(19)
(11) EP 1 285 102 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
09.07.2008 Bulletin 2008/28

(21) Application number: 01915880.7

(22) Date of filing: 16.03.2001
(51) International Patent Classification (IPC): 
C23C 18/12(2006.01)
C23C 18/06(2006.01)
(86) International application number:
PCT/KR2001/000422
(87) International publication number:
WO 2001/088222 (22.11.2001 Gazette 2001/47)

(54)

HIGH DENSITY CERAMIC THICK FILM FABRICATION METHOD BY SCREEN PRINTING

HERSTELLUNG EINES HOCHDICHTEN DICKEN KERAMIKFILMS DURCH SIEBDRUCK

PROCEDE DE FABRICATION D'UN FILM EPAIS DE CERAMIQUE HAUTE DENSITE


(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

(30) Priority: 13.05.2000 KR 2000025622

(43) Date of publication of application:
26.02.2003 Bulletin 2003/09

(73) Proprietor: Korea Institute of Science and Technology
Seoul 136-791 (KR)

(72) Inventors:
  • KIM, Tae-Song
    Seoul 121-041 (KR)
  • KIM, Yong-Bum
    Seoul 130-081 (KR)
  • JUNG, Hyung-Jin
    Kangnam-Ku, Seoul 135-101 (KR)

(74) Representative: Albrecht, Thomas et al
Kraus & Weisert Thomas-Wimmer-Ring 15
80539 München
80539 München (DE)


(56) References cited: : 
EP-A- 0 913 359
JP-A- 7 205 537
US-A- 4 248 921
US-A- 5 756 147
JP-A- 4 215 414
JP-A- 8 096 624
US-A- 4 409 261
   
  • PATENT ABSTRACTS OF JAPAN vol. 016, no. 108 (E-1179), 17 March 1992 (1992-03-17) & JP 03 283583 A (MAZDA MOTOR CORP), 13 December 1991 (1991-12-13)
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to a high density ceramic thick film fabrication method by screen printing and particularly, to a high density ceramic thick film fabrication method by screen printing having advantages that patterning is not needed to fabricate a ceramic thick film and thick films of a preferred pattern size can be formed directly.

BACKGROUND ART



[0002] In case of fabricating a ceramic thick film by screen printing, there is a main problem that it is difficult to densify a film. Conventionally, a ceramic thick film by screen printing has been densified by adding glassy phase which can be easily fused in a heat processing and filled among particles in a paste for screen printing process. Another method for densification of the film is to perform a pressurized heat process.

[0003] Japanese patent application JP 03 283583 A discloses a process for manufacturing a thick piezoelectric film having a high sintering density comprising the steps of forming a pastelike thick film of fine ceramic powder made of a piezoelectric paste of a mixture of lead titanate.zirconate as a fine piezoelectric powder, a metal alkoxide solution of its precursor, a lead borosilicate glass fine powder as an inorganic binder, an ethylcellulose derivative as an organic binder, and α-terpineol as an organic solvent on an alumina board by a screen printing method, drying the thick film and further baking the film to form a piezoelectric thick film.

[0004] Pb (Zr,Ti)O3(PZT) has been studied for applying to micro devices since the ceramic material has piezoelectric and pyroelectric properties. Koch et al. studied a thick film fabrication method by adding 5% of lead borosilicate glass to a paste [Sensors and Actuators A, 70 (1998) 98-103]. Chen et al. conducted researches for achieving two objects of densifying and low temperature firing [J. of Appl. Phys, 77(1995) 3349-3353] forming a glassy phase by adding 4% of Li2 CO3 and Bi2O3. In addition, Yao et al. conducted a research for densifying a PZT thick film on an alumina substrate by isostatic pressing after screen printing [Sensros and Actuators A, 71 (1998) 139-143]. However, in this method heat processing temperature was so high as 1130°C that the method could not be applied for micro device element formed on Si.

[0005] As another trial for densifing a film, Barrow et al. used a ceramic powders mixed with a sol made of same material. Since empty spaces among ceramic particles were filled with the sol, a denser thick film can be fabricated. They formed a thick film using PZT powders mixed with PZT sol to deposit a 20 µm of film at low temperature as 650°C [Appl. Phys. 81 (1997) 876-881]. However, the above method has disadvantages that after depositing a film, a post-processing of patterning a film using a mask and etching the film should be required and that forming a uniform film is limited due to separation of ceramic sol and ceramic particles while the film is coated.

DETAILED DESCRIPTION OF THE INVENTION



[0006] Therefore, an object of the present invention is to provide a method for fabricating a ceramic thick film at low temperature with the conventional printing method solving the problem of complexity of the conventional art which needs additional patterning processing.

[0007] The present invention provides a high density ceramic thick film fabrication method by screen printing which is comprised the steps of providing vehicle comprising an organic binder and solvent, dispersing ceramic powders into the vehicle to be paste, forming the paste to thick film by screen printing, removing the organic binder from the film, applying a sol or sol-like solution containing a PZT component to the surface of the film so that the sol or sol-like solution containing a PZT component can infiltrate into the film, removing the remaining sol or sol-like solution containing a PZT component from the surface of the film by spinning the film, drying and preheating the film and sintering the film at the range from 700 to 1200°C.

BRIEF DESCRIPTION OF THE DRAWINGS



[0008] 

Figure 1 is a SEM photograph showing an end surface of a ceramic thick film fabricated by the method of the present invention.

Figure 2 is a XRD graph illustrating the ceramic thick film using the method of the present invention.

Figures 3A and 3B are graphs illustrating P-E electric properties of the ceramic thick film fabricated by the method of the present invention.


MODE FOR CARRYING OUT THE PREFERRED EMBODIMENTS



[0009] In the present invention, the sol-like solution has metal organic (such as alkoxide, hydrate or carbonate) containing PZT component separated, mixed or dissolved in a solvent. A sol or sol-like solution can have identical or different components with ceramic powders used.

[0010] In the present invention, sintering temperature ranges from 700°C to 1200°C, preferably from 800°C to 900°C in case of sintering. The thickness of the thick film ranges between 1 and 200 µm.

[0011] Repeatedly forming a thick film with a certain thickness and infiltrating the sol or sol-like solution can densify the thick film more.

[0012] The sol or sol-like solution which is applied on the surface of the thick film can be applied before or/and after sintering the thick film. In case of applying the sol or sol-like solution after sintering the thick film, final sintering is performed at the range of 600°C to 700°C.

[0013] Paste made of coating material should be prepared for screen printing in fabricating a ceramic thick film. In case of PZT paste, the film was fabricated through the process of mixing and dispersing PZT powder into a vehicle which comprises an organic binder and a solvent.

[0014] In the present invention, PZT sol was newly added besides general components in fabricating such paste.

[0015] The sol could be fabricated by a general process. Another components could be added to a sol in order to achieve a certain object. For example, 5 to 20 % of PbO could be further added since the material was heat processed at high temperature. Changing the ratio of Zr/Ti could fabricate different kinds of sol. The PZT is a solid solution of PbTiO3 and PbZrO3. Its property is changed according to the Zr/Ti ratio. The piezoelectric or dielectric property was maximized when the ratio of Zr/Ti was 52mol%/48mol% but according to the usage, property could be changed varying the ratio of Zr/Ti.

[0016] Hereinafter, features and details of the present invention will be described with reference to embodiments.

Example 1 (for comparison and/or reference)



[0017] The fabricating process began with fabricating a vehicle. The vehicle was prepared using α-terpineol, generally used as a solvent of paste, and BEEA (butoxy ethoxy ethyl acetate), PVB (polyvinyl butyral) and PEG (polyethylene glycol) weres added to the solvent to be dissolved completely. Next, PZT powder and PZT sol were mixed and dispersed to the vehicle to form a paste.

[0018] The PZT powder was fabricated by the conventional powder manufacturing process. Namely, powders of raw materials were mixed by ball milling for 24 hours by hydro mixing method, dried and calcinated thus to increase reactivity. The powders were ground by attrition milling to be prepared smaller than 0.3 µm in particle size. In fabricating paste, methods of ball milling and three roll milling were used to mix and disperse materials. In the fabricated paste, the ratio of PZT powder was 50 to 85wt%, that of vehicle is 10 to 25wt% and that of PZT sol is 5 to 25wt%.

[0019] A thick film was fabricated by printing the thick film using the fabricated paste by screen printing, drying, and sintering at 700 to 1200°C.

[0020] Conventional art is not appropriate for screen printing since in the conventional art the paste was fabricated by mixing only PZT powder and PZT sol and viscosity of the paste was low. Accordingly, the conventional art could be applied to dip coating or spin coating. However in case of Example 1 according to the present invention, PZT powder, PZT sol and vehicle were mixed together so as to apply the viscosity of the paste to the screen printing method and to improve dispersibility of the PZT powder in the paste.

Example 2



[0021] A vehicle was prepared through dissolving BEEA, PVB and PEG completely in a-terpineol in a same manner as Example 1. The PZT powder was mixed and dispersed thus to fabricate PZT paste which did not contain sol and a thick film with a preferred thickness was printed by screen printing. After drying the resultant material, the organic binder was burned out at 400 to 700°C. Then the PZT sol was infiltrated into the thick film by applying PZT sol solution on the surface of the printed film. Later, remained PZT sol was removed by spinning the substrate coated with the thick film and after drying and preheating the film at 80 and 600°C, the film was sintered at 700 to 1200°C thus to fabricate a thick film.

Example 3



[0022] A thick film was printed to have a preferred thickness using the paste having the sol fabricated in Example 1. Then the film was dried and the organic solvent was burned out at 400 to 700°C as in Example 2. The PZT sol solution was infiltrated into the thick film by applying the PZT sol on the surface of the printed thick film. Then the extra PZT sol solution was removed by spinning the sample and after drying and preheating the resultant material at 80 and 600°C, the material was sintered at 700 to 1200°C thus to form a thick film.

Example 4



[0023] A thick film was deposited with a same method as in Examples 2 and 3, but in repeated screen printing to have a preferred thickness. The process of applying and infiltrating the sol into the surface of the film as in Examples 2 and 3 was repeated after every screen printing so as to densify the film.

Example 5 (for comparison and/or reference)



[0024] In the preparing process for fabricating PZT thick film In Examples 1 and 2, 5 to 20% of PbO was added to fabricate a paste.

[0025] The reasons that PbO was added are, firstly, that it is necessary to compensate the PbO loss in PZT since PbO components is vaporized in case of heat processing of PZT. Secondly, it is because liquid phase sintering is promoted by adding PbO and accordingly the sintering temperature can be lowered.

[0026] Figure 1A is a cross sectional view of one of the PZT thick films according to the above Examples. The thickness of the film was 25 µm. Figure 2 is a XRD graph illustrating the ceramic thick film using the method of the present invention and it shows that a film having an excellent crystal phase was deposited in spite of low heat processing temperature of 800°C.

[0027] Table 1 shows piezoelectric property d33 of the film which was fabricated by the conventional screen printing and the film which was deposited by sol processing according to the present invention. The table also shows that the piezoelectric constant increases almost two to three times by infiltrating the sol.
Table 1. Changes of piezoelectric constant value before and after densifying by sol infiltration
Section Before sol infiltrating (pC/N) After sol infiltrating (pC/N)
Piezoelectric constant 40∼70 75∼190
(d33)    


[0028] Figures 3A and 3B are graphs illustrating a relationship between polarization (P) and electric field (E) of thick films fabricated according to the present invention and showing that the thick films has a high residual polarization of 15µ C/cm2.

INDUSTRIAL APPLICABILITY



[0029] As so far described, according to the method of the present invention, a high density ceramic thick film by the conventional screen printing, which has advantages that patterning is not needed to fabricate a ceramic thick film and thick films of a preferred pattern size can be formed directly can be fabricated. Therefore, by achieving two objects of densifying and low temperature firing, the present invention can be applied to fabricate micro devices such as a piezoelectric element or a pyroelectric element usefully.


Claims

1. A method for fabricating a high density ceramic thick film comprising the steps of:

providing vehicle comprising an organic binder and solvent;

dispersing ceramic powders into the vehicle to be paste;

forming the paste to thick film by screen printing;

removing the organic binder from the film;

applying a sol or sol-like solution containing a PZT component to the surface of the film so that the sol or sol-like solution can infiltrate into the film;

removing the remaining sol or sol-like solution containing a PZT component from the surface of the film by spinning the film;

drying and preheating the film; and

sintering the film at the range from 700 to 1200°C.


 
2. The method of claim 1, wherein the sol-like solution has a metal organic containing PZT component separated, mixed or dissolved in a solvent.
 
3. The method of claim 1, wherein the sol or sol-like solution are identical components with the ceramic powder.
 
4. The method of claim 1, wherein the sol or sol-like solution are not identical components with the ceramic powder.
 
5. The method of claim 1, wherein the thick film is densified by forming a thick film with a certain thickness by screen printing, then having the sol and sol-like solution infiltrated into the surface of the thick film and performing the process repeatedly more than twice.
 
6. The method of claim 1, wherein sinteririg temperature is 800 to 900°C in case of sintering.
 
7. The method of claim 1, wherein the thickness of the thick film is at the range of 1 to 200 µm.
 
8. A method for fabricating a high density ceramic thick film comprising the steps of:

providing vehicle comprising an organic binder and solvent;

dispersing ceramic powders into the vehicle to be paste;

forming the paste to thick film by screen printing;

removing the organic binder from the film;

sintering the film;

applying a sol or sol-like solution containing a PZT component to the surface of the film so that the sol or sol-like solution containing a PZT component can infiltrate into the film; and

sintering the film at 600 to 700°C.


 
9. A method for fabricating a high density ceramic thick film comprising the steps of:

providing vehicle comprising an organic binder and solvent;

dispersing ceramic powders into the vehicle to be paste;

forming the paste to thick film by screen printing;

removing the organic binder from the film;

applying a sol or sol-like solution containing a PZT component to the surface of the film so that the sol or sol-like solution containing a PZT component can infiltrate into the film;

removing the remaining sol or sol-like solution containing a PZT component from the surface of the film by spinning the film;

drying and preheating the film;

sintering the film at the range from 700 to 1200°C;

applying the sol or sol-like solution containing a PZT component to the surface of the film again so that the sol or sol-like solution containing a PZT component can infiltrate into the film; and

sintering the film at the range from 600 to 700°C.


 


Ansprüche

1. Verfahren zur Herstellung eines hochdichten dicken Keramikfilms bzw. einer -folie, umfassend die Schritte:

Bereitstellen eines Vehikels, umfassend ein organisches Bindemittel und Lösungsmittel;

Dispergieren keramischer Pulver in das Vehikel, wobei eine Paste erzeugt wird;

Formen der Paste zu einem dicken Film durch Siebdruck;

Entfernen des organischen Bindemittels aus dem Film;

Auftragen einer Sol- oder solartigen Lösung, enthaltend eine PZT-Komponente, auf die Oberfläche des Films, so dass die Sol- oder solähnliche Lösung in den Film einsickern kann;

Entfernen der verbleibenden Sol- oder der verbleibenden solartigen Lösung, enthaltend eine PZT-Komponente, von der Oberfläche des Films durch Rotieren des Films;

Trocknen und Vorheizen des Films; und

Sintern des Films im Bereich von 700 bis 1200°C.


 
2. Verfahren gemäß Anspruch 1, wobei die solartige Lösung eine metallorganische ("metal organic") PZT-haltige Komponente aufweist, die getrennt, gemischt, oder gelöst in einem Lösungsmittel ist.
 
3. Verfahren gemäß Anspruch 1, wobei die Sol- oder solartige Lösung identische Komponenten zum keramischen Pulver sind.
 
4. Verfahren gemäß Anspruch 1, wobei die Sol- oder solartige Lösung nichtidentische Komponenten zum keramischen Pulver sind.
 
5. Verfahren gemäß Anspruch 1, wobei der dicke Film verdichtet wird durch Bildung eines dicken Films mit bestimmter Dicke durch Siebdruck, wird und anschließendes Einsickernlassen der Sol- oder solartigen Lösung in die Oberfläche des dicken Films und wiederholtes Ausführen des Verfahrens mehr als zweimal.
 
6. Verfahren gemäß Anspruch 1, wobei die Sintertemperatur 800 bis 900°C im Fall des Sinterns beträgt.
 
7. Verfahren gemäß Anspruch 1, wobei die Dicke des dicken Films in einem Bereich von 1 bis 200 µm liegt.
 
8. Verfahren zur Herstellung eines hochdichten dicken Keramikfilms, umfassend die Schritte:

Bereitstellen eines Vehikels, umfassend ein organisches Bindemittel und Lösungsmittel;

Dispergieren keramischer Pulver in das Vehikel, wobei eine Paste erzeugt wird ("to be paste");

Formen der Paste zu einem dicken Film durch Siebdruck;

Entfernen des organischen Bindemittels aus dem Film;

Sintern des Films;

Auftragen einer Sol- oder solartigen Lösung, enthaltend eine PZT-Komponente, auf die Oberfläche des Films, so dass die Sol- oder solartige Lösung, enthaltend eine PZT-Komponente, in den Film einsickern kann; und

Sintern des Films bei 600 bis 700°C.


 
9. Verfahren zur Herstellung eines hochdichten dicken Keramikfilms, umfassend die Schritte:

Bereitstellen eines Vehikels, umfassend ein organisches Bindemittel und Lösungsmittel;

Dispergieren keramischer Pulver in das Vehikel, wobei eine Paste erzeugt wird;

Formen der Paste zu einem dicken Film durch Siebdruck;

Entfernen des organischen Bindemittels aus dem Film;

Auftragen einer Sol- oder solartigen Lösung, enthaltend eine PZT-Komponente auf die Oberfläche des Films, so dass die Sol- oder solartige Lösung, enthaltend eine PZT-Komponente, in den Film einsickern kann;

Entfernen der verbleibenden Sol- oder solartigen Lösung, enthaltend eine PZT-Komponente, von der Oberfläche des Films durch Rotieren des Films;

Trocknen und Vorheizen des Films;

Sintern des Films in einem Bereich von 700 bis 1200°C;

nochmaliges Auftragen der Sol- oder solartigen Lösung, enthaltend eine PZT-Komponente, auf die Oberfläche des Films, so dass die Sol- oder solartige Lösung, enthaltend eine PZT-Komponente, in den Film einsickern kann; und

Sintern des Films in einem Bereich von 600 bis 700°C.


 


Revendications

1. Procédé de fabrication d'un film épais de céramique haute densité comprenant les étapes consistant à :

fournir un véhicule comprenant un liant et un solvant organiques ;

disperser des poudres de céramique dans le véhicule pour former une pâte ;

former la pâte en film épais par sérigraphie ;

éliminer le liant organique du film ;

appliquer un sol ou une solution de type sol contenant un composant PZT sur la surface du film de sorte que le sol ou solution de type sol puisse s'infiltrer dans le film ;

éliminer le sol ou solution de type sol contenant un composant PZT résiduel de la surface du film par centrifugation du film ;

sécher et préchauffer le film ; et

fritter le film dans la plage de 700 à 1200°C.


 
2. Procédé de la revendication 1, dans lequel la solution de type sol comporte un composant PZT contenant un organométallique séparé, mélangé ou dissous dans un solvant.
 
3. Procédé de la revendication 1, dans lequel le sol ou la solution de type sol sont des composants identiques à la poudre de céramique.
 
4. Procédé de la revendication 1, dans lequel le sol ou la solution de type sol ne sont pas des composants identiques à la poudre de céramique.
 
5. Procédé de la revendication 1, dans lequel le film épais est densifié par formation d'un film épais ayant une certaine épaisseur par sérigraphie, puis infiltration du sol ou solution de type sol dans la surface du film épais et exécution du processus de manière répétée plus de deux fois.
 
6. Procédé de la revendication 1, dans lequel la température de frittage est de 800 à 900°C en cas de frittage.
 
7. Procédé de la revendication 1, dans lequel l'épaisseur du film épais est dans la plage de 1 à 200 µm.
 
8. Procédé de fabrication d'un film épais de céramique haute densité comprenant les étapes consistant à :

fournir un véhicule comprenant un liant et un solvant organiques ;

disperser des poudres de céramique dans le véhicule pour former une pâte ;

former la pâte en film épais par sérigraphie ;

éliminer le liant organique du film ;

fritter le film ;

appliquer un sol ou une solution de type sol contenant un composant PZT sur la surface du film de sorte que le sol ou solution de type sol contenant un composant PZT puisse s'infiltrer dans le film ; et

fritter le film à 600 à 700°C.


 
9. Procédé de fabrication d'un film épais de céramique haute densité comprenant les étapes consistant à :

fournir un véhicule comprenant un liant et un solvant organiques ;

disperser des poudres de céramique dans le véhicule pour former une pâte ;

former la pâte en film épais par sérigraphie ;

éliminer le liant organique du film ;

appliquer un sol ou une solution de type sol contenant un composant PZT sur la surface du film de sorte que le sol ou solution de type sol contenant un composant PZT puisse s'infiltrer dans le film ;

éliminer le sol ou solution de type sol contenant un composant PZT résiduel de la surface du film par centrifugation du film ;

sécher et préchauffer le film ;

fritter le film dans la plage de 700 à 1200°C ;

appliquer le sol ou la solution de type sol contenant un composant PZT sur la surface du film de nouveau de sorte que le sol ou solution de type sol puisse s'infiltrer dans le film ; et

fritter le film dans la plage de 600 à 700°C.


 




Drawing











Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description