(19)
(11) EP 1 620 447 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
08.08.2007 Bulletin 2007/32

(21) Application number: 03738993.9

(22) Date of filing: 30.05.2003
(51) International Patent Classification (IPC): 
C07F 15/04(2006.01)
C08F 10/00(2006.01)
C07F 15/00(2006.01)
(86) International application number:
PCT/US2003/016948
(87) International publication number:
WO 2003/102006 (11.12.2003 Gazette 2003/50)

(54)

SOLUBLE LATE TRANSITION METAL CATALYSTS FOR OLEFIN OLIGOMERIZATIONS III

LÖSLICHE SPÄTÜBERGANGSMETALLKATALYSATOREN ZUR OLEFINOLIGOMERISATION III

CATALYSEURS A BASE DE METAUX DE TRANSITION TARDIFS SOLUBLES POUR OLIGOMERISATIONS III D'OLEFINES


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

(30) Priority: 30.05.2002 US 384289 P
17.07.2002 US 396370 P

(43) Date of publication of application:
01.02.2006 Bulletin 2006/05

(73) Proprietor: ExxonMobil Chemical Patents, Inc.
Baytown, TX 77520-2101 (US)

(72) Inventors:
  • ZHAO, Baiyi
    Kingwood, TX 77345 (US)
  • BERLUCHE, Enock
    Phillipsburg, NJ 08865 (US)
  • KACKER, Smita
    Houston, TX 77059 (US)
  • CANICH, Jo Ann, Marie
    Houston, TX 77059 (US)

(74) Representative: Veldhuizen, Albert Dirk Willem et al
Exxon Chemical Europe Inc., P.O.Box 105
1830 Machelen
1830 Machelen (BE)


(56) References cited: : 
WO-A-00/10945
   
  • ABAKUMOV, G. A. ET AL: "Bis(1,4-di-tert-butyl-1,4-diazabutadiene) copper(I) [(3,6-di-tert-butyl-o- benzosemiquinono)(3,6-di-tert-butylcatecho lato)cuprate(II)]. The molecula structure and intramolecular electron transfer" RUSSIAN CHEMICAL BULLETIN (TRANSLATION OF IZVESTIYA AKADEMII NAUK, SERIYA KHIMICHESKAYA) (2001), 50(11), 2193-2199, 2001, XP002228902
  • KANNAN S ET AL: "Dinuclear diimine palladium(II) and platinum(II) hydroxo and amido complexes: synthesis and X-ray crystal structures" POLYHEDRON, PERGAMON PRESS, OXFORD, GB, vol. 19, 2000, pages 155-163, XP002221653 ISSN: 0277-5387
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF INVENTION



[0001] This document relates to late transition metal catalysts for olefin oligomerizations and to methods for making and using these catalysts.

BACKGROUND



[0002] Alpha-olefins, especially those containing 6 to 20 carbon atoms, are important items of commerce. They are used as intermediates in the manufacture of detergents, as monomers (especially in linear low-density polyethylene), and as intermediates for many other types of products. As a consequence, improved methods of making these compounds are desired.

[0003] Most commercially produced □-olefins are made by the oligomerization of ethylene, catalyzed by various types of compounds, see for instance B. Elvers, et al., Ed. Ullmann's Encyclopedia of Industrial Chemistry, Vol. A13, VCH Verlagsgesellschaft mbH, Weinheim, 1989, p. 243-247 and 275-276, and B. Cornils, et al., Ed., Applied Homogeneous Catalysis with Organometallic Compounds, A Comprehensive Handbook, Vol. 1, VCH Verlagsgesellschaft mbH, Weinheim, 1996, p. 245-258. The major types of commercially used catalysts are alkylaluminum compounds, certain nickel-phosphine complexes, and a titanium halide with a Lewis acid such as AlCl3. In all of these processes, significant amounts of branched and/or internal olefins and/or diolefins are produced. Since in most instances these are undesirable and often difficult to separate, these byproducts are avoided commercially.

[0004] Recently, a series of cationic (α-diimine) nickel (II) catalysts for ethylene oligomerization and propylene dimerization were reported. (Organometallics 1999, 18, 65-74; Organometallics 1997, 16, 2005-2007; WO 00/10945; US 5,880,323). These catalysts are highly active. But the corresponding pre-catalysts have low organic-solvent solubility. Therefore, their characterization and application is highly restricted. Catalyst solubility is desired for continuous solution reactors and for supporting the catalysts for use in a slurry phase reactor or fixed-bed reactor. Additionally, a soluble pre-catalyst is easier to completely activate to its catalytic form, and often provides a catalyst with significantly higher catalyst activity. In view of the difficulty and practical limitations in using insoluble or poorly soluble catalysts, soluble, α-olefin-producing catalyst systems need to be developed.

SUMMARY



[0005] Invention catalyst systems comprise nickel or palladium components (pre-catalyst or catalyst precursor) and an activator (cocatalyst)) that can produce α-olefins in a solution- or a slurry-phase oligomerization procedure. The soluble oligomerization catalyst precursors of this invention are represented by the general formula I.

[0006] 

where
M is nickel or palladium;
Pn is a Group 15 atom, preferably nitrogen;
H is hydrogen;
R7 and R8 are independently
  • hydrogen or
  • C1-C30 hydrocarbyl radicals that may be joined to form an aromatic or non-aromatic cyclic ring structure;
R13, R14, R15, R16, R17, and R18 are independently
  • hydrogen or
  • C1-C30 hydrocarbyl radicals
Optionally, one or more aromatic or non-aromatic structures may be formed by independently joining two or more adjacent
  • non-hydrogen R13, R14 or R15; or
  • non-hydrogen R16, R17 or R18,
R9, R10, R11 and R12 are independently
  • hydrogen,
  • halogen, hydroxyl, alkoxy, or
  • C1-C30 hydrocarbyl radicals
provided that at least one R9-12 radical is not hydrogen; and
two or more R9-12 may form a saturated or unsaturated ring structure.

[0007] Some invention embodiments relate to compositions comprising:

a metal selected from nickel or palladium;

an ancillary ligand system connected to the metal where the ancillary ligand system comprises

1,4-diazabutadiene; and

substituents connected to the 2 and 3 positions of the diazabutadiene;

phenyl rings connected to the 1 and 4 positions of the diazabutadiene;

  1. (i) a catecholate ligand.



[0008] In another embodiment, this invention relates to a composition comprising:
  1. (I) a metal selected from nickel or palladium connected to a ligand comprising 1,4-diazabutadiene:
    1. (a) having a phenyl ring connected to the 1 position of the diazabutadiene, and
    2. (b) having a phenyl ring connected to the 4 position of the diazabutadiene, and
    3. (c) where the 2 and 6 positions of both phenyl rings are connected to hydrogen radicals, and
    4. (d) where the 2 and 3 positions of the diazabutadiene are, each independently, connected to hydrogen or a hydrocarbyl group; and
  2. (II) a catecholate ligand connected to the metal.


[0009] In another embodiment, this invention relates to a composition comprising a catecholate ligand, palladium or nickel, and an ancillary ligand with the following structure:

where
Pn is a Group-15 element;
H is hydrogen;
R7 and R8 are independently hydrogen or C1-C30 hydrocarbyl radicals, or both are C1-C30 hydrocarbyl radicals that form a ring structure comprising one or more aromatic or non-aromatic rings;
R13-R18 are, independently, hydrogen or C1-C30 hydrocarbyl radicals.

[0010] The compositions can be activated with cocatalyst activators, as are known in the art. Accordingly, invention embodiments also include such activated compositions. These activated compositions react with ethylene to form ethylene oligomers.

[0011] Methods of producing these compositions are outlined in this document. Because of this, invention embodiments include methods of producing these compositions, as well.

DEFINITIONS



[0012] The term "hydrocarbyl radical" is sometimes used interchangeably with "hydrocarbyl" throughout this document. For purposes of this disclosure, "hydrocarbyl radical" encompasses C1-C50 radicals. These radicals can be linear, branched, or cyclic, and when cyclic, aromatic or non-aromatic. Thus, the term "hydrocarbyl radical", in addition to unsubstituted hydrocarbyl radicals, encompasses substituted hydrocarbyl radicals, halocarbyl radicals, and substituted halocarbyl radicals, as these terms are defined below.

[0013] Substituted hydrocarbyl radicals are radicals in which at least one hydrogen atom has been substituted with at least one functional group such as NR"2, OR", PR"2, SR", BR"2, SiR"3, GeR"3 and the like or where at least one non-hydrocarbon atom or group has been inserted within the hydrocarbyl radical, such as O, S, NR", PR", BR", SiR"2, GeR"2, and the like, where R" is independently a hydrocarbyl or halocarbyl radical.

[0014] Halocarbyl radicals are radicals in which one or more hydrocarbyl hydrogen atoms have been substituted with at least one halogen or halogen-containing group (e.g. F, Cl, Br, I).

[0015] Substituted halocarbyl radicals are radicals in which at least one hydrocarbyl hydrogen or halogen atom has been substituted with at least one functional group such as NR"2, OR", PR"2, SR", BR"2, SiR"3, GeR"3 and the like or where at least one non-carbon atom or group has been inserted within the halocarbyl radical such as O, S, NR", PR", BR", SiR"2, GeR"2, and the like where R" is independently a hydrocarbyl or halocarbyl radical provided that at least one halogen atom remains on the original halocarbyl radical.

[0016] The hydrocarbyl radical can be independently selected from methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosenyl, docosenyl, tricosenyl, tetracosenyl, pentacosenyl, hexacosenyl, heptacosenyl, octacosenyl, nonacosenyl, triacontenyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl, eicosynyl, heneicosynyl, docosynyl, tricosynyl, tetracosynyl, pentacosynyl, hexacosynyl, heptacosynyl, octacosynyl, nonacosynyl, or triacontynyl isomers. The radical may then be subjected to the types of substitutions described above.

[0017] The nickel or palladium component can also be described as comprising at least one ancillary ligand that stabilizes the oxidation state of the transition metal. Ancillary ligands serve to enforce the geometry around the metal center. In this disclosure, ancillary ligands comprise 1,4-diazabutadiene to which substituents are connected at the 2 and 3 positions and phenyl rings are connected to the 1 and 4 positions of the diazabutadiene. For purposes of this disclosure, all recited "diazabutadiene" is intended to indicate 1,4-diazabuta-1,3-diene.

[0018] The substituents at the 2 and 3 positions are independently hydrogen or a hydrocarbyl radical. In some embodiments, a substituent is independently hydrogen or a C1-C30 hydrocarbyl radical. In these or other embodiments, two of these substituents link to form a ring structure comprising one or more, aromatic or non-aromatic rings.

[0019] For purposes of this disclosure, "catecholate" or "catecholate ligand" encompasses a ligand comprising a phenyl ring. Two oxygen atoms connect to the phenyl ring at the ring's 1 and 2 positions. The ligand connects to the metal center of the catalyst precursor through both of these oxygen atoms. This leaves four hydrogen atoms connected to the phenyl ring at its 3, 4, 5 and 6 positions. Zero, one, two, three, or four of these hydrogen atoms can be substituted with a C1-C30 hydrocarbyl radical. Also, adjacent catecholate hydrocarbyl radicals can join to transform the catecholate into a substituted or unsubstituted, fused-multi-ring system.

[0020] For purposes of this disclosure oligomers include about 2-75 mer units.

[0021] In some structures throughout this specification, the ligand-metal connection is drawn with an arrow indicating that the electrons for the bond originally came from the ligand. At other times, a solid line showing the bond's covalent nature represents the liquid-metal connection. One of ordinary skill in the art recognizes that these depictions are interchangeable.

DETAILED DESCRIPTION



[0022] Due to the presence of a catecholate ligand, the catalyst becomes more soluble in most organic solvents such as hexane, toluene, methylene chloride, and the like.

[0023] Examples of specific invention catalyst precursors take the following formula where some components are listed in Table 1. When alkyl, alkenyl and alkynyl radicals are disclosed in this application, the term includes all isomers and all substitution types, as described above, unless otherwise stated. For example, butyl includes n-butyl, isobutyl, and tert-butyl; pentyl includes n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1-ethylpropyl, and neopentyl; butenyl includes E and Z forms of 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-1-propenyl and 2-methyl-2-propenyl. To illustrate members of the transition metal component, select any combination of the species listed in Table 1. For example, choosing the components in the first row, yields [1,4-bis(phenyl)-1,4-diaza-1,3-butadiene] nickel catecholate. Any combination of components may be selected. The column labeled R19 R20 shows some examples of substituents that can serve as R19 and R20. Of course, selecting a particular substituent for R19 is independent of the selection for R20. In other words, the invention allows R19=R20, but does not demand it. The same goes for R7, R8, R9, R10, R11, and R12, as well.

R19 R20 R7 R8 R9 R10 R11 R12 M
Phenyl Hydrogen hydrogen nickel
3-methylphenyl Methyl dimethoxy palladium
4-methylphenyl Ethyl methyl  
3,4-dimethylphenyl Propyl ethyl  
3,4,5-trimethylphenyl Butyl propyl  
3-ethylphenyl Pentyl butyl  
4-ethylphenyl Hexyl pentyl  
3,4-diethylphenyl Heptyl hexyl  
3,4,5-triethylphenyl Octyl heptyl  
3-propylphenyl Nonyl octyl  
4-propylphenyl Decyl nonyl  
3,4-dipropylphenyl Undecyl decyl  
3,4,5-tripropylphenyl Dodecyl undecyl  
3-butylylphenyl Tridecyl dodecyl  
4-butylylphenyl Tetradecyl tridecyl  
3,4-dibutylphenyl Octacosyl tetradecyl  
3,4,5-tributylphenyl Nonacosyl octacosyl  
3-pentylphenyl Triacontyl nonacosyl  
4-pentylphenyl Cyclohexyl triacontyl  
3,4-dipentylphenyl Cyclopentyl cyclohexyl  
3,4,5-tripentylphenyl Cycloheptyl cyclopentyl  
3-hexylphenyl Cyclooctyl cycloheptyl  
4-hexylphenyl Cyclodecyl cyclooctyl  
3,4-dihexylphenyl Cyclododecyl cyclodecyl  
3,4,5-trihexylphenyl Naphthyl cyclododecyl  
3-heptylphenyl Phenyl naphthyl  
4-heptylphenyl Tolyl phenyl  
3,4-diheptylphenyl Benzyl tolyl  
3,4,5-triheptylphenyl Phenethyl benzyl  
3-octylphenyl R7 joined to R8 phenethyl  
4-octylphenyl 1,8-naphthalene chloro  
3,4-dioctylphenyl 2,2'-biphenyl bromo  
3,4,5-trioctylphenyl   fluoro  
3-nonylphenyl      
4-nonylphenyl      
3,4-dinonylphenyl      
3,4,5-trinonylphenyl      
3-decylphenyl      
4-decylphenyl      
3,4-didecylphenyl      
3,4,5-tridecylphenyl      
3-undecylphenyl      
4-undecylphenyl      
3,4-diundecylphenyl      
3,4,5-triundecylphenyl      
3-dodecylphenyl      
4-dodecylphenyl      
3,4-didodecylphenyl      
3,4,5-tridodecylphenyl      


[0024] The following structure illustrates an invention embodiment where R7 is joined to R8:



[0025] Of course, the naphthalenic ring structure can be hydrocarbyl-substituted, as well.

[0026] R19 and R20 can further independently be defined as the following substituent:

where R21, R22, and R23 are independently hydrogen or hydrocarbyl radicals. R21, R22 and R23 can be selected from radicals comprising: methyl, ethyl, ethenyl, ethynyl and all isomers of propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosenyl, docosenyl, tricosenyl, tetracosenyl, pentacosenyl, hexacosenyl, heptacosenyl, octacosenyl, nonacosenyl, triacontenyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl, eicosynyl, heneicosynyl, docosynyl, tricosynyl, tetracosynyl, pentacosynyl, hexacosynyl, heptacosynyl, octacosynyl, nonacosynyl, or triacontynyl. In some embodiments R21 and R22 or R22 and R23 join together to form a ring structure.

[0027] The catecholate ligand can take the following formula:

where R24, R25, R26 and R27 are independently, hydrogen, methyl, ethyl, ethenyl, ethynyl and all isomers of propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosenyl, docosenyl, tricosenyl, tetracosenyl, pentacosenyl, hexacosenyl, heptacosenyl, octacosenyl, nonacosenyl, triacontenyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl, eicosynyl, heneicosynyl, docosynyl, tricosynyl, tetracosynyl, pentacosynyl, hexacosynyl, heptacosynyl, octacosynyl, nonacosynyl, and triacontynyl, phenyl, benzyl, fluoro, chloro, bromo, iodo, methoxy, ethoxy, propoxy, butoxy, and phenoxy. Some embodiments select at least one or two R24, R25, R26 or R27 to be a hydrocarbyl substituent such as butyl. Adjacent R24-R27 can connect to form substituted or unsubstituted ring structures, as well.

[0028] Below are examples in which the catecholate has been transformed into a fused ring system.

[1,4-diphenyl-diazobuta-1,3-diene][naphthalene-1,2-bis(olate)] nickel;

[1,4-bis(4-pentadecylphenyl)-diazobuta-1,3-diene][4-butyl-naphthalene-1,2-bis(olate)] nickel

[1,4-bis(4-ethylphenyl)-diazobuta-1,3-diene][1-butyl-naphthalene-2,3-bis(olate)] nickel

[0029] These complexes can be synthesized by methods well known in the literature. First, the ancillary ligand should be prepared. One way of making these ancillary ligands is by the acid-catalyzed addition of an aniline (for phenyl-substituted diazo ligands) to a substituted or unsubstituted 2,3-butanedione.

[0030] Next comes preparation of the metal complex. Its preparation method uses a metal carbonyl complex, a bidentate or tridentate chelating ligand, and a 1,2-benzoquinone complex to form the desired complex. The metal carbonyl, the ancillary ligand, and a benzoquinone are mixed in a 1:1:1 molar ratio. The benzoquinone serves as an oxidizing agent. After its reduction, the molecule becomes the catecholate ligand that coordinates to the now-ancillary-ligand-coordinated transition metal. The synthesis of similar complexes is well known to those of ordinary skill in the art. An example of this oxidation-reduction reaction is illustrated below:

Formation of a nickel (II) complex:



[0031] For purposes of this disclosure, the term activator is used interchangeably with cocatalyst. The activator functions to remove an abstractable ligand from the transition metal. After activation the transition metal is left with an empty coordination site at which incoming α-olefin can coordinate before it is incorporated into the oligomer or polymer. Any reagent that can so function without destroying the commercial viability of the oligomerization or polymerization process is suitable for use as an activator or cocatalyst in this invention. Exemplary cocatalysts are discussed below.

[0032] Common activators well known in the literature including alumoxanes, such as methylalumoxane, modified methylalumoxane, ethylalumoxane and the like; aluminum alkyls such as trimethyl aluminum, triethyl aluminum, triisopropyl aluminum and the like; alkyl aluminum halides such as diethyl aluminum chloride and the like; and alkylaluminum alkoxides are useful in the practice of this invention.

[0033] The alumoxane component useful as an activator typically is an oligomeric aluminum compound represented by the general formula (R"-Al-O)n, which is a cyclic compound, or R"(R"-Al-O)nAlR"2, which is a linear compound. In the general alumoxane formula, R" is independently a C1-C20 alkyl radical, for example, methyl, ethyl, propyl, butyl, pentyl, isomers thereof, and the like, and "n" is an integer from 1-50. Most preferably, R" is methyl and "n" is at least 4. Methylalumoxane and modified methylalumoxanes are most preferred. For further descriptions see, EP 279586, EP 561476, WO94/10180 and US Pat. Nos. 4,665,208, 4,908,463, 4,924,018, 4,952,540, 4,968,827, 5,041,584, 5,103,031, 5,157,137, 5,235,081, 5,248,801, 5,329,032, 5,391,793, and 5,416,229.

[0034] The aluminum alkyl component useful as an activator is represented by the general formula R"A1Z2 where R" is defined above, and each Z is independently R" or a different univalent anionic ligand such as halogen (Cl, Br, I), alkoxide (OR") and the like. Most preferred aluminum alkyls include triethylaluminum, diethylaluminum chloride, triisobutylaluminum, tri-n-octylaluminum and the like.

[0035] When alumoxane or aluminum alkyl activators are used, the catalyst-precursor-to-activator molar ratio is from about 1:1000 to 10:1; alternatively, 1:500 to 1:1; or 1:300 to 1:10.

[0036] Additionally, discrete ionic activators such as [Me2PhNH][B(C6F5)4], [Bu3NH][BF4], [NH4][PF6], [NH4][SbF6], [NH4][AsF6], [NH4][B(C6H5)4] or Lewis acidic activators such as B(C6F5)3 or B(C6H5)3 can be used, Discrete ionic activators provide for an activated catalyst site and a relatively non-coordinating (or weakly coordinating) anion. Activators of this type are well known in the literature, see for instance W. Beck., et al., Chem. Rev., Vol. 88, p. 1405-1421 (1988); S. H. Strauss, Chem. Rev., Vol. 93, p. 927-942 (1993); US Pat. Nos. 5,198,401, 5,278,119, 5,387,568, 5,763,549, 5,807,939, 6,262,202, and WO93/14132, WO99/45042 WO01/30785 and WO01/42249.

[0037] When a discrete ionic activator is used, the catalyst-precursor-to-activator molar ratio is from: 1:10 to 1.2:1; 1:10 to 10:1; 1:10 to 2:1; 1:10 to 3:1; 1:10 to 5:1; 1:2 to 1.2:1; 1:2 to 10:1; 1:2 to 2:1; 1:2 to 3:1; 1:2 to 5:1; 1:3 to 1.2:1; 1:3 to 10:1; 1:3 to 2:1; 1:3 to 3:1; 1:3 to 5:1; 1:5 to 1.2:1; 1:5 to 10:1; 1:5 to 2:1; 1:5 to 3:1; 1:5 to 5:1.

[0038] The catalyst-precursor-to-alkylating-agent molar ratio is from: 1:10 to 10:1; 1:10 to 2:1; 1:10 to 25:1; 1:10 to 3:1; 1:10 to 5:1; 1:2 to 10:1; 1:2 to 2:1; 1:2 to 25:1; 1:2 to 3:1; 1:2 to 5:1; 1:25 to 10:1; 1:25 to 2:1; 1:25 to 25:1; 1:25 to 3:1; 1:25 to 5:1; 1:3 to 10:1; 1:3 to 2:1; 1:3 to 25:1; 1:3 to 3:1; 1:3 to 5:1; 1:5 to 10:1; 1:5 to 2:1; 1:5 to 25:1; 1:5 to 3:1; 1:5 to 5:1.

[0039] The catalyst systems of this invention can additionally be prepared by combining in any order, the bidentate ligand:

where N, H, R13, R14, R15, R16, R17, R18, R7 and R8 are as previously defined, with a Group-10 halide salt which may optionally be coordinated by solvent (for example NiX2 or NiX2•MeOCH2CH2OMe where X = Cl, Br or I), and a 1,2-catecholate salt in a solvent, such as toluene, with dissolved activator compound (for example methylalumoxane). Similarly, the catalyst system can be prepared by combining in any order, the bidentate ligand, a neutral metal (such as Ni(CO)4, Ni(COD)2, Ni metal, Pd metal, Pd(PPh3)4, Pd(Pcy3)2, Pd(t-Bu3P)2), and an orthoquinone in a solvent, such as toluene, with dissolved activator compound (for example methylalumoxane). In either example, all reactants may be added in any order, or even essentially simultaneously. But some embodiments add the activator last.

[0040] The solubility of invention catalyst precursors allows for the ready preparation of supported catalysts. To prepare uniform supported catalysts, the catalyst precursor should significantly dissolve in the chosen solvent. The term "uniform supported catalyst" means that the catalyst precursor or the activated catalyst approach uniform distribution upon the support's accessible surface area, including the interior pore surfaces of porous supports.

[0041] Invention supported catalyst systems may be prepared by any method effective to support other coordination catalyst systems, effective meaning that the catalyst so prepared can be used for oligomerizing olefin in a heterogenous process. The catalyst precursor, activator, suitable solvent, and support may be added in any order or simultaneously. The activator, dissolved in an appropriate solvent such as toluene can be stirred with the support material for 1 minute to 10 hours. The total volume of the activation solution may be greater than the pore volume of the support, but some embodiments limit the total solution volume below that needed to form a gel or slurry (about 100-200% of the pore volume). The mixture is optionally heated from 30-200°C during this time. The catalyst can be added to this mixture as a solid, if a suitable solvent is employed in the previous step, or as a solution. Or alternatively, this mixture can be filtered, and the resulting solid mixed with a catalyst precursor solution. Similarly, the mixture may be vacuum dried and mixed with a catalyst precursor solution. The resulting catalyst mixture is then stirred for 1 minute to 10 hours, and the catalyst is either filtered from the solution, and vacuum dried, or vacuum or evaporation alone removes the solvent.

[0042] The catalyst precursor and activator can be combined in solvent to form a solution. The support is then added to this solution and the mixture is stirred for 1 minute to 10 hours. The total volume of this solution may be greater than the pore volume of the support, but some embodiments limit the total solution volume below that needed to form a gel or slurry (about 100-200% pore volume). The residual solvent is then removed under vacuum, typically at ambient temperature and over 10-16 hours. But greater or lesser times are possible.

[0043] The catalyst precursor may also be supported in the absence of the activator, in which case the activator is added to the liquid phase of a slurry process. For example, a solution of catalyst precursor is mixed with a support material for a period of about 1 minute to 10 hours. The resulting pre-catalyst mixture is then filtered from the solution and dried under vacuum, or vacuum or evaporation alone removes the solvent. The total volume of the catalyst precursor solution may be greater than the pore volume of the support, but the total solution volume can be limited below that needed to form a gel or slurry (about 100-200% of the pore volume).

[0044] Additionally, two or more different catalyst precursors may be placed on the same support using any of the support methods disclosed above. Likewise, two or more activators may be placed on the same support.

[0045] Suitable solid particle supports typically comprise polymeric or refractory oxide materials. Porous supports (such as for example, talc, inorganic oxides, inorganic chlorides (magnesium chloride)) that have an average particle size greater than 10 µm can be used. Inorganic oxide materials as the support material including Group-2, -3, -4, -5, -13, or -14 metal or metalloid oxides also can be used. Catalyst support materials include silica, alumina, silica-alumina, and their mixtures. Other inorganic oxides may serve either alone or in combination with the silica, alumina, or silica-alumina. These are magnesia, titania, zirconia, and the like. Lewis acidic materials such as montmorillonite and similar clays may also serve as a support. In this case, the support can optionally double as the activator component. But additional activator may also be used.

[0046] As is well known in the art, the support material may be pretreated by any number of methods. For example, inorganic oxides may be calcined, chemically treated with dehydroxylating agents such as aluminum alkyls and the like, or both.

[0047] The carrier of invention catalysts can have a surface area of 10-700 m2/g, or pore volume of 0.1-4.0 cc/g, and average particle size from 10-500 µm. But greater or lesser values may also be used.

[0048] Invention catalysts may generally be deposited on the support at a loading level of 10-100 micromoles of catalyst precursor per gram of solid support; alternately from 20-80 micromoles of catalyst precursor per gram of solid support; or from 40-60 micromoles of catalyst precursor per gram of support. But greater or lesser values may be used provided that the total amount of solid catalyst precursor does not exceed the support's pore volume.

[0049] Additionally, oxidizing agents may be added to the supported or unsupported catalyst as described in WO 01/68725.

Process



[0050] In the invention oligomerization processes, the process temperature may be -100°C to 300°C, -20°C to 200°C, or 0°C to 150°C. Some embodiments select ethylene oligomerization pressures (gauge) from greater than 0 kPa up to 35 MPa or 500 kPa-15 MPa.

[0051] The preferred and primary feedstock for the oligomerization process is the α-olefin ethylene; however, other α-olefins including but not limited to propylene and 1-butene may also be used alone or in combination with ethylene.

[0052] Invention oligomerization processes may be run in the presence of various liquids, particularly aprotic organic liquids. The homogeneous catalyst system, ethylene, α-olefins, and product are soluble in these liquids. A supported (heterogeneous) catalyst system may also be used, but will form a slurry rather than a solution. Suitable liquids for both homo- and heterogeneous catalyst systems, include alkanes, alkenes, cycloalkanes, selected halogenated hydrocarbons, aromatic hydrocarbons, and in some cases, hydrofluorocarbons. Useful solvents specifically include hexane, toluene, cyclohexane, and benzene.

[0053] Also, under the correct conditions, mixtures of α-olefins containing desirable numbers of carbon atoms are obtained. Factor K from the Schulz-Flory theory (see for instance B. Elvers, et al., Ed. Ullmann's Encyclopedia of Industrial Chemistry, Vol. A13, VCH Verlagsgesellschaft mbH, Weinheim, 1989, p. 243-247 and 275-276) serves as a measure of these α-olefins' molecular weights. From this theory,


where n(Cn olefin) is the number of moles of olefin containing n carbon atoms, and n(Cn+2 olefin) is the number of moles of olefin containing n+2 carbon atoms, or in other words the next higher oligomer of Cn olefin. From this can be determine the weight (mass) fractions of the various olefins in the resulting product. The ability to vary this factor provides the ability to obtain the desired olefins.

[0054] Invention-made α-olefins may be further polymerized with other olefins to form polyolefins, especially linear low-density polyethylenes, which are copolymers containing ethylene. They may also be homopolymerized. These polymers may be made by a number of known methods, such as Ziegler-Natta-type polymerization, metallocene catalyzed polymerization, and other methods, see for instance WO 96/23010, see for instance Angew. Chem., Int. Ed. Engl., vol. 34, p. 1143-1170 (1995); European Patent Application, 416,815; and U.S. Patent 5,198,401 for information about metallocene-type catalysts, and J. Boor Jr., Ziegler-Natta Catalysts and Polymerizations, Academic Press, New York, 1979 and G. Allen, et al., Ed., Comprehensive Polymer Science, Vol. 4, Pergamon Press, Oxford, 1989, pp. 1-108, 409-412 and 533-584, for information about Ziegler-Natta-type catalysts, and H. Mark, et al., Ed., Encyclopedia of Polymer Science and Engineering, Vol. 6, John Wiley & Sons, New York, 1992, p. 383-522, for information about polyethylene.

[0055] Invention-made α-olefins may be converted to alcohols by known processes, these alcohols being useful for a variety of applications such as intermediates for detergents or plasticizers. The α-olefins may be converted to alcohols by a variety of processes, such as the oxo process followed by hydrogenation, or by a modified, single-step oxo process (the modified Shell process), see for instance B. Elvers, et al., Ed., Ullmann's Encyclopedia of Chemical Technology, 5th Ed., Vol. A18, VCH Verlagsgesellschaft mbH, Weinheim, 1991, p. 321-327.

[0056] A set of exemplary catalyst precursors is set out below. These are by way of example only and are not intended to list every catalyst precursor that is within the scope of the invention.

[0057] Several structures are shown along with their corresponding names to help define the nomenclature used in the precursor list.

[1-(4-hexacosynyl phenyl)-2-(methyl)-3-(hydrido)-4-(phenyl)-1,4-diazabuta-1 ,3-diene] palladium [4-(ethyl)catecholate]

[1-(phenyl)-2-(butyl)-3-(hydrido)-4-(4-heptadecylphenyl)-1,4-diazabuta-1,3-diene] nickel [3-(methyl)-4-(propyl)catecholate]

[1,4-bis {3,5-di(pentyl)phenyl} -2-(hydrido)-3-(butyl}-1,4-diazabuta-1,3-diene] nickel [3,5-di(butyl)-4-(bromo)catecholate]
[1,4-bis{phenyl}-2-(butyl)-3-(octyl)1,4-diazabuta-1,3-diene] nickel [3,5-di(ethyl)catecholate], [1,4-bis{3,4-di(ethyl)phenyl}-2,3-(dibutyl)1,4-diazabuta-1,3-diene] nickel [4-(ethyl)-5-(butyl)catecholate); [1,4-bis{3,4-di(propyl)phenyl}-2-(hydrido)-3-(butyl)1,4-diazabuta-1,3-diene] nickel [4-(propyl)catecholate]; [1,4-bis{phenyl}-2-(hexyl)-3-(pentyl)1,4-diazabuta-1,3-diene] nickel [3-(butyl)-4,6-di(methyl)catecholate]; [1,4-bis{3,5-di(ethyl)phenyl}-2-(pentadecyl)-3-(butyl)1,4-diazabuta-1,3-diene] nickel [3-(ethyl)catecholate]; [1,4-bis{4-dodecaphosphinophenyl}-2-(pentyl)-3-(dodecyl)1,4-diazabuta-1,3-diene] nickel [4-(butyl)catecholate]; [1,4-bis{3,4-di(pentyl)phenyl}-2-(hydrido)-3-(pentyl)1,4-diazabuta-1,3-diene] palladium [3-(butyl)catecholate]; [1,4-bis{3,5-di(ethyl)phenyl}-2-(pentyl)-3-(methyl)1,4-diazabuta-1,3-diene] nickel [3-(ethyl)-5-(pentyl)catecholate]; [1,4-bis{3-heptenylphenyl}-2-(hexyl)-3-(ethyl)1,4-diazabuta-1,3-diene] nickel [3-(ethyl)-4-(methyl)catecholate]; [1,4-bis{3,4-di(proponyl)phenyl}-2-(pentyl)-3-{undecynyl)1,4-diazabuta-1,3-diene] nickel [3-(pentyl)-4-(butyl)catecholate]; [1,4-bis{phenyl}-2-(butyl)-3-(hexyl)1,4-diazabuta-1,3-diene] nickel [3-(propyl)-6-(ethyl)-catecholate]; [1,4-bis{phenyl}-2-(octyl)-3-(hydrido)1,4-diazabuta-1,3-diene] nickel [3,6-di(methyl)catecholate]; [1,4-bis{3,5-di(methyl)phenyl}-2-(octyl)-3-(butyl)1,4-diazabuta-1,3-diene] palladium [4-(methyl)-5-(pentyl)catecholate]; [1,4-bis{phenyl}-2-(butyl)-3-(pentyl)1,4-diazabuta-1,3-diene] nickel [4-(methyl)catecholate];

EXAMPLES



[0058] The following examples are presented to illustrate the discussion above. Although the examples may be directed toward certain embodiments of the present invention, they do not limit the invention in any specific way. In these examples, certain abbreviations are used to facilitate the description. These include standard chemical abbreviations for the elements and certain commonly accepted abbreviations, such as: Me = methyl, Et = ethyl, Bu = butyl, Ph = phenyl, MAO = methylalumoxane, DAB = diazabutadiene, DAB(Me)2 = 2,3-dimethyldiazabutadiene, COD = cyclooctadiene and cy = cyclohexyl.

[0059] All preparations were performed under an inert nitrogen atmosphere, using standard Schlenk or glovebox techniques, unless mentioned otherwise. Dry solvents (toluene, diethyl ether, pentane, and methylene chloride) were purchased as anhydrous solvents and further purified by passing them down an alumina (Fluka) column. 99.9% Ethylene was purchased from the BOC group (Surrey, United Kingdom). Formic acid (96%), methanol, 4-butylaniline, 2,3-butanedione, sodium sulfate, and 3,5-di-t-butyl-o-benzoquinone were purchased from Aldrich Chemical Company. Nickel tetracarbonyl can be purchased from Strem Chemicals, Inc. Deuterated solvents were dried with CaH and vacuum distilled prior to use. The compounds are illustrated below:

2,3-dimethyl-1,4-diphenyl-1,4-diaza-1,3-butadiene can be prepared from literature methods.



[0060] Preparation of [2,3-dimethyl-1,4-diphenyl-1,4-diaza-1,3-butadienelnicke](II) 3,5-di-tert-butyl-catecholate(Compound 1). Nickel tetracarbonyl (0.86 g, 5 mmol) was condensed into an evacuated and frozen ampoule (having reserved volume of approximately 1 liter) containing 2,3-dimethyl-1,4-diphenyl-1,4-diaza-1,3-butadiene (1.11 g, 5 mmol) and 3,5-di-tert-butyl-o-benzoquinone (1.10 g, 5 mmol) in 100 ml of degassed toluene. The ampoule was slowly warmed at ~30°C for one hour and at ~80°C for the next two hours. Resulting solution was maintained at -10°C overnight. Dark green crystals were filtered, washed with light petroleum, and dried under vacuum. Yield 1.826 g (65%). IR (Nujol, cm-1): 1585, 1515 m, 1490 m, 1420, 1390, 1340 m, 1300 s, 1265 m, 1250, 1215, 1075, 985 s, 850 m, 830, 765 s, 730, 695 s, 655, 625, 525. 1H NMR (200 MHz, CDCl3, δ, ppm): 0.94 and 1.11 s (2×9H, C(CH3)3); 1.78 s (6H, N=CCH3); 7.27- 7.50 m (10H, 2×C6H5).

Oligomerization Reactions



[0061] Oligomerization reactions were run in a 300-mL HastelloyC Parr reactor equipped with a mechanical stirrer. Catalyst was added to the reactor as a solution in toluene (75 ml) under argon. Ethylene was added to the reactor at 100 psig and then vented to maintain an ethylene atmosphere. Methylalumoxane solution (Albemarle, 30 wt % in toluene) was then added to the reactor. Thus, the catalyst was activated in the monomer's presence. The ethylene pressure was brought to the desired value. The aim was to maintain the reactor temperature at room temperature; but in cases where the reaction exotherm was very large, higher reaction temperatures were reached. After the reaction had run for an hour, the reactor was cooled in an acetone/dry ice bath, vented, and quenched with methanol. A sample of the product solution was analyzed by GC/MS after adding nonane as an internal standard. In the case of supported transition metal compounds, silica loaded samples were prepared by adding a solution of the transition metal complex in methylene chloride to silica followed by drying of the silica under vacuum overnight. MAO (0.35 g of 30 wt% MAO; Al/M molar ratio = 240 for the non supported run) was added to the reactor solution prior to adding the supported transition metal compound. The results of the oligomerization reactions are tabulated in Table 2:
Table 2: Oligomerization Examples
Compound (mmol) C2 (psig) Rxn Exotherm (°C) Final Rxn Temp (°C) Activity (mol C2/ mol Ni•hr) Ka % α olefin (total)b
1 0.0075 820 36-100 60 261,900 0.54 74
1 0.0075 100 34-84 44 95,200 0.49 60
1c 0.0019 100 24-61 44 227,400 0.71 59
aK is based on C14/C12 molar ratio for all isomers.
bThese numbers are subject to the interpretation of the GC/MS spectra and are calculated from averaging the weight % of alpha olefin from the C8, C10, and C12 peaks.
c1 wt% of compound 1 loaded on silica; 0.09g of 30wt% MAO added to the reactor providing an A1/M molar ratio of 260.


[0062] Certain features of the present invention are described in terms of a set of numerical upper limits and a set of numerical lower limits. This specification discloses all ranges formed by any combination of these limits. All combinations of these limits are within the scope of the invention unless otherwise indicated.


Claims

1. A composition represented by the formula:

where,
M is nickel or palladium;
H is hydrogen;
Pn is a Group-15 element;
O is oxygen;
R7 and R8 are independently hydrogen or C1-C30 hydrocarbyl radicals, or both are C1-C30 hydrocarbyl radicals that may be joined to form an aromatic or non-aromatic cyclic ring structure;
R13, R14, R15, R16, R17, and R18 are independently hydrogen or hydrocarbyl radicals having at least three carbon atoms, or optionally, one or more aromatic or non-aromatic structures may be formed by independently joining two or more adjacent R13 to R18 groups; and
R9, R10, R11 and R12 are independently hydrogen, a hydroxyl, an alkoxy, a halogen, or a C1 to C30 hydrocarbyl radical, provided that at least one R9-12 radical is not hydrogen; and two or more R9-12 may form a saturated or unsaturated ring structure.
 
2. Composition according to Claim 1 in which R7 and R8 are, independently, selected from the group consisting of hydrogen, methyl, ethyl, or all isomers of propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, cyclohexyl, cyclopentyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclododecyl, napthyl, phenyl, tolyl, benzyl, or phenethyl radicals and are preferably, independently, selected from the group consisting of hydrogen, methyl and ethyl.
 
3. Composition according to Claim 1 or Claim 2 in which one or more saturated or unsaturated cyclic structures are formed by independently joining two or more adjacent non-hydrogen R13, R14, or R15 or two or more adjacent non-hydrogen R16, R17, or R18.
 
4. Composition according to any of the preceding claims in which R13 R14, R15, R16, R17, and R18 are independently selected from the group consisting of hydrogen and all isomers of propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosenyl, docosenyl, tricosenyl, tetracosenyl, pentacosenyl, hexacosenyl, heptacosenyl, octacosenyl, nonacosenyl, triacontenyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl, eicosynyl, heneicosynyl, docosynyl, tricosynyl, tetracosynyl, pentacosynyl, hexacosynyl, heptacosynyl, octacosynyl, nonacosynyl, and triacontynyl radicals.
 
5. Composition according to any of the preceding claims in which at least one of R9, R10, R11 and R12 is a C1 to C30 hydrocarbyl radical.
 
6. Composition according to any of the preceding claims in which at least one of R9, R10, R11 and R12 is a C1 to C30 hydrocarbyl radical selected from the group consisting of all isomers of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosenyl, docosenyl, tricosenyl, tetracosenyl, pentacosenyl, hexacosenyl, heptacosenyl, octacosenyl, nonacosenyl, triacontenyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl, eicosynyl, heneicosynyl, docosynyl, tricosynyl, tetracosynyl, pentacosynyl, hexacosynyl, heptacosynyl, octacosynyl, nonacosynyl, and triacontynyl radicals.
 
7. Composition according to any of the preceding claims in which at least one of R9, R10, R11 and R12 is butyl.
 
8. Composition according to any of the preceding claims in which at least one of R9, R10, R11 and R12 is a C1 to C8 hydrocarbyl radical.
 
9. Composition according to any of the preceding claims in which Pn is independently selected from nitrogen, phosphorus, arsenic, or antimony and is preferably nitrogen.
 
10. Composition according to any of the preceding claims in which M is nickel.
 
11. Composition according to any of the preceding claims in which at least two of R9, R10, R11 and R12 are selected from the group consisting of all isomers of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosenyl, docosenyl, tricosenyl, tetracosenyl, pentacosenyl, hexacosenyl, heptacosenyl, octacosenyl, nonacosenyl, triacontenyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl, eicosynyl, heneicosynyl, docosynyl, tricosynyl, tetracosynyl, pentacosynyl, hexacosynyl, heptacosynyl, octacosynyl, nonacosynyl, and triacontynyl radicals.
 
12. Composition according to any of the preceding claims in which at least three of R9, R10, R11 and R12 are selected from the group consisting of all isomers of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosenyl, docosenyl, tricosenyl, tetracosenyl, pentacosenyl, hexacosenyl, heptacosenyl, octacosenyl, nonacosenyl, triacontenyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl, eicosynyl, heneicosynyl, docosynyl, tricosynyl, tetracosynyl, pentacosynyl, hexacosynyl, heptacosynyl, octacosynyl, nonacosynyl, and triacontynyl radicals.
 
13. Composition according to any of the preceding claims in which R9, R10, R11 and R12 are selected from the group consisting of all isomers of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosenyl, docosenyl, tricosenyl, tetracosenyl, pentacosenyl, hexacosenyl, heptacosenyl, octacosenyl, nonacosenyl, triacontenyl, prapynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl, eicosynyl, heneicosynyl, docosynyl, tricosynyl, tetracosynyl, pentacosynyl, hexacosynyl, heptacosynyl, octacosynyl, nonacosynyl, and triacontynyl radicals.
 
14. Composition according to any of the preceding claims in which at least two of R9, R10, R11 and R12 are butyl.
 
15. Composition according to any of the preceding claims in which at least two of R9, R10, R11 and R12 are a C1 to C8 hydrocarbyl radical.
 
16. The composition according to Claim 1 in which the composition is represented by the formula:
3,4-dioctylphenyl 2,2'-biphenyl bromo
3,4,5-trioctylphenyl   fluoro
3-nonylphenyl    
4-nonylphenyl    
3,4-dinonylphenyl    
3,4,5-trinonylphenyl    
3-decylphenyl    
4-decylphenyl    
3,4-didecylphenyl    
3,4,5-tridecylphenyl    
3-undecylphenyl    
4-undecylphenyl    
3,4-diundecylphenyl    
3,4,5-triundecylphenyl    
3-dodecylphenyl    
4-dodecylphenyl    
3,4-didodecylphenyl    
3,4,5-tridodecylphenyl    

 
17. Composition according to Claim 16 in which R19 and R20 are the same.
 
18. Composition according to Claim 16 in which M is nickel.
 
19. A catalyst system comprising a composition according to any of the preceding claims, an activator and optionally, a support.
 
20. Catalyst system according to Claim 19 in which the activator is selected from the group consisting of methylalumoxane, modified methylalumoxane, ethylalumoxane, trimethyl aluminum, triethyl aluminum, triisopropyl aluminum, diethyl aluminum chloride, (Me2PhNH][B(C6F5)4], [Bu3NH][BF4], [NH4][PF6], [NH4][SbF6], [NH4][AsF6], [NH4][B(C6H5)4], B(C6F5)3 or B(C6H5)3.
 
21. Catalyst system according to Claim 19 in which the activator is selected from the group consisting of alumoxanes, discrete ionic activators and Lewis acidic activators.
 
22. Catalyst system according to any of claims 19 to 21 in which the support comprises silica.
 
23. A process to oligomerize alpha-olefins comprising contacting the alpha olefins with a catalyst system according to any of claims 19 to 22.
 
24. Process according to Claim 23 in which the alpha-olefins and the catalyst system are contacted at a temperature of -100°C to 300°C and a pressure of 0 kPa-35 MPa in the presence of one or more liquids selected from the group consisting of alkanes, alkenes, cycloalkanes, halogenated hydrocarbons, aromatic hydrocarbons, hydrofluorocarbons.
 
25. Process according to Claim 23 or 24 in which the alpha-olefin comprises ethylene and optionally one or more of propylene or 1-butene.
 


Ansprüche

1. Zusammensetzung, die durch die Formel

wiedergegeben wird, wobei
M Nickel oder Palladium ist,
H Wasserstoff ist,
Pn ein Element der Gruppe 15 ist,
O Sauerstoff ist,
R7 und R8 unabhängig Wasserstoff oder C1-C30-Kohlenwasserstoffreste sind, oder beide C1-C30-Kohlenwasserstoffreste sind, die verbunden sein können, um eine aromatische oder nicht aromatische zyklische Ringstruktur zu bilden,
R13, R14, R15, R16, R17 und R18 unabhängig Wasserstoff oder Kohlenwasserstoffreste mit mindestens drei Kohlenstoffatomen oder gegebenenfalls eine oder mehrere aromatische oder nicht aromatische Strukturen sind, die durch unabhängige Verbindung von zwei oder mehreren benachbarten R13 bis R18 Gruppen gebildet sein können, und
R9, R10, R11 und R12 unabhängig Wasserstoff, Hydroxyl, Alkoxy, Halogen oder ein C1-C30 Kohlenwasserstoffrest sind, mit der Maßgabe, dass mindestens ein R9-12-Rest nicht Wasserstoff ist, und zwei oder mehrere R9-12 eine gesättigte oder ungesättigte Ringstruktur bilden können.
 
2. Zusammensetzung nach Anspruch 1, in der R7 und R8 unabhängig ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, Methyl-, Ethyl- und allen Isomeren von Propyl-, Butyl-, Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl-, Eicosyl-, Heneicosyl-, Docosyl-, Tricosyl-, Tetracosyl-, Pentacosyl-, Hexacosyl-, Heptacosyl-, Octacosyl-, Nonacosyl-, Triacontyl-, Cyclohexyl-, Cyclopentyl-, Cycloheptyl-, Cyclooctyl-, Cyclodecyl-, Cyclododecyl-, Naphtyl-, Phenyl-, Tolyl-, Benzyl- oder Phenetylresten und vorzugsweise unabhängig ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, Methyl und Ethyl.
 
3. Zusammensetzung nach Anspruch 1 oder 2, in der eine oder mehrere gesättigte oder ungesättigte zyklische Strukturen durch unabhängige Verbindung von zwei oder mehreren benachbarten, von Wasserstoff verschiedenen R13, R14 oder R15 oder von zwei oder mehreren benachbarten, von Wasserstoff verschiedenen R16, R17 oder R18 gebildet sind.
 
4. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der R13, R14, R15, R16, R17 und R18 unabhängig ausgewählt sind aus der Gruppe bestehend aus Wasserstoff und allen Isomeren von Propyl-, Butyl-, Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl-, Eicosyl-, Heneicosyl-, Docosyl-, Tricosyl-, Tetracosyl-, Pentacosyl-, Hexacosyl-, Heptacosyl-, Octacosyl, Nonacosyl-, Triacontyl-, Propenyl-, Butenyl-, Pentenyl-, Hexenyl-, Heptenyl-, Octenyl-, Nonenyl-, Decenyl-, Undecenyl-, Dodecenyl-, Tridecenyl-, Tetradecenyl-, Pentadecenyl-, Hexadecenyl-, Heptadecenyl-, Octadecenyl-, Nonadecenyl-, Eicosenyl-, Heneicosenyl-, Docosenyl-, Tricosenyl-, Tetracosenyl-, Pentacosenyl-, Hexacosenyl-, Heptacosenyl-, Octacosenyl-, Nonacosenyl-, Triacontenyl-, Propynyl-, Butynyl-, Pentynyl-, Hexynyl-, Heptynyl-, Octynyl-, Nonynyl-, Decynyl-, Undecynyl-, Dodecynyl-, Tridecynyl-, Tetradecynyl-, Pentadecynyl-, Hexadecynyl, Heptadecynyl-, Octadecynyl-, Nonadecynyl-, Eicosynyl-, Heneicosynyl-, Docosynyl-, Tricosynyl-, Tetracosynyl-, Pentacosynyl-, Hexacosynyl, Heptacosynyl-, Octacosynyl-, Nonacosynyl- und Triacontynylresten.
 
5. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der mindestens einer von R9, R10, R11 und R12 ein C1-C30-Kohlenwasserstoffrest ist.
 
6. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der mindestens einer von R9, R10, R11 und R12 ein C1-C30-Kohlenwasserstoffrest ist, der ausgewählt ist aus der Gruppe bestehend aus allen Isomeren von Methyl-, Ethyl-, Propyl-, Butyl-, Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl-, Eicosyl-, Heneicosyl-, Docosyl-, Tricosyl-, Tetracosyl-, Pentacosyl-, Hexacosyl-, Heptacosyl-, Octacosyl-, Nonacosyl-, Triacontyl-, Propenyl, Butenyl-, Pentenyl-, Hexenyl-, Heptenyl-, Octenyl-, Nonenyl-, Decenyl-, Undecenyl-, Dodecenyl-, Tridecenyl-, Tetradecenyl-, Pentadecenyl-, Hexadecenyl-, Heptadecenyl-, Octadecenyl-, Nonadecenyl-, Eicosenyl-, Heneicosenyl-, Docosenyl-, Tricosenyl-, Tetracosenyl-, Pentacosenyl-, Hexacosenyl-, Heptacosenyl-, Octacosenyl-, Nonacosenyl-, Triacontenyl-, Propynyl-, Butynyl-, Pentynyl-, Hexynyl-, Heptynyl-, Octynyl-, Nonynyl-, Decynyl-, Undecynyl-, Dodecynyl-, Tridecynyl-, Tetradecynyl-, Pentadecynyl-, Hexadecynyl-, Heptadecynyl-, Octadecynyl-, Nonadecynyl-, Eicosynyl-, Heneicosynyl-, Docosynyl-, Tricosynyl-, Tetracosynyl-, Pentacosynyl-, Hexacosynyl-, Heptacosynyl-, Octacosynyl-, Nonacosynyl- und Triacontynylresten.
 
7. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der mindestens einer von R9, R10, R11 und R12 Butyl ist.
 
8. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der mindestens einer von R9, R10, R11 und R12 ein C1-C8-Kohlenwasserstoffrest ist.
 
9. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der Pn unabhängig ausgewählt ist aus Stickstoff, Phosphor, Arsen oder Antimon und vorzugsweise Stickstoff ist.
 
10. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der M Nickel ist.
 
11. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der mindestens zwei von R9, R10, R11 und R12 ausgewählt sind aus der Gruppe bestehend aus allen Isomeren von Methyl-, Ethyl-, Propyl-, Butyl-, Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl-, Eicosyl-, Heneicosyl-, Docosyl-, Tricosyl-, Tetracosyl-, Pentacosyl-, Hexacosyl-, Heptacosyl-, Octacosyl-, Nonacosyl-, Triacontyl-, Propenyl, Butenyl-, Pentenyl-, Hexenyl-, Heptenyl-, Octenyl-, Nonenyl-, Decenyl-, Undecenyl-, Dodecenyl-, Tridecenyl-, Tetradecenyl-, Pentadecenyl-, Hexadecenyl-, Heptadecenyl-, Octadecenyl-, Nonadecenyl-, Eicosenyl-, Heneicosenyl-, Docosenyl-, Tricosenyl-, Tetracosenyl-, Pentacosenyl-, Hexacosenyl-, Hep- tacosenyl-, Octacosenyl-, Nonacosenyl-, Triacontenyl-, Propynyl-, Butynyl-, Pentynyl-, Hexynyl-, Heptynyl-, Octynyl-, Nonynyl-, Decynyl-, Undecynyl-, Dodecynyl-, Tridecynyl-, Tetradecynyl-, Pentadecynyl-, Hexadecynyl-, Heptadecynyl-, Octadecynyl-, Nonadecynyl-, Eicosynyl-, Heneicosynyl-, Docosynyl-, Tricosynyl-, Tetracosynyl-, Pentacosynyl-, Hexacosynyl-, Heptacosynyl-, Octacosynyl-, Nonacosynyl- und Triacontynylresten.
 
12. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der mindestens drei von R9, R10, R11 und R12 ausgewählt sind aus der Gruppe bestehend aus allen Isomeren von Methyl-, Ethyl-, Propyl-, Butyl-, Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl-, Eicosyl-, Heneicosyl-, Docosyl-, Tricosyl-, Tetracosyl-, Pentacosyl-, Hexacosyl-, Heptacosyl-, Octacosyl-, Nonacosyl-, Triacontyl-, Propenyl, Butenyl-, Pentenyl-, Hexenyl-, Heptenyl-, Octenyl-, Nonenyl-, Decenyl-, Undecenyl-, Dodecenyl-, Tridecenyl-, Tetradecenyl-, Pentadecenyl-, Hexadecenyl-, Heptadecenyl-, Octadecenyl-, Nonadecenyl-, Eicosenyl-, Heneicosenyl-, Docosenyl-, Tricosenyl-, Tetracosenyl-, Pentacosenyl-, Hexacosenyl-, Heptacosenyl-, Octacosenyl-, Nonacosenyl-, Triacontenyl-, Propynyl-, Butynyl-, Pentynyl-, Hexynyl-, Heptynyl-, Octynyl-, Nonynyl-, Decynyl-, Undecynyl-, Dodecynyl-, Tridecynyl-, Tetradecynyl-, Pentadecynyl-, Hexadecynyl-, Heptadecynyl-, Octadecynyl-, Nonadecynyl-, Eicosynyl-, Heneicosynyl-, Docosynyl-, Tricosynyl-, Tetracosynyl-, Pentacosynyl-, Hexacosynyl-, Heptacosynyl-, Octacosynyl-, Nonacosynyl-, und Triacontynylresten.
 
13. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der R9, R10, R11 und R12 ausgewählt sind aus der Gruppe bestehend aus allen Isomeren von Methyl-, Ethyl-, Propyl-, Butyl-, Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl-, Eicosyl-, Heneicosyl-, Docosyl-, Tricosyl-, Tetracosyl-, Pentacosyl-, Hexacosyl-, Heptacosyl-, Octacosyl-, Nonacosyl-, Triacontyl-, Propenyl, Butenyl-, Pentenyl-, Hexenyl-, Heptenyl-, Octenyl-, Nonenyl-, Decenyl-, Undecenyl-, Dodecenyl-, Tridecenyl-, Tetradecenyl-, Pentadecenyl-, Hexadecenyl-, Heptadecenyl-, Octadecenyl-, Nonadecenyl-, Eicosenyl-, Heneicosenyl-, Docosenyl-, Tricosenyl-, Tetracosenyl-, Pentacosenyl-, Hexacosenyl-, Heptacosenyl-, Octacosenyl-, Nonacosenyl-, Triacontenyl-, Propynyl-, Butynyl-, Pentynyl-, Hexynyl-, Heptynyl-, Octynyl-, Nonynyl-, Decynyl-, Undecynyl-, Dodecynyl-, Tridecynyl-, Tetradecynyl-, Pentadecynyl-, Hexädecynyl-, Heptadecynyl-, Octadecynyl-, Nonadecynyl-, Eicosynyl-, Heneicosynyl-, Docosynyl-, Tricosynyl-, Tetracosynyl-, Pentacosynyl-, Hexacosynyl-, Heptacosynyl-, Octacosynyl-, Nonacosynyl- und Triacontynylresten.
 
14. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der mindestens zwei von R9, R10, R11 und R12 Butyl sind.
 
15. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der mindestens zwei von R9, R10, R11 und R12 ein C1-C8-Kohlenwasserstoffrest sind.
 
16. Zusammensetzung nach Anspruch 1, in der die Zusammensetzung durch die Formel

wiedergegeben wird, wobei
M Ni oder Pd ist und
R19 und R20 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus R7 und R8 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus R9, R10, R11 und R12 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus
Phenyl Wasserstoff Wasserstoff
3-Methylphenyl Methyl Dimethoxy
4-Methylphenyl Ethyl Methyl
3,4-Dimethylphenyl Propyl Ethyl
3,4,5-Trimethylphenyl Butyl Propyl
3-Ethylphenyl Pentyl Butyl
4-Ethylphenyl Hexyl Pentyl
3,4-Diethylphenyl Heptyl Hexyl
3,4,5-Triethylphenyl Octyl Heptyl
3-Propylphenyl Nonyl Octyl
4-Propylphenyl Decyl Nonyl
3,4-Dipropylphenyl Undecyl Decyl
3,4,5-Tripropylphenyl Dodecyl Undecyl
3-Butylylphenyl Tridecyl Dodecyl
4-Butylylphenyl Tetradecyl Tridecyl
3,4-Dibutylphenyl Octacosyl Tetradecyl
3,4,5-Tributylphenyl Nonacosyl Octacosyl
3-Pentylphenyl Triacontyl Nonacosyl
4-Pentylphenyl Cyclohexyl Triacontyl
3,4-Dipentylphenyl Cyclopentyl Cyclohexyl
3,4,5-Tripentylphenyl Cycloheptyl Cyclopentyl
3-Hexylphenyl Cyclooctyl Cycloheptyl
4-Hexylphenyl Cyclodecyl Cyclooctyl
3,4-Dihexylphenyl Cyclododecyl Cyclodecyl
3,4,5-Trihexylphenyl Naphthyl Cyclododecyl
3-Heptylphenyl Phenyl Naphthyl
4-Heptylphenyl Tolyl Phenyl
3,4-Diheptylphenyl Benzyl Tolyl
3,4,5-Triheptylphenyl Phenethyl Benzyl
3-Octylphenyl R7 mit R8 verbunden Phenethyl
4-Octylphenyl 1,8-Naphthalen Chlor
3,4-Dioctylphenyl 2,2'-Biphenyl Brom
3,4,5-Trioctylphenyl   Fluor
3-Nonylphenyl    
4-Nonylphenyl    
3,4-Dinonylphenyl    
3,4,5-Trinonylphenyl    
3-Decylphenyl    
4-Decylphenyl    
3,4-Didecylphenyl    
3,4,5-Tridecylphenyl    
3-Undecylphenyl    
4-Undecylphenyl    
3,4-Undecylphenyl    
3,4,5-Triundecylphenyl    
3-Dodecylphenyl    
4-Dodecylphenyl    
3,4-Dodecylphenyl    
3,4,5-Trododecylphenyl    

 
17. Zusammensetzung nach Anspruch 16, in der R19 und R20 gleich sind.
 
18. Zusammensetzung nach Anspruch 16, in der M Nickel ist.
 
19. Katalysatorsystem, das eine Zusammensetzung gemäß einem der vorhergehenden Ansprüche, einen Aktivator und gegebenenfalls einen Träger umfasst.
 
20. Katalysatorsystem nach Anspruch 19, bei dem der Aktivator ausgewählt ist aus der Gruppe bestehend aus Methylalumoxan, modifiziertem Methylalumoxan, Ethylalumoxan, Trimethylaluminium, Triethylaluminium, Triisopropylaluminium, Diethylaluminiumchlorid, [Me2PhNH] [B(C6F5)4], [Bu3NH] [BF4], [NH4] [PF6], [NH4][SbF6], [NH4] [AsF6], [NH4] [B (C6F5)4], B(C6F5)3 oder B(C6H5)3.
 
21. Katalysatorsystem nach Anspruch 19, bei dem der Aktivator ausgewählt ist aus der Gruppe bestehend aus Alumoxanen, diskreten ionischen Aktivatoren und Lewissäure-Aktivatoren.
 
22. Katalysatorsystem nach einem der Ansprüche 19 bis 21, bei dem der Träger Siliciumdioxid umfasst.
 
23. Verfahren zur Oligomerisierung von α-Olefinen, bei dem die α-Olefine mit einem Katalysatorsystem gemäß einem der Ansprüche 19 bis 21 in Kontakt gebracht werden.
 
24. Verfahren nach Anspruch 23, bei dem die α-Olefine und das Katalysatorsystem bei einer Temperatur von -100°C bis 300°C und einem Druck von 0 kPa bis 35 MPa in der Gegenwart von einer oder mehreren Flüssigkeiten ausgewählt aus der Gruppe bestehend aus Alkanen, Alkenen, Cycloalkanen, halogenierten Kohlenwasserstoffen, aromatischen Kohlenwasserstoffen und Hydrofluorkohlenwasserstoffen in Kontakt gebracht werden.
 
25. Verfahren nach Anspruch 23 oder 24, bei dem das α-Olefin Ethylen und gegebenenfalls eines oder mehrere von Propylen oder 1-Buten umfasst.
 


Revendications

1. Composition représentée par la formule :

dans laquelle :

M est un atome de nickel ou un atome de palladium ;

H est un atome d'hydrogène ;

Pn est un élément du groupe 15 ;

O est un atome d'oxygène ;

R7 et R8 sont indépendamment un atome d'hydrogène ou des radicaux hydrocarbyle en C1-C30, ou les deux sont des radicaux hydrocarbyle en C1-C30 qui peuvent être joints pour former une structure de noyau cyclique aromatique ou non-aromatique ;

R13, R14, R15, R16, R17 et R18 sont indépendamment un atome d'hydrogène ou des radicaux hydrocarbyle renfermant au moins trois atomes de carbone ou, éventuellement, une ou plusieurs structures aromatiques ou non-aromatiques peuvent être formées en joignant indépendamment deux ou plus de deux groupes R13 à R18 adjacents ; et

R9, R10, R11 et R12 sont indépendamment un atome d'hydrogène, un groupe hydroxyle, un groupe alcoxy, un atome d'halogène ou un radical hydrocarbyle en C1 à C30, à condition qu'au moins un radical R9-12 ne soit pas un atome d'hydrogène ; et deux ou plus de deux groupes R9-12 peuvent former une structure de noyau saturée ou insaturée.


 
2. Composition selon la revendication 1, dans laquelle R7 et R8 sont choisis indépendamment parmi le groupe constitué d'un atome d'hydrogène, d'un groupe méthyle, d'un groupe éthyle, ou de tous les isomères de radicaux propyle, butyle, pentyle, hexyle, heptyle, octyle, nonyle, décyle, undécyle, dodécyle, tridécyle, tétradécyle, pentadécyle, hexadécyle, heptadécyle, octadécyle, nonadécyle, eicosyle, heneicosyle, docosyle, tricosyle, tétracosyle, pentacosyle, hexacosyle, heptacosyle, octacosyle, nonacosyle, triacontyle, cyclohexyle, cyclopentyle, cycloheptyle, cyclooctyle, cyclodécyle, cyclododécyle, naphtyle, phényle, tolyle, benzyle, ou phénéthyle, et sont de préférence choisis indépendamment parmi le groupe constitué d'un atome d'hydrogène, d'un groupe méthyle et d'un groupe éthyle.
 
3. Composition selon la revendication 1 ou la revendication 2, dans laquelle une ou plusieurs structures cycliques saturées ou insaturées sont formées en joignant indépendamment deux ou plus de deux groupes R13, R14 ou R15 adjacents autres qu'un atome d'hydrogène, ou deux ou plus de deux groupes R16, R17 ou R18 adjacents autres qu'un atome d'hydrogène.
 
4. Composition selon l'une quelconque des revendications précédentes, dans laquelle R13, R14, R15, R16, R17 et R18 sont choisis indépendamment parmi le groupe constitué d'un atome d'hydrogène et de tous les isomères de radicaux propyle, butyle, pentyle, hexyle, heptyle, octyle, nonyle, décyle, undécyle, dodécyle, tridécyle, tétradécyle, pentadécyle, hexadécyle, heptadécyle, octadécyle, nonadécyle, eicosyle, heneicosyle, docosyle, tricosyle, tétracosyle, pentacosyle, hexacosyle, heptacosyle, octacosyle, nonacosyle, triacontyle, propényle, butényle, pentényle, hexényle, heptényle, octényle, nonényle, décényle, undécényle, dodécényle, tridécényle, tétradécényle, pentadécényle, hexadécényle, heptadécényle, octadécényle, nonadécényle, eicosényle, heneicosényle, docosényle, tricosényle, tétracosényle, pentacosényle, hexacosényle, heptacosényle, octacosényle, nonacosényle, triacontényle, propynyle, butynyle, pentynyle, hexynyle, heptynyle, octynyle, nonynyle, décynyle, undécynyle, dodécynyle, tridécynyle, tétradécynyle, pentadécynyle, hexadécynyle, heptadécynyle, octadécynyle, nonadécynyle, eicosynyle, heneicosynyle, docosynyle, tricosynyle, tétracosynyle, pentacosynyle, hexacosynyle, heptacosynyle, octacosynyle, nonacosynyle et triacontynyle.
 
5. Composition selon l'une quelconque des revendications précédentes, dans laquelle au moins l'un parmi R9, R10, R11 et R12 est un radical hydrocarbyle en C1 à C30.
 
6. Composition selon l'une quelconque des revendications précédentes, dans laquelle au moins l'un parmi R9, R10, R11 et R12 est un radical hydrocarbyle en C1 à C30 choisi parmi le groupe constitué de tous les isomères de radicaux méthyle, éthyle, propyle, butyle, pentyle, hexyle, heptyle, octyle, nonyle, décyle, undécyle, dodécyle, tridécyle, tétradécyle, pentadécyle, hexadécyle, heptadécyle, octadécyle, nonadécyle, eicosyle, heneicosyle, docosyle, tricosyle, tétracosyle, pentacosyle, hexacosyle, heptacosyle, octacosyle, nonacosyle, triacontyle, propényle, butényle, pentényle, hexényle, heptényle, octényle, nonényle, décényle, undécényle, dodécényle, tridécényle, tétradécényle, pentadécényle, hexadécényle, heptadécényle, octadécényle, nonadécényle, eicosényle, heneicosényle, docosényle, tricosényle, tétracosényle, pentacosényle, hexacosényle, heptacosényle, octacosényle, nonacosényle, triacontényle, propynyle, butynyle, pentynyle, hexynyle, heptynyle, octynyle, nonynyle, décynyle, undécynyle, dodécynyle, tridécynyle, tétradécynyle, pentadécynyle, hexadécynyle, heptadécynyle, octadécynyle, nonadécynyle, eicosynyle, heneicosynyle, docosynyle, tricosynyle, tétracosynyle, pentacosynyle, hexacosynyle, heptacosynyle, octacosynyle, nonacosynyle et triacontynyle.
 
7. Composition selon l'une quelconque des revendications précédentes, dans laquelle au moins l'un parmi R9, R10, R11 et R12 est un groupe butyle.
 
8. Composition selon l'une quelconque des revendications précédentes, dans laquelle au moins l'un parmi R9, R10, R11 et R12 est un radical hydrocarbyle en C1 à C8.
 
9. Composition selon l'une quelconque des revendications précédentes, dans laquelle Pn est choisi indépendamment parmi un atome d'azote, un atome de phosphore, un atome d'arsenic ou un atome d'antimoine, et est de préférence un atome d'azote.
 
10. Composition selon l'une quelconque des revendications précédentes, dans laquelle M est un atome de nickel.
 
11. Composition selon l'une quelconque des revendications précédentes, dans laquelle au moins deux parmi R9, R10, R11 et R12 sont choisis parmi le groupe constitué de tous les isomères de radicaux méthyle, éthyle, propyle, butyle, pentyle, hexyle, heptyle, octyle, nonyle, décyle, undécyle, dodécyle, tridécyle, tétradécyle, pentadécyle, hexadécyle, heptadécyle, octadécyle, nonadécyle, eicosyle, heneicosyle, docosyle, tricosyle, tétracosyle, pentacosyle, hexacosyle, heptacosyle, octacosyle, nonacosyle, triacontyle, propényle, butényle, pentényle, hexényle, heptényle, octényle, nonényle, décényle, undécényle, dodécényle, tridécényle, tétradécényle, pentadécényle, hexadécényle, heptadécényle, octadécényle, nonadécényle, eicosényle, heneicosényle, docosényle, tricosényle, tétracosényle, pentacosényle, hexacosényle, heptacosényle, octacosényle, nonacosényle, triacontényle, propynyle, butynyle, pentynyle, hexynyle, heptynyle, octynyle, nonynyle, décynyle, undécynyle, dodécynyle, tridécynyle, tétradécynyle, pentadécynyle, hexadécynyle, heptadécynyle, octadécynyle, nonadécynyle, eicosynyle, heneicosynyle, docosynyle, tricosynyle, tétracosynyle, pentacosynyle, hexacosynyle, heptacosynyle, octacosynyle, nonacosynyle et triacontynyle.
 
12. Composition selon l'une quelconque des revendications précédentes, dans laquelle au moins trois parmi R9, R10, R11 et R12 sont choisis parmi le groupe constitué de tous les isomères de radicaux méthyle, éthyle, propyle, butyle, pentyle, hexyle, heptyle, octyle, nonyle, décyle, undécyle, dodécyle, tridécyle, tétradécyle, pentadécyle, hexadécyle, heptadécyle, octadécyle, nonadécyle, eicosyle, heneicosyle, docosyle, tricosyle, tétracosyle, pentacosyle, hexacosyle, heptacosyle, octacosyle, nonacosyle, triacontyle, propényle, butényle, pentényle, hexényle, heptényle, octényle, nonényle, décényle, undécényle, dodécényle, tridécényle, tétradécényle, pentadécényle, hexadécényle, heptadécényle, octadécényle, nonadécényle, eicosényle, heneicosényle, docosényle, tricosényle, tétracosényle, pentacosényle, hexacosényle, heptacosényle, octacosényle, nonacosényle, triacontényle, propynyle, butynyle, pentynyle, hexynyle, heptynyle, octynyle, nonynyle, décynyle, undécynyle, dodécynyle, tridécynyle, tétradécynyle, pentadécynyle, hexadécynyle, heptadécynyle, octadécynyle, nonadécynyle, eicosynyle, heneicosynyle, docosynyle, tricosynyle, tétracosynyle, pentacosynyle, hexacosynyle, heptacosynyle, octacosynyle, nonacosynyle et triacontynyle.
 
13. Composition selon l'une quelconque des revendications précédentes, dans laquelle R9, R10, R11 et R12 sont choisis parmi le groupe constitué de tous les isomères de radicaux méthyle, éthyle, propyle, butyle, pentyle, hexyle, heptyle, octyle, nonyle, décyle, undécyle, dodécyle, tridécyle, tétradécyle, pentadécyle, hexadécyle, heptadécyle, octadécyle, nonadécyle, eicosyle, heneicosyle, docosyle, tricosyle, tétracosyle, pentacosyle, hexacosyle, heptacosyle, octacosyle, nonacosyle, triacontyle, propényle, butényle, pentényle, hexényle, heptényle, octényle, nonényle, décényle, undécényle, dodécényle, tridécényle, tétradécényle, pentadécényle, hexadécényle, heptadécényle, octadécényle, nonadécényle, eicosényle, heneicosényle, docosényle, tricosényle, tétracosényle, pentacosényle, hexacosényle, heptacosényle, octacosényle, nonacosényle, triacontényle, propynyle, butynyle, pentynyle, hexynyle, heptynyle, octynyle, nonynyle, décynyle, undécynyle, dodécynyle, tridécynyle, tétradécynyle, pentadécynyle, hexadécynyle, heptadécynyle, octadécynyle, nonadécynyle, eicosynyle, heneicosynyle, docosynyle, tricosynyle, tétracosynyle, pentacosynyle, hexacosynyle, heptacosynyle, octacosynyle, nonacosynyle et triacontynyle.
 
14. Composition selon l'une quelconque des revendications précédentes, dans laquelle au moins deux parmi R9, R10, R11 et R12 sont un groupe butyle.
 
15. Composition selon l'une quelconque des revendications précédentes, dans laquelle au moins deux parmi R9, R10, R11 et R12 sont un groupe hydrocarbyle en C1 à C8.
 
16. Composition selon la revendication 1, la composition étant représentée par la formule:

dans laquelle :

M est un atome de nickel ou un atome de palladium, et

R19 et R20 sont choisis indépendamment parmi le groupe constitué de : R7 et R8 sont choisis indépendamment parmi le groupe constitué de : R9, R10, R11 et R12 sont choisis indépendamment parmi le groupe constitué de :
phényle hydrogène hydrogène
3-méthylphényle méthyle diméthoxy
4-méthylphényle éthyle méthyle
3,4-diméthylphényle propyle éthyle
3,4,5-triméthylphényle butyle propyle
3-éthylphényle pentyle butyle
4-éthylphényle hexyle pentyle
3,4-diéthylphényle heptyle hexyle
3,4,5-triéthylphényle octyle heptyle
3-propylphényle nonyle octyle
4-propylphényle décyle nonyle
3,4-dipropylphényle undécyle décyle
3,4,5-tripropylphényle dodécyle undécyle
3-butylylphényle tridécyle dodécyle
4-butylylphényle tétradécyle tridécyle
3,4-dibutyphényle octacosyle tetradecyle
3,4,5-tributylphényle nonacosyle octacosyle
3-pentylphényle triacontyle nonacosyle
4-pentylphényle cyclohexyle triacontyle
3,4-dipentyphényle cyclopentyle cyclohexyle
3,4,5-tripentylphényle cycloheptyle cyclopentyle
3-hexylphényle cyclooctyle cycloheptyle
4-hexylphényle cyclodécyle cyclooctyle
3,4-dihexylphényle cyclododécyle cyclodécyle
3,4,5-trihexylphényle naphtyle cyclododecyle
3-heptylphényle phényle naphtyle
4-heptylphényle tolyle phényle
3,4-diheptylphényle benzyle tolyle
3,4,5-triheptylphényle phénéthyle benzyle
3-octylphényle R7 joint à R8 phénéthyle
4-octylphényle 1,8-naphtalène chloro
3,4-dioctylphényle 2,2'-biphényle bromo
3,4,5-trioctylphényle   fluoro
3-nonylphényle    
4-nonylphényle    
3,4-dinonylphényle    
3,4,5-trinonylphényle    
3-décylphényle    
4-décylphényle    
3,4-didécylphényle    
3,4,5-tridécylphényle    
3-undécylphényle    
4-undécylphényle    
3,4-diundécylphényle    
3,4,5-triundécylphényle    
3-dodécylphényle    
4-dodécylphényle    
3,4-didodécylphényle    
3,4,5-tridodécylphényle    


 
17. Composition selon la revendication 16, dans laquelle R19 et R20 sont identiques.
 
18. Composition selon la revendication 16, dans laquelle M est un atome de nickel.
 
19. Système catalytique comprenant une composition selon l'une quelconque des revendications précédentes, un activateur et, éventuellement, un support.
 
20. Système catalytique selon la revendication 19, dans lequel l'activateur est choisi parmi le groupe constitué du méthylalumoxane, d'un méthylalumoxane modifié, de l'éthylalumoxane, du triméthylaluminium, du triéthylaluminium, du triisopropylaluminium, du chlorure de diéthylaluminium, du [Me2PhNH] [B(C6F5)4], du [BU3NH] [BF4], du [NH4] [PF6], du [NH4] [SbF6], du [NH4] [AsF6], du [NH4] [B(C6H5)4], du B(C6F5)3 ou du B(C6H5)3·
 
21. Système catalytique selon la revendication 19, dans lequel l'activateur est choisi parmi le groupe constitué d'alumoxanes, d'activateurs ioniques discrets et d'activateurs acides de Lewis.
 
22. Système catalytique selon l'une quelconque des revendications 19 à 21, dans lequel le support comprend de la silice.
 
23. Procédé d'oligomérisation d'alpha-oléfines, comprenant la mise en contact des alpha-oléfines avec un système catalytique selon l'une des revendications 19 à 21.
 
24. Procédé selon la revendication 25, dans lequel les alpha-oléfines et le système catalytique sont mis en contact à une température de -100°C à 300°C et à une pression de 0 kPa-35 MPa en présence d'un ou de plusieurs liquides choisis parmi le groupe constitué d'alcanes, d'alcènes, de cycloalcanes, d'hydrocarbures halogénés, d'hydrocarbures aromatiques et d'hydrocarbures fluorés.
 
25. Procédé selon la revendication 23 ou 24, dans lequel l'alpha-oléfine comprend l'éthylène et éventuellement l'un ou plusieurs parmi le propylène ou le 1-butène.
 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description