[0001] The present invention relates to refiner plates for papermaking and refining of lignocellulosic
and other natural and synthetic fibrous materials in the manufacture of paper, paperboard,
and fiberboard products. In particular, the invention relates to replacable refiner
fillings and to method of manufacture.
BACKGROUND OF THE INVENTION
[0002] In nearly all milled or fabricated refiner plates, and in many cast refiner plates,
the working surface of the refiner plate consists of clusters of parallel bars and
grooves. The refiner filling disc is normally depicted as a complete circle, but in
fact the filling often consists of several more-or-less pie-shaped segments which
are much easier to handle when replacing a filling.
[0003] United States Patent No. 5,740,972 discloses improvements in replaceable refiner
fillings and the manufacture of refiner fillings with working surfaces using relatively
narrow, closely spaced bars on the working surface of the plate. The refiner fillings
have relatively thin blades separated by shallower spacer bars having a thickness
which determines the width of the grooves.
[0004] The refiner fillings use a metal or other hard and durable material for the blades
and spacers, which blades and spacers are then metallurgically bonded to each other
along their entire intercontacting surfaces. A suitable metallurgical bond is achieved
through any of several known methods including welding, diffusion bonding, brazing,
or any other method which results in a joint strength approaching that of the blade
or spacer material. Materials used include stainless steel blades bonded to carbon
steel spacers and ceramic and metal composite materials as blade or spacer components
in refiner fillings. A metal composite material which exhibits suitable strength and
toughness characteristics for a particular refiner application is used for the blades
of the filling, while a much less costly material may be used for the spacers.
[0005] As disclosed in the '972 patent, segmental replacement disc refiner plates are produced
with segments having both non-circular edges (i.e., side edges) which are not precisely
radial. Instead, the side edges are oblique to the precisely radial line such that
the refiner plate segmental dividing line is parallel to the adjacent refiner blade.
Each segment may typically have a value of 30, 45, or 60 degrees of a circle so that
12, 8, or 6 segments, respectively comprise a refiner disc.
[0006] The blades of each cluster are positioned parallel to a side edge of the cluster
and extend from the outer periphery toward the inner periphery of the segment. Blade
obliqueness to the disc radius increases with distance normal to the side edge. It
is desirable with refiner plates to avoid shallow crossing angles (i.e., high degree
of obliquity to radial) of stator and rotor blades and therefore desirable to maintain
blade obliqueness in a range of 3 to 20 degrees with respect to disc radial. Hence,
the blade pattern is begun anew at that location in the refiner segment where increasing
obliqueness approaches 20 degrees. So, the segment blade pattern is repeated at intervals
to maintain blade obliqueness within a desired range over the entire working surface
of a refiner filling. The repeated blade pattern is defined herein as a blade cluster
characterized by a common cluster angle throughout the refiner filling.
[0007] An obvious method for producing the components of a blade cluster for this type of
fabricated refiner plate would consist of cutting individual blades and spacers, such
that for any specified set of inside diameter, outside diameter, and cluster angle,
each blade and spacer would have a unique length. The uniqueness of each component,
and the relative difficulty of fitting them precisely, results in a high cost to manufacture.
[0008] US-A-3 049 307 discloses another solution for improvements in replaceable refiner
fillings.
[0009] The present invention provides refiner fillings of the kind disclosed in the '972
patent and methods for manufacture of the fillings economically and efficiently with
very significant reduction in the cost of tools and fixtures while greatly facilitating
the assembly of refiner filling clusters. In particular, the invention facilitates
the manufacture of refiner fillings in a preferred embodiment having a preferred range
of working surface blade obliqueness to disc radial, working surface blades assembled
in cluster units conforming to the range of blade obliqueness, a fixed pumping angle,
and a fixed number of identical segments comprising a refiner filling.
[0010] The invention also provides a barset envelope or parallelogram as defining a basic
unit of manufacture of a working surface of blades and spacers, with each barset divisible
into two identical blade clusters.
SUMMARY OF THE INVENTION
[0011] The present invention provides improvements in replaceable refiner fillings and has
as a primary objective the manufacture of refiner fillings with working surfaces using
relatively narrow, closely spaced bars on the working surface of the plate. This is
accomplished by using relatively thin blades preferably of stainless steel, separated
by shallower spacer bars preferably of carbon steel having a thickness which determines
the width of the grooves, and subsequently fusing or bonding the assembled blades
and spacers into a solid piece by methods appropriate for the blade and spacer materials
being used.
[0012] In another primary aspect of the invention, the spacers and blades are assembled
in bar sets according to a predetermined pattern, bonded together, and with each bar
set cut in half to yield identical clusters. A refiner filling segment comprises a
plurality of clusters bonded together. In a preferred embodiment, six clusters are
assembled in edge to edge relation and bonded to form a filling segment. A complete
refiner filling disc in preferred embodiment comprises eight segments.
[0013] In a preferred method, a bar set of blades and spacers is the basic unit of manufacture
with the bar set configuration or envelope established in a first step. The bar set
envelope is a parallelogram with its long edge coincident with a refiner filling segmental
edge. The segmental edge is offset from a true radius of the refiner disc as in the
'972 patent, and the offset is defined as the pumping angle of the refiner filling.
The offset or pumping angle is preferably in a range of 3° to 20°. The pumping angle
is also defined as the angle between the first cluster blade and the disc radius,
and also as the line between blade clusters.
[0014] The number of blades and spacers comprising a bar set is selected so as to yield
two identical clusters when the bar set is cut in half. A bar set cutting line is
established between opposite outer and inner sides of the bar set parallelogram for
cutting the bar set precisely into matching clusters.
[0015] After the bar set parallelogram is defined, blades and spacers are assembled, alternating
with each other, all in parallel with the long edges of the parallelogram and of course
with the design offset edge of each refiner segment, and are bonded after assembly.
Several of the blades lie across the path of the cutting line and are prenotched at
their intersection of the cutting line.
[0016] After a bar set is cut into two identical bar clusters, one cluster is rotated 180°
so that its outer long edge abuts the cut edge of the other cluster. A multiple of
cut and rejoined clusters are assembled and bonded to form a refiner segment. The
completed segment is characterized by an integer multiple of clusters in edge to edge
relationship, the first blade of each cluster having the same offset angle as the
segmental edge, and the blades of each cluster having the same range of obliquity
from the refiner disc radius.
[0017] The invention provides for a method of assembling clusters from only a few unique
blade and spacer components. In the manufacturing method many of the blades are identical
and all spacers are identical to simplify inventory of parts. A complete refiner filling
disc may employ approximately 1000 blades and spacers with each bar set component
having 18 blades and 19 spacers. The invention results in very significant reduction
in the cost of tools and fixtures, and greatly facilitates the assembly of the clusters.
OBJECTS OF THE INVENTION
[0018] It is an object of the invention to provide refiner plates and a method for their
manufacture.
[0019] It is an object of the invention to provide improved refiner plates in which bars
and spacers are assembled in proper order and are fused or bonded together.
[0020] Another object of the invention is to provide efficient and economical manufacture
of refiner fillings with predetermined pattern of blades and spacers.
[0021] Other and further objects of the invention will occur to one skilled in the art with
an understanding of the following detailed description of the invention or upon employment
of the invention in practice.
DESCRIPTION OF THE DRAWING
[0022] A preferred embodiment of the invention has been chosen for purposes of illustrating
the construction and operation of the invention and is shown in the accompanying drawing
in which:
Figure 1 is a plan view of a refiner filling disc according to the invention.
Figure 2 is a fragmentary section view of a refining filling illustrating the positions
of blades, spacers, and base plate.
Figure 3 is a plan view of a refiner filling segment according to the invention.
Figure 4 is a schematic view illustrating the geometric definition of a blade and
spacer cluster according to the invention..
Figures 5a-5h are side and end elevational views of blades and spacer according to
the invention.
Figure 6 illustrates the outline of adjacent bar set clusters.
Figure 7 illustrates the bar set clusters of Figure 6 re-positioned to form a bar
set envelope or parallelogram.
Figure 8 illustrates a bar set of blades and spacers assembled in a bar set envelope.
Figure 9 illustrates the bar set of Figure 8 cut along line C-C, and re-positioned
into adjacent bar set clusters ready for assembly into a refiner segment.
Figure 10 is a side elevational view of a bar set cluster along cut line C-C.
DETAILED DESCRIPTION OF THE INVENTION
[0023] Referring to the drawing, a preferred embodiment of a refiner disc filling 10 according
to the invention comprises a supporting plate 12 to which blades 14 and spacers 16
are affixed and wherein the blades and spacers define the disc working surface 17
and intervening grooves 18.
[0024] As shown in Figures 1, 3 and 4, in a preferred embodiment of the invention, the refiner
disc filling 10 has defining margins in outer 20 and inner 22 concentric perimeters.
The filling (Fig. 1) comprises a plurality of filling segments A-B, B-C, and C-A with
each segment having a plurality of bar clusters 24. The outer and inner perimeter
circles define an annular active refining zone 26 containing all the blades and spacers
of the filling.
[0025] In the filling segment A-B of Figure 3, each bar cluster 24 has an oblique side edge
24a offset from the disc radius R by a specified angle alpha defined as the pumping
angle, with the cluster angle beta selected always to yield an integer quotient when
divided into 360°, and also when divided into the segment fraction of a circular disc,
i.e., 30°, 45°, 60°, 90°, 120°, etc.
[0026] In the specific and preferred cases of:
[0027] Figure 1, disc diameter is 16 inches, the offset angle alpha is 10°, each segment
is 120° and contains 8 bar clusters, with a total of 24 bar clusters in the refiner
filling, and with a cluster angle beta of 15°; and
[0028] Figure 3, disc diameter is 26 inches, the offset angle alpha is 6°, each segment
is 60° and contains 8 bar clusters, with a total of 48 clusters in the refiner filling,
and with a cluster angle beta of 7.5°.
[0029] The schematic layout of Figure 4 includes a 34 inch diameter disc, with 8 segments
of 6 clusters each, a cluster angle beta of 7.5° and a pumping angle alpha of 10°.
[0030] A primary aspect of the invention is the laying out of a cluster envelope which must
fit within the inner and outer perimeter of the active refining zone of the circular
filling, and within the two more or less radial cluster edges 24 a-b which divide
the entire circle into an integer number of clusters.
[0031] In the schematic of Figure 4, the active refining zone 26 is divided into 8 identical
segments each defined by lines 30 tangent to an inner circle 32, and with each segment
subdivided by tangent lines or cluster radials 24 a-b into 6 identical bar cluster
envelopes 36. (The diameter of the inner circle 32 determines the pumping angle alpha
by known geometric calculation). Each bar cluster envelope 36 is further defined by
a chord 38 along the outer perimeter 20 between adjacent cluster radials 24a-24b,
and by an inner line 40 parallel to outer chord 38 and passing through the intersection
I of the inner perimeter 22 and one of the cluster radials 24a. In a finished refiner
filling all blades and spacers will lie within the cluster envelope 36 generated in
this manner.
[0032] The manufacturing method first prepares a bar set pattern or envelope in the form
of a parallelogram. The bar set envelope receives a precise number of blades and spacers
within the envelope's exterior dimensions for yielding two identical bar clusters
when the envelope is cut into equal pieces. Every cluster 24 of the refiner filling
is produced in this way.
[0033] An outline of adjacent bar set clusters 24 I-r appears in Figure 6 including oblique
side edges 24a, 24b, outer chord lines 38, inner lines 40 and cut lines C-C.
[0034] The left-hand bar set cluster outline 241 of Figure 6 is re-positioned in Figure
7 alongside cluster 24r to form a bar set envelope or parallelogram 42. The bar set
envelope 42 consists of a pair of bar clusters with parallel oblique side edges 24a,
24b, and with the clusters abutting each other along their cut edges C-C. The ends
of the bar set envelope parallelogram are formed by chords 38 and by parallel lines
40. This arrangement is shown in Figures 6 and 7 in which it is seen that one cluster
24r is in correct operational position and the other cluster 241 is rotated 180° to
form the parallelogram pattern. In Figure 6 representing the operating position of
adjacent clusters 241-r, cut edges C-C appear as the left edge of each cluster. In
Figure 7, cut edges C-C abut and define the line along which the bar set of assembled
bars and spacers is cut by suitable means. The bar set envelope 42 defines the basic
manufacturing unit for assembling and temporarily attaching blades and spacers prior
to final metallurgical or other suitable bonding. The bar set envelope also facilitates
use of identical bars and identical spacers throughout the entire filling.
[0035] The blades 46 and spacer 48 are shown in Figure 5a-h and comprise three blades types,
including a long or unnotched blade 46a, an end notched blade 46b and a center notched
blade 46c.
[0036] It is very advantageous that each blade's inner end be tapered 50 as shown in Figure
5, in order to prevent fibrous material from being stapled over the end of a blade
positioned at inner perimeter of the active filler zone. Such stapling can eventually
lead to plugging or otherwise interrupting the uniform flow of fibrous material into
the active refining area. Accordingly, a taper is formed at the end of blade 46a,
and also as defining margins of notches 49 of blades 46b and 46c since, after a bar
set is cut in half, each tapered notch margin becomes a blade inner end as is apparent
in Figures 8, 9 and 10.
[0037] Once the bar set cluster envelope 42 is defined and the desired blade and spacer
widths have been selected, a precise number and length of blades and spacers are stacked
to form a parallelogram of particular width, length and bar set angle theta as in
Figure 8. The dimensions of the bar set are such that the bar set may be cut in half
along line C-C to form two identical bar clusters.
[0038] In the specific example of Figure 8, blades 46 and spacers 48 are assembled alternately
within the parallelogram. Blades with tapered ends 50 are put into position outside
the barset cutting line C-C. Blades intersecting the cutting line are notched with
the notch 49 occurring where the cutting line passes. This is shown in Figure 8 where
the cutting line passes notches in blades 46b and 46c.
[0039] After the blades and spacers are assembled and temporarily or permanently bonded,
the barset is cut along the dividing line C-C into identical bar clusters 24. As shown
in Figure 9, after cutting, one of the bar set clusters is re-positioned by rotation
of 180° for assembly into a refiner segment. The segments include bolt holes 52 (Figs
2, 3) for attachment to a refiner disc.
[0040] The method of manufacture proceeds as follows. The layout (Fig 4) of a refiner filling
is established including outer 28 and inner 22 perimeter circles defining an active
refiner zone 26. A pumping angle alpha and a cluster angle beta are selected (or known)
for the refiner filling and located in the layout. A relatively small cluster angle
results in a short outer chord 38 which is desirable. A core circle 32 tangent to
the pumping angle oblique 24a is formed to which circle all additional oblique lines
24a and 24b are tangent. In the example shown in Figure 4, a cluster angle beta of
71/2° is selected. A pumping angle of approximately 10° is selected and the core circle
32 is drawn.
[0041] Next, the number of segments (8 in the example of Fig 4) is set and defined by 8
equally spaced oblique lines 30. The number of clusters per segment is determined
(6 in the example) by equally spaced oblique lines 24.
[0042] In the layout, a cluster envelope 36 is defined by adjacent obliques 24a-b, a chord
38 between the intersections of the obliques and the outer perimeter circle 28, and
by an inner line 40 parallel to the chord and passing through the intersection I of
the inner perimeter circle 22 and one oblique 24a.
[0043] A bar set envelope 42 (Figs 6 and 7) is defined by a pair of cluster envelopes 24l-r
with one cluster 24r oriented as in Figure 3, and the other cluster envelope 241 rotated
180° to define a parallelogram with the one cluster envelope. That is, the left edges
24b of the cluster envelopes 241-r seen in Figure 7 define a cutting line C-C along
which the bar set is cut to form the cluster envelopes. The bar set envelope next
receives blades and spacers sized in length and width to fit precisely within the
envelope.
[0044] An assembly of blades and spacers appears in Figure 8, including end tapered blades,
and prenotched blades with notches defined by tapered ends and with the notches situated
in the cutting line. After assembly the blades and spacers are affixed to each other
by means appropriate to the materials used. For example, blades and spacers may be
metallurgically bonded entirely throughout the interconnecting surfaces of blades
and spacers for the bar set, and then cut along the cutting line to form bar clusters.
Alternatively, the bars and spacers maybe temporarily attached as by tack welding
prior to cutting, and bonded after cutting.
[0045] Figure 10 illustrates the cut edge of a bar set cluster along line C-C. In this profile
view the cut line diagonally intersects blades 46c through their notches, and diagonally
through spacers 48. Blade 46a is not cut and terminates in tapered end 50.
[0046] Various changes may be made to the structure embodying the principles of the invention.
The principles of the invention, while described in preferred embodiment of refiner
disc segments, are also applicable to other configurations of refiner fillings. For
example, the invention also has application to working surfaces of refiners in conical
or other types of refiners.
[0047] The foregoing embodiments are set forth in an illustrative and not in a limiting
sense. The scope of the invention is defined by the claims appended hereto.
1. A method of manufacture of a refiner filling (10) having outer (20) and inner (22)
perimeters defining an active refining zone (26) of the refiner, having a pumping
angle off-set from a radial of the refiner filling (10) and having blades (14, 46)
and spacers (16, 48), the method comprising the steps of:
subdividing the filling (10) into equal segments with each segment having spaced edges
extending between inner (22) and outer (20) perimeters, and with one segment edge
(24a) lying along a pumping angle (alpha) off-set from a radial; characterized in the steps of
subdividing the segments into bar set clusters (24) with each cluster (24) having
an edge (24a) defining a pumping angle (alpha);
combining the outline of two clusters (24) to form a bar set envelope (42);
assembling blades (46) and spacers (48) in the bar set envelope (42);
severing the bar set into two equal bar set clusters (24);
assembling clusters to form a refiner segment; and
assembling segments to form a refiner filling (10).
2. A method according to claim 1 in which the refiner filling (10) is a disc of 360°,
the segments' each having degree value as an integer 360°, and the pumping angle being
evenly divisible into 360°, and into the degree value of the segments.
3. A refiner disc filling (10) having a radius, outer (20) and inner (22) perimeters
and a selected pumping angle (α), the refiner filling (10) having a plurality of bar
set clusters (24), the cluster margins being defined by spaced side edges (24a, 24b)
lying along the pumping angle (α), an outer margin defined by a chord (38) of the
outer perimeter (20) between spaced side edges (24a, 24b), and an inner margin defined
by a line (40) parallel to the chord (38) and intersecting both the inner perimeter
(22) and one side edge (24a), characterized in that the bar clusters (24) are formed from a bar set envelope (42), with a perimeter outline
defining a parallelogram, the side edges (24a, 24b) of the parallelogram offset by
a value equal to the pumping angle (alpha), an anay of blades (46) and spacers (48)
arranged alternately to substantially fill the area of the parallelogram, the blades
(46) and spacers (48) affixed to each other, and a cut line across the parallelogram
for dividing the bar set (42) into two bar clusters (24) with each having an edge
(24a) corresponding to the pumping angle (α), and with each blade lying along the
pumping angle.
4. A refiner disc filling (10) as defined in claim 3 in which the blades (46) and spacers
(48) comprise at least one of a first blade (46a) of predetermined length having a
tapered end, at least one of a second blade (46b) having said predetermined length
and having an end notch (49) defined by a tapered end (50), at least one of a third
blade (46c) having said predetermined length and having a center notch (49) defined
by tapered end (50), a spacer (48) placed between adjacent blades (46) defining a
groove between the blades (46), the end notch (49) of the second blade (46b) and the
center notch of the third blade (46c) intersecting with a cutting line along which
the blades (46) and spacers (48) are cut so that each blade segment has a tapered
end (50).
5. A refiner disc filling (10) as defined in claim 3 in which each cluster (24) defines
a cluster angle (β) selected always to yield an integer quotient when divided into
360°.
6. A refiner disc filling (10) as defined in claim 5 in which the disc is 16 inches in
diameter with 24 bar clusters (24), a pumping angle (α) of 10°, and a cluster angle
(β) of 15°.
7. A refiner disc filling (10) as defined in claim 5 in which the disc is 26 inches in
diameter with 48 bar clusters (24), a pumping angle (α) of 6°, and a cluster angle
(β) of 7,5°.
8. A refiner disc filling (10) as defined in claim 5 in which the disc is 34 inches in
diameter with 48 bar clusters (24), a pumping angle (α) of 10°, and a cluster angle
(β) of 7.5°.
1. Verfahren zum Herstellen eines Refiner-Werkzeugs (10) mit äußeren (20) und inneren
(22) Begrenzungen, die eine aktive Refiner-Zone (26) des Refiners begrenzen, das einen
Pump-Winkel aufweist, der gegenüber einem Radius des Refiner-Werkzeugs (10) einen
Versatz aufweist, und das Klingen (14, 16) und Abstandshalter (16, 48) aufweist, wobei
das Verfahren die Schritte umfasst:
Unterteilen des Werkzeugs (10) in gleiche Segmente, wobei jedes Segment voneinander
beabstandete Kanten aufweist, die sich zwischen den inneren (22) und äußeren (20)
Begrenzungen erstrecken, und wobei eine Segment-Kante (24a) entlang eines Pump-Winkels
(alpha) verläuft, der gegenüber einem Radius einen Versatz aufweist, gekennzeichnet durch die Schritte:
Unterteilen der Segmente in Steg-Einheit-Cluster (24), wobei jeder Cluster (24) eine
Kante (24a) aufweist, die einen Pump-Winkel (alpha) bildet,
Kombinieren der Kontur von zwei Clustern (24), um eine Steg-Einheit-Hüllkurve (42)
zu bilden,
Montieren von Klingen (46) und Abstandshaltern (48) innerhalb der Steg-Einheit-Hüllkurve
(42),
Zertrennen der Steg-Einheit in zwei gleiche Steg-Einheit-Cluster (24),
Montieren der Cluster, um ein Refiner-Segment zu bilden, und
Montieren der Segmente, um ein Refiner-Werkzeug (10) zu bilden.
2. Verfahren nach Anspruch 1, bei dem das Refiner-Werkzeug (10) eine Scheibe von 360°
ist, deren Segmente jeweils einen ganzzahligen Winkelwert aufweisen, wobei 360° durch
den Pump-Winkel teilbar ist und wobei der Winkelwert der Segmente durch den Pump-Winkel
teilbar ist.
3. Refiner-Scheiben-Werkzeug (10), das einen Radius, äußere (20) und innere (22) Begrenzungen
und einen bestimmten Pump-Winkel (α) aufweist, wobei das Refiner-Werkzeug (10) eine
Mehrzahl von Steg-Einheit-Clustern (24) aufweist, wobei die Ränder des Clusters durch
beabstandete Seitenkanten (24a, 24b) gebildet sind, die entlang des Pump-Winkels (α)
verlaufen, wobei ein äußerer Rand durch eine Sehne (38) der äußeren Begrenzung (20)
zwischen zwei beabstandeten Seitenkanten (24a, 24b) gebildet ist, und wobei ein innerer
Rand durch eine Linie (40) begrenzt wird, die parallel zu der Sehne (38) verläuft
und sowohl die innere Begrenzung (22) als auch eine Seitenkante (24a) schneidet, dadurch gekennzeichnet, dass die Steg-Cluster (24) aus einer Steg-Einheit-Hüllkurve (42) gebildet sind, wobei
eine Kontur ein Parallelogramm bildet, wobei die Seitenkanten (24a, 24b) des Parallelogramms
um einen Wert, der dem Pump-Winkel (alpha) entspricht, versetzt sind, wobei eine Anordnung
von Klingen (46) und Abstandshaltern (48) alternierend angeordnet ist, um die Fläche
des Parallelogramms im Wesentlichen auszufüllen, wobei die Klingen (46) und die Abstandshalter
(48) aneinander befestigt sind und wobei eine Schnittlinie über das Parallelogramm
verläuft, um die Steg-Einheit (42) in zwei Steg-Cluster (24) zu teilen, von denen
jeder eine Kante (24a) aufweist, die dem Pump-Winkel (α) entspricht, und wobei jede
Klinge entlang des Pump-Winkels verläuft.
4. Refiner-Scheiben-Werkzeug (10) gemäß Anspruch 3, bei dem die Klingen (46) und die
Abstandshalter (48)
zumindest eine erste Klinge (46a) einer vorbestimmten Länge, die ein eine Abschrägung
aufweisendes Ende hat,
zumindest eine zweite Klinge (46b), die die vorbestimmte Länge und eine Kerbe (49)
am Ende aufweist, die durch ein eine Abschrägung aufweisendes Ende (50) gebildet ist,
zumindest eine dritte Klinge (46c), die eine vorbestimmte Länge und eine zentrale
Kerbe (49) aufweist, die durch das eine Abschrägung aufweisende Ende (50) gebildet
ist, und einen Abstandshalter (48), der zwischen benachbarten Klingen (46) angeordnet
ist und eine Rille zwischen den Klingen (46) bildet, umfasst,
wobei die Kerbe (49) am Ende der zweiten Klinge (46b) und die zentrale Kerbe der dritten
Klinge (46c) sich mit einer Schnittlinie schneiden, entlang der die Klingen (46) und
die Abstandshalter (48) geschnitten werden, so dass jedes Klingen-Segment ein eine
Abschrägung aufweisendes Ende (50) aufweist.
5. Refiner-Scheiben-Werkzeug (10) gemäß Anspruch 3, bei dem jeder Cluster (24) einen
Cluster-Winkel (β) bildet, der so gewählt ist, dass er stets einen ganzzahligen Quotienten
ergibt, wenn 360° durch ihn geteilt wird.
6. Refiner-Scheiben-Werkzeug (10) gemäß Anspruch 5, bei dem die Scheibe einen Durchmesser
von 16 Zoll, 24 Steg-Cluster (24), einen Pump-Winkel (α) von 10° und einen Cluster-Winkel
(β) von 15° aufweist.
7. Refiner-Scheiben-Werkzeug (10) gemäß Anspruch 5, bei dem die Scheibe einen Durchmesser
von 26 Zoll, 48 Steg-Cluster (24), einen Pump-Winkel (α) von 6° und einen Cluster-Winkel
(β) von 7,5° aufweist.
8. Refiner-Scheiben-Werkzeug (10) gemäß Anspruch 5, bei dem die Scheibe einen Durchmesser
von 34 Zoll, 48 Steg-Cluster (24), einen Pump-Winkel (α) von 10° und einen Cluster-Winkel
(β) von 7,5° aufweist.
1. Procédé de fabrication d'un lamage de raffineur (10) ayant des périmètres externe
(20) et interne (22), définissant une zone de raffinage active (26) du raffineur,
présentant un angle de pompage décalé par rapport à un axe radial du lamage de raffineur
(10) et comportant des couteaux (14, 46) et des entre lames (16, 48), le procédé comprenant
les étapes consistant à :
subdiviser le lamage (10) en segments égaux, chaque segment comportant des bords espacés
s'étendant entre les périmètres interne (22) et externe (20), et un bord de segment
(24a) se trouvant le long d'un angle de pompage (alpha) décalé par rapport à un axe
radial ; caractérisé en ce qu'il comporte les étapes consistant à :
subdiviser les segments en faisceaux d'ensembles de lames (24), chaque faisceau (24)
comportant un bord (24a) définissant un angle de pompage (alpha) ;
combiner le contour de deux faisceaux (24) afin de former une enveloppe d'ensemble
de lames (42) ;
assembler les couteaux (46) et entre lames (48) dans l'enveloppe d'ensemble de lames
(42) ;
fractionner l'ensemble de lames en deux faisceaux d'ensembles de lames égaux (24)
;
assembler les faisceaux afin de former un segment de raffineur ; et
assembler les segments afin de former un lamage de raffineur (10).
2. Procédé selon la revendication 1, dans lequel le lamage de raffineur (10) est un disque
représentant 360°, dont chaque segment a une valeur en degrés sous forme d'entier
de 360°, et l'angle de pompage étant régulièrement divisible en 360°, et dans la valeur
en degrés des segments.
3. Lamage de disque de raffineur (10) ayant un rayon, des périmètres externe (20) et
interne (22) et un angle de pompage choisi (α), le lamage de raffineur (10) comportant
une pluralité de faisceaux d'ensembles de lames (24), les marges de faisceau étant
définies par des bords latéraux espacés (24a, 24b) se trouvant le long de l'angle
de pompage (α), une marge externe définie par une corde (38) du périmètre externe
(20) entre les bords latéraux espacés (24a, 24b), et une marge interne définie par
une ligne (40) parallèle à la corde (38) et coupant à la fois le périmètre interne
(22) et un bord latéral (24a), caractérisé en ce que les faisceaux de lames (24) sont constitués d'une enveloppe d'ensembles de lames
(42), avec un contour de périmètre définissant un parallélogramme, les bords latéraux
(24a, 24b) du parallélogramme étant décalés d'une valeur égale à l'angle de pompage
(alpha), un groupement de couteaux (46) et d'entre lames (48) étant agencés de manière
alternée pour remplir sensiblement la surface du parallélogramme, les couteaux (46)
et entre lames (48) étant fixés les uns aux autres, et une ligne de coupe au travers
du parallélogramme permettant de diviser l'ensemble de lames (42) en deux faisceaux
de lames (24), chacun ayant un bord (24a) correspondant à l'angle de pompage (α),
et chaque couteau se trouvant le long de l'angle de pompage.
4. Lamage de disque de raffineur (10) selon la revendication 3, dans lequel les couteaux
(46) et entre lames (48) comportent au moins l'un d'un premier couteau (46a) d'une
longueur prédéterminée ayant une extrémité conique, au moins l'un d'un deuxième couteau
(46b) ayant ladite longueur prédéterminée et ayant une encoche d'extrémité (49) définie
par une extrémité conique (50), au moins l'un d'un troisième couteau (46c) ayant ladite
longueur prédéterminée et ayant une encoche centrale (49) définie par l'extrémité
conique (50), une entre lame (48) placée entre les couteaux adjacents (46) définissant
une rainure entre les couteaux (46), l'encoche d'extrémité (49) du deuxième couteau
(46b) et l'encoche centrale du troisième couteau (46c) coupant une ligne de coupe
le long de laquelle les couteaux (46) et entre lames (48) sont découpés, de telle
sorte que chaque segment de couteau présente une extrémité conique (50).
5. Lamage de disque de raffineur (10) selon la revendication 3, dans lequel chaque couteau
(24) définit un angle de faisceau (β) toujours choisi de manière à obtenir un quotient
entier lorsqu'il est divisé en 360°.
6. Lamage de disque de raffineur (10) selon la revendication 5, dans lequel le disque
a un diamètre de 16 pouces (40,6 cm) et 24 faisceaux de lames (24), un angle de pompage
(α) de 10°, et un angle de faisceau (β) de 15°.
7. Lamage de disque de raffineur (10) selon la revendication 5, dans lequel le disque
a un diamètre de 26 pouces (66 cm) avec 48 faisceaux de lames (24), un angle de pompage
(α) de 6°, et un angle de faisceau (β) de 7,5°.
8. Lamage de disque de raffineur (10) selon la revendication 5, dans lequel le disque
a un diamètre de 34 pouces (86,4 cm) avec 48 faisceaux de lames (24), un angle de
pompage (α) de 10°, et un angle de faisceau (β) de 7,5°.