(19)
(11) EP 1 486 017 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
17.10.2007 Bulletin 2007/42

(21) Application number: 03708148.6

(22) Date of filing: 27.02.2003
(51) International Patent Classification (IPC): 
H04J 3/16(2006.01)
(86) International application number:
PCT/EP2003/001983
(87) International publication number:
WO 2003/079592 (25.09.2003 Gazette 2003/39)

(54)

PROCEDURE FOR SORTING FLOWS IN A TRANSPORT NETWORK CARRYING CIRCUIT DATA FLOWS

VERFAHREN ZUM SORTIEREN VON STRÖMEN IN EINEM TRANSPORTNETZ, DAS CIRCUIT-DATENSTRÖME TRANSPORTIERT

MARCHE A SUIVRE POUR TRIER DES FLUX DANS UN RESEAU DE TRANSPORT VEHICULANT DES FLUX DE DONNEES


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

(30) Priority: 15.03.2002 IT TO20020226

(43) Date of publication of application:
15.12.2004 Bulletin 2004/51

(73) Proprietor: Telecom Italia S.p.A.
20123 Milano (IT)

(72) Inventors:
  • ALLASIA, Andrea
    I-10148 Torino (IT)
  • GIANCOLA, Andrea
    I-10148 Torino (IT)
  • VACCARONE, Gianluca
    I-10148 Torino (IT)
  • FERRARIS, Giuseppe
    I-10148 Torino (IT)

(74) Representative: Giannesi, Pier Giovanni et al
Pirelli & C. S.p.A. Viale Sarca, 222
20126 Milan
20126 Milan (IT)


(56) References cited: : 
US-A- 4 843 606
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The invention refers to transport networks carrying circuit data flows, of the synchronous and asynchronous type, employing either space, time, frequency or wavelength multiplexing, and specifically refers to a procedure for sorting circuit data flows in a sub-network.

    Background Art



    [0002] As known, data are transmitted in TDM (Time Division Multiplexing) transport networks in time windows or sets of slots (called "time slots") whose length is fixed, each of which contains one or more circuit data flows defined by the implemented protocol. Networks of this kind include, for example, SDH (Synchronous Digital Hierarchy) or SONET (Synchronous Optical Network) networks. The term "slot" therefore means "time interval" in this case.

    [0003] In WDM (Wavelength Division Multiplexing) networks, data are transmitted on different wavelengths λi, which replace the multiplexing time slots and consequently may be called "λ-slots". Similarly, SDM (Space Division Multiplexing) or FDM (Frequency Division Multiplexing) networks can be implemented, in which case the concept of slot is associated to intervals of space or frequency. Specifically, FDM technology was implemented in the past before TDM technology was developed.

    [0004] The invention refers to all types of networks based on the concept of slot described above. Reference will be made in the description that follows to TDM (SDH and SONET) and WDM networks considering their current popularity.

    [0005] From a technical point of view, time slots in SDH and SONET networks and λ-slots in WDM networks can be considered equivalent. They are both "containers" in which data are transmitted, regardless of the actual physical implementation of the network.

    [0006] Each transport network, SDH, SONET or WDM, can comprise various sub-networks, e.g. ring networks or meshed sub-networks, all employing the same transmission protocol.

    [0007] When a circuit data flow set to be sold to a customer is created and established for operation, the slots forming the sub-network (time slots for SDH or SONET, λ-slots for WDM) are allocated to each circuit according to the situation of the network at the time; the situation is randomly determined by the incoming requests (according to the typical criteria of the network operator). In general, the aim is to optimise the total occupied band to minimise network implementation investments. Calculation algorithms have been developed for this purpose to optimise sub-network load and reduce band occupation. The traffic demand to be carried by the network must be entirely defined beforehand to work these theoretical algorithms, which in practice is impossible.

    [0008] For example, a routing optimisation algorithm for SONET/SDH ring sub-networks is described in the publication HU-GON KIM, DONG-WAN TCHA, Optimal Load Balancing on Sonet Bidirectional Rings, Dankook University, July 1996.

    [0009] The algorithm described in this publication is very useful for calculating optimal distribution of flows given a known demand, e.g. for programming a new ring sub-network. The biggest problem, on the other hand, to be faced when optimising a sub-network which is already operational in terms of occupied band, is how to change circuit configuration to implement the optimised configuration without disrupting the service, with minimum effects perceived by customers.

    [0010] Flows are often untidy and irregular in a sub-network that has been working for some time due to flow allocation changes which inevitably occur in the course of time. For example, the allocated flows are released and "gaps" in the slot allocation map are formed when the resources allocated to a customer are cleared following cancellation of contracts. These gaps are often employed for smaller flows and even smaller gaps are created, which are even more difficult to use in the future. This effect in the middle term progressively worsens the ratio between the band effectively occupied by data in the sub-network and the total available band of sub-network, making the configuration of new flows in the sub-network effectively impossible.

    [0011] Procedures for the temporary or definitive re-allocation of time slots in a TDM network are also known, e.g. the procedure illustrated in document WO 97/36402.

    [0012] Despite referring to a switched network, this patent describes a procedure for shifting one or more time slots from a primary node to a temporary node and then re-allocating the time slots back to the primary node. This procedure is used to deal with the unexpected request for resources on the primary node by one or more customers and is used to temporarily allocate some time slots to an adjacent secondary node. The document shows how it is possible to work on time slot allocation, by shifting and exchanging them, without incurring excessive disruption for customers.

    [0013] The object of this invention is to propose a procedure for dealing with the problem of how to optimise the band occupied by a plurality of circuit data flows in a transport sub-network while keeping the network running and causing the least possible disruption to customers for each single flow.

    [0014] This and other objectives are obtained by means of an optimisation procedure and corresponding management device as illustrated in the annexed claims.

    Summary of the invention



    [0015] Advantageously, according to the invention, a flow sorting procedure is applied to reduce the occupied band and release a plurality of time slots, which would otherwise be occupied, for new customers.

    [0016] In this way, when a sub-network is apparently saturated because there is no space for allocating a new data flow, the procedure described herein may be applied to optimise the band occupied by the current flows and possibly sort the sub-network to create space for the new flows. The result is a procedure for optimising the band employed by the flows configured on the sub-network which preserves the theoretical qualities of an optimal routing algorithm combining the possibility of minimising the number of operations required to reach this condition.

    Brief Description of Drawings



    [0017] Additional characteristics and advantages of the invention in its preferred form of embodiment will now be described, by way of example only, with reference to the annexed drawings wherein:

    figure 1 is a logical diagram of a ring transport sub-network;

    figure 2a is a table schematically illustrating an initial (non optimised) flow situation in a ring sub-network;

    figure 2b is a table schematically illustrating the theoretical distribution of flows in the ring sub-network in figure 2a, after applying a theoretical routing algorithm;

    figure 2c is a table schematically illustrating the final distribution of flows in the ring sub-network in figure 2a, after applying a sorting procedure according to the invention;

    figures 3, 4 and 5 schematically illustrate how the sorting procedure according to the invention is applied, for example on a simplified sub-network; and

    figure 6 illustrates some steps in the sorting procedure referred to the simplified sub-network example shown in figure 3.


    Detailed description of the preferred embodiments



    [0018] The following detailed description illustrates a flow sorting procedure in a transport network ring sub-network carrying circuit data flows. The sub-network is schematically shown as a set of slots (which are time, spatial, frequency or wavelength intervals between pairs of linked sites). Specifically, the illustrated procedure can be applied to sorting SDH/SONET (Time Division Multiplexing) type networks and WDM (Frequency Division Multiplexing) type networks. The term "slot" will be used to indicate "time slots" in the case of SDH/SONET networks and "λ-slots" in the case of WDM networks.

    [0019] Similarly, the invention can be applied to networks in which data flow multiplexing is obtained through either space division (SDM, Space Division Multiplexing) or frequency division (FDM, Frequency Division Multiplexing), in which case the term "slot" will be associated to space and frequency intervals, respectively.

    [0020] The ring sub-network may implement MS-SPRing technology (OMS-SPRing for WDM networks). The procedure may be applied in general to any sub-network which may also not be ring structured (e.g. meshed or mixed meshedring topologies); flows may be protected or not.

    [0021] With reference to figure 1, an example of sub-network on which to apply the invention is a ring essentially consisting of six nodes, geographically placed in six different locations called X1, X2, X3, X4, X5, X6 in the figure, reciprocally connected by optical fibres or other transmission medium 9.

    [0022] The logical diagram of the ring shown in figure 1 consists of a slot matrix (like that shown in figures 2a, 2b and 2c) where the rows indicate multiplexed slots (e.g. from 1 to 16) according to the particular transmission protocol and the columns 6 indicate the slots with the same transmission index which can be exploited to configure the circuits (sets of slots with the same numeric code) between the various locations reached by the ring.

    [0023] The flows are identified inside the table by a reference index, i.e. a number written inside each of the boxes allocated to a certain flow. For example, boxes 7a and 7b are allocated to flow 9 which occupies the set of slots 9 in the sections X6-X1 and X1-X2, while boxes 8a and 8b are allocated to flow 15 which occupies the set of slots 16 in the sections X1-X2 and X2-X3.

    [0024] It is immediately apparent that the flows in the ring network in figure 2a are distributed untidily and partially occupy all sixteen sets of slots 6. The sixteen sets of slots occupied by the flows form a total of 16•6=96 available slots, of which up to 44 remain "free" between flows (blank boxes in the table). This means that despite being all engaged, only 54% of the slots 6 in the ring are actually occupied; sub-network use is therefore not very efficient and collocating new flows in the ring may be difficult, if not impossible.

    [0025] The band occupied by the currently allocated flows can be reduced and a certain number of slot sets may be entirely released, as illustrated in detail below, by applying a flow sorting procedure to the slot sets in the initial conditions of the sub-network as shown in figure 2a.

    [0026] The flow sorting procedure is essentially based on the following sequence of operations:
    • Calculating theoretical optimal flow routing with the objective of minimising "gaps" (band optimisation process) to obtain the configuration illustrated, for example, in figure 2b, starting from instantaneous filling data of a ring sub-network. A theoretical optimisation algorithm for optimising traffic in known demand conditions is used to obtain this result, e.g. the algorithm described in the aforesaid publication GON KIM, DONG-WAN TCHA, Optimal Load Balancing on Sonet Bidirectional Rings, Dankook University, July 1996;
    • Comparing the original data and the theoretical condition calculated in the previous step to define an optimal transition sequence and obtain an optimal final condition with the constraint of minimising the number of flow position variations.


    [0027] The procedure hereof determines a shifting sequence which minimises the use of slot sets external to the ring and reduces, when possible, the number of shifts of each flow.

    [0028] For example, it would not be problem if the destination slot set of a single flow, called A for example were free; on the other hand, if the destination slot were also only partially engaged by another flow, called B, B would have to be shifted before A and so on. An order can be formed by scanning the flows in the ring. The shifting process may proceed seamlessly, one flow at a time, by respecting the order.

    [0029] A slot will only need to be temporarily shifted onto a spare slot set (internal or external to the ring), when the order becomes a loop, e.g. A>B>C>A; all the other flows will be shifted and finally the flow shifted onto the spare slot will be moved back to its destination.

    [0030] A spare slot set can be a set of free slots in the same sub-network or a set of slots located in different systems which share the same infrastructure, cable or installation site. During this phase, one or more flows may need to be temporarily re-routed off the sub-network and shifted back inside the ring. However, it is more cost-effective to sort the flows in the ring without shifting temporarily onto other rings or alternatively to minimise such shifts.

    [0031] We will now analyse the sorting procedure step-by-step.

    [0032] The first step in the procedure consists in calculating an optimal theoretical flow configuration for the occupied band by means of the theoretical optimal flow routing algorithm. This configuration is illustrated in figure 2b, which clearly shows that all the previously allocated flows in the ring have been "compacted" into the first nine slot sets of the sub-network and the last seven are entirely free. The routing criterion was changed for some flows, e.g. flow 1 and flow 10, from minimum to complementary or vice versa, to occupy some slots which could not otherwise be employed.

    [0033] The nine sets of slots occupied by the flows contain a total of 9•6=54 slots, of which only 8 are "free" between flows (blank boxes in the table). This means that up to 85% of the slots are actually occupied.

    [0034] The second step consists in exchanging the slot sets in the theoretical flow configuration shown in figure 2b and calculated in the previous step to obtain a new arrangement of the slot set in which the number of flows is maximised and whose position corresponds of the position assumed by the flows in the initial configuration in figure 2a. The result of these exchanges is illustrated in the table in figure 2c and is also the final objective of the sorting procedure.

    [0035] The configuration shown in figure 2c is equivalent, as far as the occupied band is concerned, to the configuration in figure 2b. The flows are distributed over 9 slot sets containing a total of 9•6=54 slots. Also in this case, only 8 slots remain "free" between flows (blank boxes in the table) and 85% of the slots is actually occupied by the flows.

    [0036] To better understand the steps of the sorting procedure, we will now consider a very simplified sub-network (e.g. illustrated in figure 3) . The table in figure 3 contains five rows, corresponding for example to the five sections of a ring, and six columns corresponding to six sets of slots. This example is provided only to illustrate how the slot sets are exchanged and the flows are shifted.

    [0037] We will now assume that the configuration illustrated in figure 4 is obtained by applying a theoretical optimal flow routing algorithm, corresponding to the first step in the procedure.

    [0038] The configuration shown in figure 5, where all the slot sets in the table in figure 4 have been exchanged according to a set of rules which will be described below, is obtained by applying the second step.

    [0039] Specifically, the second step consists of the following phases:
    1. a) Creating a first table in which each row shows for each flow whose position differs from the initial theoretical flow configuration, a reference index associated to said flow and a pair of values indicating the source slot set and the destination slot set, respectively.
      For example, for flow F, the string "F (5,1)", which means that flow F has slot set 5 as source (figure 3), and slot set 1 as destination (figure 4), will be written in a first row of the table. The string "D (1,2)" will be used for flow D, and so on for all the other flows whose position changes.
    2. b) Creating a list showing all pairs of values present at least once in said first table, sorting (in decreasing order) said pairs of values according to the number of times that each pair appears in said first table.
      The most frequent shifts will be visible in the way.
    3. c) Exchanging the slot sets corresponding to the values indicated by the first pair in said list from the top and deleting the first pair and all the other pairs from the list in which either one or the other of the values contained in the first pair occur.
    4. d) Repeating step c) until all the pairs in the list are finished.
      The slot steps are exchanged during these last two phases starting from those corresponding to the most frequent shifts.
      The third step in the procedure consists in defining and performing a minimum shift sequence concerning the single flows needed to shift each single flow from an initial position occupied in the initial flow configuration (figure 3) to a final position (figure 5) corresponding to the position shown by the flow in the optical slot set arrangement. The operations performed in this third step, referred to the simplified case illustrated in figures from 4 to 6, are summarised in figure 6 to which reference is made below.
      The following operations are required to implement the third step:
    5. e) Creating a second table showing flow interdependence.
      See table 10a in figure 6.
    6. f) Selecting a first flow from those that must be shifted.
      We will take flow A as an example.
    7. g) Adding a number of rows equal to the number of flows which occupy the final position of said flow (also partially) in table 10a for the selected flow A and writing a pair of reference indexes in each row indicating the selected flow and the flow occupying the final position, respectively, or, if said final position is free, a pair of reference indexes in which the first index indicates the selected flow and the second index conventionally shows that the final position is free.
      In the example shown, considering initially flow A, for example, the pair (A, C) has been written in the table because flow A must be moved before flow C.
    8. h) Repeating step g) recursively selecting one by one the flows which occupy the final position of the previously selected flow until such final position is either free or occupied by a previously selected flow.
      The pair (C, B) is therefore written in table 10a indicating that flow C requires the precedence of flow B and finally (B, A) because flow B requires the precedence of flow A.
    9. i) Checking in the second table the presence of circular dependence between two or more flows; if such occurrence is present, starting to shift one of the flows in the circular dependency onto a free spare slot set and for all pairs in the second table having as the value indicative of the final position of the flow the index of the shifted flows, replacing the index with a value conventionally indicating that the final position is free, e.g. 0 (zero).
      A circular dependency is present (A, C) - (C, B) - (B, A) in table 10a. Consequently, the flow A is shifted onto a spare slot set (this operation is indicated by reference 20a in figure 6) and table 10a is updated. The result is table 10b in which flow A is replaced by 0 conventionally indicating that the final position of flow B is now free.
    10. j) Searching the second table for pairs whose index corresponds to the conventional value (zero) showing that the final position is free and proceeding for each of the pairs shifting the corresponding flow onto the corresponding final position and deleting the row corresponding to said pair from the table; for all pairs in the second table whose final position flow identification value corresponds to the identification index of said shifted flow, replacing said index with a value 0 conventionally indicating that the final position is free.
      The operation indicated by reference 20b in figure 6 is therefore carried out, shifting flow B from time slot 3 to time slot 1 and updating the table by deleting the row (B, 0) and changing pair (C, B) to (C, 0), see table 10c.
    11. k) Repeating steps i) and j) until said second table is empty.


    [0040] This operation entails shifting flow C from time slot 5 to time slot 3, see operation 20c in figure 6, updating the table by deleting row (C, 0) and changing pair (A, C) to (A, 0), see table 10d, and finally shifting flow A from the spare time slot to the final position, i.e. time slot 5, operation 20d.

    [0041] At this point, the order table 10e will be empty and the next operation can be started.
    1. 1) Selecting a new flow from those which must be shifted and repeating step g) and the following steps.


    [0042] At this point of the procedure, in the simplified example, the flows have all been shifted and the final configuration shown in figure 5 has been reached.

    [0043] It is important to note that the sorting procedure previously described with reference to a ring sub-network must follow a preliminary evaluation of data provided in documentation. The evaluation must be repeated employing the punctual data provided by the network manager responsible for physical cross-connections for implementation.

    [0044] Defining whether it is possible to physically sort the flows and consequently plan the sequence of transitions for minimising the number will only be possible following this new evaluation.

    [0045] In operative terms, the sorting procedure is implemented by a device for centralisation management of the transport network which supports and closely interacts with the network manager as explained below with special reference to a ring sub-network implementing MS-SPRing technology.

    [0046] In the case of a ring sub-network implementing MS-SPRing technology, the previously described procedure can be implemented, for example, by overlapping an SNCP protection employing some of the previously released time slots.

    [0047] This procedure involves routing SNCP protection branches onto free time slots in the ring. Consequently, two or three time slots may need to be preventively released before starting the procedure. Furthermore, before starting the procedure, there must be no alarms on the ring causing MS-SPRing protection to switch.

    [0048] The steps needed to implement the method are listed below:
    1. 1) Routing and activating flow SNCP protection branch as shown in the migration procedure by network manager.
    2. 2) Overriding SNCP protection exchange by means of the management system.
    3. 3) Deactivating flow protection branch and removing routing.


    [0049] The SNCP protection branch is routed onto the same multiplexed sections of the working branch but on a different AU4 (Administrative Unit Level 4).

    [0050] Additionally, these operations must be carried out on all flows in the ring involved in the previous sorting algorithm (they can be run several times on the same flow).

    [0051] The method requires 25-40 shifts in a fully loaded ring. MS-SPRing protection can be up for the entire duration of the migration (flow reliability is not affected).

    [0052] At least 2-3 time slots must be freed in the entire tool to carry out the exchange sequence. Consequently, either the sorting procedure is carried out before the ring is ended or some flows are temporarily shifted.

    [0053] The resulting band saving is in the range of 20% of the installed structure. The punctual results of the cases taken into consideration during experimental phases show that peaks of 40% can be obtained according to the type of traffic on the ring (traffic on directives, balanced, diagonal, unbalanced).

    [0054] Punctual "design" of the sorting operation is needed to apply the procedure according to the real configuration of the flows on the ring; this protects the quality/reliability level of the flows concerned by the sorting operation.

    [0055] The procedure according to the present invention can be implemented as a computer program comprising computer program code means adapted to run on a computer. Such computer program can be embodied on a computer readable medium.


    Claims

    1. Procedure for optimising the band occupied by a plurality of circuit data flows (7, 8, ..) located, according to an initial configuration, in a plurality of sets of slots (6) of a transport network, by sorting said flows inside the same sets of slots, said procedure being characterised by the fact that it comprises the following steps:

    - calculating, with a theoretical optimal flow routine algorithm, a theoretical configuration of the flows contained in said initial configuration, which is optimised as regards the occupied band;

    - exchanging the sets of slots (6) of said theoretical flow configuration to obtain an optimal arrangement of said sets of slots, in which the number of flows whose position corresponds to the position assumed by the same flows in said initial configuration is maximised;

    - defining a minimum shift sequence of single flows needed to shift each single flow from an initial position occupied in said initial flow configuration to a final position corresponding to the position assumed by the same flow in said optimal slot set arrangement (6);

    - implementing said minimum shift sequence of single flows, thus obtaining a flow configuration with a band occupation equivalent to said theoretical flow configuration.


     
    2. Procedure as per claim 1, in which said exchange phase between the sets of slots (6) is implemented with the following steps:

    a) creating a first table in which each row gives, for each flow whose position in the theoretical flow configuration differs from the initial configuration position, a reference index associated to said flow and a pair of values indicating the source slot set and the destination slot set respectively;

    b) creating a list of all the pairs of values present at least once in said first table, sorting in decreasing order said pairs of values according to the number of times that each pair appears in said first table;

    c) exchanging the slot sets (6) corresponding to the values indicated by the first pair in said list from the top, and deleting from the list said first pair and all the other pairs in which either one or the other of the values contained in the said first pair appear;

    d) repeating step c) until all the pairs in said list are finished.


     
    3. Procedure as per claim 1 or 2, in which said transport network includes at least one set of spare slots normally unoccupied by a flow, and in which said phases that define a minimum shift sequence of the single flows, and that implement said sequence, are implemented with the following steps:

    e) creating a second table (10), showing flow interdependence;

    f) selecting a first flow from those that must be shifted;

    g) adding in said second table (10), for said selected flow, a number of rows equal to the number of flows that occupy, even partially, the final position of said selected flow, writing a pair of reference indexes showing the selected flow and the flow occupying the final position in each of said rows, or in the event that said final position is free, a pair of reference indexes in which a first index indicates the selected flow and a second index conventionally shows that the final position is free (0);

    h) repeating step g) selecting the flows that occupy the final position of the flow selected previously, one at a time and recursively, until such final position is free or is occupied by a flow that has already been previously selected;

    i) checking in said second table the presence of a circular dependence between two or more flows, if such occurrence is present, starting to shift one of the flows in said circular dependency onto a free spare slot set and for all pairs in said second table having as a value indicative of the final position of the flow the index indicative of said shifted flow, replacing said index with a value (0) conventionally indicating that the final position is free;

    j) searching within said second table for pairs having as index indicative of the final position of the flow said conventional value (0) indicating that the final position is free, and proceeding, for each of said pairs by shifting the corresponding flow onto the corresponding final position and deleting the row corresponding to said pair from the same table; for all pairs of said second table having as the value indicative of the final position of the flow the index indicative of said shifted flow, replacing said index with a value (0) conventionally indicating the final position is free;

    k) repeating steps i) and j) until said second table is empty;

    l) selecting a new flow from those which must be shifted and repeating step g) and the following steps.


     
    4. Procedure as per one of the claims from 1 to 3, in which said sets of slots (6) in which said flows are initially collocated are sets of slots of a first sub-network of said transport network.
     
    5. Procedure as per claim 4, in which said sets of spare slots are sets of slots of a second sub-network of said transport network.
     
    6. Procedure as per claim 5, in which said first sub-network and said second sub-network are ring networks.
     
    7. Procedure as per any one of the previous claims, in which said transport network is a network of the SDH or SONET type and said slots are time-slots.
     
    8. Procedure as per any one of the claims 1 to 6, in which said transport network is a WDM type network and said slots are λ-slots, i.e. wavelengths.
     
    9. Procedure as per any one of the claims from 1 to 6, in which said transport network is an SDM type network and said slots are space intervals.
     
    10. Procedure as per any one of the claims from 1 to 6, in which said transport network is a FDM type network and said slots are frequency intervals.
     
    11. Device for the centralised management of a transport network, in which data are arranged in circuit data flows collocated in a plurality of sets of slots (6), including a system for sorting said flows within said sets of slots, characterised by the fact that said system uses a procedure for optimising the band according to any one of the previous claims.
     
    12. A computer program comprising computer program code means adapted to perform all the steps of any of claims 1 to 10 when said program is run on a computer.
     
    13. A computer program as claimed in claim 12 embodied on a computer readable medium.
     


    Ansprüche

    1. Verfahren zum Optimieren des durch eine Mehrzahl von Circuit-Datenströmen (7, 8, ...), die gemäß einer Anfangskonfiguration in einer Mehrzahl von Sätzen von Zeitnischen (6) eines Transportnetzes angeordnet sind, besetzen Bands durch Sortieren der Ströme innerhalb derselben Sätzen von Zeitnischen, wobei das Verfahren durch die Tatsache gekennzeichnet ist, daß es die folgenden Schritte aufweist:

    - Berechnen einer theoretischen Konfiguration der in der Anfangskonfiguration, die hinsichtlich des besetzen Bands optimiert ist, enthaltenen Ströme mit einem theoretischen optimalen Strom-Programmalgorithmus;

    - Austauschen der Sätze von Zeitnischen (6) der theoretischen Stromkonfiguration, um eine optimale Anordnung des Sätze von Zeitnischen zu erhalten, in der die Anzahl von Strömen, deren Position der durch dieselben Ströme angenommenen Position in der Anfangskonfiguration entspricht, maximiert ist;

    - Definieren eines minimalen Verschiebungsabfolge von einzelnen Strömen, die erforderlich ist, um jeden einzelnen Strom von einer in der Anfangsstromkonfiguration besetzten Anfangsposition zu einer Endposition entsprechend der durch denselben Strom in der optimalen Zeitnischen-Satzanordnung (6) angenommenen Position zu verschieben;

    - Realisieren der minimalen Verschiebungsabfolge von einzelnen Strömen, wodurch eine Stromkonfiguration mit einer Bandbesetzung äquivalent der theoretischen Stromkonfiguration erhalten wird.


     
    2. Verfahren nach Anspruch 1, in dem die Austauschphase zwischen den Sätzen von Zeitnischen (6) mit den folgenden Schritten realisiert wird:

    a) Erzeugen einer ersten Tabelle, in der jede Reihe für jeden Strom, dessen Position sich in der theoretischen Stromkonfiguration von der Anfangskonfigurationsposition unterscheidet, einen zu dem Strom gehörigen Bezugindex und ein Paar von Werten, die den Quellen-Zeitnischen-Satz bzw. den Ziel-Zeitnischen-Satz angeben, angibt;

    b) Erzeugen einer Liste aller Paare von Werten, die zumindest in der ersten Tabelle vorhanden sind, Sortieren der Paare von Werte gemäß der Anzahl von Malen, die die Paare in der ersten Tabelle erscheint, in absteigender Reihenfolge;

    c) Austauschen der Zeitnischen-Sätze (6) entsprechend den durch das erste Paar von oben in der Liste angezeigten Werte, und Löschen des ersten Paars und aller anderen Paare, in denen entweder einer oder der andere der in dem ersten Paar enthaltenen Werte erscheint;

    d) Wiederholen von Schritt c), bis alle Paare in der Liste beendet sind.


     
    3. Verfahren nach Anspruch 1 oder 2, in dem das Transportnetz zumindest einen Satz von übrigen Zeitnischen enthält, die normalerweise durch einen Strom unbesetzt sind, und in dem die Phasen, die eine minimale Verschiebungsabfolge der einzelnen Ströme definieren, und die die Abfolge realisieren, mit den folgenden Schritten realisiert werden:

    e) Erzeugen einer zweiten Tabelle (10), die eine gegenseitige Stromabhängigkeit zeigt;

    f) Auswählen eines ersten Stroms aus denen, die verschoben werden müssen:

    g) für den ausgewählten Strom Hinzufügen einer Anzahl von Reihen gleich der Anzahl von Strömen, die, auch teilweise, die Endposition des ausgewählten Stroms besetzen, Schreiben eines Paars von Bezugsindizes, die den ausgewählten Strom und den die Endposition besetzenden Strom zeigen, in jede der Reihen, oder, im Fall, daß die Endposition frei ist, eines Paars von Bezugsindizes, in dem ein erster Index den ausgewählten Strom anzeigt und ein zweiter Index herkömmlich zeigt, daß die Endposition frei ist (0);

    h) Wiederholen von Schritt g), Auswählen der Ströme, die die Endposition des vorhergehend ausgewählten Stroms besetzen, einen auf einmal und rekursiv, bis eine derartige Endposition frei ist oder durch einen Strom besetzt ist, der bereits vorhergehend ausgewählt wurde;

    i) in der zweiten Tabelle Überprüfen der Anwesenheit einer wiederkehrenden Abhängigkeit zwischen zwei oder mehr Strömen, wenn eine derartige Erscheinung vorhanden ist, Beginnen einen der Ströme in der wiederkehrenden Abhängigkeit auf einen freien übrigen Zeitnischen-Satz zu verschieben und für alle Paare in der zweiten Tabelle mit dem Index, der den verschobenen Strom anzeigt, als einem Wert, der die Endposition des Stroms anzeigt, Ersetzen des Index durch einen Wert (0), der herkömmlich anzeigt, daß die Endposition frei ist;

    j) innerhalb der zweiten Tabelle suchen nach Paaren mit dem herkömmlichen Wert (0), der anzeigt, daß die Endposition frei ist, als einem Index, der die Endposition des Stroms anzeigt, und für jedes der Paare Fortschreiten durch Verschieben des entsprechenden Stroms auf die entsprechende Endposition und Löschen der Reihe entsprechend dem Paar aus derselben Tabelle; für alle Paare der zweiten Tabelle mit dem Index, der den verschobenen Strom anzeigt, als dem Wert, der die Endposition des Stroms anzeigt, Ersetzen des Index durch einen Wert (0), der herkömmlich anzeigt, daß die Endposition frei ist;

    k) Wiederholen der Schritte i) und j), bis die zweite Tabelle leer ist;

    l) Auswählen eines neuen Stroms aus denen, die verschoben werden müssen, und Wiederholen von Schritt g) und den folgenden Schritten.


     
    4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Sätzen von Zeitnischen (6), in denen die Ströme anfänglich angeordnet sein, Sätze von Zeitnischen eines ersten Teilnetzes des Transportnetzes sind.
     
    5. Verfahren nach Anspruch 4, in dem die Sätze von übrigen Zeitnischen Sätze von Zeitnischen eines zweiten Teilnetzes des Transportnetzes sind.
     
    6. Verfahren nach Anspruch 5, in dem das erste Teilnetz und das zweite Teilnetz Ringnetze sind.
     
    7. Verfahren nach einem der vorhergehenden Ansprüche, in dem das Transportnetz ein Netz vom SDH- oder SONET-Typ ist und die Zeitnischen Zeitfenster sind.
     
    8. Verfahren nach einem der Ansprüche 1 bis 6, in dem das Transportnetz ein Netz vom WDM-Typ ist und die Zeitnischen λ-Zeitnischen, d.h. Wellenlängen sind.
     
    9. Verfahren nach einem der Ansprüche 1 bis 6, in dem das Transportnetz ein Netz vom SDM-Typ ist und die Zeitnischen Raumintervalle sind.
     
    10. Verfahren nach einem der Ansprüche 1 bis 6, in dem das Transportnetz ein Netz vom FDM-Typ ist und die Zeitnischen Frequenzintervalle sind.
     
    11. Einrichtung zur zentralisierten Verwaltung eines Transportnetzes, in dem Daten in Circuit-Datenströmen angeordnet sind, die in einer Mehrzahl von Sätzen von Zeitnischen (6) angeordnet sind, einschließlich eines Systems zum Sortieren der Ströme innerhalb des Satzes von Zeitnischen, gekennzeichnet durch die Tatsache, daß das System ein Verfahren zur Optimierung des Band gemäß einem der vorhergehenden Ansprüche verwendet.
     
    12. Computerprogramm mit einer Computerprogrammcodeeinrichtung, die geeignet ist, alle Schritte irgendeines der Ansprüche 1 bis 10 durchzuführen, wenn das Programm auf einem Computer läuft.
     
    13. Computerprogramm nach Anspruch 12, das in einem computerlesbaren Medium enthalten ist.
     


    Revendications

    1. Procédure pour optimiser la bande occupée par une pluralité de flux de données de circuit (7, 8, ..) situés, selon une configuration initiale, dans une pluralité de séries de tranches (6) d'un réseau de transport, en triant lesdits flux à l'intérieur des mêmes séries de tranches, ladite procédure étant caractérisée en ce qu'elle comprend les étapes suivantes consistant à :

    - calculer, avec un algorithme de routine de flux optimal théorique, une configuration théorique des flux contenus dans ladite configuration initiale, qui est optimisée en ce qui concerne la bande occupée ;

    - échanger les séries de tranches (6) de ladite configuration de flux théorique pour obtenir un agencement optimal desdites séries de tranches, dans lesquelles le nombre de flux dont la position correspond à la position adoptée par les mêmes flux dans ladite configuration initiale est maximisé ;

    - définir une séquence de décalage minimum de flux individuels nécessaire pour décaler chaque flux individuel d'une position initiale occupée dans ladite configuration de flux initiale à une position finale correspondant à la position adoptée par le même flux dans ledit agencement de séries de tranches optimal (6) ;

    - mettre en oeuvre ladite séquence de décalage minimum de flux individuels, pour obtenir ainsi une configuration de flux avec une occupation de bande équivalente à ladite configuration de flux théorique.


     
    2. Procédure selon la revendication 1, dans laquelle ladite phase d'échange entre les séries de tranches (6) est mise en oeuvre avec les étapes suivantes consistant à :

    a) créer un premier tableau dans lequel chaque rangée donne, pour chaque flux dont la position dans la configuration de flux théorique diffère de la position de configuration initiale, un indice de référence associé audit flux et une paire de valeurs indiquant la série de tranches source et la série de tranches de destination respectivement ;

    b) créer une liste de toutes les paires de valeurs présentes au moins une fois dans le premier tableau, trier par ordre décroissant lesdites paires de valeurs en fonction du nombre de fois où chaque paire apparaît dans ledit premier tableau ;

    c) échanger les séries de tranches (6) correspondant aux valeurs indiquées par la première paire dans ladite liste à partir du haut, et effacer de la liste ladite première paire et toutes les autres paires dans lesquelles l'une ou l'autre des valeurs contenues dans ladite première paire apparaît ;

    d) répéter l'étape c) jusqu'à ce que toutes les paires dans ladite liste soient terminées.


     
    3. Procédure selon la revendication 1 ou 2, dans laquelle ledit réseau de transport comprend au moins une série de tranches de réserve normalement inoccupées par un flux, et dans laquelle lesdites phases qui définissent une séquence de décalage minimum des flux individuels, et qui mettent en oeuvre ladite séquence, sont mises en oeuvre avec les étapes suivantes consistant à :

    e) créer un second tableau (10), montrant l'interdépendance des flux ;

    f) sélectionner un premier flux parmi ceux qui doivent être décalés ;

    g) ajouter dans ledit second tableau (10), pour ledit flux sélectionné, un nombre de rangées égal au nombre de flux qui occupent, même partiellement, la position finale dudit flux sélectionné, écrire une paire d'indices de référence montrant le flux sélectionné et le flux occupant la position finale dans chacune desdites rangées, ou au cas où ladite position finale est libre, une paire d'indices de référence dans laquelle un premier indice indique le flux sélectionné et un second indice montre de manière conventionnelle que la position finale est libre (0) ;

    h) répéter l'étape g) sélectionnant les flux qui occupent la position finale du flux sélectionné précédemment, un à la fois et de manière récursive, jusqu'à ce qu'une telle position finale soit libre ou soit occupée par un flux qui a déjà été sélectionné précédemment ;

    i) vérifier dans ledit second tableau la présence d'une dépendance circulaire entre deux flux ou plus, si une telle occurrence est présente, commencer à décaler l'un des flux dans ladite dépendance circulaire sur une série de tranches de réserve libres et pour toutes les paires dans ledit second tableau ayant comme valeur indicative de la position finale du flux l'indice indicateur dudit flux décalé, remplacer ledit indice par une valeur (0) indiquant de manière conventionnelle que la position finale est libre ;

    j) rechercher dans ledit second tableau des paires ayant comme indice indicateur de la position finale du flux ladite valeur conventionnelle (0) indiquant que la position finale est libre, et traiter, pour chacune desdites paires en décalant le flux correspondant sur la position finale correspondante et effacer la rangée correspondante à ladite paire du même tableau ; pour toutes les paires dudit second tableau ayant comme valeur indicative de la position finale du flux l'indice indicatif dudit flux décalé, remplacer ledit indice par une valeur (0) indiquant de manière conventionnelle que la position finale est libre ;

    k) répéter les étapes i) et j) jusqu'à ce que le second tableau soit vide ;

    l) sélectionner un nouveau flux parmi ceux qui doivent être décalés et répéter l'étape g) et les étapes suivantes.


     
    4. Procédure selon l'une des revendications 1 à 3, dans laquelle lesdites séries de tranches (6) dans lesquelles lesdits flux sont initialement colocalisés sont des séries de tranches d'un premier sous-réseau dudit réseau de transport.
     
    5. Procédure selon la revendication 4, dans laquelle lesdites séries de tranches de réserve sont des séries de tranches d'un second sous-réseau dudit réseau de transport.
     
    6. Procédure selon la revendication 5, dans laquelle ledit premier sous-réseau et ledit second sous-réseau sont des réseaux annulaires.
     
    7. Procédure selon l'une quelconque des revendications précédentes, dans laquelle ledit réseau de transport est un réseau du type SDH ou SONET et lesdites tranches sont des intervalles de temps.
     
    8. Procédure selon l'une quelconque des revendications 1 à 6, dans laquelle ledit réseau de transport est un réseau du type WDM et lesdites tranches sont des tranches λ, c'est-à-dire des longueurs d'onde.
     
    9. Procédure selon l'une quelconque des revendications 1 à 6, dans laquelle ledit réseau de transport est un réseau du type SDM et lesdites tranches sont des intervalles spatiaux.
     
    10. Procédure selon l'une quelconque des revendications 1 à 6, dans laquelle ledit réseau de transport est un réseau du type FDM et lesdites tranches sont des intervalles de fréquence.
     
    11. Dispositif pour la gestion centralisée d'un réseau de transport, dans lequel des données sont agencées dans des flux de données de circuit colocalisés dans une pluralité de séries de tranches (6), comprenant un système pour trier lesdits flux dans lesdites séries de tranches, caractérisé en ce que ledit système utilise une procédure pour optimiser la bande selon l'une quelconque des revendications précédentes.
     
    12. Programme informatique comprenant des moyens à code de programme informatique adaptés pour effectuer toutes les étapes de l'une quelconque des revendications 1 à 10 lorsque ledit programme est exécuté sur un ordinateur.
     
    13. Programme informatique selon la revendication 12 mise en oeuvre sur un support lisible par ordinateur.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description