[0001] This invention relates to a method to reduce motion blur of images shown in non-stroboscopic
display devices, in particular Liquid Crystal Display Panels (LCDs), Thin Film Transistor
Displays (TFTs), Colour Sequential Displays, Plasma Display Panels (PDPs), Digital
Micro Mirror Devices or Organic Light-Emitting Diode (OLED) displays, in which motion
vectors depending on moving components in each image of an input video signal are
calculated, in which anti-motion blur filtering of the input video signal is performed
based on the calculated motion vectors to produce an output video signal, and in which
images are generated on said display device depending on said output video signal.
The invention further relates to a circuit arrangement providing anti motion blur
functionality.
[0002] Non-stroboscopic displays, such as Liquid Crystal Displays (LCD), Plasma Panel Displays
(PDP), Thin Film Transistor Displays (TFT), Colour Sequential Displays, Digital Micro
Mirror Devices or Organic Light-Emitting Diode (OLED) displays consist of a display
panel having a row and column array of picture elements (pixels) for modulating light,
means for illuminating the display panel from the front or back side, and drive means
for driving the pixels in accordance with an applied input video signal.
[0003] In state-of-the-art Cathode Ray Tubes (CRTs), each pixel of a displayed image is
generated as a pulse, which is very short compared to the picture period
T. Different to these state-of-the-art CRTs, in new flat, high quality, low cost displays
devices, each pixel is displayed during most of the picture period. Of course, this
non-stroboscopic behaviour also holds for types of CRTs whose pixels, e.g. slow phospor
atoms, are active for a time not negligible to the picture period. In the sequel of
this description, we thus will only differentiate between stroboscopic and non-stroboscopic
displays, and in case of a non-stroboscopic display, we will use the term "pixel"
for both the elements of a light modulation array and the activated (slow) atoms of
a CRT-type display.
[0004] In case any part of the image displayed on a non-stroboscopic display contains motion,
the viewer will track this motion. As each pixel is displayed substantially the whole
picture period, the intensity of pixels showing the motion is integrated along the
motion trajectory as follows:
with
ti as display time of each image, F as input video signal,
Fout as output video signal, and
T as picture period. The motion vector
D =
vT is the product of the object velocity
v and the picture period
T. In case
ti is constant, the integration is the same as a convolution of
F(
x,
n) and a sample-and-hold function
h(
α) :
where
is a 1D block function, oriented along the motion vector
D. It is therefore actually a 2D function
h(
x) , which has zero value outside the line segment
x =
kD, 0
≤ k ≤ ti /
T, while the 2D integral area is normalised to 1. The 2D spatial Fourier transform
is:
with
F(f, n) the 2D spatial Fourier transform of the original signal
F(x, n), and
H(f) the 2D spatial Fourier transform of
h(
x) :
[0005] Apparently the effect of the motion tracking / temporal sample-and-hold characteristic
is a low-pass filtering in the direction of the motion with a
sinc-shaped frequency response, with a cut-off-frequency being inversely proportional
to the quantity
.
[0007] From
EP 0 657 860 A2 it is known that motion blur in non-stroboscopic displays can be pre-compensated
by anti-motion blur filtering of the input video signal that drives the pixels of
the display panel. In
EP 0 657 860 A2, this anti-motion blur filtering is implemented with a high spatial frequency boosting
filter based on estimated motion vectors. As the viewer of moving objects on a matrix
display integrates the intensity of the pixels along the motion trajectory, which,
according to equation 5, corresponds to a low pass filtering in the spatial frequency
domain, motion blur may be reduced by enhancing high spatial frequencies of moving
objects. The higher the speed of moving components, the larger the part of the spectrum
that needs enhancement.
[0008] A drawback of the proposed solution is that in areas where the motion vector is not
reliable, i.e. in areas where there exists little contrast, filtering may be carried
out without improving the picture. Furthermore, filtering may even cause noise modulation.
In this case flat parts of the picture are filtered where the filtering cannot improve
significant detail. It can however, result in visible differences in noise patterns,
i.e. noise modulation.
[0009] It is thus the object of the invention to provide an improved spatial filtering with
less noise enhancement and less noise modulation.
[0010] To solve the object of the invention, it is proposed that edge characteristics in
each image of the input video signal are determined and that anti-motion blur filtering
is further based on said determined edge characteristics. In this way, spatial filtering
is concentrated on significant parts of an image only, and both noise enhancement
and noise modulation are reduced.
[0011] Edge characteristics such as length and/or orientation of edge vectors and/or the
presence of an edge are further proposed for a preferred embodiment of the invention.
[0012] Said edge characteristics are preferably derived from zero-crossings of the absolute
values of the first derivatives of the image signal in two orthogonal directions subtracted
by fixed thresholds to reduce sensitivity to noise.
[0013] Low and narrow edges are preferably not considered in the calculation of length and
orientation of said edge vectors.
[0014] The presence of edges is preferably detected by sampling the edge vectors into binary
signals.
[0015] According to a further preferred embodiment of the invention, the presence of edges
may be smoothed out over space by dilating and/or corroding and/or low-pass filtering
said binary signals.
[0016] A further preferred embodiment of the invention proposes that anti-motion blur filtering
is performed by filtering the input video signal with a spatial filter, by subsequently
combining the filtered input video signal with the input video signal itself to produce
an intermediate video signal, by multiplying the intermediate video signal with gain
factors to produce an amplified intermediate signal, and by combining said amplified
intermediate signal with said input video signal to produce an output video signal.
In said multiplication, the applied gain factors can be pixel-specific or as well
be constant for a group of pixels.
[0017] The spatial filter applied to the input video signal may be favourably implemented
as a high spatial frequency boosting filter. This filter can be implemented as 1D
filter to save costs and simplify signal processing, as a standard 2D filter or even
as a 3D filter, if also image data from previous or next images is used in the filtering
process.
[0018] In a further advantageous embodiment of the invention, the filter coefficients of
the high spatial frequency boosting filter, which determine the type of filter characteristic
such as low-pass, mid-pass or high-pass, and the direction of the frequency characteristic
of this spatial filter depend on the motion vectors, whereas the gain factors depend
on the length of the motion vectors and the presence of edges. Noise enhancement and
noise modulation is then reduced by suppressing image processing in low detailed parts
of the image where no improvement will be achieved. By using edge characteristics
as a point of interest selector, discrimination in the amount of processing for various
parts of the image can be made.
[0019] In a further preferred embodiment, the filter coefficients of the high frequency
boosting filter and the direction of the frequency characteristic of the filter depend
on the motion vectors, whereas the gain factors depend on the inner product of edge
vectors and motion vectors normalised to the length of the edge vectors.
[0020] By gain control, image processing is then concentrated on parts of the image where
the angle between the motion vector and the edge vector is small, reflecting the fact
that a vertical luminance transient with corresponding vertical edge vector will not
be affected by motion blur if the corresponding motion vectors are oriented in horizontal
direction.
[0021] Yet another advantageous embodiment of the invention proposes that the direction
of the frequency characteristic of the filter depends on the orientation of the edge
vectors, that the filter coefficients of the high spatial frequency boosting filter
depend on the motion vectors and/or the edge vectors, and that the gain factors depend
on the motion vectors and/or the edge vectors. This directional control of image processing
considers the fact that motion vectors can be unreliable due to the aperture problem,
stating that large estimation errors occur for motion vector components parallel to
edges. Motion estimation parallel to an edge is difficult because in contrast to perpendicular
to an edge, parallel to an edge little or no detail is available for the motion vector
estimation algorithm to work with. By performing anti-motion blur filtering in the
direction of the edge vectors rather than in the direction of the motion vectors,
motion blur is thus reduced with less noise enhancement and noise modulation.
[0022] A low-cost embodiment of the invention is achieved by proposing that a fixed set
of filter coefficients for the high spatial frequency boosting filter is used, that
the direction of the frequency characteristic of the spatial filter depends on the
orientation of the edge vectors and that the gain factors depend on the motion vectors
and/or the edge vectors. The high spatial frequency boosting filter then is vastly
simplified, for only the direction of the frequency characteristic of the spatial
filter depends on local image characteristics. The gain, which defines the parts of
the image where image processing takes place, is controlled by both motion and edge
vectors.
[0023] The dependence of gain factors on motion vectors and/or edge vectors may be preferably
related to the length of the motion vectors and the presence of edges.
[0024] The dependence of gain factors on motion vectors and/or edge vectors may be further
preferably related to the inner product of edge vectors and motion vectors normalised
to the length of the edge vectors. Then anti-motion blur filtering is mainly performed
in parts of the image where the angle between motion and edge vectors is small, i.e.
only the part of the motion vector across an edge is used for sharpness enhancement.
[0025] The invention further comprises a non-stroboscopic display device, in particular
a Liquid Crystal Display (LCD), Thin Film Transistor Display (TFT), Colour Sequential
Display, Plasma Display Panel (PDP), Digital Micro Mirror Device or Organic Light-Emitting
Diode (OLED) display with means to calculate motion vectors in each image of an input
video signal, with means to filter the input video signal depending on said calculated
motion vectors to produce an output video signal, and with means to display the images
of the output video signal on a display panel, where means to determine the edge characteristics
of each image of the input video signal are provided and where means to filter the
input video signal depending on both the calculated motion vectors and the determined
edge characteristics are provided.
[0026] These and other aspects of the invention will be apparent from and elucidated with
reference to the embodiments described hereinafter. In the figures show:
Fig. 1 a schematic representation of a first embodiment of a display system with edge-dependent
motion blur reduction, and
Fig. 2 a schematic representation of a second embodiment of a display system with
edge-dependent motion blur reduction.
[0027] Fig. 1 depicts a first embodiment of a display system with the proposed edge-dependent
reduction of motion blur. An input video signal 1 is filtered by an anti-motion blur
filter 2 yielding an output video signal 3. To this aim, the input video signal 1
is fed into a motion estimation instance 4 and an edge estimation instance 5. The
motion estimation instance 4 produces an estimate of the motion vectors of each image
of the input video signal 1. The edge estimation instance calculates the edge vectors
and/or determines the presence of edges in each image of the input video signal 1.
The outcome of the motion 4 and edge 5 estimation instances is fed into the anti motion-blur
filter 2.
[0028] Edges in each image of an input video signal can be determined by identifying luminance
transients. To this end, the first derivatives of the luminance signal in both horizontal,
and vertical direction,
are calculated, where
is the two-dimensional luminance (image) signal.
[0029] The edge width in these directions can then be calculated by measuring the distance
between zero crossings in the derivative signal (i.e. the width of the transient in
both directions). To reduce sensitivity to noise, thresholds
Th and
Tv can be subtracted from the absolute derivative signal.
[0030] The horizontal edge width
h(
x) is the distance between zero crossings of the signal
and the vertical edge width
v(x) is the distance between zero crossings of the signal
[0031] The edge width perpendicular to the edge is given by:
[0032] These widths are assigned to all points inside the edge (inside the zero crossings).
[0033] To increase further robustness against noise in the edge detection algorithm, the
condition for
h(
x) and similar for
v(
x) can be used that:
where
Tr denotes a fixed threshold.
[0034] This equation states that the width of an edge should be reverse proportional to
its height, resulting in the discarding of low and narrow edges (probably noise).
Having knowledge of the horizontal and vertical edge width, combined with the gradient
of the edge in both directions (white to black or black to white), it is possible
to calculate the orientation angle arg(
e) of the edge. Together with the edge width |
e(
x)| then the edge vector
e(
x) can be determined.
[0035] If the anti-motion blur filter is implemented based on a High Spatial Frequency Boosting
Filter (HFBF) 6, as depicted in Fig.1, the input video signal is processed as follows:
[0036] The input video signal 1 is first filtered with the HFBF 6 to produce a filtered
input video signal. This filtered video signal is then combined with the input video
signal 1 yielding an intermediate signal. The intermediate signal is subsequently
multiplied with a gain factor
k to produce an amplified intermediate signal, which then is combined with the input
video signal 1 to produce the output video signal 3. The output video signal 3 then
drives the row and column pixels of the display panel.
[0037] If the intermediate signal is produced by subtracting the input video signal from
the filtered input video signal, it is evident that the difference of both signals
only has non-zero components for spatial frequencies where filtering took place. The
gain factor k allows to select if and to what extent this filtering is desired, e.g.
to reduce the dynamic range of the amplified intermediate signal.
[0038] The HFBF 6 can now be characterized by a set of filter coefficients
f and a direction ϕ of the frequency characteristic of the HFBF. According to Fig.
1, both the filter coefficients
f =
f(v, e) and the direction ϕ = ϕ(arg(
v), arg(
e)) are determined by a filter coefficients and filter direction control instance 7
based on the outcome of the motion 4 and edge 5 estimation instance. Similarly, the
gain factor
k =
k(v, e) is determined by a gain factor control instance 8 based on the outcome of the motion
4 and edge 5 estimation instance.
[0039] Fig. 1 describes the most general case of motion- and edge-dependent motion blur
reduction. The filter coefficients
f =
f(
v, e), the direction of the frequency characteristic of the fiter ϕ = ϕ(arg(
v), arg(
e) and the gain factor
k =
k(
v, e) may depend on the outcome of both the motion 4 and the edge 5 estimation instance.
E.g., if anti-motion blur filtering is desired only for certain points of interest
in the image, the filter coefficients
k =
k(v, e) depend on the motion and/or edge vectors, the direction ϕ = ϕ(arg(
v)) of the frequency characteristic of the filter depends on the orientation of the
motion vectors and the gain factor
k =
k|
v|,
p) depends on the presence of edges
p(
x) =
p(
e(x)) and the length of the motion vectors |
v|; so that anti-motion blur filtering is only performed if there are edges in the
image. The presence of edges
p(x) =
p(e(x)) represents a function of the edge vectors and may be obtained by sampling the edge
vectors into one bit signals (there is an edge or not) and possibly dilating and corroding
these signals.
[0040] Quite similar, in gain-controlled filtering the filter coefficients
f =
f (
v, e) depend on the motion and/or edge vectors, the direction ϕ = ϕ (arg(
v)) of the frequency characteristic of the filter depends on the motion vectors, but
the gain factor
k =
k(
v,
e) depends on the inner product of edge vectors and motion vectors normalised to the
length of the edge vectors, i.e.
, so that filtering is only performed when the angle between edge and motion vectors
is small.
[0041] In contrast, in direction-controlled filtering the direction
ϕ =
ϕ(
arg(
e)) of the frequency characteristic of the filter depends on the orientation of the
edge vectors in order to avoid estimation errors of the motion vectors that are encountered
if motion vector estimation parallel to an edge has to be performed. The filter coefficients
f =
f (
v,
e) and the gain factor
k =
k (
v,
e) once again may depend on the motion vectors and/or the edge vectors. For the gain
factor
k =
k (
v, e)
, a dependence
k =
k (|
v|,
p) on the presence of edges and the length of the motion vectors or a dependence
on the normalised inner product of motion and edge vectors may be imagined.
[0042] Fig. 2 depicts a second embodiment of a display system with edge-dependent motion
blur reduction, in particular a low cost version. In contrast to Fig. 1, a fixed set
of filter coefficients
f ≠ f(
v,
e) is used for the HBEF 6, so that the filter coefficients and filter direction control
instance 7 simplifies to a filter direction control instance. Furthermore, the outcome
of the motion estimation instance 4 only influences the gain factor control instance
8 and no longer the filter direction control instance 7. This set-up ensures that
anti-motion blur filtering is only performed in the direction of edge vectors, where
motion blur actually occurs. Filtering in parallel to an edge, with does not improve
image sharpness, but enhances noise and modulates noise, is thus omitted. To further
reduce the enhancement of noise, the gain factor
k =
k(v, e) is controlled based on both motion and edge vectors, e.g. by choosing the gain
proportional to the inner product of both vectors.
[0043] The filter coefficients
f ≠ f (
v, e), which are kept fixed in this set-up irrespective of the amount of motion in the
present image, may be based on average values of the amount of motion or may be updated
with a dwell time of several image periods. As a 1D example of such a low-cost filter,
an FIR filter with taps [-1 2 -1] may be applied to adjacent pixels to approach the
required inverse filter to the filter of equation 5. This low-cost version of the
HFBF does advantageously avoid the poles of the theoretically needed inverse filter
to the filter of equation 5 and comprises only a few filter taps.
1. Method to reduce motion blur of images shown in non-stroboscopic display devices,
in particular Liquid Crystal Display Panels (LCDs), Thin Film Transistor Displays
(TFTs), Colour Sequential Displays, Plasma Display Panels (PDPs), Digital Micro Mirror
Devices or Organic Light-Emitting Diode (OLED) displays, in which motion vectors depending
on moving components in each image of an input video signal are calculated, in which
anti-motion blur filtering of the input video signal is performed based on the calculated
motion vectors to produce an output video signal, and in which images are generated
on said display device depending on said output video signal, characterized in that edge characteristics in each image of the input video signal are determined and that
anti-motion blur filtering is further based on said determined edge characteristics.
2. Method according to claim 1, characterized in that said edge characteristics are length and/or orientation of edge vectors and/or the
presence of an edge.
3. Method according to claim 2, characterized in that said length and/or orientation of the edge vectors are derived from zero-crossings
of the absolute values of the first derivatives of the image signal in two orthogonal
directions subtracted by fixed thresholds.
4. Method according to claim 3, characterized in that low and narrow edges are not considered in the calculation of length and orientation
of said edge vectors.
5. Method according to claims 2 to 4, characterized in that the presence of edges is detected by sampling the edge vectors into binary signals.
6. Method according to claim 5, characterized in that the presence of edges is smoothed out over space by dilating and/or corroding and/or
low-pass filtering said binary signals.
7. Method according to claims 1 to 6, characterized in that anti-motion blur filtering is performed
by filtering the input video signal with a spatial filter,
by subsequently combining the filtered input video signal with the input video signal
itself to produce an intermediate video signal,
by multiplying the intermediate video signal with gain factors to produce an amplified
intermediate signal, and
by combining said amplified intermediate signal with said input video signal to produce
an output video signal.
8. Method according to claim 7, characterized in that the spatial filter applied to the input video signal is a high spatial frequency
boosting filter.
9. Method according to claim 8, characterized in that the filter coefficients of the high spatial frequency boosting filter and the direction
of the frequency characteristic of this filter depend on the motion vectors and
that the gain factors depend on the length of the motion vectors and the presence
of edges.
10. Method according to claim 8, characterized in that the filter coefficients of the high frequency boosting filter and the direction of
the frequency characteristic of the filter depend on the motion vectors and
that the gain factors depend on the inner product of edge vectors and motion vectors
normalised to the length of the edge vectors.
11. Method according to claim 8, characterized in that the direction of the frequency characteristic of the high spatial frequency boosting
filter depends on the orientation of the edge vectors,
that the filter coefficients of the high spatial frequency boosting filter depend
on the motion vectors,
and that the gain factors depend on the motion vectors and/or the edge vectors.
12. Method according to claim 8, characterized in that the direction of the frequency characteristic of the high spatial frequency boosting
filter depends on the orientation of the edge vectors,
that the filter coefficients of the high spatial frequency boosting filter depend
on the edge vectors,
and that the gain factors depend on the motion vectors and/or the edge vectors.
13. Method according to claim 8, characterized in that a fixed set of filter coefficients for the high spatial frequency boosting filter
is used, that the direction of the frequency characteristic of the spatial filter
depends on the orientation of the edge vectors and that the gain factors depend on
the motion vectors and/or the edge vectors.
14. Method according to claims 11 to 13, characterized in that the gain factors depend on the length of the motion vectors and the presence of edges.
15. Method according to claims 11 to 13, characterized in that the gain factors depend on the inner product of edge vectors and motion vectors normalised
to the length of the edge vectors.
16. Non-stroboscopic display device, in particular a Liquid Crystal Display (LCD), Thin
Film Transistor Display (TFT), Colour Sequential Display, Plasma Display Panel (PDP),
Digital Micro Mirror Device or Organic Light-Emitting Diode (OLED) display,
with means to calculate motion vectors in each image of an input video signal, with
means to filter the input video signal depending on said calculated motion vectors
to produce an output video signal, and
with means to display the images of the output video signal on a display panel,
characterized in that means to determine the edge characteristics of each image of the input video signal
are provided and
that means to filter the input video signal depending on both the calculated motion
vectors and the determined edge characteristics are provided.
1. Verfahren zum Reduzieren der Bewegungsunschärfe von Bildern, dargestellt in einer
nicht stroboskopischen Wiedergabeanordnung, insbesondere in LCD-Wiedergabeanordnungen,
TFT-Wiedergabeanordnungen, farbsequentiellen Wiedergabeanordnungen, Plasma-Wiedergabeanordnungen,
digitalen Mikrospiegelanordnungen oder OLED-Wiedergabeanordnungen ("Organic Light-Emitting
Diode"), in denen Bewegungsvektoren abhängig von Bewegungsanteilen in jedem Bild eines
Eingangsvideosignals berechnet werden, wobei Antibewegungsunschärfefilterung des Eingangsvideosignals
durchgeführt wird, und zwar auf Basis der berechneten Bewegungsvektoren zum Erzeugen
eines Ausgangsvideosignals, und wobei Bilder an der genannten Wiedergabeanordnung
erzeugt werden, und zwar abhängig von dem genannten Ausgangsvideosignal, dadurch gekennzeichnet, dass Kantencharakteristiken in jedem Bild des Eingangsvideosignals ermittelt werden und
dass Antibewegungsunschärfefilterung weiterhin auf den genannten bestimmten Kantencharakteristiken
basiert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die genannten Kantencharakteristiken die Länge und/oder die Orientierung von Kantenvektoren
und/oder das Vorhandensein einer Kante sind.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die genannte Länge und/oder Orientierung der Kantenvektoren aus Nulldurchgängen der
Absolutwerte der ersten Abgeleiteten des Bildsignals in zwei orthogonalen Richtungen,
subtrahiert durch feste Schwellen hergeleitet sind.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass niedrige und schmale Kanten in der Berechnung der Länge und der Orientierung der
genannten Kantenvektoren nicht berücksichtigt werden.
5. Verfahren nach Anspruch 2 bis 4, dadurch gekennzeichnet, dass das Vorhandensein von Kanten durch Abtastung der Kantenvektoren in binäre Signale
detektiert wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Vorhandensein von Rändern über den Raum geglättet wird, und zwar durch Erweiterung
und/oder Auffressung und/oder Tiefpassfilterung der genannten binären Signale.
7. Verfahren nach Anspruch 1 bis 6,
dadurch gekennzeichnet, dass Antibewegungsunschärfenfilterung durchgeführt wird, und zwar:
- durch Filterung des Eingangsvideosignals mit einem räumlichen Filter,
- durch nachfolgende Kombination des gefilterten Eingangsvideosignals mit dem Eingangsvideosignal
selber zum Erzeugen eines Zwischenvideosignals,
- durch Multiplikation des Zwischenvideosignals mit Verstärkungsfaktoren zum Erzeugen
eines verstärkten Zwischensignals, und
- durch Kombination des genannten verstärkten Zwischensignals mit dem genannten Eingangsvideosignal
zum Erzeugen eines Ausgangsvideosignals.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das räumliche Filter, das auf das Eingangsvideosignal angewandt wird, ein räumliches
HF-Verstärkungsfilter ist.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Filterkoeffizienten des räumlichen HF-Verstärkungsfilters und die Richtung der
Frequenzcharakteristik dieses Filters von den Bewegungsvektoren abhängig sind und
dass die Verstärkungsfaktoren von der Länge der Bewegungsvektoren und dem Vorhandensein
von Kanten abhängig sind.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Filterkoeffizienten des HF-Verstärkungsfilters und die Richtung der Frequenzcharakteristik
des Filters von den Bewegungsvektoren abhängig sind und
dass die Verstärkungsfaktoren von dem inneren Produkt aus Kantenvektoren und Bewegungsvektoren,
normalisiert zu der Länge der Kantenvektoren abhängig sind.
11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Richtung der Frequenzcharakteristik des räumlichen HF-Verstärkungsfilters von
der Orientierung der Kantenvektoren abhängig ist,
dass die Filterkoeffizienten des räumlichen HF-Verstärkungsfilters von den Bewegungsvektoren
abhängig sind, und
dass die Verstärkungsfaktoren von den Bewegungsvektoren und/oder Kantenvektoren abhängig
sind.
12. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Richtung der Frequenzcharakteristik des räumlichen HF-Verstärkungsfilters von
der Orientierung der Kantenvektoren abhängig ist,
dass die Filterkoeffizienten des räumlichen HF-Verstärkungsfilters von den Kantenvektoren
abhängig sind, und
dass die Verstärkungsfaktoren von den Bewegungsvektoren und/oder den Kantenvektoren
abhängig sind.
13. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass ein fester Satz von Filterkoeffizienten für das räumliche HF-Verstärkungsfilter verwendet
wird, dass die Richtung der Frequenzcharakteristik des räumlichen Filters von der
Orientierung der Kantenvektoren abhängig ist, und dass die Verstärkungsfaktoren von
den Bewegungsvektoren und/oder den Kantenvektoren abhängig sind.
14. Verfahren nach Anspruch 11 bis 13, dadurch gekennzeichnet, dass die Verstärkungsfaktoren von der Länge der Bewegungsvektoren und dem Vorhandensein
von kanten abhängig sind.
15. Verfahren nach Anspruch 11 bis 13, dadurch gekennzeichnet, dass die Verstärkungsfaktoren von dem inneren Produkt aus Kantenvektoren und Bewegungsvektoren,
normalisiert zu der Länge der Kantenvektoren abhängig sind.
16. Nichtstroboskopische Wiedergabeanordnung, insbesondere LCD-Wiedergabeanordnung, TFT-Wiedergabeanordnung,
Farbsequentielle Wiedergabeanordnung, Plasma-Wiedergabeanordnung, digitale Mikrospiegelanordnung
oder OLED-Wiedergabeanordnung,
mit Mitteln zum Berechnen von Bewegungsvektoren in jedem Bild eines Eingangsvideosignals,
mit Mitteln zum Filtern des Eingangsvideosignals, abhängig von den genannten berechneten
Bewegungsvektoren zum Erzeugen eines Ausgangsvideosignals, und
mit Mitteln zum Wiedergeben der Bilder des Ausgangsvideosignals an einer Wiedergabeanordnung,
dadurch gekennzeichnet,
dass Mittel zum Ermitteln der Kantencharakteristik jedes Bildes des Eingangsvideosignals
vorgesehen sind, und
dass Mittel zum Filtern des Eingangsvideosignals abhängig von den berechneten Bewegungsvektoren
und den ermittelten Kantencharakteristiken vorgesehen sind.
1. Procédé de réduction du flou de mouvement des images montrées avec des dispositifs
d'affichage non stroboscopiques, en particulier des tablettes à cristaux liquides
(LCD Panel), des écrans à matrice active (TFT), des affichages séquentiels couleur,
des écrans à plasma (PDP), des dispositifs à micromiroir numérique ou des écrans à
diodes électroluminescentes organiques (OLED), dans lesquels les vecteurs de mouvement
dépendant des composants en mouvement dans chaque image d'un signal vidéo d'entrée
sont calculés, dans lesquels le filtrage anti-flou de mouvement du signal vidéo d'entrée
est réalisé sur la base des vecteurs de mouvement calculés pour produire un signal
vidéo de sortie, et dans lequel les images sont générées sur ledit dispositif d'affichage
dépendant dudit signal vidéo de sortie, caractérisé en ce que les caractéristiques de contour dans chaque image du signal vidéo d'entrée sont déterminées
et dans lequel le filtrage anti-flou de mouvement est en outre basé sur lesdites caractéristiques
de contour déterminées.
2. Procédé selon la revendication 1, caractérisé en ce que lesdites caractéristiques de contour sont la longueur et/ou l'orientation des vecteurs
de contour et/ou la présence d'un contour.
3. Procédé selon la revendication 2, caractérisé en ce que ladite longueur et/ou ladite orientation des vecteurs de contour sont dérivée(s)
des passages à zéro des valeurs absolues des dérivées premières du signal d'image
dans les deux directions orthogonales diminuées de seuils fixés.
4. Procédé selon la revendication 3, caractérisé en ce que les contours bas et étroits ne sont pas pris en compte dans le calcul de la longueur
et de l'orientation desdits vecteurs de contour.
5. Procédé selon les revendications 2 à 4, caractérisé en ce que la présence de contours est détectée en échantillonnant les vecteurs de contour en
signaux binaires.
6. Procédé selon la revendication 5, caractérisé en ce que la présence de contours est atténuée dans l'espace en dilatant et/ou en corrodant
et/ou par filtrage passe-bas desdits signaux binaires.
7. Procédé selon les revendications 1 à 6, caractérisé en ce que le filtrage anti-flou de mouvement est réalisé
en filtrant le signal vidéo d'entrée avec un filtre spatial,
en combinant par la suite le signal vidéo d'entrée filtré avec le signal vidéo d'entrée
lui-même pour produire un signal vidéo intermédiaire,
en multipliant le signal vidéo intermédiaire avec des facteurs de gain pour produire
un signal intermédiaire amplifié, et
en combinant ledit signal intermédiaire amplifié avec ledit signal vidéo d'entrée
pour produire un signal vidéo de sortie.
8. Procédé selon la revendication 7, caractérisé en ce que le filtre spatial appliqué au signal vidéo d'entrée est un filtre d'augmentation
des hautes fréquences spatiales.
9. Procédé selon la revendication 8, caractérisé en ce que les coefficients de filtre du filtre d'augmentation des hautes fréquences spatiales
et la direction de la caractéristique de fréquence de ce filtre dépendent des vecteurs
de mouvement et
en ce que les facteurs de gain dépendent de la longueur des vecteurs de mouvement et de la
présence de contours.
10. Procédé selon la revendication 8, caractérisé en ce que les coefficients de filtre du filtre d'augmentation des hautes fréquences spatiales
et la direction de la caractéristique de fréquence du filtre dépendent des vecteurs
de mouvement et
en ce que les facteurs de gain dépendent du produit intérieur des vecteurs de contour et des
vecteurs de mouvement normalisés à la longueur des vecteurs de contour.
11. Procédé selon la revendication 8, caractérisé en ce que la direction de la caractéristique de fréquence du filtre d'augmentation des hautes
fréquences spatiales dépend de l'orientation des vecteurs de mouvement,
en ce que les coefficients de filtre du filtre d'augmentation des hautes fréquences spatiales
dépendent des vecteurs de mouvement,
et en ce que les facteurs de gain dépendent des vecteurs de mouvement et/ou des vecteurs de contour.
12. Procédé selon la revendication 8, caractérisé en ce que la direction de la caractéristique de fréquence du filtre d'augmentation des hautes
fréquences spatiales dépend de l'orientation des vecteurs de contour,
en ce que les coefficients de filtre du filtre d'augmentation des hautes fréquences spatiales
dépendent des vecteurs de contour,
et en ce que les facteurs de gain dépendent des vecteurs de mouvement et/ou des vecteurs de contour.
13. Procédé selon la revendication 8, caractérisé en ce qu'un ensemble fixe de coefficients de filtre pour le filtre d'augmentation des hautes
fréquences spatiales est utilisé, et en ce que la direction de la caractéristique de fréquence du filtre spatial dépend de l'orientation
des vecteurs de contour et en ce que les facteurs de gain dépendent des vecteurs de mouvement et/ou des vecteurs de contour.
14. Procédé selon les revendications 11 à 13, caractérisé en ce que les facteurs de gain dépendent de la longueur des vecteurs de mouvement et de la
présence de contours.
15. Procédé selon les revendications 11 à 13, caractérisé en ce que les facteurs de gain dépendent du produit intérieur des vecteurs de contour et des
vecteurs de mouvement normalisés à la longueur des vecteurs de contour.
16. Dispositif d'affichage non stroboscopique, en particulier des affichages à cristaux
liquides (LCD), des écrans à matrice active (TFT), des affichages séquentiels couleur,
des écrans à plasma (PDP), des dispositifs à micromiroir numérique ou des écrans à
diodes électroluminescentes organiques (OLED),
avec des moyens de calcul des vecteurs de mouvement dans chaque image d'un signal
vidéo d'entrée, avec des moyens de filtrage du signal vidéo d'entrée dépendant desdits
vecteurs de mouvement calculés pour produire un signal vidéo de sortie, et
avec des moyens d'affichage des images du signal vidéo de sortie sur un écran d'affichage,
caractérisé en ce que des moyens de détermination des caractéristiques de contour de chaque image du signal
vidéo d'entrée sont fournis et
en ce que des moyens de filtrage du signal vidéo d'entrée dépendant d'à la fois les vecteurs
de mouvement calculés et les caractéristiques de contour déterminées sont fournis.