(19)
(11) EP 0 910 044 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
02.08.2006 Bulletin 2006/31

(21) Application number: 98307739.7

(22) Date of filing: 24.09.1998
(51) International Patent Classification (IPC): 
G06T 11/00(2006.01)

(54)

Method and apparatus for compositing colors of images with memory constraints

Verfahren und Vorrichtung zur Komposition von Bildfarben unter Speicherbeschränkungen

Méthode et appareil de composition de la couleur d'images avec de contraintes de mémoire


(84) Designated Contracting States:
DE FR GB

(30) Priority: 15.10.1997 US 950557

(43) Date of publication of application:
21.04.1999 Bulletin 1999/16

(73) Proprietor: Hewlett-Packard Development Company, L.P.
Houston, Texas 77070 (US)

(72) Inventors:
  • Jouppi, Norman P.
    Palo Alto, California 94306 (US)
  • Chang, Chun-Fa
    Durham, North Carolina 27713 (US)
  • McCormack, Joel M.
    Boulder, Colorado 80302 (US)

(74) Representative: Charig, Raymond Julian et al
Eric Potter Clarkson LLP Park View House 58 The Ropewalk
Nottingham NG1 5DD
Nottingham NG1 5DD (GB)


(56) References cited: : 
WO-A-97/06512
US-A- 5 175 805
US-A- 5 594 854
US-A- 5 123 085
US-A- 5 338 200
US-A- 5 646 751
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] This invention relates generally to computer graphics, and more particularly to a method and apparatus for producing composite color images defined by subpixel resolution.

    Background



    [0002] Many computer graphics systems use pixels to define images. The pixels are arranged on a display screen as a rectangular array of points. Aliasing occurs because the pixels have a discrete nature. Artifacts can appear when an entire pixel is given a light intensity or color based upon an insufficient sample of points within that pixel. To reduce aliasing effects in images, the pixels can be sampled at subpixel locations within the pixel. Each of the subpixel sample locations contributes color data that can be used to generate the composite color of that pixel. However, some graphics systems may limit the amount of memory for storing subsample color data for each pixel. Thus, such graphic systems must carefully select which color data are stored so that these systems can still accurately produce a composite color for each pixel.

    [0003] Hence, there is a need for a method and an apparatus that, for each pixel, can make color selections and replacements without introducing unsatisfactory artifacts into a displayed image.

    [0004] An example graphics system is described in US 5,594,854 which performs coarse sub-pixel correction so as to improve the general quality of displayed images. The graphics system uses a rasterizer unit within a pipelined architecture to decompose a graphical primitive into a series of fragments, each fragment only covering a part of a pixel and having an associated 'alpha value' representing the percentage pixel coverage. An 'alpha test unit' compares a fragment's alpha value with a reference alpha value and may conditionally reject a fragment if it is deemed that the final colour of the pixel would not be rendered correctly, for example, if a percentage coverage of a pixel by a new fragment is too low.

    Summary of the Invention



    [0005] In accordance to the present invention which is defined by the appended claims, an objective is to provide an apparatus and method for determining colors of pixels. The invention makes it possible to operate effectively within memory constraints for storing pixel data by selecting the fragment data that contributes to the color of a given pixel, which can be from fragments of different objects or surfaces of the image, while minimizing noticeable color differences for the pixel and avoiding the introduction of unsatisfactory artifacts.

    [0006] The present invention, in its broad form, resides in a method and an apparatus for determining a color of a pixel, as recited in claims 1 and 11 respectively. In the method, the arrangement stores up to a predetermined number of fragment values for the pixel. Each stored fragment value is associated with a fragment of an image that is visible in that pixel. A new fragment is determined to be visible in the pixel with at least one other fragment with a stored fragment value still being visible in the pixel. The fragment value of one of the visible fragments is discarded to determine which fragment values are stored and subsequently used to generate the color of the pixel.

    [0007] According to the present invention, the discarded fragment value is one of the stored fragment values.

    [0008] Preferably, the new fragment is part of a different surface of the image than each of the fragments associated with a stored fragment value.

    [0009] In one embodiment, the method selects for discarding the stored fragment value with the Z-depth value that is larger than the Z-depth value of each other stored fragment value, and replaces that fragment value with the new fragment value. The greater the Z-depth value, the farther the associated fragment is from the viewer of the image.

    [0010] In another embodiment, the method selects for discarding the stored fragment value with the color value that produces a numerically smaller color difference than the color value of each other stored fragment value when compared to the color value of the new fragment value. Discarding the fragment value that produces the smallest color difference minimizes any noticeable color change for the pixel.

    [0011] In terms of the apparatus, the arrangement comprises a memory and a graphics device. The memory stores up to a predetermined number of fragment values for a given pixel. Each stored fragment value is associated with a fragment of an image that is visible in that pixel. The graphics device determines that a new fragment is visible in the pixel with at least one other fragment with a stored fragment value still being visible in the pixel. The graphics device discards the fragment value of one of the visible fragments to determine which fragment values can be used to generate the color of the pixel.

    Brief Description of the Drawings



    [0012] An exemplary embodiment of the invention will be described with reference to the accompanying drawings, in which:

    ◆ FIG. 1 is a block diagram of an exemplary computer graphics system that can be used to practice the invention;

    ◆Figs. 2A-2C represent various subdivisions of a pixel into subpixels, and illustrate exemplary sparse supersampling patterns that can be used to sample the subpixels;

    ◆ FIG. 3 represents an exemplary linking of subpixel samples in one of the supersampling patterns of FIG. 2A-2C to two fragment triples stored in a pixel memory;

    ◆ FIG. 4 represents another linking of subpixel samples for when a third fragment appears in a pixel;

    ◆ FIG. 5A-5C illustrate alternative linkings of subpixels samples for when a third fragment appears in a pixel;

    ◆ FIGs. 6A-6B illustrate a logical representation of the pixel memory including indices to the stored fragment triples;

    ◆ FIGs. 6C-6D illustrate a logical representation of the pixel memory including coverage masks associated with the stored fragment triples; and

    ◆ Fig. 7 illustrates a flow diagram describing an exemplary process using the present invention.


    DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT


    System Overview



    [0013] FIG. 1 shows a computer system 100 that can generate monochrome or multicolor 2-dimensional (2D) and 3-dimensional (3D) graphic images for display according to the principles of the present invention. The computer system 100 can be one of a variety of raster graphics systems including, for example, a personal computer, a workstation, or a mainframe.

    [0014] In the computer system 100, a system chipset 104 provides an interface among a processing unit 102, a main memory 106, a graphics accelerator 108 and devices (not shown) on an 1/0 bus 110. The processing unit 102 is coupled to the system chipset 104 by the host bus 112 and includes a central processing unit (CPU) 118. The main memory 106 interfaces to the system chipset 104 by bus 114.

    [0015] The graphics accelerator 108 is coupled to the system chipset 104 by a bus 116, by which the graphics accelerator 108 can receive graphics commands to render graphical images. A graphics memory 122 and a display device 126 are coupled to the graphics accelerator 108; the graphics memory 122 is coupled by bus 124, and the display device 126, by bus 127. The display device 126 includes a cathode ray tube (CRT) raster display monitor 128 with a display surface or screen 130. The CRT 128 produces color images, but the invention can also be practiced with a monochrome monitor to display gray-scale images or with printers that prints black and white or color images.

    [0016] An image 132 appears on the display screen 130 by illuminating a particular pattern of individual points called pixels 134. The image 132, for example, can be 2D alphanumeric characters or a 3D scene filled with objects. The display screen 130 includes a two-dimensional array of such pixels 134. The array size of display screens 130 can vary widely. Examples of display screen 130 sizes include 1024 x 768 and 1920 x 1200 pixels. For the purposes of practicing the invention, the display device 126 may be any other pixel-based display such as a liquid-crystal display or a dot matrix printer.

    [0017] The graphics memory 122 includes storage elements for storing an encoded version of the graphical image 132. There is a direct correspondence between the storage elements and each pixel 134 on the display screen 130. The storage elements are allocated to store data representing each pixel 134, hereafter referred to as pixel data. For example, five bytes may be used to encode a color representation for each pixel.

    [0018] The values stored in the storage elements for a particular pixel controls the color of the particular pixel 134 on the screen 130. By "color", it is to be understood that the brightness or intensity of the pixel 134 is also intended. Pixel data can translate directly into colors or into indices to access a color lookup table.

    [0019] During operation, the computer system 100 can issue graphics commands that request an object to be displayed. The graphics accelerator 108 executes the graphics commands, converting the object into primitives and then into fragments. A primitive is a graphical structure, such as a line, a triangle, a circle, or a surface patch of a solid shape, which can be used to build more complex structures. A fragment is a 2D polygon created by clipping a primitive of the image 132, such as a line, triangle, or circle, to the boundaries of the pixel 134. A more detailed description of fragments is provided by Loren Carpenter in "The A-buffer, an Antialiased Hidden Surface Method", Computer Graphics Vol. 18, No. 3, 1984, pp. 103-107. There, techniques merge fragments into a fragment list when the fragments are from the same object or surface of the image. Here, the fragments that are combined to produce the color of a pixel can have a different relationship to each other: that is, the fragments can be from different objects or surfaces of the image 132.

    [0020] The graphics accelerator 108 renders the fragments, and loads the pixel data corresponding to the fragments into the appropriate storage elements of the graphics memory 122. The pixel data can be transferred into the graphics memory 122 from the main memory 106 via busses 112, 114, 116, and 124, or written directly into the graphics memory 122 by the graphics accelerator 108.

    [0021] To display the image 132, the CRT monitor 128 projects a beam onto the screen 130. In synchrony, the pixel data are read out of the graphics memory 122 as the beam scans the screen 130. The CRT monitor 128 renders the pixel data as illuminated points of color on the display screen 130.

    [0022] Figs. 2A-2C illustrate various exemplary subdivisions of a pixel 134. FIG. 2A shows pixel 134 divided into a 4 x 4 array 200 of evenly spaced points called subpixels 206; FIG. 2B shows an 8 x 8 array 202 of subpixels 206; and FIG. 2C shows a 16 x 16 array 204. Dividing a pixel 134 into subpixels 206 provides multiple points at which the image 132 covering that pixel 134 can be sampled. For reference, the center 201 of the pixel 134 is shown as an X.

    [0023] Generally, the more subpixels 206 there are in the array, the greater the resolution of the pixel 134. Thus, the displayed color of the pixel 134 does not rely entirely on one sample point, but upon several subpixel samples 206. Methods for calculating a pixel value from multiple sample points are well known in the art.

    [0024] Known implementations sampled at every subpixel 206 in a pixel 134. While, theoretically, such full scene supersampling presented opportunities for attaining high resolution, the technique unnecessarily consumed memory resources. Each sampled subpixel 206 required memory resources to store and use the sampled data. Thus, fully sampling the 4 x 4 array 200 of subpixels 206 required memory storage for sixteen samples, in addition to the typical memory requirements for each pixel 134. If the sixteen samples each required, for example, eight bytes of storage, then implementing full scene supersampling could require an additional 295 MBytes of memory for a 1920 x 1200 pixel display screen 130. The 16 x 16 array 204, which requires storage for 256 samples, needs sixteen times as much memory.

    [0025] Accordingly, recent modern implementations do not sample at every subpixel 206. Rather, those subpixels 206 which are sampled are sparsely distributed in the subpixel array. In general, the antialiasing results were almost as effective for such sparse supersampling as for the full scene supersampling technique.

    [0026] Figs. 2A-2C each illustrate an exemplary sparse supersampling pattern 210, 220, 230 that can be used to sample the subpixels 206 of the corresponding subpixel array. The illustrated exemplary sample patterns 210, 220, 230 each have N samples distributed uniformly throughout an N x N subpixel array with exactly one subpixel sample in any particular row and in any particular column.

    [0027] The sampling pattern 210 has four subpixels samples S1-S4 (N equals 4). For sampling pattern 220, N equals 8, and the eight subpixel samples 222 are S1-S8. For sampling pattern 230, N equals 16, and the sixteen subpixel samples 232 are S1-S16. The sampling pattern 210, 220, 230 can be repeated for every pixel 134 on the display screen 130. Various other sampling patterns can be used to practice the principles of the invention.

    [0028] Although sparse supersampling uses less memory than full scene supersampling, considerable amounts of additional memory are still required. For example, when N equals 4, a 1920 x 1200 pixel screen 130 still needs eight bytes storage for each of four subpixel samples. This requires an additional 74 Mbytes of pixel data. The requirements are doubled and quadrupled when N equals 8 and 16, respectively.

    [0029] The described arrangements can reduce the storage requirements even more than such sparse supersampling without reducing the number of subpixel samples for an N x N subpixel array. The method and apparatus described herein rely upon the observation that typically only a few fragments of the image 132 are visible within a given pixel.

    [0030] For static and animated images, the antialiasing effects achieved by eight sparse supersamples in the 8 x 8 array 202 appear significantly better than for four samples in the 4 x 4 array 200. But differences between sixteen samples in the 16 x 16 array 204 and eight samples in the 8 x 8 array 202 may be indistinguishable.

    [0031] FIG. 3 shows an exemplary pixel 300 that is part of the image 132 and is subdivided into a 4 x 4 subpixel array 200. The pixel 300 has four sampling positions according to sampling pattern 210 of FIG. 2A. Two fragments 301, 302 are in pixel 300. Each fragment 301, 302 is associated with a fragment value, called a fragment triple 310, 312. For example, in FIG. 3, fragment triple 310 is associated with fragment 302, and fragment triple 312 with fragment 301.

    [0032] Fragment values are called fragment triples because each fragment triple 310, 312 includes three values: a color value 304, a Z-depth value 306, and a stencil value 308. The color value 304 represents the color and opacity of the corresponding fragment. The Z-depth value 306 represents a Z-coordinate value of the corresponding fragment along a Z-axis that is perpendicular to the image 132 to provide 3D depth. The stencil value 308 can be used to group or identify sets of fragments of the image 132, or to logically or arithmetically process or count operations upon fragments, or for other purposes known to those skilled in the art.

    [0033] In the preferred embodiment, the exemplary fragment triples 310, 312 each use five bytes to represent the color 304, three bytes for the Z-depth 306 and one byte for the stencil 308. The five color 304 bytes accommodate four 10-bit color channels: Red, Green, Blue, and Alpha.

    [0034] The color of a fragment is expressed by the combination of the values stored in the Red, Green and Blue (RGB) channels. The value stored in each RGB channel indicates the intensity (or brightness) of that color channel. Low values correspond to low intensity, dark colors; high values correspond to high intensity, light colors. Various methods for producing the color by combining the RGB values are well known in the art.

    [0035] The opacity of the fragment is expressed by the value stored in the Alpha channel. For example, a 1.0 value (i.e., all 10 Alpha-channel bits are 1) indicates that the associated fragment is opaque, a 0.0 value indicates that the fragment is invisible, i.e., completely transparent, and values between 0.0 and 1.0 indicate degrees of transparency.

    [0036] Memory is allocated to each pixel 134 for storing a predetermined number of fragment triples. This memory can be either graphics memory 122, as shown in FIG. 3, or main memory 106. In the example shown in FIG. 3, the pixel memory 314 is allocated for one particular pixel 300. Conceivably, a group of pixels, like a 2 x 2 array of pixels 134, can share a particular pixel memory 314. Any fragment triples stored in the pixel memory 314 would be used by each pixel 134 in the group, rather than by only one particular pixel 300. This can save more memory than storing a predetermined number of fragments for every pixel 134, particularly for portions of the image 132 that change color and Z-depth gradually.

    [0037] Alternatively, memory for storing fragment triples can be dynamically allocated to each pixel 134 rather than fixed to a predetermined number. Here, a variable number of fragment triples can be stored for each pixel 134, the graphics accelerator 108 allocating memory to the pixel 134 as needed, presuming there is still available pixel memory in the system 100. Another method combines aspects of both above-described methods, allocating memory to each pixel 134 for storing a predetermined number of fragment triples, and dynamically allocating additional memory to a particular pixel 134 when needed to store a fragment triple beyond the predetermined number.

    [0038] The exemplary embodiment shown in FIG. 3 stores two fragment triples 310, 312 in the pixel memory 314, These fragment triples 310, 312 are associated with the fragments 301, 302 that cover the pixel 300. Before the fragments 301, 302 appear in the pixel 300, the pixel memory 314 can be initialized to contain a default fragment value. The default value represents a background fragment that can be used when no fragments cover a particular subpixel sample or when all fragments that cover the particular subpixel sample are transparent. Alternatively, this default fragment value can be stored in the graphics memory 122 where the value can be shared by multiple pixels 134. Each pixel 134 could store a special index value that pointed to the default fragment.

    [0039] Other embodiments can store more than two triples in order to improve the quality of the antialiasing. Storing few triples saves memory, but can produce lesser quality antialiasing than storing many triples. For instance, it is observed that for the 8 x 8 subpixel array 202 and the sampling pattern 220 (N=8), storing three triples produces better antialiasing results than storing two triples.

    [0040] Pointers 320-326 link the subpixel samples S1-S4 to the associated fragment triples 310, 312 stored in the pixel memory 314. By link, what is meant is a logical association between the subpixel samples S1-S4 and the fragment triples 310, 312. As examples, pointer 326 links subpixel S1 to fragment triple 312, while pointers 320-324 link subpixels S2-S4 to fragment triple 310.

    [0041] In one embodiment, described further in connection with FIG. 6A, the linking is accomplished by storing an index value for each subpixel sample S1-S4. Accordingly, this embodiment is coined indexed sparse supersampling. In another embodiment, described in connection with FIG. 6C, the linking is accomplished by storing a coverage mask, or bit pattern, for each stored fragment value. This embodiment is hereafter referred to as an improved A-buffer technique. Collectively, the embodiments are referred to as improved supersampling techniques.

    [0042] To determine the color of the exemplary pixel 300, the graphics accelerator 108 uses one of the pixel subdivisions 200, 202, 204 and a sampling pattern 210, 220, 230 to sample the portion of the image 132 covering the pixel 300. For example in FIG. 3, the graphics accelerator 108 uses the 4 x 4 array 200 with the N = 4 sampling pattern 210 to sample pixel 300. As shown, the fragment 301 covers subpixel sample S1, and the fragment 302 covers the three subpixels samples S2-S4. A fragment covers a subpixel when the center of the subpixel sample is within an area enclosed by the fragment or, in certain cases, on an edge of the fragment.

    [0043] Generally, the graphics accelerator 108 determines which fragments 301, 302 are visible at each subpixel sample S1-S4. From the perspective of a viewer of the image 132, which, for the purposes of illustrating the invention is 3D, some fragments can be closer to the viewer and in front of other fragments. The closer fragments are referred to as foreground fragments and the farther fragments, as background fragments. An opaque foreground fragment can occlude a background fragment behind that foreground fragment.

    [0044] Accordingly, each fragment must pass a Z-depth test at one of the subpixel samples S1-S4, that is, the Z-value 306 of the fragment triple associated with that fragment must be smaller, i.e., closer from the perspective of the viewer, than the Z-value 306 for every other opaque fragment. If a fragment passes the Z-depth test, then the graphics accelerator 108 stores the fragment triple associated with the visible fragment in the pixel memory 314.

    [0045] When the fragment 301, for example, is determined to be visible at the subpixel sample S1 of the pixel 300, the pointer 326 is generated linking that subpixel S1 to the appropriate stored fragment triple 312. In the preferred embodiment, the pointer 326 is stored in the pixel memory 314 along with the fragment triples 310, 312 associated with the pixel 300.

    [0046] Rather than storing four fragment triples in the pixel memory 314, one for each of the four subpixel samples S1-S4, which would be done using typical supersampling techniques, the exemplary embodiment in FIG. 3 stores only two fragment triples 310, 312. Accordingly, it is possible to avoid storing redundant data for the pixel 300 because only one instance of the fragment triple 310 is stored for the three subpixel samples S2-S4. By so doing, the storage requirements for fragment triples are considerably reduced.

    [0047] For example, if each fragment triple 310, 312 requires nine bytes of storage, then the improved supersampling techniques use approximately eighteen bytes of memory per pixel fewer than typical supersampling methods. The improved supersampling techniques do use additional memory for storing the pointers 320-326, but this amount is small when compared to the memory saved by storing only two fragment triples 310, 312 for the four subpixel samples S1-S4.

    [0048] The memory savings increase when the pixel 300 is subdivided into one of the larger subpixel arrays 202, 204. With the 8 x 8 subpixel array 202 and the sampling pattern 220 (N equals 8), the improved supersampling techniques use fifty-four fewer bytes per pixel than typical supersampling. This is because only two of eight sampled fragment triples are stored in the pixel memory 314. For the 16 x 16 subpixel array 204 and the sampling pattern 230 (N equals 16), only two of sixteen sampled fragment triples are stored in the pixel memory 314, and so 112 bytes per pixel are saved. For a display screen 130 with 1920 x 1200 pixels, such savings amount to approximately 258 Mbytes.

    [0049] The displayed color of the pixel 300 depends upon which filtering function is used to combine the fragment triples associated with the four subpixel samples S1-S4. One function is simply to average the colors of the fragment triples associated with the four subpixels samples S1-S4.

    [0050] FIG. 4 illustrates an exemplary case in which a third visible fragment 400 appears in the pixel 300 of FIG. 3. As indicated by an arrow 402, the third fragment 400 is linked to a new fragment triple 410. The new fragment triple 410 is different from the stored fragment triples 310, 312.

    [0051] In this example, the third fragment 400 occludes a portion of fragment 302 and is visible at subpixel sample S4. The fragment 301 is still visible at the subpixel S1, as is fragment 302 at the subpixels S2-S3. Accordingly, the subpixel sample S1 remains linked to the fragment triple 312 by the pointer 326. Subpixels S2 and S3 remain linked to the fragment triple 310 by the pointer 324 and pointer 322, respectively. To illustrate that the fragment 302 is no longer visible at the subpixel sample S4, the link 320 from the subpixel sample S4 to the fragment triple 310 is shown as broken.

    [0052] When the third fragment 400 is processed by the graphics accelerator 108, the fragment triples 310, 312 are already stored in the pixel memory 314, and the fragment triple 410 is shown as not yet being stored in the pixel memory 314. Described below are various ways to handle the third fragment triple 410.

    [0053] FIG. 5A shows one technique for handling the third visible fragment 400 in the pixel 300, that is, to store the corresponding fragment triple 410 in the pixel memory 314, along with the other fragment triples 310, 312. This technique presumes either that the memory 314 allocated for the predetermined number of fragment triples can accommodate the additional fragment triple 410 or that the memory 314 needed for storing the new fragment triple 410 can be dynamically allocated.

    [0054] A drawback to storing additional fragment triples in the pixel memory 314 is that the amount of storage needed for the improved supersampling methods approaches or even exceeds that of typical sparse supersampling. Should a fourth fragment be visible in the pixel 300, then, in the example of the 4 x 4 subpixel array, the improved supersampling methods and sparse supersampling would each store four fragment triples. But for the larger subpixels arrays, such as the 8 x 8 array and 16 x 16 array, there is still a strong likelihood that there are fewer visible fragments in the pixel 300 than subpixel samples, and thus a corresponding savings of memory remains. Further, when pixel memory 314 is dynamically allocated beyond the predetermined number of fragment triples, in general, relatively few pixels will need dynamically allocated storage. Although improved supersampling methods might then require more storage for a given pixel 134 than typical sparse supersampling, the improved methods might use less storage for the entire image 132 overall.

    ADAPTIVE PROCESS



    [0055] Alternatively, an adaptive process can reduce the number of subpixel samples at which to sample the pixel 300 when the number of visible fragments in the pixel 300 exceeds the available storage for fragment triples, such as when the pixel memory 314 allocated for the predetermined number of fragment triples is already filled, or no pixel memory is available to dynamically allocate for the new fragment triple 410.

    [0056] For example, if there is storage for only two fragment triples, but there are four different visible fragments in the pixel 300, a different fragment for each of the four subpixel samples S1-S4, then backing off to only two subpixel samples will ensure sufficient storage for the fragments covering those two samples.

    [0057] The backing off on the number of samples can be gradual. For example, if eight subpixel samples S1-S8 are used, then the process could start with eight samples, reduce to six, then four, and eventually to two, as the number of different visible fragments appear in the pixel beyond the available storage.

    [0058] The process can operate independently upon each pixel. For example, the process may use all four subpixel samples S1-S4 for one pixel, and back off to only two subpixel samples S1-S2 for another pixel.

    [0059] FIG. 5B illustrates still another approach for handling the third visible fragment 400 in the pixel 300, that is, to blend the corresponding fragment triple 410 with the other fragment triples 310, 312 stored in the pixel memory 314. The circled plus signs ("+") in FIG. 5B illustrate the blending process.

    [0060] An exemplary blending process weights the color contribution of each fragment triple 310, 312 and the new fragment triple 410 to the blended fragment triple 530, 532.

    [0061] For example, the color contribution of each stored fragment triple 310, 312 is determined by multiplying the color value 304 of that fragment triple by the number of samples still covered by that fragment triple; then by dividing the result by the number of samples S1-S4 previously covered by that fragment triple before the new fragment 400 appeared. The color contribution of the new fragment triple 410 is obtained by multiplying the color value 304 of the new fragment triple 410 by the number of samples covered by the stored fragment triple, but now covered by the new fragment 400; then by dividing the result by the number of samples S1-S4 previously covered by the stored fragment triple 310, 312 before the new fragment 400 appeared.

    [0062] Here, the fragment triple 310 would contribute 2/3 of its color value 304 to the blended fragment triple 530, and the new fragment triple 410 would contribute 1/3 of its color value 304. For the blended fragment triple 532, the fragment triple 312 contribute all of its color value (1/1), and the new fragment triple 410, which covers no sample points associated with the fragment triple 312, would contribute none of its color value (0/1). Then, these weighted color values 304 are added. Other color blending techniques that are known in the art can be used.

    [0063] In FIG. 5B, the fragment triple 410 is blended with fragment triple 310 to produce a blended fragment triple 530, and the pointers 322, 324 linking subpixels S2-S3 to the fragment triple 310 now point to the blended fragment triple 530. Also, fragment triple 410 is blended with fragment triple 312 to produce a blended fragment triple 532, and the pointer 326 linking subpixel S1 to fragment triple 312 now points to the blended fragment triple 532. Subpixel S4 is linked to the blended fragment triple 530. Alternatively, the subpixel S4 can be linked to the other fragment triple 532.

    [0064] The blended fragment triples 530, 532 are stored in the pixel memory 314. The blended fragment triple 530 occupies the memory addresses previously occupied by the fragment triple 310. The addresses of pixel memory 314 that previously stored the fragment triple 312, now stores the blended fragment triple 532.

    [0065] According to the present invention, FIG. 5C shows an exemplary approach for accommodating the third visible fragment 400 in the pixel 300. This approach replaces one of the fragment triples 310, 312 previously stored in the pixel memory 314 with the third fragment triple 410. For example, the fragment triple 310 is replaced by the new fragment triple 410. To execute this replacement the graphics accelerator 108 would write the data of the new fragment triple 410 over the data of the previously stored fragment triple 310, in effect, discarding the data of fragment triple 310. Alternatively, memory can be deallocated for the fragment triple 310, and allocated for fragment triple 410.

    [0066] In FIG. 5C, the data of the new fragment triple 410 occupies the particular addresses of pixel memory 314 that previously stored the fragment triple 310. The pointers 322, 324 point to these particular addresses of pixel memory. Where previously the pointers 322, 324 linked the subpixels S2-S3 to the fragment triple 310, these pointers 322, 324 now link the subpixels S2-S3 to the new fragment triple 410.

    [0067] Techniques for selecting which fragment triples 310, 312, or 410 is discarded are described below.

    Selection Schemes:


    Z-priority



    [0068] In accordance with the present invention one technique for selecting the fragment triple 310, 312 to replace, called the Z-priority method, is to determine which fragment triple 310, 312 stored in the pixel memory 314 has the largest Z-depth value 306. From the perspective of a viewer, the greater the Z-depth value 306, the farther is the corresponding fragment from the viewer. For example, if the Z-depth value 306 of the fragment triple 310 is 4 and the Z-depth value 306 of the fragment triple 312 is 2, then fragment triple 310 is replaced by the new fragment triple 410. The pointers 322-324 that previously linked subpixel samples S2-S3 to the fragment triple 310 now link the subpixel samples to the fragment triple 410. In the event that more than one stored fragment triple 310, 312 has the largest Z-depth value 306, the fragment triple 310, 312 with the fewer pointers 320-326 can be replaced.

    Basic Color Difference



    [0069] Another technique according to the present invention, for selecting which fragment triple 310, 312 to replace, called the basic color difference method, involves determining which fragment triple 310, 312 stored in the pixel memory 314 has a color value 304 that is most like the color value 304 of the new fragment triple 410 i.e., produces the smallest color difference. The color value 304 of the new fragment triple 410 is compared with the color value 304 of each stored fragment triple 310, 312. Although described below using the RGB color model, this method can be applied to other color models, such as the Hue, Lightness and Saturation (HLS) and the Hue, Saturation and Value (HSV) color models.

    [0070] More specifically, the basic color difference method compares the 10-bit value for the RED channel of the new fragment triple 410 with the 10-bit value for the RED channel of each stored fragment triple 310, 312. Comparisons are also made for the GREEN and BLUE channels. Values in the Alpha channels are not compared.

    [0071] The absolute values of the differences between the values of the channels of the new fragment triple 410 and the values of the channels of the stored fragment triples 310, 312 are summed. Then, the sum is multiplied by the number of subpixel samples that point to the stored fragment triple 310, 312. This produces a total color difference that would result if that stored fragment triple 310, 312 were replaced by the new fragment triple 410. The fragment triple 310, 312 that produces the smaller color difference is replaced by the new fragment triple 410.

    [0072] Using an overly simplified example with reference to FIG. 5C, the fragment triple 310 has a RED value of 0, GREEN value of 2, and a BLUE value of 4; the fragment triple 312 has a RED value of 2, a GREEN value of 4, and a BLUE value of 0; and the new fragment triple 410 has a RED value of 0, a GREEN value of 3, and a BLUE value of 3. Also, as shown in FIG. 5C, there are two subpixels pointing to the fragment triple 310 -- when the new fragment 400 is determined to be visible at sample point S4, the pointer 320 (see FIG. 3) from S4 to fragment triple 310 is invalidated -- and one subpixel pointing to the fragment triple 312.

    [0073] The total color difference between fragment triple 310 and new fragment triple 410 is 4, e.g., ( |0-0| + |2-3| + |4-3| ) * 2, and the total color difference between fragment triple 312 and new fragment triple 410 is 6, e.g., ( |2-0| + |4-3| + |0-3|) * 1. Thus, the fragment triple 310 is therefore replaced.

    Color Difference and Transparent Fragments



    [0074] When transparent fragments are involved in color difference, the impact of each possible replacement upon the final pixel color is compared to the ideal final pixel color that would result if the new fragment triple 410 could be stored in the pixel memory 314. That stored fragment triple 310, 312, which produces a final pixel color with the smallest color difference when compared to the ideal final pixel color, is selected for replacement. In a stack of transparent fragments, this selection tends to replace the more distant transparent fragments that are hard to see.

    N-Squared Color Difference



    [0075] In addition to comparing the new fragment triple 410 with each stored fragment triple 310, 312, as is done in the color difference method, the N-squared color difference method compares each stored fragment triple 310, 312 against each other. This method either replaces one of the stored fragment triples 310 with the new fragment triple 410, or replaces one of the stored fragment triples 310, 312 with another of the stored fragment triples 310, 312, i.e., by changing the pointers from the one stored fragment triple to that other stored fragment triple. The new fragment triple 410 is written at the addresses of pixel memory where the replaced fragment triple was previously stored. The N-squared color difference does not appear to perform significantly better than the color difference process.

    Visual Sensitivity Color Difference Methods



    [0076] Other techniques that may yield satisfactory results rely on the characteristics of the human visual system. For example, the ability of a human eye to distinguish changes in brightness may be less than the ability to perceive changes in hue. Accordingly, an exemplary visual sensitivity replacement scheme can capitalize on this characteristic by replacing the fragment triple 310, 312 that is brighter or dimmer than the new fragment triple 410 instead of the fragment triple 310, 312 that has a different hue. Such a method would prefer to replace the stored fragment triple 310, 312 with a color value 304 that differs equally, or almost equally, in each of the RGB color channels from the color value 304 of the new fragment triple 410.

    [0077] Another exemplary technique can rely on the logarithmic behavior of luminance perception in humans. In general, a human eye can detect, approximately, a 2% change in the brightness of a color. Consequently, large numerical differences between high color values 304 (i.e., colors of high intensity) can be less noticeable than small numerical differences between low color values (i.e., colors of low intensity). So luminance differences are computed as ratios of color values 304, rather than as numerical differences between color values. The fragment triple 310, 312 that produces the lower luminance differences, i.e., the smaller ratio of colors, when compared to the new fragment triple 410 is replaced.

    Z-priority Color Difference



    [0078] For background information, this technique combines the Z-priority method with any of the above mentioned color difference methods to produce a replacement scheme that can perform better than any of the methods alone. The above-described color difference methods operate to replace a stored fragment triple with the new fragment triple. The Z-priority Color Difference method considers additionally whether one of the stored fragment triples 310, 312 should instead replace the new fragment triple 410.

    [0079] Here, the method computes color differences between the new fragment triple 410 and each stored fragment triple 310, 312 that may replace the new fragment triple 410. These color differences are computed for each of those stored fragment triples that are in front of the new fragment, i.e., lower Z-depth value, but not for those stored fragment triples that are behind the new fragment.

    [0080] Accordingly, a stored fragment triple 310, 312 may be selected to replace the new fragment triple 410 when that fragment triple 310, 312 produces the smallest color difference and that fragment triple 310, 312 is associated with a fragment that is in front of the new fragment. In this case, replacement means that each subpixel sample covered by the new fragment are linked to the selected stored fragment triple 310, 312 and the new fragment triple 410 is discarded.

    [0081] In general, if more than one replacement is possible, then the replacement affecting the fewer number of subpixel samples should occur. For example, if either the new fragment triple or a stored foreground fragment triple can be replaced, then the stored fragment triple replaces the new fragment triple if the stored foreground triple covers more subpixel samples than the new fragment triple.

    Area Coverage



    [0082] Another effective process according to the present invention selects the fragment triple that is visible at the fewest number of subpixel samples, and replaces that fragment triple with the new fragment triple 410. Afterwards, each pointer to the replaced fragment triple points to the new fragment triple.

    Semaphore Process



    [0083] The Z-priority Color Difference method allows existing foreground fragments to replace new background fragments, but does not allow existing background fragments to replace new foreground fragments. This is done to avoid losing large foreground surfaces that are made up of small foreground fragments - the large surface could be lost if the process allowed each of the small foreground fragments to be replaced by a larger background fragment. The Semaphore Process also avoids this problem.

    [0084] The Semaphore Process associates a semaphore bit with each pixel. Initially, each semaphore bit is set to 0. If it is determined that replacing a new foreground fragment with an existing background fragment produces a smallest color difference, and the associated semaphore bit is 0, then the semaphore process allows the existing background fragment to replace the new foreground fragment. The associated semaphore bit is set to 1. This ensures that two such replacements cannot occur consecutively. If the replaced new foreground fragment was part of a larger foreground surface, then the next new foreground fragment for that larger surface will replace the existing background fragment because the semaphore bit is a 1. However, it was observed that this basic semaphore process can produce some unsatisfactory artifacts.

    Fragment Centroid Distance Methods



    [0085] For background information such methods base color replacement on the distance between the new fragment and each possible fragment that the new fragment can replace. Accordingly, a new fragment can be extended to cover adjacent subpixel samples rather than replace stored fragments that cover distant subpixel samples. Further, it is likely that subpixel samples near the covered subpixel samples will later become covered.

    [0086] Figs. 6A and 6B illustrate a logical representation of the pixel memory 314 used by the indexed sparse supersampling technique. The pixel memory 314 includes indices 600 and fragment triples 310, 312. The pixel memory 314 provides storage for a predetermined number of fragment triples. Although shown to be contiguous in the graphics memory 122, the indices 600 can be separate from each other or from the fragment triples 310, 312.

    [0087] The indices 600 indicate where in the pixel memory 314 the fragment triple associated with each subpixel sample can be found. Each index 602-608 of the indices 600 is associated with one of the subpixel samples S1-S4. For example, as shown in FIG. 6B, index 602 is associated with subpixel sample S1, index 604 is associated with subpixel sample S2, and so forth. For the sampling pattern 220, there are eight indices for the eight subpixel samples S1-S8, and for sampling pattern 230, where N = 16, there are sixteen.

    [0088] The value stored in each index 602-608 points to one of the fragment triples 310, 312. Accordingly, each index 602-608 links the associated subpixel sample S1-S4 to one of the fragment triples 310, 312.

    [0089] When two fragment triples 310, 312 are stored in the pixel memory 314, then each index 602-608 can be represented by one data bit. The bit value stored in each index 602-608 directs the graphics accelerator 108 to the fragment triple 310, 312 associated with each subpixel sample S1-S4. In the example shown in FIG. 6B, a "1" is stored in index 602, and a "0" in each of the other indices 604-608. A zero bit value points to the first fragment triple 310 in the pixel memory 314, and a one bit value points to the second fragment triple 312.

    [0090] If, alternatively, there are three fragment triples stored in the pixel memory 314, then two bits per index 602-608 are needed. Two bits per index 602-608 can accommodate as many as four stored fragment triples, three bits, as many as eight triples, and four bits, as many as sixteen.

    [0091] With one bit per index 602-608, the sampling pattern 210 (N=4) needs four bits of pixel memory 314 to implement the indices 600. The storage requirements for indices 600 of larger sampling patterns 220, 230 is also small. For example, the sampling pattern 230 (N = 16) would need 16 bits per pixel 134 to implement one bit per index. Implementing four bits per index uses 64 bits per pixel, which still provides a sizable storage savings over typical sparse supersampling techniques that store sixteen fragment triples for the sixteen subpixels samples S1-S16.

    [0092] To compute a color for the pixel 300, the color value 304 of each stored fragment triple 310, 312 is multiplied by the percentage of subpixel samples linked by an index to that fragment triple. Then these weighted color values are added together to produce the pixel color.

    [0093] Figs. 6C and 6D illustrate an exemplary logical representation of the pixel memory 314 used by the improved A-buffer technique. The pixel memory 314 includes coverage masks (or bit patterns) 620, 622 and stored fragment triples 310, 312. The pixel memory 314 provides storage for a predetermined number of fragment triples. Although shown to be contiguous in the graphics memory 122, the coverage masks 620, 622 can be separate from each other or from the fragment triples 310, 312. An alternative embodiment, including a third coverage mask 624 and the third stored fragment triple 410, is illustrated in Figs. 6C and 6D with dashed lines.

    [0094] The coverage masks 620, 622 link the subpixel samples S1-S4 to the fragment triples 310, 312 stored in the pixel memory 314. There is one coverage mask 620, 622 associated with each stored fragment triple 310, 312. Referring to FIG. 6D, the coverage mask 620 is associated with fragment triple 310, for example, as indicated by arrow 621, and the coverage mask 622 is associated with fragment triple 312 as indicated by arrow 623. In the illustrated alternative embodiment, the coverage mask 624 is associated with the third fragment triple 410 by arrow 625.

    [0095] Each coverage mask 620, 622, 624 includes one bit for each subpixel sample S1-S4. In FIG. 6D, the associations between the bits in the coverage masks and the subpixel samples S1-S4 are represented by arrows 634-640. For example, subpixel sample S1 is associated with bits 626, subpixel sample S2 with bits 628, sample S3 with bits 630 and sample S4 with bits 632.

    [0096] With one bit per sample S1-S4, the sampling pattern 210 (N=4) needs four bits 626, 628, 630, 632 of pixel memory 314 to implement each coverage mask 620, 622, 624. In the shown alternative embodiment, in which three fragment triples are stored, the combined requirement for the three associated coverage masks 620, 622, 624 is twelve bits.

    [0097] For the sampling pattern 220, each coverage mask 620, 622, 624 requires eight bits, one for each of the eight subpixel samples S1-S8. As for the sampling pattern 230, which has sixteen subpixel samples S1-S16, there would be sixteen such bits in each coverage mask. Yet even with 16 bits per coverage mask, the storage savings are sizable over known sparse supersampling techniques that store sixteen fragment triples for the sixteen subpixels samples S1-S16.

    [0098] The value stored in each bit of a given coverage mask indicates whether the subpixel sample associated with that bit is linked to the fragment triple associated with the given coverage mask. When a sample is linked to a fragment triple, this means that the fragment associated with that fragment triple is visible at that sample.

    [0099] In the example shown in FIG. 6D, a bit pattern "0 1 1 1" is stored in the coverage mask 620. The "1" value in bits 628, 630 and 632 of the coverage mask 620 link the subpixel samples S2-S4 to the stored fragment triple 310, indicating that the fragment 302 is visible at those sample points S2-S4. Conversely, the "0" value in bit 626 of the coverage mask 620 indicates that the fragment 302 is not visible at the subpixel sample S1. Clearly, the role of each bit value can be reversed so that the "1" bit value indicates that the fragment is not visible at a given sample point, and that the "0" bit value indicates that the fragment is visible.

    [0100] In the alternative embodiment shown in FIG. 6D, a third coverage mask 624 links the subpixel sample S4 to the third fragment triple 410 stored in the pixel memory 314. The association between the third coverage mask 624 and the third fragment triple 410 is noted by arrow 625.

    [0101] The exemplary bit pattern stored in coverage mask 624 is "0 0 0 1", indicating that the third fragment 400 is visible at sample S4 only. Recall from FIG. 4 that new fragment 400 is linked to the fragment triple 410. For the purposes of the following illustration example, the third fragment 400 is treated as transparent. (Note that if the third fragment 400 was opaque, as described in connection with FIG. 4, then the bit pattern in the coverage mask 620 would change from "0 1 1 1" to "0 1 1 0" to indicate that the fragment 400 occluded the fragment 302 at the subpixel sample S4.)

    [0102] Because the third fragment 400 is transparent, two coverage masks 620, 624 link the subpixel sample S4 to two stored fragment triples 310, 410. The "1" bit values in bit positions 632 of the coverage mask 620 and 624 indicate that both fragments 302 and 400 are visible at the subpixel sample S4. Generally, any subpixel sample S1-S4 can be linked to multiple stored fragment triples, where one fragment is opaque and each other fragment is transparent. In fact, all of stored fragment values can be transparent when a default background fragment value is used.

    [0103] Accordingly, the improved A-buffer technique described herein can support order-independent transparency, i.e., the system 100 does not need to partition primitives of the image 132 so as to present transparent fragments to the graphics accelerator 108 after presenting all opaque fragments, nor does the system 100 need to sort the transparent primitives so as to present transparent fragments in Z-depth order.

    [0104] To compute the color of the pixel 300, a color is first computed for each subpixel sample S1-S4, and then the computed colors are combined. Where a subpixel sample is linked to one opaque fragment only, such as sample S1, the color for that subpixel sample S1 is the color of the associated stored fragment value 312.

    [0105] Where a subpixel sample, such as sample S4, is linked to two stored fragment triples 310, 410, one transparent 400 and the other opaque 302, the color for the subpixel sample S4 is the sum of the color contributions of those two fragment triples 310, 410. The color contribution of the transparent fragment 400 is the opacity of that fragment 400, as indicated by the value stored in the Alpha channel, multiplied by the color of that fragment 400. The contribution C of the opaque fragment 302 is the color of that fragment f(c) 302 multiplied by 1 minus the opacity of the transparent fragment f(o). 400, e.g., C = f(c) x (1 - f(o)).

    [0106] The exemplary embodiments shown in Figs. 6A-6D can achieve satisfactory antialiasing results by storing two fragment triples for four subpixel samples. Eight subpixel samples with two stored fragment triples usually looks better than four subpixel samples with two fragment triples, but can look worse when one of the additional four subpixel samples requires replacing one of the stored triples with a third fragment triple, and that third fragment triple appears in the pixel memory last. Thus, allocating storage for a third fragment triple can make a marked improvement for eight subpixel samples over storing two fragment triples.

    [0107] Clearly, the antialiasing results can be made to approach the results of typical sparse supersampling as more fragment triples are stored, but each additional triple erodes the memory savings provided by the improved supersampling techniques.

    [0108] Fig. 7 illustrates a flow diagram 700 describing the process of generating an image 132 using the present invention. In the early stages of processing the image 132, the image 132 is partitioned into fragments. When processing each new fragment, the graphics accelerator 108 determines whether the new fragment is visible at any of the subpixel samples S1-S4 covered by the new fragment. The graphics accelerator 108 compares the Z-depth value of the new fragment with the Z-depth value of the stored fragment associated with each covered subpixel sample S1-S4 (step 702).

    [0109] If the new fragment has a smaller Z-depth value than the Z-depth value of a stored fragment for any covered subpixel sample S1-S4, then the new fragment is in front of that stored fragment and, consequently, is visible. An exception, however, is when the new fragment has an Alpha value of 0.0. In this instance the new fragment is completely transparent. The graphics accelerator 108 does not need to store the fragment value of the new fragment because the new fragment is, in effect, invisible.

    [0110] If instead the new fragment has a larger Z-depth value than the Z-depths values for all of the covered subpixel samples S1-S4, then the new fragment is behind one or more stored fragments and may be invisible. If the new fragment is behind opaque foreground fragments, then the new fragment is invisible, and the processing of the new fragment for the pixel 134 is complete. If, however, the new fragment is immediately behind a transparent foreground fragment, then the new fragment can still be seen.

    [0111] When the new fragment is visible at one of the covered subpixel samples, then the graphics accelerator 108 invalidates the link between each covered sample and a stored fragment, if the new fragment obscures the stored fragment for that covered subpixel sample. For the indexed sparse supersampling technique, the graphics accelerator 108 maintains control bits for keeping track of the validity of each index and invalidates each index linking a covered subpixel sample to an obscured fragment. The control bits may direct the graphics accelerator 108 to use the default background color if no fragments cover a subpixel sample. For the improved A-buffer technique, the bits in the coverage mask associated with each covered subpixel sample are unchanged when the new fragment is transparent and are set to "0" when the new fragment is opaque.

    [0112] Then, in step 708, the number of links pointing to each fragment triple is counted. For the indexed sparse supersampling technique, step 708 counts the number of indices linked to that stored fragment triple. For the improved A-buffer technique, step 708 counts the number of bits in each coverage mask that have a "1" bit value.

    [0113] A fragment triple is free and available when there are no links pointing to the fragment triple. In this case a new fragment triple associated with the new fragment can replace that free fragment triple.

    [0114] If step 710 determines that a fragment triple is free, then the new color associated with the new fragment is stored in the freed fragment triple (step 712). In step 714, the links of the subpixel samples covered by the new fragment are set to the new fragment triple.

    [0115] If step 710 determines that no fragment triples are free, then a replacement scheme, such as the color difference technique described above, selects one of the stored fragment triples for replacement (step 716). Replacement means changing the color, Z-depth, and stencil values stored in the selected fragment triple to the color, Z-depth, and stencil values of the new fragment triple.

    [0116] In step 718, the new color is written to the selected fragment triple. The links originally pointing to the selected fragment triple are still pointing to that fragment triple. Because the selected fragment triple now contains a value representing the new color, the subpixel samples associated with such links are thereby associated with the new color. Those links corresponding to the subpixel samples covered by the new fragment are set to point to the new color (step 714).

    [0117] In step 720, the pixel color is computed from the subpixel samples as described above in connection with Figs. 6A-6D. The links associated with the subpixel samples S1-S4 point to the stored colors that are used to produce the color of the pixel 134. Accordingly, the pixel color can change as each new fragment appears in the pixel 134.

    [0118] When, in step 722, the graphics accelerator 108 is through processing all fragments, then the pixels are ready for display (step 724).

    [0119] In FIG. 7, an alternative process for generating an image computes the color of the pixel in step 720', illustrated as dashed lines, before determining whether there are any fragment triples available in which to store the new fragment value associated with the new fragment. The existing colors stored in the fragment triples and the new color value combine to produce the pixel color. The effect is to compute the color as though an additional triple was available.

    [0120] After computing the pixel color in step 720', the alternative process may then replace an existing stored color with the new fragment triple as described above in connection with the steps 716-718. If each fragment processed after this new fragment does not lead to a new computation of the pixel color, then no color data is lost despite the replacement.

    [0121] It is to be understood that the above-described embodiments are simply illustrative of the principles of the invention.

    [0122] The scope of the invention is limited by the appended claims only.


    Claims

    1. A computer graphics method of generating a color of a pixel (300) of an image (132) of a rendered scene, the pixel being associated with a plurality of fragments (301, 302), each determined by clipping a graphical primitive to the boundaries of the pixel (300), the method comprising the steps of:

    storing up to a predetermined number of fragment values (310, 312) for the pixel (300), each stored fragment value (310, 312) being associated with a fragment (301, 302) that is visible in the pixel (300);

    determining a new fragment value (410) of a new fragment (400) that is visible in the pixel (300) with at least one other fragment with a stored fragment value still being visible in the pixel after determining the new fragment (400);

    selecting one of the fragments still visible in the pixel (300); and

    replacing the selected fragment's stored fragment value with the new fragment value (410), and wherein the stored fragment values are subsequently used to generate the color of the pixel (300).


     
    2. The method of claim 1, wherein the step of replacing includes writing the new fragment value (410) over the selected fragment's stored fragment value.
     
    3. The method of claim 1, wherein the new fragment (400) is part of a different surface of the image (132) than each of the fragments (301, 302) associated with a stored fragment value.
     
    4. The method of claim 1, wherein each stored fragment value (310, 312) includes a Z-depth value (306), and wherein the step of selecting selects the stored fragment value (310, 312) with a Z-depth value (306) that is larger than the Z-depth value (306) of each other stored fragment value.
     
    5. The method of claim 1, wherein each fragment value (310, 312) includes a color value (304), and further comprising the step of: comparing the color value of the new fragment value (410) with the color value (304) of each stored fragment value (310, 312), and wherein the step of selecting selects the stored fragment value (310, 312) with the color value (304) that produces a numerically smaller color difference than the color value of each other stored fragment value when compared to the color value of the new fragment (410).
     
    6. The method of claim 5, wherein the color value (304) of each fragment value (310, 312, 410) includes a plurality of color channel values, and wherein the step of comparing includes:

    determining a color difference between the color value of the new fragment value (410) and the color value (304) of a particular one of the stored fragment values (310,312) by:

    computing, for each color channel value, an absolute value difference between each color channel value of the new color value and a corresponding color channel value of the color value of particular stored fragment value;

    summing the absolute value differences computed for each color channel value, further comprising the step of:

    multiplying the sum of the absolute value differences by an area of the pixel (300) covered by the fragment associated with the particular stored fragment value.


     
    7. The method of claim 5, wherein the step of comparing includes comparing the color value (304) of each stored fragment value (310, 312) with the color value of each other stored fragment value, and wherein the step of selecting selects the stored fragment value (310, 312) with the color value (304) that produces a numerically smallest color difference when compared to the color value of the new fragment value (410) and to the color value of each other stored fragment value.
     
    8. The method of claim 1, wherein the step of selecting selects a stored fragment value (310, 312) that, if replaced by the new fragment value (410), would produce a less visually detectable color difference than would be produced for each other stored fragment value if that other stored fragment value were replaced by the new fragment value (410).
     
    9. The method of claim 1, further comprising the steps of:

    determining an area of the pixel (300) covered by each fragment (301, 302) for which that fragment is visible; and

    wherein the step of selecting selects the fragment value of the fragment with a smaller area of visible coverage than each other fragment.


     
    10. The method of claim 1, further comprising the steps of:

    associating a semaphore bit with the pixel (300);

    setting the semaphore bit to a predetermined value; and

    wherein the step of replacing replaces the stored fragment value (310, 312) with the new fragment value (410) when the semaphore bit is set to the predetermined value; and

    setting the semaphore bit to a second predetermined value when the stored fragment value (310, 312) is selected for replacing.


     
    11. A computer graphics apparatus (100) adapted to generate a color of a pixel (300) of an image (132) of a rendered scene, the pixel (300) being associated with a plurality of fragments (301, 302) determined by clipping a graphical primitive to the boundaries of the pixel (300), the apparatus comprising:

    means (106) for storing up to a predetermined number of fragment values for the pixel (300), each stored fragment value (310, 312) being associated with a fragment (301, 302) that is visible in the pixel (300);

    means (102) for determining a new fragment value (410) of a new fragment (400) that is visible in the pixel (300) with at least one other fragment with a stored fragment value still being visible in the pixel after determining the new fragment (400);

    means (102) for selecting one of the fragments still visible in the pixel (300); and

    means (102) for replacing the selected fragment's stored fragment value (310, 312) with the new fragment value (410), and wherein the stored fragment values are subsequently used to generate the color of the pixel (300).


     


    Ansprüche

    1. Computergrafisches Verfahren zum Erzeugen einer Farbe eines Bildpunktes (300) eines Bildes (132) einer gerenderten Szene, wobei der Bildpunkt mehreren Fragmenten (301, 302) zugewiesen ist, von denen jedes durch Anhängen einer grafischen Grundform an die Grenzen des Bildpunktes (300) bestimmt wird, wobei das Verfahren folgende Schritte umfasst:

    Speichern bis zu einer vorgegebenen Anzahl von Fragmentwerten (310, 312) für den Bildpunkt (300), wobei jeder gespeicherte Fragmentwert (310, 312) einem Fragment (302, 301) zugewiesen ist, das in dem Bildpunkt (300) sichtbar ist;

    Bestimmen eines neuen Fragmentwertes (410) eines neuen Fragments (400), das in dem Bildpunkt (300) sichtbar ist, wobei wenigstens ein weiteres Fragment mit einem gespeicherten Fragmentwert immer noch in dem Bildpunkt sichtbar ist, nachdem das neue Fragment (400) bestimmt wurde;

    Auswählen eines der Fragmente, die immer noch in dem Bildpunkt (300) sichtbar sind; und

    Ersetzen des gespeicherten Fragmentwertes des ausgewählten Fragments durch den neuen Fragmentwert (410), und wobei die gespeicherten Fragmentwerte anschließend zum Erzeugen der Farbe des Bildpunktes (300) verwendet werden.


     
    2. Verfahren nach Anspruch 1, wobei der Schritt des Ersetzens das Überschreiben des gespeicherten Fragmentwertes des ausgewählten Fragments mit dem neuen Fragmentwert (410) beinhaltet.
     
    3. Verfahren nach Anspruch 1, wobei das neue Fragment (400) Teil einer anderen Fläche des Bildes (132) ist als jedes der Fragmente (301, 302), die einem gespeicherten Fragmentwert zugewiesen sind.
     
    4. Verfahren nach Anspruch 1, wobei jeder gespeicherte Fragmentwert (310, 312) einen Z-Tiefenwert (306) enthält und wobei der Schritt des Auswählens den gespeicherten Fragmentwert (310, 312) mit einem Z-Tiefenwert (306) auswählt, der größer ist als der Z-Tiefenwert (306) jedes anderen gespeicherten Fragmentwertes.
     
    5. Verfahren nach Anspruch 1, wobei jeder Fragmentwert (310, 312) einen Farbwert (304) enthält, und wobei das Verfahren des Weiteren den Schritt des Vergleichens des Farbwertes des neuen Fragmentwertes (410) mit dem Farbwert (304) jedes gespeicherten Fragmentwertes (310, 312) umfasst, und wobei der Schritt des Auswählens den gespeicherten Fragmentwert (310, 312) mit dem Farbwert (304) auswählt, der eine numerisch kleinere Farbdifferenz erbringt als der Farbwert jedes anderen gespeicherten Fragmentwertes, wenn er mit dem Farbwert des neuen Fragmentwertes (410) verglichen wird.
     
    6. Verfahren nach Anspruch 5, wobei der Farbwert (304) jedes Fragmentwertes (310, 312, 410) mehrere Farbkanalwerte enthält und wobei der Schritt des Vergleichens Folgendes beinhaltet:

    Bestimmen einer Farbdifferenz zwischen dem Farbwert des neuen Fragmentwertes (410) und dem Farbwert (304) eines bestimmten der gespeicherten Fragmentwerte (310, 312) durch:

    Berechnen, für jeden Farbkanalwert, einer absoluten Wertdifferenz zwischen jedem Farbkanalwert des neuen Farbwertes und einem entsprechenden Farbkanalwert des Farbwertes eines bestimmten gespeicherten Fragmentwertes;

    Summieren der absoluten Wertdifferenzen, die für jeden Farbkanalwert berechnet wurden, des Weiteren umfassend den folgenden Schritt:

    Multiplizieren der Summe der absoluten Wertdifferenzen mit einer Fläche des Bildpunktes (300), die von dem Fragment bedeckt wird, das dem bestimmten gespeicherten Fragmentwert zugewiesen ist.


     
    7. Verfahren nach Anspruch 5, wobei der Schritt des Vergleichens das Vergleichen des Farbwertes (304) jedes gespeicherten Fragmentwertes (310, 312) mit dem Farbwert jedes anderen gespeicherten Fragmentwertes enthält und wobei der Schritt des Auswählens den gespeicherten Fragmentwert (310, 312) mit dem Farbwert (304) auswählt, der eine numerisch kleinste Farbdifferenz erbringt, wenn er mit dem Farbwert des neuen Fragmentwertes (410) und mit dem Farbwert jedes anderen gespeicherten Fragmentwertes verglichen wird.
     
    8. Verfahren nach Anspruch 1, wobei der Schritt des Auswählens einen gespeicherten Fragmentwert (310, 312) auswählt, der, wenn er durch den neuen Fragmentwert (410) ersetzt werden würde, eine visuell weniger erkennbare Farbdifferenz entstehen lassen würde, als sie für jeden anderen gespeicherten Fragmentwert entstände, wenn dieser andere gespeicherte Fragmentwert durch den neuen Fragmentwert (410) ersetzt werden würde.
     
    9. Verfahren nach Anspruch 1, das des Weiteren folgende Schritte umfasst:

    Bestimmen einer Fläche des Bildpunktes (300), die von jedem Fragment (301, 302) bedeckt wird, für die das Fragment sichtbar ist; und

    wobei der Schritt des Auswählens den Fragmentwert des Fragments mit einer kleineren Fläche sichtbarer Überdeckung als jedes andere Fragment auswählt.


     
    10. Verfahren nach Anspruch 1, das des Weiteren folgende Schritte umfasst:

    Zuordnen eines Zeichenträger-Bits zu dem Bildpunkt (300);

    Setzen des Zeichenträger-Bits auf einen vorgegebenen Wert; und

    wobei der Schritt des Ersetzens den gespeicherten Fragmentwert (310, 312) durch den neuen Fragmentwert (410) ersetzt, wenn das Zeichenträger-Bit auf den vorgegebenen Wert gesetzt wird; und

    Setzen des Zeichenträger-Bits auf einen zweiten vorgegebenen Wert, wenn der gespeicherte Fragmentwert (310, 312) zum Ersetzen ausgewählt wird.


     
    11. Computergrafikvorrichtung (100), die dafür geeignet ist, eine Farbe eines Bildpunktes (300) eines Bildes (132) einer gerenderten Szene zu erzeugen, wobei der Bildpunkt (300) mehreren Fragmenten (301, 302) zugewiesen ist, die durch Anhängen einer grafischen Grundform an die Grenzen des Bildpunktes (300) bestimmt werden, wobei die Vorrichtung Folgendes umfasst:

    Mittel (106) zum Speichern bis zu einer vorgegebenen Anzahl von Fragmentwerten für den Bildpunkt (300), wobei jeder gespeicherte Fragmentwert (310, 312) einem Fragment (302, 301) zugewiesen ist, das in dem Bildpunkt (300) sichtbar ist;

    Mittel (102) zum Bestimmen eines neuen Fragmentwertes (410) eines neuen Fragments (400), das in dem Bildpunkt (300) sichtbar ist, wobei wenigstens ein weiteres Fragment mit einem gespeicherten Fragmentwert immer noch in dem Bildpunkt sichtbar ist, nachdem das neue Fragment (400) bestimmt wurde;

    Mittel (102) zum Auswählen eines der Fragmente, die immer noch in dem Bildpunkt (300) sichtbar sind; und

    Mittel (102) zum Ersetzen des gespeicherten Fragmentwertes (310, 312) des ausgewählten Fragments durch den neuen Fragmentwert (410), und wobei die gespeicherten Fragmentwerte anschließend zum Erzeugen der Farbe des Bildpunktes (300) verwendet werden.


     


    Revendications

    1. Méthode d'infographie de production d'une couleur d'un pixel (300) d'une image (132) d'une scène restituée, le pixel étant associé à une pluralité de fragments (301, 302), chacun déterminé par le détourage d'une primitive graphique jusqu'aux limites du pixel (300), la méthode comportant les étapes suivantes :

    le stockage à un nombre prédéterminé de valeurs de fragment (310, 312) pour le pixel (300), chaque valeur de fragment stockée (310, 312) étant associée à un fragment (301, 302) qui est visible dans le pixel (300) ;

    la détermination d'une nouvelle valeur de fragment (410) d'un nouveau fragment (400) qui est visible dans le pixel (300) avec au moins un autre fragment avec une valeur de fragment stockée étant encore visible dans le pixel après la détermination du nouveau fragment (400) ;

    la sélection d'un des fragments encore visibles dans le pixel (300) et

    le remplacement de la valeur de fragment stockée du fragment sélectionné par la nouvelle valeur de fragment (410), et dans laquelle les valeurs de fragment stockées sont par la suite utilisées pour produire la couleur du pixel (300).


     
    2. Méthode selon la revendication 1, dans laquelle l'étape de remplacement comprend l'écriture de la nouvelle valeur de fragment (410) par-dessus la valeur de fragment stockée du fragment sélectionné.
     
    3. Méthode selon la revendication 1, dans laquelle le nouveau fragment (400) fait partie d'une surface de l'image (132) différente de chacun des fragments (301, 302) associés à une valeur de fragment stockée.
     
    4. Méthode selon la revendication 1, dans laquelle chaque valeur de fragment stockée (310, 312) comprend une valeur de profondeur Z (306) et dans laquelle l'étape de sélection sélectionne la valeur de fragment stockée (310, 312) avec une valeur de profondeur Z (306) qui est supérieure à la valeur de profondeur Z (306) de chaque autre valeur de fragment stockée.
     
    5. Méthode selon la revendication 1, dans laquelle chaque valeur de fragment (310, 312) comprend une valeur de couleur (304) et comportant en outre l'étape de comparaison de la valeur de couleur de la nouvelle valeur de fragment (410) à la valeur de couleur (304) de chaque valeur de fragment stockée (310, 312) et dans laquelle l'étape de sélection sélectionne la valeur de fragment stockée (310, 312) avec la valeur de couleur (304) qui produit une différence de couleur numériquement inférieure à la valeur de couleur de chaque autre valeur de fragment stockée lorsqu'elle est comparée à la valeur de couleur du nouveau fragment (410) .
     
    6. Méthode selon la revendication 5, dans laquelle la valeur de couleur (304) de chaque valeur de fragment (310, 312, 410) comporte une pluralité de valeurs de canal de couleur et dans laquelle l'étape de comparaison comprend :

    la détermination d'une différence de couleur entre la valeur de couleur de la nouvelle valeur de fragment (410) et la valeur de couleur (304) d'une valeur particulière parmi les valeurs de fragment stockées (310, 312) par :

    le calcul, pour chaque valeur de canal de couleur, d'une différence de valeur absolue entre chaque valeur de canal de couleur d'une nouvelle valeur de couleur et une valeur de canal de couleur correspondante de la valeur de couleur d'une valeur de fragment stockée particulière ;

    l'addition des différences de valeur absolue calculées pour chaque valeur de canal de couleur, comportant en outre l'étape suivante :

    la multiplication de la somme des différences de valeur absolue par une zone du pixel (300) recouverte par le fragment associé à la valeur de fragment stockée particulière.


     
    7. Méthode selon la revendication 5, dans laquelle l'étape de comparaison comprend la comparaison de la valeur de couleur (304) de chaque valeur de fragment stockée (310, 312) à la valeur de couleur de chaque autre valeur de fragment stockée et dans laquelle l'étape de sélection sélectionne la valeur de fragment stockée (310, 312) avec la valeur de couleur (304) qui produit une différence de couleur la plus faible numériquement en comparaison à la valeur de couleur de la nouvelle valeur de fragment (410) et à la valeur de couleur de chaque autre valeur de fragment stockée.
     
    8. Méthode selon la revendication 1, dans laquelle l'étape de sélection sélectionne une valeur de fragment stockée (310, 312) qui, si elle était remplacée par la nouvelle valeur de fragment (410), produirait une différence de couleur moins détectable du point de vue visuel qui serait produite pour chaque autre valeur de fragment stockée si cette autre valeur de fragment stockée était remplacée par la nouvelle valeur de fragment (410).
     
    9. Méthode selon la revendication 1, comportant en outre les étapes suivantes :

    la détermination d'une zone du pixel (300) recouverte par chaque fragment (301, 302) pour laquelle ce fragment est visible et

    dans laquelle l'étape de sélection sélectionne la valeur de fragment du fragment avec une zone de couverture visible plus petite que chaque autre fragment.


     
    10. Méthode selon la revendication 1, comportant en outre les étapes suivantes :

    l'association d'un bit de sémaphore au pixel (300) ;

    la fixation du bit de sémaphore à une valeur prédéterminée ; et

    dans laquelle l'étape de remplacement remplace la valeur de fragment stockée (310, 312) par la nouvelle valeur de fragment (410) lorsque le bit de sémaphore est fixé à la valeur prédéterminée ; et

    la fixation du bit de sémaphore à une seconde valeur prédéterminée lorsque la valeur de fragment stockée (310, 312) est sélectionnée pour le remplacement.


     
    11. Appareil d'infographie (100) adapté pour produire une couleur d'un pixel (300) d'une image (132) d'une scène restituée, le pixel (300) étant associé à une pluralité de fragments (301, 302) déterminés par le détourage d'une primitive graphique jusqu'aux limites du pixel (300), l'appareil comportant :

    un moyen (106) pour stocker à un nombre prédéterminé des valeurs de fragment pour le pixel (300), chaque valeur de fragment stockée (310, 312) étant associée à un fragment (301, 302) qui est visible dans le pixel (300) ;

    un moyen (102) pour déterminer une nouvelle valeur de fragment (410) d'un nouveau fragment (400) qui est visible dans le pixel (300) avec au moins un autre. fragment avec une valeur de fragment stockée étant encore visible dans le pixel après la détermination du nouveau fragment (400) ;

    un moyen (102) pour sélectionner l'un des fragments encore visibles dans le pixel (300) et

    un moyen (102) pour remplacer la valeur de fragment stockée du fragment sélectionné (310, 312) par la nouvelle valeur de fragment (410) et dans lequel les valeurs de fragment stockées sont par la suite utilisées pour produire la couleur du pixel (300).


     




    Drawing