TECHNICAL FIELD
[0001] The present invention relates to a high density ceramic thick film fabrication method
by screen printing and particularly, to a high density ceramic thick film fabrication
method by screen printing having advantages that patterning is not needed to fabricate
a ceramic thick film and thick films of a preferred pattern size can be formed directly.
BACKGROUND ART
[0002] In case of fabricating a ceramic thick film by screen printing, there is a main problem
that it is difficult to densify a film. Conventionally, a ceramic thick film by screen
printing has been densified by adding glassy phase which can be easily fused in a
heat processing and filled among particles in a paste for screen printing process.
Another method for densification of the film is to perform a pressurized heat process.
[0003] Japanese patent application
JP 03 283583 A discloses a process for manufacturing a thick piezoelectric film having a high sintering
density comprising the steps of forming a pastelike thick film of fine ceramic powder
made of a piezoelectric paste of a mixture of lead titanate.zirconate as a fine piezoelectric
powder, a metal alkoxide solution of its precursor, a lead borosilicate glass fine
powder as an inorganic binder, an ethylcellulose derivative as an organic binder,
and α-terpineol as an organic solvent on an alumina board by a screen printing method,
drying the thick film and further baking the film to form a piezoelectric thick film.
[0004] Pb (Zr,Ti)
O3(PZT) has been studied for applying to micro devices since the ceramic material has
piezoelectric and pyroelectric properties. Koch et al. studied a thick film fabrication
method by adding 5% of lead borosilicate glass to a paste [
Sensors and Actuators A, 70 (1998) 98-103]. Chen et al. conducted researches for achieving two objects of densifying and low
temperature firing [
J. of Appl. Phys, 77(1995) 3349-3353] forming a glassy phase by adding 4% of
Li2 CO3 and
Bi2O3. In addition, Yao et al. conducted a research for densifying a PZT thick film on
an alumina substrate by isostatic pressing after screen printing [
Sensros and Actuators A, 71 (1998) 139-143]. However, in this method heat processing temperature was so high as 1130°C that
the method could not be applied for micro device element formed on Si.
[0005] As another trial for densifing a film, Barrow et al. used a ceramic powders mixed
with a sol made of same material. Since empty spaces among ceramic particles were
filled with the sol, a denser thick film can be fabricated. They formed a thick film
using PZT powders mixed with PZT sol to deposit a 20 µm of film at low temperature
as 650°C [
Appl. Phys. 81 (1997) 876-881]. However, the above method has disadvantages that after depositing a film, a post-processing
of patterning a film using a mask and etching the film should be required and that
forming a uniform film is limited due to separation of ceramic sol and ceramic particles
while the film is coated.
DETAILED DESCRIPTION OF THE INVENTION
[0006] Therefore, an object of the present invention is to provide a method for fabricating
a ceramic thick film at low temperature with the conventional printing method solving
the problem of complexity of the conventional art which needs additional patterning
processing.
[0007] The present invention provides a high density ceramic thick film fabrication method
by screen printing which is comprised the steps of providing vehicle comprising an
organic binder and solvent, dispersing ceramic powders into the vehicle to be paste,
forming the paste to thick film by screen printing, removing the organic binder from
the film, applying a sol or sol-like solution containing a PZT component to the surface
of the film so that the sol or sol-like solution containing a PZT component can infiltrate
into the film, removing the remaining sol or sol-like solution containing a PZT component
from the surface of the film by spinning the film, drying and preheating the film
and sintering the film at the range from 700 to 1200°C.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008]
Figure 1 is a SEM photograph showing an end surface of a ceramic thick film fabricated
by the method of the present invention.
Figure 2 is a XRD graph illustrating the ceramic thick film using the method of the
present invention.
Figures 3A and 3B are graphs illustrating P-E electric properties of the ceramic thick
film fabricated by the method of the present invention.
MODE FOR CARRYING OUT THE PREFERRED EMBODIMENTS
[0009] In the present invention, the sol-like solution has metal organic (such as alkoxide,
hydrate or carbonate) containing PZT component separated, mixed or dissolved in a
solvent. A sol or sol-like solution can have identical or different components with
ceramic powders used.
[0010] In the present invention, sintering temperature ranges from 700°C to 1200°C, preferably
from 800°C to 900°C in case of sintering. The thickness of the thick film ranges between
1 and 200 µm.
[0011] Repeatedly forming a thick film with a certain thickness and infiltrating the sol
or sol-like solution can densify the thick film more.
[0012] The sol or sol-like solution which is applied on the surface of the thick film can
be applied before or/and after sintering the thick film. In case of applying the sol
or sol-like solution after sintering the thick film, final sintering is performed
at the range of 600°C to 700°C.
[0013] Paste made of coating material should be prepared for screen printing in fabricating
a ceramic thick film. In case of PZT paste, the film was fabricated through the process
of mixing and dispersing PZT powder into a vehicle which comprises an organic binder
and a solvent.
[0014] In the present invention, PZT sol was newly added besides general components in fabricating
such paste.
[0015] The sol could be fabricated by a general process. Another components could be added
to a sol in order to achieve a certain object. For example, 5 to 20 % of PbO could
be further added since the material was heat processed at high temperature. Changing
the ratio of Zr/Ti could fabricate different kinds of sol. The PZT is a solid solution
of
PbTiO3 and
PbZrO3. Its property is changed according to the Zr/Ti ratio. The piezoelectric or dielectric
property was maximized when the ratio of Zr/Ti was 52mol%/48mol% but according to
the usage, property could be changed varying the ratio of Zr/Ti.
[0016] Hereinafter, features and details of the present invention will be described with
reference to embodiments.
Example 1 (for comparison and/or reference)
[0017] The fabricating process began with fabricating a vehicle. The vehicle was prepared
using α-terpineol, generally used as a solvent of paste, and BEEA (butoxy ethoxy ethyl
acetate), PVB (polyvinyl butyral) and PEG (polyethylene glycol) weres added to the
solvent to be dissolved completely. Next, PZT powder and PZT sol were mixed and dispersed
to the vehicle to form a paste.
[0018] The PZT powder was fabricated by the conventional powder manufacturing process. Namely,
powders of raw materials were mixed by ball milling for 24 hours by hydro mixing method,
dried and calcinated thus to increase reactivity. The powders were ground by attrition
milling to be prepared smaller than 0.3 µm in particle size. In fabricating paste,
methods of ball milling and three roll milling were used to mix and disperse materials.
In the fabricated paste, the ratio of PZT powder was 50 to 85wt%, that of vehicle
is 10 to 25wt% and that of PZT sol is 5 to 25wt%.
[0019] A thick film was fabricated by printing the thick film using the fabricated paste
by screen printing, drying, and sintering at 700 to 1200°C.
[0020] Conventional art is not appropriate for screen printing since in the conventional
art the paste was fabricated by mixing only PZT powder and PZT sol and viscosity of
the paste was low. Accordingly, the conventional art could be applied to dip coating
or spin coating. However in case of Example 1 according to the present invention,
PZT powder, PZT sol and vehicle were mixed together so as to apply the viscosity of
the paste to the screen printing method and to improve dispersibility of the PZT powder
in the paste.
Example 2
[0021] A vehicle was prepared through dissolving BEEA, PVB and PEG completely in a-terpineol
in a same manner as Example 1. The PZT powder was mixed and dispersed thus to fabricate
PZT paste which did not contain sol and a thick film with a preferred thickness was
printed by screen printing. After drying the resultant material, the organic binder
was burned out at 400 to 700°C. Then the PZT sol was infiltrated into the thick film
by applying PZT sol solution on the surface of the printed film. Later, remained PZT
sol was removed by spinning the substrate coated with the thick film and after drying
and preheating the film at 80 and 600°C, the film was sintered at 700 to 1200°C thus
to fabricate a thick film.
Example 3
[0022] A thick film was printed to have a preferred thickness using the paste having the
sol fabricated in Example 1. Then the film was dried and the organic solvent was burned
out at 400 to 700°C as in Example 2. The PZT sol solution was infiltrated into the
thick film by applying the PZT sol on the surface of the printed thick film. Then
the extra PZT sol solution was removed by spinning the sample and after drying and
preheating the resultant material at 80 and 600°C, the material was sintered at 700
to 1200°C thus to form a thick film.
Example 4
[0023] A thick film was deposited with a same method as in Examples 2 and 3, but in repeated
screen printing to have a preferred thickness. The process of applying and infiltrating
the sol into the surface of the film as in Examples 2 and 3 was repeated after every
screen printing so as to densify the film.
Example 5 (for comparison and/or reference)
[0024] In the preparing process for fabricating PZT thick film In Examples 1 and 2, 5 to
20% of PbO was added to fabricate a paste.
[0025] The reasons that PbO was added are, firstly, that it is necessary to compensate the
PbO loss in PZT since PbO components is vaporized in case of heat processing of PZT.
Secondly, it is because liquid phase sintering is promoted by adding PbO and accordingly
the sintering temperature can be lowered.
[0026] Figure 1A is a cross sectional view of one of the PZT thick films according to the
above Examples. The thickness of the film was 25 µm. Figure 2 is a XRD graph illustrating
the ceramic thick film using the method of the present invention and it shows that
a film having an excellent crystal phase was deposited in spite of low heat processing
temperature of 800°C.
[0027] Table 1 shows piezoelectric property
d33 of the film which was fabricated by the conventional screen printing and the film
which was deposited by sol processing according to the present invention. The table
also shows that the piezoelectric constant increases almost two to three times by
infiltrating the sol.
Table 1. Changes of piezoelectric constant value before and after densifying by sol
infiltration
Section |
Before sol infiltrating (pC/N) |
After sol infiltrating (pC/N) |
Piezoelectric constant |
40∼70 |
75∼190 |
(d33) |
|
|
[0028] Figures 3A and 3B are graphs illustrating a relationship between polarization (P)
and electric field (E) of thick films fabricated according to the present invention
and showing that the thick films has a high residual polarization of 15µ
C/
cm2.
INDUSTRIAL APPLICABILITY
[0029] As so far described, according to the method of the present invention, a high density
ceramic thick film by the conventional screen printing, which has advantages that
patterning is not needed to fabricate a ceramic thick film and thick films of a preferred
pattern size can be formed directly can be fabricated. Therefore, by achieving two
objects of densifying and low temperature firing, the present invention can be applied
to fabricate micro devices such as a piezoelectric element or a pyroelectric element
usefully.
1. A method for fabricating a high density ceramic thick film comprising the steps of:
providing vehicle comprising an organic binder and solvent;
dispersing ceramic powders into the vehicle to be paste;
forming the paste to thick film by screen printing;
removing the organic binder from the film;
applying a sol or sol-like solution containing a PZT component to the surface of the
film so that the sol or sol-like solution can infiltrate into the film;
removing the remaining sol or sol-like solution containing a PZT component from the
surface of the film by spinning the film;
drying and preheating the film; and
sintering the film at the range from 700 to 1200°C.
2. The method of claim 1, wherein the sol-like solution has a metal organic containing
PZT component separated, mixed or dissolved in a solvent.
3. The method of claim 1, wherein the sol or sol-like solution are identical components
with the ceramic powder.
4. The method of claim 1, wherein the sol or sol-like solution are not identical components
with the ceramic powder.
5. The method of claim 1, wherein the thick film is densified by forming a thick film
with a certain thickness by screen printing, then having the sol and sol-like solution
infiltrated into the surface of the thick film and performing the process repeatedly
more than twice.
6. The method of claim 1, wherein sinteririg temperature is 800 to 900°C in case of sintering.
7. The method of claim 1, wherein the thickness of the thick film is at the range of
1 to 200 µm.
8. A method for fabricating a high density ceramic thick film comprising the steps of:
providing vehicle comprising an organic binder and solvent;
dispersing ceramic powders into the vehicle to be paste;
forming the paste to thick film by screen printing;
removing the organic binder from the film;
sintering the film;
applying a sol or sol-like solution containing a PZT component to the surface of the
film so that the sol or sol-like solution containing a PZT component can infiltrate
into the film; and
sintering the film at 600 to 700°C.
9. A method for fabricating a high density ceramic thick film comprising the steps of:
providing vehicle comprising an organic binder and solvent;
dispersing ceramic powders into the vehicle to be paste;
forming the paste to thick film by screen printing;
removing the organic binder from the film;
applying a sol or sol-like solution containing a PZT component to the surface of the
film so that the sol or sol-like solution containing a PZT component can infiltrate
into the film;
removing the remaining sol or sol-like solution containing a PZT component from the
surface of the film by spinning the film;
drying and preheating the film;
sintering the film at the range from 700 to 1200°C;
applying the sol or sol-like solution containing a PZT component to the surface of
the film again so that the sol or sol-like solution containing a PZT component can
infiltrate into the film; and
sintering the film at the range from 600 to 700°C.
1. Verfahren zur Herstellung eines hochdichten dicken Keramikfilms bzw. einer -folie,
umfassend die Schritte:
Bereitstellen eines Vehikels, umfassend ein organisches Bindemittel und Lösungsmittel;
Dispergieren keramischer Pulver in das Vehikel, wobei eine Paste erzeugt wird;
Formen der Paste zu einem dicken Film durch Siebdruck;
Entfernen des organischen Bindemittels aus dem Film;
Auftragen einer Sol- oder solartigen Lösung, enthaltend eine PZT-Komponente, auf die
Oberfläche des Films, so dass die Sol- oder solähnliche Lösung in den Film einsickern
kann;
Entfernen der verbleibenden Sol- oder der verbleibenden solartigen Lösung, enthaltend
eine PZT-Komponente, von der Oberfläche des Films durch Rotieren des Films;
Trocknen und Vorheizen des Films; und
Sintern des Films im Bereich von 700 bis 1200°C.
2. Verfahren gemäß Anspruch 1, wobei die solartige Lösung eine metallorganische ("metal
organic") PZT-haltige Komponente aufweist, die getrennt, gemischt, oder gelöst in
einem Lösungsmittel ist.
3. Verfahren gemäß Anspruch 1, wobei die Sol- oder solartige Lösung identische Komponenten
zum keramischen Pulver sind.
4. Verfahren gemäß Anspruch 1, wobei die Sol- oder solartige Lösung nichtidentische Komponenten
zum keramischen Pulver sind.
5. Verfahren gemäß Anspruch 1, wobei der dicke Film verdichtet wird durch Bildung eines
dicken Films mit bestimmter Dicke durch Siebdruck, wird und anschließendes Einsickernlassen
der Sol- oder solartigen Lösung in die Oberfläche des dicken Films und wiederholtes
Ausführen des Verfahrens mehr als zweimal.
6. Verfahren gemäß Anspruch 1, wobei die Sintertemperatur 800 bis 900°C im Fall des Sinterns
beträgt.
7. Verfahren gemäß Anspruch 1, wobei die Dicke des dicken Films in einem Bereich von
1 bis 200 µm liegt.
8. Verfahren zur Herstellung eines hochdichten dicken Keramikfilms, umfassend die Schritte:
Bereitstellen eines Vehikels, umfassend ein organisches Bindemittel und Lösungsmittel;
Dispergieren keramischer Pulver in das Vehikel, wobei eine Paste erzeugt wird ("to
be paste");
Formen der Paste zu einem dicken Film durch Siebdruck;
Entfernen des organischen Bindemittels aus dem Film;
Sintern des Films;
Auftragen einer Sol- oder solartigen Lösung, enthaltend eine PZT-Komponente, auf die
Oberfläche des Films, so dass die Sol- oder solartige Lösung, enthaltend eine PZT-Komponente,
in den Film einsickern kann; und
Sintern des Films bei 600 bis 700°C.
9. Verfahren zur Herstellung eines hochdichten dicken Keramikfilms, umfassend die Schritte:
Bereitstellen eines Vehikels, umfassend ein organisches Bindemittel und Lösungsmittel;
Dispergieren keramischer Pulver in das Vehikel, wobei eine Paste erzeugt wird;
Formen der Paste zu einem dicken Film durch Siebdruck;
Entfernen des organischen Bindemittels aus dem Film;
Auftragen einer Sol- oder solartigen Lösung, enthaltend eine PZT-Komponente auf die
Oberfläche des Films, so dass die Sol- oder solartige Lösung, enthaltend eine PZT-Komponente,
in den Film einsickern kann;
Entfernen der verbleibenden Sol- oder solartigen Lösung, enthaltend eine PZT-Komponente,
von der Oberfläche des Films durch Rotieren des Films;
Trocknen und Vorheizen des Films;
Sintern des Films in einem Bereich von 700 bis 1200°C;
nochmaliges Auftragen der Sol- oder solartigen Lösung, enthaltend eine PZT-Komponente,
auf die Oberfläche des Films, so dass die Sol- oder solartige Lösung, enthaltend eine
PZT-Komponente, in den Film einsickern kann; und
Sintern des Films in einem Bereich von 600 bis 700°C.
1. Procédé de fabrication d'un film épais de céramique haute densité comprenant les étapes
consistant à :
fournir un véhicule comprenant un liant et un solvant organiques ;
disperser des poudres de céramique dans le véhicule pour former une pâte ;
former la pâte en film épais par sérigraphie ;
éliminer le liant organique du film ;
appliquer un sol ou une solution de type sol contenant un composant PZT sur la surface
du film de sorte que le sol ou solution de type sol puisse s'infiltrer dans le film
;
éliminer le sol ou solution de type sol contenant un composant PZT résiduel de la
surface du film par centrifugation du film ;
sécher et préchauffer le film ; et
fritter le film dans la plage de 700 à 1200°C.
2. Procédé de la revendication 1, dans lequel la solution de type sol comporte un composant
PZT contenant un organométallique séparé, mélangé ou dissous dans un solvant.
3. Procédé de la revendication 1, dans lequel le sol ou la solution de type sol sont
des composants identiques à la poudre de céramique.
4. Procédé de la revendication 1, dans lequel le sol ou la solution de type sol ne sont
pas des composants identiques à la poudre de céramique.
5. Procédé de la revendication 1, dans lequel le film épais est densifié par formation
d'un film épais ayant une certaine épaisseur par sérigraphie, puis infiltration du
sol ou solution de type sol dans la surface du film épais et exécution du processus
de manière répétée plus de deux fois.
6. Procédé de la revendication 1, dans lequel la température de frittage est de 800 à
900°C en cas de frittage.
7. Procédé de la revendication 1, dans lequel l'épaisseur du film épais est dans la plage
de 1 à 200 µm.
8. Procédé de fabrication d'un film épais de céramique haute densité comprenant les étapes
consistant à :
fournir un véhicule comprenant un liant et un solvant organiques ;
disperser des poudres de céramique dans le véhicule pour former une pâte ;
former la pâte en film épais par sérigraphie ;
éliminer le liant organique du film ;
fritter le film ;
appliquer un sol ou une solution de type sol contenant un composant PZT sur la surface
du film de sorte que le sol ou solution de type sol contenant un composant PZT puisse
s'infiltrer dans le film ; et
fritter le film à 600 à 700°C.
9. Procédé de fabrication d'un film épais de céramique haute densité comprenant les étapes
consistant à :
fournir un véhicule comprenant un liant et un solvant organiques ;
disperser des poudres de céramique dans le véhicule pour former une pâte ;
former la pâte en film épais par sérigraphie ;
éliminer le liant organique du film ;
appliquer un sol ou une solution de type sol contenant un composant PZT sur la surface
du film de sorte que le sol ou solution de type sol contenant un composant PZT puisse
s'infiltrer dans le film ;
éliminer le sol ou solution de type sol contenant un composant PZT résiduel de la
surface du film par centrifugation du film ;
sécher et préchauffer le film ;
fritter le film dans la plage de 700 à 1200°C ;
appliquer le sol ou la solution de type sol contenant un composant PZT sur la surface
du film de nouveau de sorte que le sol ou solution de type sol puisse s'infiltrer
dans le film ; et
fritter le film dans la plage de 600 à 700°C.