030] Fig. 1 is a schematic illustration of an image-forming apparatus in which the transfer
sheet of the present invention is applied. As an image-bearing member, for example
a photosensitive drum 43 (photosensitive member) is rotated in the direction of an
arrow at a process speed of 100 mm/s. This photosensitive drum 43 is formed of a photoconductive
material of organic photosensitive member types. The apparatus is an electrophotographic
recoding apparatus having the photosensitive drum 43 and provided around it a charging
assembly 44, an exposure assembly LS, a developing assembly 41, a transfer charging
assembly 40 and a cleaning unit 42.
[0031] A charging means used in primary charging may include a non-contact charging system
making use of a corona charging assembly, and a contact charging system making use
of a roller charging assembly.
[0032] Conditions for the charging and exposure of the photosensitive member are those under
which the photosensitive drum is charged to, e.g., a negative polarity to provide
charge potential and is exposed to light by an exposure means to attenuate the potential
at exposed areas. In the present Example, a semiconductor laser optical system is
used as the exposure assembly LS. The drum charge potential is set at -400 V, and
exposed areas solid image areas at -50 V. As the exposure means, besides the semiconductor
laser, other optical systems may be used, as exemplified by LEDs set up via a SELFOC
lens, EL devices and plasma light-emitting devices.
[0033] The photosensitive drum 43 is a negatively chargeable organic photoconductor (OPC),
and comprises a drum type substrate made of aluminum with a diameter of 30 mm, and
provided thereon with a functional layer consisting of the following five layers,
first to fifth layers in order from the substrate.
[0034] The first layer is a subbing layer, which is a conductive layer of about 20 µm thick,
provided in order to level any defects of the aluminum drum and also in order to prevent
Moiré from being caused by the reflection of laser exposure light.
[0035] The second layer is a positive-charge injection preventive layer, which plays a role
in which positive charges injected from the aluminum substrate are prevented from
cancelling negative charges produced on the photosensitive member surface by charging,
and is a medium-resistance layer of about 1 µm thick whose resistance has been controlled
to about 10
6 Ω·cm by Amilan resin (6-nylon) and methoxymethylated nylon.
[0036] The third layer is a charge generation layer, which is a layer of about 0.3 µm thick,
formed of a resin having a bisazo pigment dispersed therein, and generates positive
or negative electron pairs upon laser exposure.
[0037] The fourth layer is a charge transport layer, which is formed of a polycarbonate
resin having a triphenylamine type charge-transporting material dispersed therein,
and is a p-type semiconductor. Hence, the negative charges produced on the photosensitive
member surface by charging can not migrate through this layer and only the positive
charges produced in the charge generation layer can be transported to the photosensitive
member surface. As the charge transport layer, one having a layer thickness of 15
µm is used.
[0038] The fifth layer is a surface protecting layer, which is a layer of 3 µm thick, formed
of a polycarbonate resin having polytetrafluoroethylene fine particles dispersed therein.
[0039] The surface protecting layer as the fifth layer may be made by using any known materials,
but it does not always need to provide the surface protecting layer.
[0040] As the surface protecting layer, besides a wear resistance layer in which fluorine
atom-containing resin fine particles such as polytetrafluoroethylene are dispersed
in the binder resin, used in the example, a semiconductive layer in which conductive
material is dispersed in the binder resin to impart conductivity may be used.
[0041] The fluorine atom-containing resin fine particles may include one or two types selected
from the group consisting of polytetrafluoroethylene, polychlorotrifluoroethylene,
polyfluorinated vinylidene, polydichlorodifluoroethylene, tetrafluoroethylene-perfluoroalkylvinylether
copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene
copolymer and tetrafluoroethylene-hexafluoropropyleneperfluoroalkylvinylether copolymer.
[0042] The conductive material may include metallocene compound such as dimethylferrocene,
and metal oxide such as antimony trioxide, tin oxide, titanium oxide, indium oxide
and ITO.
[0043] The binder resin may include known resins such as polyamide, polyester, polycarbonate,
polystyrene, polyacrylamide, silicone resin, melamine resin, phenol resin, epoxy resin
and urethane resin.
[0044] Where laser light is scanned with a laser operation section LS, laser light (680
nm, 35 mW semiconductor laser, having an optical spot diameter of about 63 µm in both
the secondary scanning direction and the main scanning direction) emitted from a laser
device by means of a light-emitting signal generator in accordance with image signals
inputted is first converted to substantially parallel light rays by means of a collimator
lens system and is further scanned with a rotating polygonal mirror being rotated,
in the course of which an image is formed in spots or dots through an fθ lens group
on the scanned surface of an image-bearing member such as the photosensitive drum.
As a result of such scanning of laser light, exposure distribution corresponding to
one imagewise scanning is formed on the scanned surface, where the scanned surface
is positionally shifted by a predetermined extent in the direction perpendicular to
the scanning direction, thus exposure distribution corresponding to image signals
is provided on the scanned surface.
[0045] In the present Example, multi-level recording is performed under one-pixel area gradation
in a resolution of 200 dpi, using a laser PWM (pulse width modulation) system. Accordingly,
the PWM system will be described briefly.
[0046] Digital image signals of 8 bits change the level of 256 gradations from 00h (white)
to FF (black). PWM signals with a pulse width corresponding to the density of pixels
to be formed are generated. Then, the PWM signals are inputted to a laser driver circuit.
In accordance with PWM signal values thus obtained, exposure time per one pixel is
changed, whereby 256 gradations at maximum can be provided per pixel. In the present
Example, used is gradation control by such a PWM system. Also usable are an area gradation
method such as a dithering method and a laser light intensity modulation method. Still
also, any of these may be used in combination.
[0047] In the developing assembly 41, with which the dot-distributed electrostatic latent
image formed on the photosensitive drum 43 is rendered visible, held is a two-component
type developer comprised of a blend of toner particles and magnetic carrier particles.
[0048] As a toner, any known toner prepared by adding a colorant and a charge control agent
to a binder resin may be used. In the present Example, a toner having a volume-average
particle diameter of 7 µm is used. Here, the volume-average particle diameter of the
toner is measured by the following measuring method.
[0049] As a measuring device, a Coulter counter Model TA-II or Coulter Multisizer (manufactured
by Coulter Electronics, Inc.) is used. An interface (manufactured by Nikkaki k.k.)
that outputs number-average distribution and volume-average distribution and a personal
computer CX-i (manufactured by CANON INC.) are connected. As an electrolytic solution,
an aqueous 1% NaCl solution is prepared using first-grade sodium chloride.
[0050] Measurement is made by adding as a dispersant 0.1 to 5 ml of a surface active agent
(preferably an alkylbenzene sulfonate) to 100 to 150 ml of the above aqueous electrolytic
solution, and further adding 0.5 to 50 mg of a sample to be measured. The electrolytic
solution in which the sample has been suspended is subjected to dispersion for about
1 minute to about 3 minutes in an ultrasonic dispersion machine. The volume distribution
is calculated by measuring the particle size distribution of particles of 2 to 40
µm by means of the Coulter counter Model TA-II or Coulter Multisizer, using an aperture
of 100 µm as its aperture. From the volume distribution thus determined, volume-average
particle diameter of the sample is found.
[0051] In the case of the two-component type developer having a toner and a carrier, preferably
usable as the carrier is a carrier comprised of magnetic particles provided on particle
surfaces with very thin resin coatings. It may preferably have an average particle
diameter of from 5 to 70 µm. Here, the average particle diameter of the carrier is
defined by an average value of horizontal-direction maximum length. It may be measured
by microscopy. At least 300 carrier particles are picked up at random, and their horizontal-direction
maximum length is actually measured and its arithmetic mean is taken to regard the
resultant value as the average particle diameter of the carrier.
[0052] As the toner, used is a toner chargeable to proper polarity for developing the electrostatic
latent image, upon friction with magnetic particles.
[0053] As shown in Fig. 2, the developing assembly 41 is provided with an opening at its
part adjacent to the photosensitive drum 43. At this opening, provided is a non-magnetic
developing sleeve 415 made of aluminum or non-magnetic stainless steel.
[0054] The developing sleeve 415 is rotated in the direction of an arrow b and carries and
transports to a developing zone A a developer 411 comprised of a blend of the toner
and the carrier. At the developing zone A, a magnetic brush of the developer carried
on the developing sleeve 415 comes into contact with the photosensitive drum 43 being
rotated in the direction of an arrow a, and the electrostatic latent image is developed
at this developing zone A.
[0055] To the developing sleeve 415, an oscillatory bias voltage formed by superimposing
a DC current on an AC current is applied from a power source (not shown). The dark-area
potential (non-exposed-area potential) and light-area potential (exposed-area potential)
formed correspondingly to the electrostatic latent image are positioned between the
maximum value and minimum value of the oscillatory bias voltage. Thus, an alternating
electric field which alternately changes in direction is formed at the developing
zone A. In this alternating electric field, the toner and the carrier vibrate vigorously,
and the toner tears itself away from the electrostatic confinement to the sleeve and
carrier to come to adhere to the photosensitive drum 43 correspondingly to the electrostatic
latent image.
[0056] The oscillatory bias voltage may preferably have a difference between the maximum
value and the minimum value (a peak-to-peak voltage), of from 1 to 5 kV, and also
a frequency of from 1 to 10 kHz. As the waveform of the oscillatory bias voltage,
rectangular waveform, sine-waveform or triangle waveform may be used.
[0057] The above DC voltage component, which is a component having a value intermediate
between the dark-area potential and the light-area potential which correspond to the
electrostatic latent image, may preferably be a value closer to the dark-area potential
than the light-area potential having the minimum value as absolute value, in order
to prevent a fogging toner from adhering to the dark-area potential region.
[0058] It is preferable for a minimum gap between the developer sleeve 415 and the photosensitive
drum 43 (this minimum gap is positioned within the developing zone A) to be from 0.2
to 1 mm.
[0059] Reference numeral 418 denotes a developing blade serving as a developer layer thickness
regulation member, and regulates the layer thickness of the two-component type developer
the developer sleeve 415 carries and transports to the developing zone A. The developer
regulated by the developing blade 418 and transported to the developing zone A may
preferably be in such a quantity that the developer magnetic brush formed by the action
of a magnetic field formed at the developing zone by a developing magnetic pole S1
described later has a height on the developer sleeve surface, of from 1.2 to 3 times
the value of the minimum gap between the developer sleeve and the photosensitive drum
in the state the photosensitive drum 43 has been removed.
[0060] Inside the developer sleeve 415, a roller type magnet 417 is disposed stationarily.
This magnet 417 has the developing magnetic pole S1 opposing the developing zone A.
The magnetic brush of the developer is formed by the action of a developing magnetic
field the developing magnetic pole S1 forms at the developing zone A. This magnetic
brush comes into contact with the photosensitive drum 43 to develop the dot-distributed
electrostatic latent image.
[0061] The developing magnetic field formed by the developing magnetic pole S1 may preferably
have a strength on the developer sleeve 415 surface (magnetic flux density in the
direction perpendicular to the sleeve surface), of from 500 to 2,000 gauss as its
peak value. In the present Example, the magnet 417 has, besides the developing magnetic
pole S1, poles N1, N2, N3 and S2, five poles in total. With such constitution, the
developer drawn up with the pole N2 as the developer sleeve 415 is rotated is transported
from the part of pole S2 to the part of pole N1, on the way of which the developer
is regulated by the developer layer thickness regulation member 418 to form a developer
thin layer. Then, the developer, having risen in areas in the magnetic field formed
by the developing magnetic pole S1 develops the electrostatic latent image held on
the image-bearing member 43. Thereafter, a repulsion magnetic field between the pole
N3 and the pole N2 makes the developer on the developer sleeve 415 fall into an agitator
chamber R1. The developer fallen into the agitator chamber R1 is agitated and transported
by a screw 414.
[0062] In this way, the electrostatic latent image formed on the photosensitive drum 43
is reverse-developed by means of the developing assembly 41, and the toner image thus
formed is led to a pressure contact nip (transfer zone) at a given timing; the nip
is formed between the photosensitive drum 43 and a transfer roller 40 serving as a
contact transfer means brought into contact with the drum surface at a stated pressure
via a transfer sheet 60 fed as a recording sheet from a paper feed section 48. To
the transfer roller 40, a stated transfer bias voltage is applied from a transfer
bias applying power source (not shown). In the present Example, a roller having a
roller resistivity of 5 × 10
8 Ω·cm is used and a DC voltage of 5 kV (the transfer bias voltage may properly be
adjusted depending on the type of transfer sheet and on environment) is applied to
perform transfer. The transfer sheet 60 led to the transfer zone is interposingly
held and transported through this transfer zone, where the toner image formed and
held on the surface of the photosensitive drum 43 is successively transferred to the
transfer sheet on its surface side by the action of electrostatic force and pressing
force. The transfer sheet 60 to which the toner image has been transferred is separated
from the surface of the photosensitive drum 43 by means of a separation charging assembly
(not shown) and then guided into a heat-fixing type fixing assembly 47, where the
toner image is fixed, and the resultant sheet is delivered outside the apparatus as
an image-formed material (a print or a copy). Meanwhile, the surface of the photosensitive
drum 43 from which the toner image has been transferred is cleaned by means of a cleaner
42 to remove any deposit contaminant such as transfer residual toner, and is repeatedly
used for image formation.
[0063] The coating material used to produce the transfer sheet used in the present Example
was prepared in the following way.
[0064] 2 parts by weight of a resin having repeating units represented by the following
Formulas (1) and (2) [containing 40 mole% of the component represented by the following
Formula (2)] was dissolved in 78 parts by weight of n-hexane. Then, the resultant
solution was put to a centrifugal separator to remove gel components, thus a coating
material was prepared. This coating material was coated on art paper by means of a
Meyer bar (#16), followed by drying at 120°C for 1 hour and further followed by drying
at 140°C for 1 hour to produce the transfer sheet used in the present Example. After
the drying, the surface layer resin coating layer was in a thickness of 2 µm.
(̵CH
2-CH
2)̵ (1)

[0065] Using the above apparatus MH4000, manufactured by NEC, the tip of a diamond triangular
pyramid penetrator having a dihedral angle of 80° was pressed in the transfer surface
layer of the above transfer sheet at an indentation rate of 21 nm/s to draw a plot
graph with load P (mN) as ordinate and the square of indentation depth A (µm) as abscissa,
as shown in Fig. 7.
[0066] As can be seen therefrom, the plot graph has a first flexing point that appears first,
a first region extending from the first flexing point to zero and a second-and-further
region subsequent to the first flexing point. As measurement results, the hardness
of only the surface layer material can be represented as a gradient of the graph in
the linear first region that is proportional to the load P and the square of indentation
depth A (flexing points for the layer lying beneath the surface layer appear in the
second-and-further region). More specifically, the gradient H of the graph in the
first region is found from Fig. 7 to be 0.0065 mN/µm
2, and an average of the gradient of the graph in the second-and-further region subsequent
to the first flexing point is found to be 0.0734 mN/µm
2.
[0067] On the other hand, as measurement results obtained similarly on a conventional art
paper, a transfer sheet not coated with the material having repeating units represented
by the above Formulas (1) and (2), there appeared substantially no first flexing point,
and the gradient H of the plot graph was found to be 0.25 mN/µm
2.
[0068] Results of image reproduction carried out using the above coated paper under the
conditions described above are compared on (a) and (b) in Fig. 3. (a) and (b) in Fig.
3 show diagrammatic illustrations based on enlarged actual photographs of image reproduction
made on transfer sheets under the same conditions but changing the transfer sheet.
Shown as (a) is the case of the conventional transfer sheet; and (b), the case of
the transfer sheet of the present invention, coated in the manner described above.
In comparison of these, the transfer sheet (b) of the present invention is found to
enable good image reproduction without causing any transfer scattering, which is so
good that the time for which the laser is put on in accordance with the PWM signals
may clearly be seen. It was found that, as a result of such image reproduction performable
in this way, changes in reflection density with respect to area gradation were, as
shown in Fig. 4, substantially in agreement with an ideal line only on account of
the use of the transfer sheet of the present invention. On the other hand, in the
conventional transfer sheet, optical dot gain at highlighted areas increased greatly
as shown in (a), resulting in a reduction of dynamic ranges of change in reproduced-image
density. More specifically, the use of the transfer sheet of the present invention
has made it possible to reproduce, from electrophotographic apparatus, images having
a high resolution and a high gradation comparable to that of silver salt photographs.
Example 2
[0069] Fig. 5 cross-sectionally illustrates a copying machine which can form full-color
images. In Fig. 5, reference numeral 43 denotes a photosensitive drum having the same
formulation as in Example 1, rotated in the direction of an arrow. Around the photosensitive
drum 43, a primary charging assembly 44, a rotary developing unit 41a, a transfer
assembly 40 and a cleaning assembly 42 are provided. On the paper feed side of the
transfer assembly 40, a paper feed cassette 48, registration rollers 46 and so forth
are provided. On the paper output side, separation claws (not shown), a transport
section (not shown), a fixing assembly 47, a paper output tray (not shown) and so
forth are provided. The rotary developing unit 41a is, within a rotating support member
rotatable around a shaft, provided with four developing assemblies, i.e., a cyan developing
assembly 41C, a magenta developing assembly 41M, a yellow developing assembly 41Y
and a black developing assembly 41B (see Fig. 6) having a cyan toner, a magenta toner,
a yellow toner and a black toner, respectively, and is so constructed that any given
developing assembly can be positioned on the side zone of the photosensitive drum
43.
[0070] The transfer assembly 40 is an assembly on which the transfer sheet is held at fixed
position along the periphery of a transfer drum 40a via a gripper (not shown) and,
as the transfer drum 41a is rotated, the toner image held on the photosensitive drum
43 is transferred onto a transfer sheet adjoining to one side of the photosensitive
drum 43.
[0071] A copying original K is read with an original reader D. This reader has a photoelectric
transducer such as CCD (charge-coupled device) that converts an original image into
electrical signals, and outputs image signals corresponding respectively to magenta
image information, cyan image information, yellow image information and black-and-white
image information of the original K. A semiconductor laser built in a scanner LS is
controlled correspondingly to image signals and emits a laser beam L. In the present
Example, too, gradation control by the PWM system described previously is employed.
Incidentally, output signals from a computer can also be printed out.
[0072] With such construction, the surface of the photosensitive drum 43 charged uniformly
by means of the primary charging assembly 44 is exposed to image light L emitted in
accordance with, e.g., the magenta image information through an image-reading exposure
section, whereupon an electrostatic latent image is formed on the photosensitive drum
43. The electrostatic latent image is, as the photosensitive drum 43 is rotated, forwarded
to the magenta developing assembly 41M previously positionally set, of the rotary
developing unit 41a, where the magenta toner is supplied from the magenta developing
assembly 41M and the electrostatic latent image is rendered visible as a toner image.
The toner image is transferred onto the transfer sheet held on the transfer drum 40a.
[0073] Then, the photosensitive drum 43 from which the toner image has been transferred
is cleaned by means of the cleaning assembly 42 to remove any toner remaining thereon.
Thereafter, it is again charged uniformly by means of the primary charging assembly
44, and then exposed to image light L emitted in accordance with the cyan image information
through the image-reading exposure section, whereupon an electrostatic latent image
is formed on the photosensitive drum 43. Then, the electrostatic latent image is,
upon supply of the cyan toner from the cyan developing assembly 41C, rendered visible
as a toner image. The toner image is superimposingly transferred onto the transfer
sheet held on the transfer drum 40a and to which the magenta toner image has been
transferred. Toner images developed by means of the yellow developing assembly 41Y
and the black developing assembly 41B in accordance with the yellow image information
and the black image information, respectively, are likewise superimposingly transferred
onto the transfer sheet (a multi-transfer system). In the case when the gradation
control by the PWM system is used, it provides a transfer process in which multiple
colors are superimposed at the same position.
[0074] Transfer sheets kept in the paper feed cassette 48 are sheet by sheet taken up with
paper feed rollers. Each transfer sheet is thereafter sent toward the registration
rollers 46, and is sent toward the transfer assembly 40 through the registration rollers
46 at controlled timing. The transfer sheet to which the above four color toner images
transferred superimposingly as the transfer drum 40a of the transfer assembly 40 is
rotated is separated from the transfer drum 40a via the separation claws (not shown)
and then sent toward the fixing assembly 47 via the transport section (not shown).
Then, by means of this fixing assembly 47, the multi-color superimposed toner images
are melted and color-mixed to develop colors and fixed to form a full-color image
finally. The transfer sheet having passed through the fixing is laid on the paper
output tray (not shown), thus a series of operation for image formation is completed.
[0075] The transfer sheet used here is coated paper formulated in the same manner as in
Example 1.
[0076] In the multiple transfer process as described above in which dot toner images having
been finely area gradation controlled by the PWM system of the present Example are
superimposed in four colors at the same position and in the desired proportion, for
example the third-color toner image is transferred onto places to which the first-
and second-color toner images have been transferred, where an impact given at the
time of third-color transfer comes to as far as the transfer sheet surface through
first- and second-color toner layers and the impact is absorbed there, or a soft transfer
sheet surface embraces the whole first- to third-color toner layers to bring about
the intended effect, as so presumed.
Example 3
[0077] 10 kinds of transfer sheets were produced in the same manner as in Example 1 except
that solution concentration and coating rod size were so changed as to form the coating
layers of 0.5 µm, 1 µm, 5 µm, 10 µm, 20 µm, 50 µm, 100 µm, 200 µm, 300 µm and 500
µm thick.
[0078] A machine used for image reproduction is the same digital monochromatic copying machines
as that used in Example 1. A computer is connected to it so that binary error-diffused
image data of 600 dpi can be sent to the copying machine and outputted therefrom.
This enables simple examination on however output results are faithful to the data.
As the result, the effect attributable to the present invention was confirmed where
the thickness of coating layers was 0.5 µm and up to 100 µm, and the effect attributable
to the present invention was remarkably confirmed where the thickness of coating layers
was 1 µm and up to 100 µm.
[0079] As a tendency, when the coating layer is 0.5 µm thick, a difference in the effect
of the present invention is so small as to be little seen, compared with the case
when it is 1 µm thick, but toner scatters slightly and the dot toner image comes to
have a rounder contour with an increase in the thickness of the coating layer on the
transfer sheet base layer (rather, it even looked better than that on the photosensitive
member before transfer). However, a phenomenon of becoming less effective comes to
be seen about those of 200 µm thick or larger in a dense-dot region of toner images,
and the same phenomenon as that is seen on those of 500 µm thick or larger even in
the case of isolated-dot toner images. To investigate the reason therefor, the thickness
of a transfer sheet base layer used in the 100 µm thick coating was made smaller to
examine the faithfulness of dot toner images after transfer to such transfer sheets.
As a consequence, the phenomenon as stated above came to be remarkably seen as the
base layer of the transfer sheet was made thinner. More specifically, too free motion
of the coating layer surface may inevitably brings out not only the softness in the
direction perpendicular to the surface, required for the effect of the present invention,
but also a softness acting in the horizontal direction, so that the coating layer
surface may cause a looper (measuring worm) motion and the dot toner image slips off
to become scattered, as so presumed. It was certainly found that the transfer scatter
was in such a shape that it looked elongated in the transfer sheet transport direction.
Thus, the thickness of coated paper that depends on the base-layer thickness is also
an important factor for bringing out the effect of the present invention well sufficiently.
Example 4
[0080] Coated transfer sheets were produced using various materials, and the values of the
"gradient H in the first region" which are the results of measurement with the above
apparatus MH4000, manufactured by NEC, were determined to examine the correlation
with transfer scatter.
Transfer sheet A:
[0081]
Art paper (McKinley Art 90).
Transfer sheet B:
[0082] 2 parts by weight of the material as used in Example 1, i.e., the resin having repeating
units represented by the following Formulas (1) and (2) [containing 40 mole% of the
component represented by the following Formula (2)] was dissolved in 78 parts by weight
of n-hexane. Then, the resultant solution was put to a centrifugal separator to remove
gel components, thus a coating material was produced. This coating material was coated
on the above art paper by means of a Meyer bar (#16), followed by drying at 120°C
for 1 hour and further followed by drying at 140°C for 1 hour to produce the transfer
sheet of the present invention. After the drying, the resin coating layer was in a
thickness of 2 µm.
(̵CH
2-CH
2)̵ (1)

Transfer sheet C:
[0083] 2 parts by weight of a resin having repeating units represented by the following
Formulas (3) and (4) [containing 5 mole% of the component represented by the following
Formula (4)] was dissolved in 23 parts by weight of toluene. The resultant solution
was coated on the above art paper by means of a Meyer bar (#8), followed by drying
at 120°C for 1 hour to produce a transfer sheet. After the drying, the resin coating
layer was in a thickness of 2 µm.
(̵CH
2-CH=CH-CH
2)̵ (3)

Transfer sheet D:
[0084] Produced using the same type of material as used in the transfer sheet C but containing
45 mole% of the component represented by the above Formula (4).
Transfer sheet E:
[0085] 10 parts by weight of a thermoplastic polyurethane resin (trade name: ESTEN 5703;
available from Kyowa Hakko Kogyo Co., Ltd.) was dissolved in 90 parts by weight of
methyl ethyl ketone. Then, the resultant solution was subjected to pressure filtration
with a filter of 1 µm in pore size, thus a coating material was prepared. This coating
material was coated on the above art paper by means of a Meyer bar (#16), followed
by drying at 120°C for 1 hour to produce the transfer sheet of the present invention.
After the drying, the resin coating layer was in a thickness of 3 µm.
Transfer sheet F:
[0086] Commercially available recommended paper for full-color copying machines (Color Laser
Copyer Paper 81.4 g, TKCLA4, available from Canon Sales Co., Inc.).
Transfer sheet G:
[0087] Commercially available glossy paper for full-color copying machines (Color Laser
Copyer Cardboard MS-701, available from Canon Sales Co., Inc.).
Transfer sheet H:
[0088] Commercially available paper for full-color copying machines ("P-Photo Paper", available
from Minolta Camera Co., Ltd.).
[0089] Results obtained are show in in Table 1. In Table 1, with regard to "Degree of transfer
scatter", four ranks A, B, C and D are given to indicate the degree of transfer scatter.
Table 1
Transfer sheet |
First flexing point |
Gradient H (mN/µm2) |
Degree of * transfer scatter |
A |
none |
0.25 |
D |
B |
found |
0.0065 |
A |
C |
found |
0.005 |
A |
D |
none |
0.6 |
D |
E |
found |
0.02 |
B |
F |
none |
0.5 |
D |
G |
none |
0.15 |
D |
H |
none |
0.20 |
D |
* A: Scatter little occurs. |
B: Scatter is a little seen, but no problem. |
C: Scatter is seen, providing poor quality. |
D: Scatter is seen, providing very poor quality. |
[0090] As can be seen from Table 1, the effect is less obtainable when the gradient H in
the first flexing point is greater than the level of one decimal point.
[0091] Therefore, the gradient H is selected to be 0.09 mN/µm
2 or smaller. The transfer sheets A, D, F, G and H are no transfer sheets according
to the invention and were used for comparison.
Example 5
[0092] As conditions for producing the transfer sheets in the foregoing, art paper is used
as base paper (the base layer), having a surface roughness Rz of 1 to 2 µm before
coating. In the present Example, ordinary White Recycled Paper EW-500 (available from
Canon Sales Co., Inc.) was used as paper for PPC (plain paper copier). A transfer
sheet was produced using the same material and in the same manner as in Example 1
except that only the base paper was replaced. EW-500 had a surface roughness Rz of
10 to 20 µm before coating. As the result, when EW-500 was used as the base paper,
the intended effect was partly obtainable, but any remarkable improvement was not
achievable.
[0093] The reason therefor was carefully examined to find that the roughness of the base
paper before coating appeared exactly at the surface after coating. This has certainly
good reason because the base paper having a thickness of 100 microns or larger is
coated in a thickness of few microns. More specifically, the reason why the intended
effect is not obtainable is that the contact between the photosensitive member and
the transfer sheet surface at the time of transfer is in a non-uniform state at many
spots. In order to better obtain the effect of the present invention, it may be necessary
to use base paper having a small the invention and were used for comparison. surface
roughness to a certain degree. However, even when the base paper has a small roughness,
it is clear that the transfer scattering can not be prevented even though the transfer
sheet A in Example 4 has Rz of 1 to 2 µm. Thus, the surface roughness is not a necessary
and sufficient condition.
Example 6
[0094] Fig. 8 illustrates a full-color printer used in Example 6 according to the present
invention. In this full-color printer, a photosensitive drum 43 is exposed to laser
light L from a laser exposure unit LS in accordance with image signals. The image
signals may be fed from a computer, to which a scanner may be connected to set up
a color copying machine.
[0095] The photosensitive drum 43 as an image-bearing member is uniformly charged to about
-700 V by means of a corona charging assembly 44, and then exposed to the laser light
L in accordance with image signals. Thus, an electrostatic latent image is formed
on the photosensitive drum 43, and then developed by means of a developer, so that
a toner image is formed.
[0096] A rotary developing unit 41a has four developing assemblies holding four color toners
respectively, provided at intervals of 90 degrees in a circle. This rotary developing
unit 41a is so rotated that the respective developing assemblies sequentially come
to face the photosensitive drum 43 when images of corresponding colors are formed.
[0097] First, as a first color, a yellow toner image is formed by developing an electrostatic
latent image by means of a yellow-toner-holding developing assembly in the rotary
developing unit 41a.
[0098] An intermediate transfer member 40b is comprised of a metallic drum having a medium-resistance
rubber layer on its surface, and a transfer bias is kept applied to this metallic
drum.
[0099] The yellow toner image formed on the photosensitive drum 43 is transferred to the
intermediate transfer member 40b. On the photosensitive drum 43, the next magenta
toner image is formed, and is multiple-transferred onto the yellow toner image having
been transferred onto the intermediate transfer member 40b. Such steps of image formation
are repeated on cyan toner and black toner images, and these toner images are sequentially
multiple-transferred onto the intermediate transfer member 40b.
[0100] After the four color toner images have primarily been multiple-transferred, the toner
images held on the intermediate transfer member 40b are, while a transfer sheet T
is brought into contact with the intermediate transfer member 40b, secondarily transferred
to the transfer sheet by the aid of a bias voltage applied to a transfer roller 40c
serving as a secondary transfer means, and then they are heat-fixed by means of a
fixing assembly 47.
[0101] Transfer residual toner on the photosensitive drum 43 and that on the intermediate
transfer member 40b are removed by means of a cleaner 42 brought into contact with
them.
[0102] In such an intermediate transfer system involving primary transfer step from the
photosensitive member to the intermediate transfer member and secondary transfer step
from the intermediate transfer member to the transfer sheet as described above, too,
what most causes the noise peculiar to electrophotography is at the time of transfer
to the transfer sheet T, i.e., at the time of the secondary transfer. Accordingly,
the use of the transfer sheet of the present invention enables reduction of the noise
at the time of secondary transfer, and even only this can bring about a great improvement
in image quality in the intermediate transfer system.
[0103] As described above, according to the present invention, a resin or an elastomer coating
layer is provided at the transfer surface of a transfer sheet and the gradient H is
made not greater than the stated value, whereby the toner image can be kept from scattering
at the time of transfer to materialize formation of images with a higher image quality.
1. A transfer sheet for electrophotography, having a base layer comprising paper made
from pulp, and a surface layer formed on at least one surface of said base layer,
characterized
in that the hardness of the transfer sheet is such that a plotted graph with a load P (mN)
as ordinate and a square of indentation depth A (µm) as an abscissa, plotted when
a tip of a diamond triangular pyramid penetrator having a dihedral angle of 80° is
pressed in the transfer sheet on the side of said surface layer, has a first gradient
H over a first region extending from zero to a first flexing point of the graph, and
a second-and-further region subsequent to the first flexing point, wherein the first
gradient H of the graph is 0.09 mN/µm2 or smaller.
2. The transfer sheet according to claim 1, wherein the first gradient H is smaller than
any gradient of the graph in the second-and-further region.
3. The transfer sheet according to claim 1 or 2, wherein said surface layer is formed
of a resin or an elastomer.
4. The transfer sheet according to one of claims 1 to 3, wherein said surface layer has
a layer thickness of 100 µm or smaller.
5. The transfer sheet according to claim 4, wherein said surface layer has a layer thickness
of from 0.5 µm to 100 µm.
6. The transfer sheet according to claim 5, wherein said surface layer has a layer thickness
of from 1 µm to 100 µm.
7. The transfer sheet according to one of claims 1 to 6, wherein said surface layer has
a surface roughness Rz of 10 µm or lower.
8. An electrophotographic image-forming method comprising the following steps:
a toner image forming step of forming a toner image by means of a toner; and
a transfer step of transferring the toner image formed to the transfer sheet (60;
T) according to one of claims 1 to 7.
9. The method according to claim 8, wherein said toner image forming step and said transfer
step comprise
(I) a charging step of charging an image-bearing member (43) for holding thereon an
electrostatic latent image;
(II) a latent-image-forming step of forming the electrostatic latent image on the
image-bearing member (43) thus charged;
(III) a developing step of developing the electrostatic latent image held on the image-bearing
member (43), with a toner to form a toner image; and
(IV) a transfer step of transferring to said transfer sheet (60) the toner image formed
on the image-bearing member (43).
10. The method according to claim 9, wherein in said latent-image-forming step (II) the
electrostatic latent image is formed on the image-bearing member (43) by exposing
the image-bearing member (43) to light beams modulated in accordance with input signals.
11. The method according to claim 8, wherein said toner image forming step and said transfer
step comprise
a first toner-image-forming step of forming a first toner image by means of a first
toner;
a first transfer step of transferring the first toner image to said transfer sheet;
a second toner-image-forming step of forming a second toner image by means of a second
toner; and
a second transfer step of transferring the second toner image to the transfer sheet
to which the first toner image has been transferred;
to form, on the transfer sheet, multiple-transferred images having the first toner
image and second toner image thus transferred.
12. The method according to claim 8, wherein said toner image forming step and said transfer
step comprise
(I) a first charging step of charging an image-bearing member (43) for holding thereon
an electrostatic latent image;
(II) a first latent-image-forming step of forming a first electrostatic latent image
on the image-bearing member (43) thus charged;
(III) a first developing step of developing the first electrostatic latent image held
on the image-bearing member (43), with a first toner to form a first toner image;
(IV) a first transfer step of transferring to said transfer sheet the first toner
image formed on the image-bearing member (43);
(V) a second charging step of charging the image-bearing member (43) for holding thereon
an electrostatic latent image;
(VI) a second latent-image-forming step of forming a second electrostatic latent image
on the image-bearing member (43) thus charged;
(VII) a second developing step of developing the second electrostatic latent image
held on the image-bearing member (43), with a second toner to form a second toner
image; and
(VIII) a second transfer step of transferring the second toner image formed on the
image-bearing member (43), to the transfer sheet to which the first toner image has
been transferred.
13. The method according to claim 12, wherein in said first latent-image-forming step
(I) the first electrostatic latent image is formed on the image-bearing member (43)
by exposing the image-bearing member (43) to light beams modulated in accordance with
input signals, and in said second latent-image-forming step (VI) the second electrostatic
latent image is formed on the image-bearing member (43) by exposing the image-bearing
member (43) to light beams modulated in accordance with input signals.
14. The method according to claim 11, further comprising
a third toner-image-forming step of forming a third toner image by means of a third
toner;
a third transfer step of transferring the third toner image to the transfer sheet
to which the first toner image and second toner image have been transferred; and
a fourth toner-image-forming step of forming a fourth toner image by means of a fourth
toner;
a fourth transfer step of transferring the fourth toner image to the transfer sheet
to which the first toner image, second toner image and third toner image have been
transferred;
to form, on the transfer sheet, multiple-transferred images having the first toner
image, second toner image, third toner image and fourth toner image thus transferred;
said first toner, said second toner, said third toner and said fourth toner each comprising
any of a cyan toner, a magenta toner, a yellow toner and a black toner; and
said multiple-transferred images having a cyan toner image, a magenta toner image,
a yellow toner image and a black toner image.
15. The method according to claim 12, further comprising
(IX) a third charging step of charging the image-bearing member (43) for holding thereon
an electrostatic latent image;
(X) a third latent-image-forming step of forming a third electrostatic latent image
on the image-bearing member (43) thus charged;
(XI) a third developing step of developing the third electrostatic latent image held
on the image-bearing member (43), with a third toner to form a third toner image;
(XII) a third transfer step of transferring the third toner image formed on the image-bearing
member (43). to the transfer sheet to which the first toner image and second toner
image have been transferred;
(XIII) a fourth charging step of charging the image-bearing member (43) for holding
thereon an electrostatic latent image;
(XIV) a fourth latent-image-forming step of forming a fourth electrostatic latent
image on the image-bearing member (43) thus charged;
(XV) a fourth developing step of developing the fourth electrostatic latent image
held on the image-bearing member (43), with a fourth toner to form a fourth toner
image; and
(XVI) a fourth transfer step of transferring the fourth toner image formed on the
image-bearing member (43) to the transfer sheet to which the first toner image, second
toner image and third toner image have been transferred.
16. The method according to claim 15, wherein in said first latent-image-forming step
(II) the first electrostatic latent image is formed on the image-bearing member (43)
by exposing the image-bearing member (43) to light beams modulated in accordance with
input signals, in said second latent-image-forming step (VI) the second electrostatic
latent image is formed on the image-bearing member (43) by exposing the image-bearing
member (43) to light beams modulated in accordance with input signals, in said third
latent-image-forming step (X) the third electrostatic latent image is formed on the
image-bearing member (43) by exposing the image-bearing member (43) to light beams
modulated in accordance with input signals, and in said fourth latent-image-forming
step (XIV) the fourth electrostatic latent image is formed on the image-bearing member
(43) by exposing the image-bearing member to light beams modulated in accordance with
input signals.
17. The method according to claim 8, wherein a first toner image is formed by means of
a first toner, the first toner image formed is primarily transferred onto an intermediate
transfer member (40b), a second toner image is formed by means of a second toner,
the second toner image formed is primarily transferred onto the intermediate transfer
member (40b) to which the first toner image has been transferred, and the first toner
image and second toner image having been primarily transferred onto the intermediate
transfer member (40b) are one time secondarily transferred onto said transfer sheet
(T) to form, on the transfer sheet, multiple-transferred images having the first toner
image and second toner image thus transferred.
18. The method according to claim 8, wherein said toner image forming step and said transfer
step comprise
(I) a first charging step of charging an image-bearing member (43) for holding thereon
an electrostatic latent image;
(II) a first latent-image-forming step of forming a first electrostatic latent image
on the image-bearing member (43) thus charged;
(III) a first developing step of developing the first electrostatic latent image held
on the image-bearing member (43), with a first toner to form a first toner image;
(IV) a first transfer step of primarily transferring to an intermediate transfer member
(40b) the first toner image formed on the image-bearing member (43);
(V) a second charging step of charging the image-bearing member (43) for holding thereon
an electrostatic latent image;
(VI) a second latent-image-forming step of forming a second electrostatic latent image
on the image-bearing member (43) thus charged;
(VII) a second developing step of developing the second electrostatic latent image
held on the image-bearing member (43), with a second toner to form a second toner
image;
(VIII) a second transfer step of primarily transferring the second toner image formed
on the image-bearing member (43), to the intermediate transfer member (40b) to which
the first toner image has been transferred; and
(IX) a secondary transfer step of one time secondarily transferring to said transfer
sheet (T) the first toner image and second toner image having been primarily transferred
to the intermediate transfer member (40b).
19. The method according to claim 18, wherein in said first latent-image-forming step
(II) the first electrostatic latent image is formed on the image-bearing member (43)
by exposing the image-bearing member (43) to light beams modulated in accordance with
input signals, and in said second latent-image-forming step (VI) the second electrostatic
latent image is formed on the image-bearing member (43) by exposing the image-bearing
member (43) to light beams modulated in accordance with input signals.
20. The method according to claim 17, wherein a third toner image is formed by means of
a third toner, the third toner image formed is primarily transferred onto the intermediate
transfer member (40b) to which the first toner image and second toner image have been
transferred, a fourth toner image is formed by means of a fourth toner, the fourth
toner image formed is primarily transferred onto the intermediate transfer member
(40b) to which the first toner image, second toner image and third toner image have
been transferred, and the first toner image, second toner image, third toner image
and fourth toner image having been primarily transferred onto the intermediate transfer
member (40b) are one time secondarily transferred onto said transfer sheet (T) to
form, on the transfer sheet, multiple-transferred images having the first toner image,
second toner image, third toner image and fourth toner image thus transferred;
said first toner, said second toner, said third toner and said fourth toner each comprising
any of a cyan toner, a magenta toner, a yellow toner and a black toner; and
said multiple-transferred images having a cyan toner image, a magenta toner image,
a yellow toner image and a black toner image.
21. The method according to claim 18, further comprising
(X) a third charging step of charging the image-bearing member (43) for holding thereon
an electrostatic latent image;
(XI) a third latent-image-forming step of forming a third electrostatic latent image
on the image-bearing member (43) thus charged;
(XII) a third developing step of developing the third electrostatic latent image held
on the image-bearing member (43), with a third toner to form a third toner image;
(XIII) a third transfer step of primarily transferring the third toner image formed
on the image-bearing member (43) to the intermediate transfer member (40b) to which
the first toner image and second toner image have been transferred;
(XIV) a fourth charging step of charging the image-bearing member (43) for holding
thereon an electrostatic latent image;
(XV) a fourth latent-image-forming step of forming a fourth electrostatic latent image
on the image-bearing member (43) thus charged;
(XVI) a fourth developing step of developing the fourth electrostatic latent image
held on the image-bearing member (43), with a fourth toner to form a fourth toner
image; and
(XVII) a fourth transfer step of primarily transferring the fourth toner image formed
on the image-bearing member (43) to the intermediate transfer member (40b) to which
the first toner image, second toner image and third toner image have been transferred;
and wherein said secondary transfer step (IX) comprises one time secondarily transferring
to said transfer sheet (T) the first toner image, second toner image, third toner
image and fourth toner image having been primarily transferred to the intermediate
transfer member (40b).
22. The method according to claim 21, wherein in said first latent-image-forming step
(II) the first electrostatic latent image is formed on the image-bearing member (43)
by exposing the image-bearing member to light beams modulated in accordance with input
signals, in said second latent-image-forming step (VI) the second electrostatic latent
image is formed on the image-bearing member (43) by exposing the image-bearing member
(43) to light beams modulated in accordance with input signals, in said third latent-image-forming
step (XI) the third electrostatic latent image is formed on the image-bearing member
(43) by exposing the image-bearing member to light beams modulated in accordance with
input signals, and in said fourth latent-image-forming step (XV) the fourth electrostatic
latent image is formed on the image-bearing member (43) by exposing the image-bearing
member (43) to light beams modulated in accordance with input signals.
1. Übertragungsblatt für Elektrophotographie, das eine aus Zellstoff bestehende Basis-Schicht
und eine mindestens auf einer Oberfläche der Basis-Schicht ausgebildete Oberflächenschicht
aufweist,
dadurch gekennzeichnet, daß
die Härte des Übertragungsblatts so groß ist, daß eine gezeichnete Kurve mit einer
Last P (mN) als Ordinate und dem Quadrat einer Eindrucktiefe A (µm) als Abszisse,
die erhalten wird, wenn die Spitze eines trigonalen, pyramidenförmigen Eindruckkörpers
aus Diamant mit einem Zweiflächen-Winkel von 80° in das Übertragungsblatt auf der
Seite der Oberflächenschicht eingedrückt wird, einen ersten Gradienten H über einen
ersten Bereich aufweist, der sich von Null bis zu einem ersten Knickpunkt der Kurve
erstreckt, und einen an den ersten Bereich anschließenden weiteren zweiten Bereich
aufweist, wobei der erste Gradient H der Kurve 0,09 mN/µm2 oder kleiner ist.
2. Übertragungsblatt gemäß Anspruch 1, wobei der erste Gradient H kleiner ist als jeder
Gradient der Kurve im weiteren zweiten Bereich.
3. Übertragungsblatt gemäß Anspruch 1 oder 2, wobei die Oberflächenschicht aus einem
Kunstharz oder einem Elastomer ausgebildet ist.
4. Übertragungsblatt gemäß einem der Ansprüche 1 bis 3, wobei die Oberflächenschicht
eine Schichtdicke von 100 µm oder weniger aufweist.
5. Übertragungsblatt gemäß Anspruch 4, wobei die Oberflächenschicht eine Schichtdicke
von 0,5 µm bis 100 µm aufweist.
6. Übertragungsblatt gemäß Anspruch 5, wobei die Oberflächenschicht eine Schichtdicke
von 1 µm bis 100 µm aufweist.
7. Übertragungsblatt gemäß einem der Ansprüche 1 bis 6, wobei die Oberflächenschicht
eine Oberflächenrauhigkeit Rz von 10 µm oder weniger aufweist.
8. Elektrophotographisches Bildaufzeichnungsverfahren, das folgende Schritte aufweist:
- ein Tonerbild erzeugender Schritt zur Erzeugung eines Tonerbilds mittels eines Toners
und
- ein Übertragungsschritt zur Übertragung des gebildeten Tonerbilds auf das Übertragungsblatt
(60; T) gemäß einem der Ansprüche 1 bis 7.
9. Verfahren gemäß Anspruch 8, wobei der Tonerbild erzeugende Schritt und der Übertragungsschritt
aufweisen:
(I) einen Aufladeschritt zur Aufladung eines bildtragenden Elements (43) für das Halten
eines elektrostatisch latenten Bildes darauf;
(II) einen Latenzbild erzeugenden Schritt zur Erzeugung des elektrostatisch latenten
Bildes auf dem so aufgeladenen, bildtragenden Element (43);
(III) einen Entwicklungsschritt zum Entwickeln des auf dem bildtragenden Element (43)
gehaltenen elektrostatisch latenten Bildes mit einem Toner, so daß ein Tonerbild ausgebildet
wird und
(IV) einen Übertragungsschritt zur Übertragung des auf dem bildtragenden Element (43)
ausgebildeten Tonerbildes auf das Übertragungsblatt (60).
10. Verfahren gemäß Anspruch 9, wobei im Latenzbild erzeugenden Schritt das elektrostatisch
latente Bild auf dem bildtragenden Element (43) gebildet wird, indem das bildtragende
Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung mit Eingangssignalen
moduliert werden.
11. Verfahren gemäß Anspruch 8, wobei der Tonerbild erzeugende Schritt und der Übertragungsschritt
aufweisen:
- einen ersten Tonerbild erzeugenden Schritt zur Ausbildung eines ersten Tonerbildes
mittels eines ersten Toners;
- einen ersten Übertragungsschritt zur Übertragung des ersten Tonerbildes auf das
Übertragungsblatt;
- einen zweiten Tonerbild erzeugenden Schritt zur Ausbildung eines zweiten Tonerbildes
mittels eines ersten Toners;
- einen zweiten Übertragungsschritt zur Übertragung des zweiten Tonerbildes auf das
Übertragungsblatt, auf das das erste Tonerbild übertragen wurde;
um auf dem Übertragungsblatt mehrfach übertragene Bilder auszubilden, die aus dem
übertragenen ersten Tonerbild und zweiten Tonerbild bestehen.
12. Verfahren gemäß Anspruch 8, wobei der Tonerbild erzeugende Schritt und der Übertragungsschritt
aufweisen:
(I) einen ersten Aufladeschritt zur Aufladung eines bildtragenden Elements (43) für
das Halten eines elektrostatisch latenten Bildes darauf;
(II) einen ersten Latenzbild erzeugenden Schritt zur Erzeugung eines ersten elektrostatisch
latenten Bildes auf dem so aufgeladenen, bildtragenden Element (43);
(III) einen ersten Entwicklungsschritt zum Entwickeln des auf dem bildtragenden Element
(43) gehaltenen ersten elektrostatisch latenten Bildes mit einem ersten Toner, so
daß ein erstes Tonerbild ausgebildet wird;
(IV) einen ersten Übertragungsschritt zur Übertragung des auf dem bildtragenden Element
(43) ausgebildeten ersten Tonerbildes auf das Übertragungsblatt (60);
(V) einen zweiten Aufladeschritt zur Aufladung eines bildtragenden Elements (43) für
das Halten eines elektrostatisch latenten Bildes darauf;
(VI) einen zweiten Latenzbild erzeugenden Schritt zur Erzeugung eines zweiten elektrostatisch
latenten Bildes auf dem so aufgeladenen, bildtragenden Element (43);
(VII) einen zweiten Entwicklungsschritt zum Entwickeln des auf dem bildtragenden Element
(43) gehaltenen zweiten elektrostatisch latenten Bildes mit einem zweiten Toner, so
daß ein zweites Tonerbild ausgebildet wird und
(VIII) einen zweiten Übertragungsschritt zur Übertragung des auf dem bildtragenden
Element (43) ausgebildeten zweiten Tonerbildes auf das Übertragungsblatt, auf das
das erste Tonerbild übertragen wurde.
13. Verfahren gemäß Anspruch 12, wobei im ersten Latenzbild erzeugenden Schritt (I) das
erste elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet wird,
indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden und im zweiten Latenzbild erzeugenden Schritt
(VI) das zweite elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet
wird, indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden.
14. Verfahren gemäß Anspruch 11, das weiterhin aufweist:
- einen dritten Tonerbild erzeugenden Schritt zur Bildung eines dritten Tonerbildes
mittels eines dritten Toners;
- einen dritten Übertragungsschritt zur Übertragung des dritten Tonerbildes auf das
Übertragungsblatt, auf das das erste Tonerbild und das zweite Tonerbild übertragen
wurden und
- einen vierten Tonerbild erzeugenden Schritt zur Bildung eines vierten Tonerbildes
mittels eines vierten Toners;
- einen vierten Übertragungsschritt zur Übertragung des vierten Tonerbildes auf das
Übertragungsblatt, auf das das erste Tonerbild, das zweite Tonerbild und das dritte
Tonerbild übertragen wurde;
um auf dem Übertragungsblatt mehrfach übertragene Bilder auszubilden, die aus dem
übertragenen ersten Tonerbild, zweiten Tonerbild, dritten Tonerbild und vierten Tonerbild
bestehen;
wobei der erste Toner, zweite Toner, dritte Toner und vierte Toner aus einem Cyan-Toner,
einem Magenta-Toner, einem Yellow-Toner oder einem Black-Toner besteht; und
die mehrfach übertragenen Bilder ein Cyan-Tonerbild, ein Magenta-Tonerbild, ein Yellow-Tonerbild
bzw. ein Black-Tonerbild sind.
15. Verfahren gemäß Anspruch 11, das weiterhin aufweist:
(I) einen dritten Aufladeschritt zur Aufladung eines bildtragenden Elements (43) für
das Halten eines elektrostatisch latenten Bildes darauf;
(II) einen dritten Latenzbild erzeugenden Schritt zur Erzeugung eines dritten elektrostatisch
latenten Bildes auf dem so aufgeladenen, bildtragenden Element (43);
(III) einen dritten Entwicklungsschritt zum Entwickeln des auf dem bildtragenden Element
(43) gehaltenen dritten elektrostatisch latenten Bildes mit einem dritten Toner, so
daß ein drittes Tonerbild ausgebildet wird;
(IV) einen dritten Übertragungsschritt zur Übertragung des auf dem bildtragenden Element
(43) ausgebildeten dritten Tonerbildes auf das Übertragungsblatt (60), auf das das
erste Tonerbild und das zweite Tonerbild übertragen wurde;
(V) einen vierten Aufladeschritt zur Aufladung des bildtragenden Elements (43) für
das Halten eines elektrostatisch latenten Bildes darauf;
(VI) einen vierten Latenzbild erzeugenden Schritt zur Erzeugung eines vierten elektrostatisch
latenten Bildes auf dem so aufgeladenen, bildtragenden Element (43);
(VII) einen vierten Entwicklungsschritt zum Entwickeln des auf dem bildtragenden Element
(43) gehaltenen vierten elektrostatisch latenten Bildes mit einem vierten Toner, so
daß ein viertes Tonerbild ausgebildet wird und
(VIII) einen vierten Übertragungsschritt zur Übertragung des auf dem bildtragenden
Element (43) ausgebildeten vierten Tonerbildes auf das Übertragungsblatt, auf das
das erste Tonerbild, zweite Tonerbild und dritte Tonerbild übertragen wurde.
16. Verfahren gemäß Anspruch 15, wobei im ersten Latenzbild erzeugenden Schritt (II) das
erste elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet wird,
indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden, im zweiten Latenzbild erzeugenden Schritt (VI)
das zweite elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet
wird, indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden, im dritten Latenzbild erzeugenden Schritt (II)
das dritte elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet
wird, indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden und im vierten Latenzbild erzeugenden Schritt
(VI) das vierte elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet
wird, indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden.
17. Verfahren gemäß Anspruch 8, wobei ein erstes Tonerbild mittels eines ersten Toners
erzeugt wird, das erste Tonerbild zuerst auf ein Zwischenübertragungselement (40b)
übertragen wird, ein zweites Tonerbild mittels eines zweiten Toners erzeugt wird,
das zweite Tonerbild anfänglich auf das Zwischenübertragungselement (40b) übertragen
wird, auf das das erste Tonerbild übertragen wurde, und das erste und zweite, anfänglich
auf das Zwischenübertragungselement (40b) übertragene Tonerbild nachträglich gemeinsam
auf das Übertragungsblatt (T) übertragen werden, so daß auf dem Übertragungsblatt
mehrfach übertragene Bilder ausgebildet werden, die das so übertragene erste und zweite
Tonerbild aufweisen.
18. Verfahren gemäß Anspruch 8, wobei der Tonerbild erzeugende Schritt und der Übertragungsschritt
aufweisen:
(I) einen ersten Aufladeschritt zur Aufladung eines bildtragenden Elements (43) für
das Halten eines elektrostatisch latenten Bildes darauf;
(II) einen ersten Latenzbild erzeugenden Schritt zur Erzeugung eines ersten elektrostatisch
latenten Bildes auf dem so aufgeladenen, bildtragenden Element (43);
(III) einen ersten Entwicklungsschritt zum Entwickeln des auf dem bildtragenden Element
(43) gehaltenen ersten elektrostatisch latenten Bildes mit einem ersten Toner, so
daß ein erstes Tonerbild ausgebildet wird;
(IV) einen ersten Übertragungsschritt zur anfänglichen Übertragung des auf dem bildtragenden
Element (43) ausgebildeten ersten Tonerbildes auf das Zwischenübertragungselement
(40b);
(V) einen zweiten Aufladeschritt zur Aufladung eines bildtragenden Elements (43) für
das Halten eines elektrostatisch latenten Bildes darauf;
(VI) einen zweiten Latenzbild erzeugenden Schritt zur Erzeugung eines zweiten elektrostatisch
latenten Bildes auf dem so aufgeladenen, bildtragenden Element (43);
(VII) einen zweiten Entwicklungsschritt zum Entwickeln des auf dem bildtragenden Element
(43) gehaltenen zweiten elektrostatisch latenten Bildes mit einem zweiten Toner, so
daß ein zweites Tonerbild ausgebildet wird und
(VIII) einen zweiten Übertragungsschritt zur anfänglichen Übertragung des auf dem
bildtragenden Element (43) ausgebildeten zweiten Tonerbildes auf das Zwischenübertragungselement
(40b), auf das das erste Tonerbild übertragen wurde und
(IX) einen zweiten Übertragungsschritt zur anfänglichen gemeinsamen Übertragung des
ersten Tonerbildes und des zweiten Tonerbildes, die anfänglich auf das Zwischenübertragungselement
(40b) übertragen wurden, auf das Übertragungsblatt (T).
19. Verfahren gemäß Anspruch 18, wobei im ersten Latenzbild erzeugenden Schritt (II) das
erste elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet wird,
indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden und im zweiten Latenzbild erzeugenden Schritt
(VI) das zweite elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet
wird, indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden.
20. Verfahren gemäß Anspruch 17, wobei
- ein drittes Tonerbild mittels eines dritten Toners erzeugt wird, das dritte Tonerbild
zuerst auf das Zwischenübertragungselement (40b) übertragen wird, auf das das erste
und das zweite Tonerbild übertragen wurde, ein viertes Tonerbild mittels eines vierten
Toners erzeugt wird, das vierte Tonerbild anfänglich auf das Zwischenübertragungselement
(40b) übertragen wird, auf das das erste, zweite und dritte Tonerbild übertragen wurde,
und das erste, zweite, dritte und vierte anfänglich auf das Zwischenübertragungselement
(40b) übertragene Tonerbild nachträglich gemeinsam auf das Übertragungsblatt (T) übertragen
werden, so daß auf dem Übertragungsblatt mehrfach übertragene Bilder ausgebildet werden,
die das so übertragene erste, zweite, dritte und vierte Tonerbild aufweisen;
- der erste Toner, zweite Toner, dritte Toner und vierte Toner aus einem Cyan-Toner,
einem Magenta-Toner, einem Yellow-Toner oder einem Black-Toner besteht; und
- die mehrfach übertragenen Bilder ein Cyan-Tonerbild, ein Magenta-Tonerbild, ein
Yellow-Tonerbild bzw. ein Black-Tonerbild sind.
21. Verfahren gemäß Anspruch 18, das weiterhin aufweist:
(X) einen dritten Aufladeschritt zur Aufladung eines bildtragenden Elements (43) für
das Halten eines elektrostatisch latenten Bildes darauf;
(XI) einen dritten Latenzbild erzeugenden Schritt zur Erzeugung eines dritten elektrostatisch
latenten Bildes auf dem so aufgeladenen, bildtragenden Element (43);
(XII) einen dritten Entwicklungsschritt zum Entwickeln des auf dem bildtragenden Element
(43) gehaltenen dritten elektrostatisch latenten Bildes mit einem dritten Toner, so
daß ein drittes Tonerbild ausgebildet wird;
(XIII) einen dritten Übertragungsschritt zur anfänglichen Übertragung des auf dem
bildtragenden Element (43) ausgebildeten dritten Tonerbildes auf das Zwischenübertragungselement
(40b), auf das das erste Tonerbild und das zweite Tonerbild übertragen wurde;
(XIV) einen vierten Aufladeschritt zur Aufladung des bildtragenden Elements (43) für
das Halten eines elektrostatisch latenten Bildes darauf;
(XV) einen vierten Latenzbild erzeugenden Schritt zur Erzeugung eines vierten elektrostatisch
latenten Bildes auf dem so aufgeladenen, bildtragenden Element (43);
(XVI) einen vierten Entwicklungsschritt zum Entwickeln des auf dem bildtragenden Element
(43) gehaltenen vierten elektrostatisch latenten Bildes mit einem vierten Toner, so
daß ein viertes Tonerbild ausgebildet wird und
(XVII) einen vierten Übertragungsschritt zur anfänglichen Übertragung des auf dem
bildtragenden Element (43) ausgebildeten vierten Tonerbildes auf das Zwischenübertragungselement
(40b), auf das das erste Tonerbild, zweite Tonerbild und dritte Tonerbild übertragen
wurde, wobei der zweite Übertragungsschritt (IX) die nachträglich gemeinsam auf das
Übertragungsblatt (T) übertragene erste, zweite, dritte und vierte Tonerbild aufweist,
die anfänglich auf das Zwischenübertragungselement (40b) übertragen wurden.
22. Verfahren gemäß Anspruch 21, wobei im ersten Latenzbild erzeugenden Schritt (II) das
erste elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet wird,
indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden, im zweiten Latenzbild erzeugenden Schritt (VI)
das zweite elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet
wird, indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden, im dritten Latenzbild erzeugenden Schritt (XI)
das dritte elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet
wird, indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden, und im vierten Latenzbild erzeugenden Schritt
(XV) das vierte elektrostatisch latente Bild auf dem bildtragenden Element (43) gebildet
wird, indem das bildtragende Element (43) Lichtstrahlen ausgesetzt wird, die in Übereinstimmung
mit Eingangssignalen moduliert werden.
1. Feuille de report pour électrophotographie, ayant une couche de base comprenant du
papier formé à partir d'une pâte, et une couche de surface formée sur au moins une
surface de ladite couche de base, caractérisée
en ce que la dureté de la feuille de report est telle qu'un graphe tracé avec une charge P
(mN) en ordonnées et le carré de la profondeur d'empreinte A (µm) en abscisse, tracé
lorsqu'une pointe d'un pénétrateur à pyramide triangulaire en diamant ayant un angle
dièdre de 80° est enfoncée dans la feuille de report sur le côté de ladite couche
de surface, a un premier gradient H sur une première région s'étendant de zéro jusqu'à
un premier point d'inflexion du graphe, et une seconde région et au-delà subséquente
au premier point d'inflexion, dans laquelle le premier gradient H du graphe est de
0,09 mN/µm2 ou moins.
2. Feuille de report selon la revendication 1, dans laquelle le premier gradient H est
inférieur à tout gradient du graphe dans la seconde région et au-delà.
3. Feuille de report selon la revendication 1 ou 2, dans laquelle ladite couche de surface
est formée d'une résine ou d'un élastomère.
4. Feuille de report selon l'une des revendications 1 à 3, dans laquelle ladite couche
de surface a une épaisseur de 100 µm ou moins.
5. Feuille de report selon la revendication 4, dans laquelle ladite couche de surface
a une épaisseur de 0,5 µm à 100 µm.
6. Feuille de report selon la revendication 5, dans laquelle ladite couche de surface
a une épaisseur de 1 µm à 100 µm.
7. Feuille de report selon l'une des revendications 1 à 6, dans laquelle ladite couche
de surface a une rugosité de surface Rz de 10 µm ou moins.
8. Procédé électrophotographique de formation d'image comprenant les étapes suivantes
:
une étape de formation d'une image en toner consistant à former une image en toner
au moyen d'un toner ; et
une étape de report consistant à reporter l'image en toner formée sur la feuille de
report (60 ; T) selon l'une des revendications 1 à 7.
9. Procédé selon la revendication 8, dans lequel ladite étape de formation d'une image
en toner et ladite étape de report comprennent
(I) une étape de charge consistant à charger un élément porteur d'image (43) destiné
à porter une image latente électrostatique ;
(II) une étape de formation d'une image latente consistant à former l'image latente
électrostatique sur l'élément porteur d'image (43) ainsi chargé ;
(III) une étape de développement consistant à développer l'image latente électrostatique
maintenue sur l'élément porteur d'image (43), à l'aide d'un toner pour former une
image en toner ; et
(IV) une étape de report consistant à reporter sur ladite feuille de report (60) l'image
en toner formée sur l'élément porteur d'image (43).
10. Procédé selon la revendication 9, dans lequel, dans ladite étape (II) de formation
d'une image latente, l'image latente électrostatique est formée sur l'élément porteur
d'image (43) en exposant l'élément porteur d'image (43) à des faisceaux lumineux modulés
conformément à des signaux d'entrée.
11. Procédé selon la revendication 8, dans lequel ladite étape de formation d'image en
toner et ladite étape de report comprennent
une première étape de formation d'image en toner consistant à former une première
image en toner au moyen d'un premier toner ;
une première étape de report consistant à reporter la première image en toner sur
ladite feuille de report ;
une seconde étape de formation d'une image en toner consistant à former une seconde
image en toner au moyen d'un second toner ; et
une seconde étape de report consistant à reporter la seconde image en toner sur la
feuille de report sur laquelle la première image en toner a été reportée ;
pour former, sur la feuille de report,
des images multiples reportées ayant la première image en toner et la seconde image
en toner ainsi reportées.
12. Procédé selon la revendication 8, dans lequel ladite étape de formation d'une image
en toner et ladite étape de report comprennent
(I) une première étape de charge consistant à charger un élément porteur d'image (43)
pour qu'il maintienne sur lui une image latente électrostatique ;
(II) une première étape de formation d'une image latente consistant à former une première
image latente électrostatique sur l'élément porteur d'image (43) ainsi chargé ;
(III) une première étape de développement consistant à développer la première image
latente électrostatique maintenue sur l'élément porteur d'image (43), avec un premier
toner pour former une première image en toner ;
(IV) une première étape de report consistant à reporter sur ladite feuille de report
la première image en toner formée sur l'élément porteur d'image (43) ;
(V) une seconde étape de charge consistant à charger l'élément porteur d'image (43)
pour qu'il maintienne sur lui une image latente électrostatique ;
(VI) une seconde étape de formation d'une image latente consistant à former une seconde
image latente électrostatique sur l'élément porteur d'image (43) ainsi chargé ;
(VII) une seconde étape de développement consistant à développer la seconde image
latente électrostatique maintenue sur l'élément porteur d'image (43), avec un second
toner pour former une seconde image en toner ; et
(VIII) une seconde étape de report consistant à reporter la seconde image en toner,
formée sur l'élément porteur d'image (43), sur la feuille de report sur laquelle la
première image en toner a été reportée.
13. Procédé selon la revendication 12, dans lequel, dans ladite première étape (I) de
formation d'une image latente, la première image latente électrostatique est formée
sur l'élément porteur d'image (43) en exposant l'élément porteur d'image (43) à des
faisceaux lumineux modulés conformément à des signaux d'entrée et, dans ladite seconde
étape (VI) de formation d'une image latente, ladite seconde image latente électrostatique
est formée sur l'élément porteur d'image (43) en exposant l'élément porteur d'image
(43) à des faisceaux lumineux modulés conformément à des signaux d'entrée.
14. Procédé selon la revendication 11, comprenant en outre
une troisième étape de formation d'une image en toner consistant à former une troisième
image en toner au moyen d'un troisième toner ;
une troisième étape de report consistant à reporter la troisième image en toner sur
la feuille de report sur laquelle la première image en toner et la deuxième image
en toner ont été reportées ; et
une quatrième étape de formation d'une image en toner consistant à former une quatrième
image en toner au moyen d'un quatrième toner ;
une quatrième étape de report consistant à reporter la quatrième image en toner sur
la feuille de report sur laquelle la première image en toner, la deuxième image en
toner et la troisième image en toner ont été reportées ;
pour former, sur la feuille de report,
des images multiples reportées ayant la première image en toner, la deuxième image
en toner, la troisième image en toner et la quatrième image en toner ainsi reportées
;
ledit premier toner, ledit deuxième toner, ledit troisième toner et ledit quatrième
toner comprenant chacun l'un quelconque d'un toner cyan, d'un toner magenta, d'un
toner jaune et d'un toner noir ; et
lesdites images multiples reportées ayant une image en toner cyan, une image en toner
magenta, une image en toner jaune et une image en toner noir.
15. Procédé selon la revendication 12, comprenant en outre
(IX) une troisième étape de charge consistant à charger l'élément porteur d'image
(43) pour qu'il maintienne sur lui une image latente électrostatique ;
(X) une troisième étape de formation d'une image latente consistant à former une troisième
image latente électrostatique sur l'élément porteur d'image (43) ainsi chargé ;
(XI) une troisième étape de développement consistant à développer la troisième image
latente électrostatique maintenue sur l'élément porteur d'image (43), avec un troisième
toner pour former une troisième image en toner ;
(XII) une troisième étape de report consistant à reporter la troisième image en toner,
formée sur l'élément porteur d'image (43), sur la feuille de report sur laquelle la
première image en toner et la deuxième image en toner ont été reportées ;
(XIII) une quatrième étape de charge consistant à charger l'élément porteur d'image
(43) pour qu'il maintienne sur lui une image latente électrostatique ;
(XIV) une quatrième étape de formation d'une image latente consistant à former une
quatrième image latente électrostatique sur l'élément porteur d'image (43) ainsi chargé
;
(XV) une quatrième étape de développement consistant à développer la quatrième image
latente électrostatique maintenue sur l'élément porteur d'image (43), avec un quatrième
toner pour former une quatrième image en toner ; et
(XVI) une quatrième étape de report consistant à reporter la quatrième image en toner,
formée sur l'élément porteur d'image (43), sur la feuille de report sur laquelle la
première image en toner, la deuxième image en toner et la troisième image en toner
ont été reportées.
16. Procédé selon la revendication 15, dans lequel, dans ladite première étape (II) de
formation d'image latente, la première image latente électrostatique est formée sur
l'élément porteur d'image (43) en exposant l'élément porteur d'image (43) à des faisceaux
lumineux modulés conformément à des signaux d'entrée, dans ladite deuxième étape (VI)
de formation d'une image latente, ladite deuxième image latente électrostatique est
formée sur l'élément porteur d'image (43) en exposant l'élément porteur d'image (43)
à des faisceaux lumineux modulés conformément à des signaux d'entrée, dans ladite
troisième étape (X) de formation d'une image latente, la troisième image latente électrostatique
est formée sur l'élément porteur d'image (43) en exposant l'élément porteur d'image
(43) à des faisceaux lumineux modulés conformément à des signaux d'entrée, et dans
ladite quatrième étape (XIV) de formation d'une image latente, la quatrième image
latente électrostatique est formée sur l'élément porteur d'image (43) en exposant
l'élément porteur d'image à des faisceaux lumineux modulés conformément à des signaux
d'entrée.
17. Procédé selon la revendication 8, dans lequel une première image en toner est formée
au moyen d'un premier toner, la première image en toner formée est reportée de façon
primaire sur un élément de report intermédiaire (40b), une deuxième image en toner
est formée au moyen d'un deuxième toner, la deuxième image en toner formée est reportée
de façon primaire sur l'élément de report intermédiaire (40b) sur lequel la première
image en toner a été reportée, et la première image en toner et la deuxième image
en toner ayant été reportées de façon primaire sur l'élément de report intermédiaire
(40b) sont reportées une fois de façon secondaire sur ladite feuille de report (T)
pour former, sur la feuille de report, des images multiples reportées ayant la première
image en toner et la deuxième image en toner ainsi reportées.
18. Procédé selon la revendication 8, dans lequel ladite étape de formation d'une image
en toner et ladite étape de report comprennent
(I) une première étape de charge consistant à charger un élément porteur d'image (43)
pour qu'il maintienne sur lui une image latente électrostatique ;
(II) une première étape de formation d'une image latente consistant à former une première
image latente électrostatique sur l'élément porteur d'image (43) ainsi chargé ;
(III) une première étape de développement consistant à développer la première image
latente électrostatique maintenue sur l'élément porteur d'image (43), avec un premier
toner pour former une première image en toner ;
(IV) une première étape de report consistant à reporter de façon primaire sur un élément
de report intermédiaire (40b) la première image en toner formée sur l'élément porteur
d'image (43) ;
(V) une deuxième étape de charge consistant à charger l'élément porteur d'image (43)
pour qu'il maintienne sur lui une image latente électrostatique ;
(VI) une deuxième étape de formation d'une image latente consistant à former une deuxième
image latente électrostatique sur l'élément porteur d'image (43) ainsi chargé ;
(VII) une deuxième étape de développement consistant à développer la deuxième image
latente électrostatique maintenue sur l'élément porteur d'image (43), à l'aide d'un
deuxième toner pour former une deuxième image en toner ; et
(VIII) une deuxième étape de report consistant à reporter de façon primaire la deuxième
image en toner, formée sur l'élément porteur d'image (43), sur l'élément de report
intermédiaire (40b) sur lequel la première image en toner a été reportée ; et
(IX) une étape de report secondaire consistant à reporter de façon secondaire, en
une fois sur ladite feuille de report (T), la première image en toner et la deuxième
image en toner ayant été reportées de façon primaire sur l'élément de report intermédiaire
(40b).
19. Procédé selon la revendication 18, dans lequel, dans ladite première étape (II) de
formation d'une image latente, la première image latente électrostatique est formée
sur l'élément porteur d'image (43) en exposant l'élément porteur d'image (43) à des
faisceaux lumineux modulés conformément à des signaux d'entrée et, dans ladite deuxième
étape (VI) de formation d'une image latente, la deuxième image latente électrostatique
est formée sur l'élément porteur d'image (43) en exposant l'élément porteur d'image
(43) à des faisceaux lumineux modulés conformément à des signaux d'entrée.
20. Procédé selon la revendication 17, dans lequel une troisième image en toner est formée
au moyen d'un troisième toner, la troisième image en toner formée est reportée de
façon primaire sur l'élément de report intermédiaire (40b) sur lequel la première
image en toner et la deuxième image en toner ont été reportées, une quatrième image
en toner est formée au moyen d'un quatrième toner, la quatrième image en toner formée
est reportée de façon primaire sur l'élément de report intermédiaire (40b) sur lequel
la première image en toner, la deuxième image en toner et la troisième image en toner
ont été reportées, et la première image en toner, la deuxième image en toner, la troisième
image en toner et la quatrième image en toner ayant été reportées de façon primaire
sur l'élément de report intermédiaire (40b) sont reportées de façon secondaire en
une fois sur ladite feuille de report (T) pour former, sur la feuille de report, des
images multiples reportées ayant la première image en toner, la deuxième image en
toner, la troisième image en toner et la quatrième image en toner ainsi reportées
;
ledit premier toner, ledit deuxième toner, ledit troisième toner et ledit quatrième
toner comprenant chacun l'un quelconque d'un toner cyan, d'un toner magenta, d'un
toner jaune et d'un toner noir ; et
lesdites images multiples reportées ayant une image en toner cyan, une image en toner
magenta, une image en toner jaune et une image en toner noir.
21. Procédé selon la revendication 18, comprenant en outre
(X) une troisième étape de charge consistant à charger l'élément porteur d'image (43)
pour qu'il maintienne sur lui une image latente électrostatique ;
(XI) une troisième étape de formation d'une image latente consistant à former une
troisième image latente électrostatique sur l'élément porteur d'image (43) ainsi chargé
;
(XII) une troisième étape de développement consistant à développer la troisième image
latente électrostatique maintenue sur l'élément porteur d'image (43), avec un troisième
toner pour former une troisième image en toner ;
(XIII) une troisième étape de report consistant à reporter de façon primaire la troisième
image en toner, formée sur l'élément porteur d'image (43), sur l'élément de report
intermédiaire (40b) sur lequel la première image en toner et la deuxième image en
toner ont été reportées ;
(XIV) une quatrième étape de charge consistant à charger l'élément porteur d'image
(43) pour qu'il maintienne sur lui une image latente électrostatique ;
(XV) une quatrième étape de formation d'une image latente consistant à former une
quatrième image latente électrostatique sur l'élément porteur d'image (43) ainsi chargé
;
(XVI) une quatrième étape de développement consistant à développer la quatrième image
latente électrostatique maintenue sur l'élément porteur d'image (43), à l'aide d'un
quatrième toner pour former une quatrième image en toner ; et
(XVII) une quatrième étape de report consistant à reporter de façon primaire la quatrième
image en toner, formée sur l'élément porteur d'image (43), sur l'élément de report
intermédiaire (40b) sur lequel la première image en toner, la deuxième image en toner
et la troisième image en toner ont été reportées ; et
dans lequel ladite étape de report secondaire (IX) comprend un report secondaire en
une fois, sur ladite feuille de report (T), de la première image en toner, de la deuxième
image en toner, de la troisième image en toner et de la quatrième image en toner qui
ont été reportées de façon primaire sur l'élément de report intermédiaire (40b).
22. Procédé selon la revendication 21, dans lequel, dans ladite première étape (II) de
formation d'une image latente, la première image latente électrostatique est formée
sur l'élément porteur d'image (43) en exposant l'élément porteur d'image (43) à des
faisceaux lumineux modulés conformément à des signaux d'entrée, dans ladite deuxième
étape (VI) de formation d'une image latente, la deuxième image latente électrostatique
est formée sur l'élément porteur d'image (43) en exposant l'élément porteur d'image
(43) à des faisceaux lumineux modulés conformément à des signaux d'entrée, dans ladite
troisième étape (XI) de formation d'une image latente, la troisième image latente
électrostatique est formée sur l'élément porteur d'image (43) en exposant l'élément
porteur d'image (43) à des faisceaux lumineux modulés conformément à des signaux d'entrée,
et dans ladite quatrième étape (XV) de formation d'une image latente, la quatrième
image latente électrostatique est formée sur l'élément porteur d'image (43) en exposant
l'élément porteur d'image à des faisceaux lumineux modulés conformément à des signaux
d'entrée.