FIELD OF THE INVENTION
[0001] This invention relates generally to processes for the fluidized catalytic cracking
(FCC) of heavy hydrocarbon streams such as vacuum gas oil and reduced crudes. This
invention relates more specifically to a method for separately reacting a traditional
FCC feedstream and a gasoline feed in an FCC reaction zone.
BACKGROUND OF THE INVENTION
[0002] The fluidized catalytic cracking of hydrocarbons is the main stay process for the
production of gasoline and light hydrocarbon products from heavy hydrocarbon charge
stocks such as vacuum gas oils or residual feeds. Large hydrocarbon molecules, associated
with the heavy hydrocarbon feed, are cracked to break the large hydrocarbon chains
thereby producing lighter hydrocarbons. These lighter hydrocarbons are recovered as
product and can be used directly or further processed to raise the octane barrel yield
relative to the heavy hydrocarbon feed.
[0003] The basic equipment or apparatus for the fluidized catalytic cracking of hydrocarbons
has been in existence since the early 1940's. The basic components of the FCC process
include a reactor, a regenerator, and a catalyst stripper. The reactor includes a
contact zone where the hydrocarbon feed is contacted with a particulate catalyst and
a separation zone where product vapors from the cracking reaction are separated from
the catalyst. Further product separation takes place in a catalyst stripper that receives
catalyst from the separation zone and removes entrained hydrocarbons from the catalyst
by countercurrent contact with steam or another stripping medium.
[0004] The FCC process is carried out by contacting the starting material whether it be
vacuum gas oil, reduced crude, or another source of relatively high boiling hydrocarbons
with a catalyst made up of a finely divided or particulate solid material. The catalyst
is transported like a fluid by passing gas or vapor through it at sufficient velocity
to produce a desired regime of fluid transport. Contact of the oil with the fluidized
material catalyzes the cracking reaction. The cracking reaction deposits coke on the
catalyst. Coke is comprised of hydrogen and carbon and can include other materials
in trace quantities such as sulfur and metals that enter the process with the starting
material. Coke interferes with the catalytic activity of the catalyst by blocking
active sites on the catalyst surface where the cracking reactions take place. Catalyst
is traditionally transferred from the stripper to a regenerator for purposes of removing
the coke by oxidation with an oxygen-containing gas. An inventory of catalyst having
a reduced coke content, relative to the catalyst in the stripper, hereinafter referred
to as regenerated catalyst, is collected for return to the reaction zone. Oxidizing
the coke from the catalyst surface releases a large amount of heat, a portion of which
escapes the regenerator with gaseous products of coke oxidation generally referred
to as flue gas. The balance of the heat leaves the regenerator with the regenerated
catalyst. The fluidized catalyst is continuously circulated from the reaction zone
to the regeneration zone and then again to the reaction zone. The fluidized catalyst,
as well as providing a catalytic function, acts as a vehicle for the transfer of heat
from zone to zone. Catalyst exiting the reaction zone is spoken of as being spent,
i.e., partially deactivated by the deposition of coke upon the catalyst. Specific
details of the various contact zones, regeneration zones, and stripping zones along
with arrangements for conveying the catalyst between the various zones are well known
to those skilled in the art.
[0005] The FCC unit cracks gas oil or heavier feeds into a broad range of products. Cracked
vapors from the FCC reactor enter a separation zone, typically in the form of a main
column, that provides a gas stream, a gasoline cut, cycle oil and heavy residual components.
The gasoline cut includes both light and heavy gasoline components. A major component
of the heavy gasoline fraction comprises heavy single ring aromatics.
DISCLOSURE STATEMENT
[0006] US-A 3,776,838 shows the cracking of a naphtha stream in a fluidized catalytic cracking process.
[0007] US-A 5,372,704 discloses an FCC arrangement for recracking FCC naphtha. The process either cracks
a heavy naphtha, defined as having a boiling point range of from 149° to 218°C (300
to 425°F) or a naphtha generally which would include a full range gasoline.
[0008] US-A 5,176,815 discloses the use of an isolated reaction zone in an FCC stripper for converting
a primary feed and a variety of segregated secondary feeds in an FCC reaction zone.
US-A 5,310,477 further uses the same arrangement for the specific contacting of a heavy gasoline
cut from a primary FCC reaction.
BRIEF DESCRIPTION OF THE INVENTION
[0009] An object of this invention is the cracking of a heart cut of gasoline components
at low severity condition with spent catalyst to obtain a surprising increase in gasoline
octane number and an increase in the yield of C
8 aromatics with little or no dry gas production.
[0010] This invention, in contrast to the art that has further converted light gasoline
stream comprising C
6 and lighter hydrocarbons for upgrading and heavy gasoline fractions to improve end
point conditions, processes a gasoline stream in a narrow boiling point range of from
93° to 177°C (200° to 350°F)and more preferably in a boiling point range of from 121°
to 177°C (250° to 350°F). It has surprisingly and unexpectedly been found that further
conversion of this specific boiling range gasoline cut at mild processing conditions
with spent catalyst will dramatically increase the octane of the resulting gasoline
fraction. It was further found that allowing heavy hydrocarbons into the secondary
conversion with the heart cut substantially negated the positive benefits of the further
conversion on the gasoline properties and in particular undid the dramatic increase
in octane number.
[0011] Accordingly, in one embodiment, this invention is a process for the fluidized catalytic
cracking (FCC) of an FCC feedstock and the production of a high octane gasoline and
C
8 aromatics. The process comprises passing the FCC feedstock and regenerated catalyst
particles to a reactor riser and transporting the catalyst and feedstock through the
riser thereby converting the feedstock to a riser gaseous product stream to produce
partially spent catalyst particles by the deposition of coke on the regenerated catalyst
particles. A discharge end of the riser directly discharges a mixture of partially
spent catalyst particles and gaseous products into a separation zone that recovers
the riser gaseous products from the riser in the separation zone. The process withdraws
the recovered riser gaseous products from the separation zone through a first gas
outlet and separates at least a portion of the secondary feed from the riser gaseous
products into a secondary feed steam comprising a gasoline heart cut having at least
70 wt-% in a boiling point range of from 121° to 177°C (200° to 350°F). The secondary
feed contacts the partially spent catalyst at a temperature of 510°C (950°F) or less,
and a catalyst-to-oil ratio of not greater than 8 to produce a recontacted gasoline
stream. After separation from the recontacted gasoline stream, the spent catalyst
that contacted the secondary feed contacts a regeneration gas in the regeneration
zone to combust coke from the catalyst particles and produce regenerated catalyst
particles for transfer to the reactor riser. The recracked gasoline will usually contain
a high concentration of C
8 aromatics that may equal 70 wt-% or more.
[0012] In one respect, this invention demonstrates how an FCC unit may be operated to produce
large quantities of C
8 aromatics. For example, in a typical 158,988 m
3/day (100,000 barrels per day (BPD)) refinery, 5880 m
3 (37,000 barrels) of this feed may go to an FCC unit. With an expected yield slate,
the FCC unit would produce 528 m
3/day (3300 BPD) of a 121° to 177°C (250° to 350°F) gasoline cut containing 127 m
3/day (800 BPD) of C
8 aromatics. Recracking of this gasoline cut in accordance with this invention would
raise the C
8 aromatic output from the FCC unit to 429 m
3/day (2700 BPD). Recovery of these aromatics would increase the usual base load of
C
8 aromatics from the reforming zone by 50%. Thus the operation of this invention may
increase C
8 aromatics production by 50% in a typical refinery.
[0013] Furthermore, the process of this invention has been found to substantial increase
the octane of FCC gasoline with very little yield penalty. Again, the process of this
invention has been surprisingly found to only be effective on a particular boiling
range of FCC gasoline and only at mild conditions. More specifically, the exposure
of the FCC gasoline heart cut to very mild conditions, brought about by passing the
heart cut over coked FCC catalyst at low reactor temperature can produce an increase
in both the RONC and MONC of nearly 15 number in that heart cut. When blended back
with the full range gasoline from the FCC unit the increase in octane number still
typically ranges over 3 numbers and more typically over 3.5 numbers. Another unexpected
benefit is the achievement of this octane gain with only 1 wt-% loss of the original
full boiling range gasoline.
[0014] Preferably, the riser discharges catalyst and vapor into a separation device at the
end of a riser which separates catalyst from gas that exits the end of the riser and
effects a very low transfer of riser vapors into a reactor vessel. In this way, a
dense bed of catalyst in the reactor vessel can act as an independent conversion zone
for the specific gasoline cut of this invention. Thus, the arrangement allows vapors
from the riser reaction zone to remain isolated from the reactor vessel vapors until
after an essentially complete separation of the riser vapors from the catalyst.
[0015] The riser and enclosed separation system can also provide a short contact time and
limited catalyst-to-hydrocarbon ratios for reactants passing therethrough and a relatively
long catalyst contact time and a high catalyst-to-hydrocarbon ratio for the secondary
feed. Thus, the short contact time riser conditions favor highly reactive monomolecular
reactions whereas, the longer contact times with the partially deactivated catalyst
in the reactor vessel favor certain bimolecular reactions. Thus, this invention may
be applied with independent control of two separate reaction zones within one FCC
reactor to convert a gasoline heart cut to higher octane products.
[0016] Other objects, embodiments, and details of this invention are set forth in the following
detailed description of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] The FIGURE is a schematic diagram of the process of this invention showing an FCC
unit, a main separation zone, and an optional separation zone.
DETAILED DESCRIPTION OF THE INVENTION
[0018] This invention relates generally to the reactor side of the FCC process. This invention
will be useful for most FCC processes that are used to crack light or heavy FCC feedstocks.
The process of this invention can be used to modify the operation and arrangement
of existing FCC units or in the design of newly constructed FCC units.
[0019] This invention uses the same general elements of many FCC units. A reactor riser
provides the primary reaction zone. A reactor vessel with a catalyst separation device
removes catalyst particles from the gaseous product vapors. A stripping zone removes
residual adsorbed hydrocarbons from the catalyst. Spent catalyst from the stripping
zone is regenerated in a regeneration zone having one or more stages of regeneration.
Regenerated catalyst from the regeneration zone re-enters the reactor riser to continue
the process. A number of different arrangements can be used for the elements of the
reactor and regenerator sections. The description herein of specific reactor and regenerator
components is not meant to limit this invention to those details except as specifically
set forth in the claims.
[0020] An overview of the basic process operation can be best understood with reference
to the FIGURE. Regenerated catalyst from a catalyst regenerator 10 (shown schematically)
is transferred by a conduit 12, to a Y-section 14. Lift gas injected into the bottom
of Y-section 14, by a conduit 16, carries the catalyst upward through a lower riser
section 18. Traditional FCC feed is injected into the riser above lower riser section
18 at feed injection points 20.
[0021] The mixture of feed, catalyst and lift gas travels up an intermediate section 22
of the riser and into an upper internal riser section 24 that terminates in an upwardly
directed outlet end 26. Riser end 26 is located in a separation device 28 which in
turn is located in a reactor vessel 30. The separation device removes a majority of
the catalyst from the cracked hydrocarbon vapors that exit riser end 26. Catalyst
removed by separation device 28 falls into dense catalyst bed 52. Cyclone 42 receives
the cracked vapors from the separation device and removes essentially all of the remaining
catalyst from the riser vapor stream. Separated catalyst from cyclone 42 drops downward
into the reactor through dip legs 50 into a catalyst bed 52. Conduit 44 withdraws
the riser vapors from the top of the cyclone 42 and transfers the vapors as gaseous
products to a separation zone comprising a main column 45.
[0022] Main column 45 usually fractionates the feed into multiple fractions. The depicted
streams include, a gas stream taken by line 46, a light gasoline cut taken by line
47, a gasoline heart cut taken by a line 79, a heavy gasoline cut taken by a line
49, and a cycle oil portion taken by a line 51 that comprises light cycle oil and
heavier hydrocarbons and which preferably leaves the column in at least two cuts comprising
a light cycle oil and heavy cycle oil. A line 53 withdraws heavier hydrocarbon from
the bottom of the main column which are typically recycled in part as feed to riser
22.
[0023] Line 79 feeds at least a portion of the gasoline heart cut to the dense bed 52 via
a distributor 57 to provide at least a portion of the secondary feed. Where desired,
the gasoline may undergo further processing, such as hydrotreatment in a treatment
zone (not shown), before entering bed 52. Additional gasoline components may also
be blended with the contents of line 79 or directly charged to bed 52 for further
conversion with the gasoline products recovered from main column 45.
[0024] Reactor vessel 30 has an open volume above catalyst bed 52 that provides a dilute
phase section 74. The dense bed 52 provides the spent catalyst that promotes the mild
contacting conditions for the gasoline feed.
[0025] As the secondary feed enters reactor 30, distributor 57 disburses the feed over a
portion of the bottom of bed 52. Suitable distributors may disperse the feed over
only a portion of the dense bed or stripper as shown in the FIGURE or alternately
the distributor may distribute catalyst over the entire cross section of the stripper
or dense bed. Partitioning of the stripping vessel or dense bed permits further control
of the catalyst-to-oil ratio for the contacting of the secondary feed.
[0026] The limited secondary feed dispersal of distributor 57 works in conjunction with
a baffle arrangement that partitions a portion of stripper vessel to segregate the
catalyst that is contacted by the secondary feed. A baffle 59 extends radially outward
from the riser 24 and a similar baffle (not shown) extends outwardly from an opposite
side of the riser. Together both baffles segregate a sector of the stripper to limit
the amount of catalyst that contacts the secondary feed. Distributor 57 extends circumferentially
over the area of the sector. The spacing between the baffles may subtend any desired
angle to segregate a suitable volume of the stripper. The top of the baffle will normally
end below the top of the dense catalyst bed to permit some circulation of the catalyst
as it initially enters the bed 52. The bottom of the baffle will usually not extend
to the bottom of the stripper to facilitate catalyst withdrawal.
[0027] Catalyst cascades downward from bed 52 through a series of baffles 60 that project
transversely across the cross-section of a stripping zone 63 in stripper vessel 62.
Preferably, stripping zone 63 communicates directly with the bottom of reactor vessel
30 and more preferably has a sub-adjacent location relative thereto. As the catalyst
falls, steam or another stripping medium from a distributor 64 rises countercurrently
and contacts the catalyst to increase the stripping of adsorbed components from the
surface of the catalyst. A conduit 66 conducts stripped catalyst into catalyst regenerator
10 which combustively removes coke from the surface of the catalyst to provide regenerated
catalyst.
[0028] The countercurrently rising stripping medium desorbs hydrocarbons and other sorbed
components from the catalyst surface and pore volume. Stripped hydrocarbons and stripping
medium rise through bed 52 and combine with the secondary feed and any resulting products
in the dilute phase section 74 of reactor vessel 30 to form a reactor vessel product
stream.
[0029] At the top of dilute phase section 74, an outlet withdraws the stripping medium and
stripped hydrocarbons from the reactor vessel. One method of withdrawing the stripping
medium and hydrocarbons is shown in the FIGURE as cyclone 75 which separates catalyst
from the reactor vessel product stream. A line 77 withdraws the reactor vessel product
stream from the cyclone and out of reactor vessel 30. The reactor vessel product can
pass via line 77 to the main column, but the FIGURE shows an alternate route for the
reactor vessel product to a separate separation column 83. When present, separation
column 83 typically separates light gases, via a line 89 from the upgraded gasoline.
Line 55 recovers the upgraded gasoline and typically recombines the upgraded gasoline
with one or both of the light gasoline stream and, as shown in the FIGURE, the heavy
gasoline fraction.
[0030] This invention can employ a wide range of commonly used FCC catalysts. These catalyst
compositions include high activity crystalline alumina silicate or zeolite containing
catalysts. Zeolite catalysts are preferred because of their higher intrinsic activity
and their higher resistance to the deactivating effects of high temperature exposure
to steam and exposure to the metals contained in most feedstocks. Zeolites are usually
dispersed in a porous inorganic carrier material such as silica, aluminum, or zirconium.
These catalyst compositions may have a zeolite content of 30% or more. Particularly
preferred zeolites include high silica to alumina compositions such as LZ-210 and
similar type materials. Another particularly useful type of FCC catalysts comprises
silicon-substituted aluminas. As disclosed in
US-A 5,080,778, the zeolite or silicon enhanced alumina catalysts compositions may include intercalated
clays, also generally known as pillared clays.
[0031] Feeds suitable for processing by this invention include conventional FCC feedstocks
or higher boiling hydrocarbon feeds. A customary FCC feedstock will comprise hydrocarbons
with less than 10 wt-% having a boiling point below 343°C (650°F). The most common
of the conventional feedstocks is a vacuum gas oil which is typically a hydrocarbon
material having a boiling range of from 343° to 552°C (650° to 1025°F) and is prepared
by vacuum fractionation of atmospheric residue. Such fractions are generally low in
coke precursors and heavy metals which can deactivate the catalyst.
[0032] The invention is also useful for processing heavy or residual charge stocks, i.e.,
those boiling above 499°C (930°F) which frequently have a high metals content and
which usually cause a high degree of coke deposition on the catalyst when cracked.
Both the metals and coke deactivate the catalyst by blocking active sites on the catalyst.
Coke can be removed, to a desired degree, by regeneration and its deactivating effects
overcome. Metals, however, accumulate on the catalyst and poison the catalyst by fusing
within the catalyst and permanently blocking reaction sites. In addition, the metals
promote undesirable cracking thereby interfering with the reaction process. Thus,
the presence of metals usually influences the regenerator operation, catalyst selectivity,
catalyst activity, and the fresh catalyst make-up required to maintain constant activity.
The contaminant metals include nickel, iron, and vanadium. In general, these metals
affect selectivity in the direction of less gasoline and more coke. Due to these deleterious
effects, metal management procedures within or before the reaction zone may be used
when processing heavy feeds by this invention. Metals passivation can also be achieved
to some extent by the use of appropriate lift gas in the upstream portion of the riser.
[0033] The FCC feed and regenerated catalyst enter a contacting conduit. When transporting
catalyst and oil upwardly, the contacting conduit has usually been termed a "riser".
Although not new to the art, there has been increased recent discussion of the downward
transport of catalyst and oil through the contacting conduit and of arrangement for
ultra short contact time. For convenience, the contacting conduit is termed a "riser"
throughout this discussion, however, the term "riser" is not meant to preclude practice
of this invention with contacting conduits that transport the catalyst and oil mixture
in directions other than vertical or the use of arrangements for ultra short catalyst
contact time.
[0034] The reactor riser shown in the FIGURE discharges the mixture of catalyst and feed
into a device that performs an initial separation between the catalyst and gaseous
components in the riser. The term "gaseous components" includes lift gas, product
gases and vapors, and unconverted feed components. The FIGURE shows this invention
being used with a riser arrangement having a lift gas zone 18. A lift gas zone is
not a necessity to enjoy the benefits of this invention. The end of the riser may
terminate with one or more upwardly directed openings that discharge the catalyst
and gaseous mixture in an upward direction into a dilute phase section of a disengaging
vessel. The open end of the riser can be of an ordinary vented riser design as described
in the prior art patents of this application or of any other configuration that provides
a substantial separation of catalyst from gaseous material in the dilute phase section
of the reactor vessel.
[0035] The flow regime within the riser will influence the separation at the end of the
riser. Typically, the catalyst circulation rate through the riser and the input of
feed and any lift gas that enters the riser will produce a flowing density of between
48 and 320 kg/m
3 (3 to 20 lbs/ft
3) and an average velocity of 3 to 30 m/sec (10 to 100 ft/sec) for the catalyst and
gaseous mixture. The length of the riser will usually be set to provide a residence
time of between 0.5 to 10 seconds at these average flow velocity conditions. Other
reaction conditions in the riser usually include a temperature of from 468° to 566°C
(875° to 1050°F).
[0036] Gas oil or residual feed contacting in the riser usually takes place under the typical
short contact time conditions. Maintaining short contact times requires a quick separation
of catalyst and hydrocarbons at the end of the riser. It is important to this invention
that a separation device at the end of the riser provide a quick separation of the
catalyst from the riser vapors and also limit the transfer of vapors from the riser
into the dilute phase zone of the reactor vessel. Preferred separation devices for
the end of the riser will provide a low catalyst residence time and recover at least
90 wt-% of the vapors discharged from the riser. Preferably, the separation device
at the end of the riser will recover 95 wt-% of the vapors that the riser discharges
without carryover losses into the dilute phase section 74. Preferably, the products
from the reactor vessel reaction zone are recovered with minimal intermixing of the
riser product stream. Therefore, a separate outlet can be provided for the recontacted
gasoline that has been upgraded in the secondary zone and that outlet withdraws a
stream of at least 90 wt-% recontacted gasoline and less than 10 wt-% of the riser
gaseous products.
US-A 5,310,477, discloses a riser separation arrangement that can provide a recovery of over 95
wt-% recovery of riser product components and a preferred manner of displacing riser
gaseous components from the catalyst leaving the riser by passing a displacement fluid
through the catalyst discharged from the riser.
[0037] The secondary feed may contact the spent catalyst in any type of contacting zone
that will provide sufficient contact time and the desired low severity conditions.
It is contemplated that a separation device will supply the catalyst for contacting
the secondary feed. The separation device will ordinarily have a location in an upper
portion of the reactor vessel. As shown in the FIGURE, catalyst from the such a separation
device may drop downwardly into the dense bed 52 that is maintained in a lower portion
of reactor vessel 30 and referred to as the reactor vessel reaction zone. Catalyst
collecting in bed 52, although containing a relatively high coke concentration, still
has sufficient surface area for catalytic use. Typically, the coke concentration of
the catalyst in this bed will range from 0.5 to 1.5 wt-% . Additional stripping may
remove more hydrocarbon compounds from the secondary reaction zone, however, the benefits
of more complete stripping come at the expense of additional dilute phase volume in
a fixed bed reaction zone and generally the superficial velocity of the gases rising
through bed 50 should stay below 0.15 m/sec (0.5 ft/sec) and preferably below 0.03
m/sec (0.1 ft/sec).
[0038] Bed 52 supplies a high inventory of catalyst that is available for contact with the
secondary feed. Feed can enter such dense bed at any point below the upper surface
of the dense bed. Where a subadjacent stripping zone receives catalyst passing through
the reactor vessel, the secondary feed may be injected into the stripping zone at
any location including the bottom, provided the injection point is above the lowermost
point of steam injection.
[0039] It is essential to this invention that regardless of the contacting zone, the secondary
feed have a particular boiling range composition. The secondary feed includes a portion
of a gasoline heart cut from the riser gaseous products that has at least 70 wt-%
of its hydrocarbons boiling in a range of from 93° to 177°C (200° to 350°F). Preferably,
the secondary feed comprises a gasoline heart cut having at least 80 wt-% in a boiling
point range of from 121° to 177°C (250° to 350°F). In most cases, more than 90 wt-%
of the secondary feed stream will boil above 121°C (250°F) and preferably 90 wt-%
of the secondary feed is in a boiling range of from 121° to 177°C (250° to 350°F).
The main column or other fluid separation zone generally separates the gaseous product
stream from the riser into a first product stream comprising light gasoline having
an end boiling point at least below 121 °C (250°F); a gasoline heart cut having an
80 wt-% boiling point of at least 93°C (200°F) and an end point below 204°C (400°F);
a heavy gasoline having an initial boiling point greater than 177°C (350°F) and an
end boiling point of at least 204°C (400°F), and a first cycle oil stream and heavier
fractions having an initial boiling point above the end point of the gasoline feed.
The gasoline heart cut will typically have an 85 wt-% boiling point of 177°C (350°F)
and preferably a 90 wt-% boiling point of 177°C (350°F). More preferably, 95 wt-%
of the secondary feed and the gasoline heart cut will boil below 177°C (350°F). The
volume of the gasoline heart cut relative to the entire gasoline cut usually amounts
to less than 50 wt-%. For many cases, the secondary feed will comprise 20 to 30 wt-%
of the gasoline stream recovered from the gaseous products and will have at least
80 wt-% boiling in a range of from 121 ° to 188°C (250° to 370°F).
[0040] At its minimum end point, the heart cut will be at about the boiling point of C
9 aromatics, in particular 1,2,4-trimethylbenzene. A lower cut point temperature between
the heart cut and the heavy gasoline, down to 160°C (320°F), will push additional
C
9 aromatics into the heavy gasoline stream. The upper end of the heavy gasoline cut
is selected to retain C
12 aromatics. The lower end of the heavy gasoline cut will retain at least some C
10 aromatics. Retaining C
10 to C
12 aromatics in the heavy gasoline fraction avoids loss of these components since they
are readily dealkylated. The higher end points for the gasoline heart cut still keeps
most bicyclic compounds out of the secondary reaction zone. These bicyclic compounds
include indenes, tetralins, biphenyls and naphthalenes which are refractory to cracking
under the conditions in the reactor vessel reaction zone and in the absence of pretreatment,
bring little benefit, and in fact have been found to diminish the effectiveness of
the gasoline recontacting step.
[0041] Aside from the composition of the secondary feed, conditions within the secondary
reaction zone are relatively mild. The contacting will take place at an average catalyst
and feed temperature of less than 510°C (950°F), preferably less than 482°C (900°F)
and more typically a temperature in a range of from of from 443° to 482°C (830° to
900°F). It may also be beneficial to limit the catalyst-to-oil ratio in the secondary
contacting zone to not more than 8 and more preferably 6 or less. The contacting routinely
occurs at a weight hourly space velocity (WHSV) of not greater than 2 and, more routinely,
of not greater than 1.5. However, higher WHSV's may provide equivalent results. The
catalyst-to-oil ratio and the WHSV may be controlled by the use of suitable partitioning
in the secondary zone when it is necessary to contact the secondary feed with less
than all of the circulating spent catalyst.
[0042] Separating all of the products in a single separation zone as described has the advantage
of reducing equipment and maximizing the recontacting of gasoline components. A single
separation zone has the disadvantage of allowing the build-up of certain refractory
compounds in the recycle loop. Thus, a single separation zone may require appropriate
facilities to remove refractory components, such as the taking of a drag stream. However,
the selection of a heart cut gasoline fraction minimizes the build-up of refractory
compounds. Therefore, the single separation zone arrangement is most suited for operations
that recontact the more narrow gasoline cuts. A distinct separation zone for the secondary
reaction zone may be most suitable for revamps where the main column could not accept
the additional throughput.
EXAMPLES 1 and 2
[0043] The following examples show that a secondary reaction zone operating with spent catalyst
from a riser type reaction zone can effect significant octane upgrading when limited
to processing a heart cut gasoline fraction. In this example, a sample of a GXO-28
low metals equilibrium catalyst (manufactured by Grace-Davison) containing an average
of 0.8 wt-% coke was used to simulate the recracking of a gasoline feed boiling in
a range of from 121° to 177°C (250° to 350°F) using ASTM analytical methods. The feed
had the properties listed in Table 1. The coked catalyst contacted the feed in a fixed
bed reaction zone at a WHSV of 1.0, a catalyst-to-oil ratio of 6.0 and a temperature
of 454°C (850°F). Product streams having the compositions given in Table 2 were recovered
from the reaction zone for Examples 1 and 2 as indicated.
TABLE 1
IBP |
121 °C (250°F) |
90% BP |
177°C (350°F) |
EP |
189°C (372°F) |
RONC |
94.0 |
MONC |
83.0 |
PARAFFINS & NAPHTHENES |
25 LV % |
OLEFINS |
14 LV % |
AROMATICS |
61 LV % |
TABLE 2
PRODUCT STREAM (wt-%) |
Example |
#1 |
#2 |
H2S |
|
0.00 |
0.00 |
NH3 |
|
0.01 |
0.00 |
H2 |
|
0.01 |
0.01 |
(C1+C2) |
|
0.22 |
0.23 |
C3 |
|
0.13 |
0.13 |
C3= |
|
0.23 |
0.23 |
C4 |
|
0.39 |
0.45 |
C4= |
|
0.28 |
0.28 |
C5-121°C(250°F) |
|
7.54 |
7.17 |
121-177°C (250-350°F) |
|
86.76 |
86.10 |
177-232°C (350-450°F) |
|
1.04 |
0.85 |
232-343°C (450-650°F) |
|
2.09 |
1.70 |
343°C+ (650°F+) |
|
1.31 |
2.05 |
COKE |
|
0.0 |
0.79 |
CONVERSION |
|
13.24 |
13.90 |
RONC |
|
106 |
107 |
MONC |
|
96 |
97 |
PARAFFINS & NAPHTHENES (LV%) |
8.5 |
8.0 |
OLEFINS (LV %) |
|
0.0 |
0.0 |
AROMATICS (LV%) |
|
91.5 |
92.0 |
[0044] Table 2 demonstrates that contact of the feed with the coked catalyst provided a
substantial conversion of the gasoline heart cut to aromatic gasoline components.
As can be seen from the tables, over 7 wt-% of the converted material goes to light
gasoline (C
5 to 121 °C (250°F)). Less than 1.4 wt-% goes to dry gas and LPG. No more than 4.6
wt-% goes to heavier products. Thus, recracking the 121° to 177°C (250 to 350°F) material
almost completely removed the olefins and significantly reduced the P+N fraction.
In addition, the octane of the C
5 to 177°C (350°F) fraction was significantly increased as can be seen in Table 2.
The degree of hydrocarbon rearrangement is surprising considering the small amount
of conversion (13 wt-%) that occurred. Furthermore, the amount of full range gasoline
(C
5 to 232°C (450°F)) recovered after recracking is 95 wt-% of the starting 121° to 177°C
(250° to 350°F) gasoline. Most of the aromatic product can be accounted for as C
8 aromatics. The feed contained 24 wt-% C
8 aromatics and 29 wt-% C
9 aromatics. The liquid product contained over 85 wt-% C
8 aromatics on a fresh feed basis, out of a total of 89 wt-% total aromatics. Although
not wishing to be bound by any theory, the data suggests that C
8 aromatic compounds are formed by the cyclization of olefins and the loss of a methyl
group from the C
9 aromatics. Moreover, the C
10 aromatics are also decreased, apparently going to C
8 aromatics and most of the tetralins appear to have cracked to a lower ring structure
with a portion dehydrogenating to multi-ring aromatics compounds that undergo alkylation.
EXAMPLES 3 and 4
[0045] The conversion of other higher boiling feed fractions at the same conditions as Examples
1 and 2 were studied, but produced distinctly poorer results. Examples 3 and 4 use
the whole FCC gasoline cut, which combines the 121° to 177°C (250° to 350°F) fraction
with the 177°C (350°F) to EP fraction and is further described in Table 3. Recontacting
of the entire fraction resulted in a much higher conversion, 19 wt-%, of the 121°
to 177°C (250° to 350°F) fraction than was seen when the 121° to 177°C (250° to 350°F)
fraction was processed alone as shown in Table 4. The result of blending the converted
gasoline product of Examples 3 and 4 back with the starting C
5 to 121°C (250°F) to produce a full range gasoline is an octane increase of 1.6 numbers,
with a loss in full range gasoline yield of 5 wt-%. This compares with the 3.5 number
octane gain at only a 1 wt-% loss when only processing the 121° to 177°C (250° to
350°F) fraction of Examples 1 and 2.
TABLE 3
IBP |
121°C (250°F) |
90 % BP |
208°C (406°F) |
EP |
318°C (604°F) |
RONC |
92.0 |
MONC |
80.0 |
PARAFFINS & NAPHTHENES |
38 LV% |
OLEFINS |
33 LV% |
AROMATICS |
29 LV% |
TABLE 4
PRODUCT STREAM (wt-%) |
Example #3 |
#4 |
|
|
|
RONC |
96.0 |
95.8 |
PARAFFINS & NAPHTHENES |
28.5 |
27.1 |
OLEFINS |
Trace |
0.6 |
AROMATICS |
71.5 |
72.3 |
[0046] The foregoing description sets forth essential features of this invention which can
be adapted to a variety of applications and arrangements without departing from the
scope and spirit of the claims hereafter presented.
1. A process for the fluidized catalytic cracking (FCC) of an FCC feedstock and the production
of a C
8 aromatics, the process comprising:
a) passing the FCC feedstock and regenerated catalyst particles to a reactor riser
(18,22,24,26) and transporting the catalyst and feedstock through the riser thereby
converting the feedstock to a riser gaseous product stream and producing partially
spent catalyst particles by the deposition of coke on the regenerated catalyst particles;
b) discharging a mixture of partially spent catalyst particles and gaseous products
from a discharge end (26) of the riser directly into a separation zone (28) and recovering
the riser gaseous products from the riser in the separation zone;
c) withdrawing the recovered riser gaseous products from the separation zone through
a first gas outlet (44);
d) separating (45) at least a portion of the riser gaseous products into a secondary
feed including a gasoline heart cut having at least 70 wt-% in a boiling point range
of from 93° to 177°C (200° to 350°F);
e) contacting the secondary feed and partially spent catalyst at a temperature of
less than 510°C (950°F) to produce a recontacted gasoline stream; and,
f) separating (75) spent catalyst from the recontacted gasoline stream and contacting
the spent catalyst that contacted the secondary feed with a regeneration gas in a
regeneration zone (10) to combust coke from the catalyst particles and produce regenerated
catalyst particles for transfer to said reactor riser.
2. The process of claim 1 wherein at least 90 wt-% of the gaseous products are recovered
from the partially spent catalyst particles in the separation zone.
3. The process of claim 1 wherein in step d), a fluid separation zone separates the gaseous
product stream into a first product stream comprising light gasoline having an end
boiling point below 121 °C (250°F); a secondary feed having an initial boiling point
of at least 93°C (200°F) and an end point not greater than 204°C ( 400°F); a heavy
gasoline having an initial boiling point of at least 177°C (350°F) and an end boiling
point of at least 204°C (400°F), and a first cycle oil stream having an initial boiling
point above the end point of the heavy gasoline.
4. The process of claim 3 wherein heavy gasoline is blended with the recontacted gasoline
stream to produce an upgraded gasoline having a motor or research octane at least
3 numbers higher than the corresponding motor or research octane number of the secondary
feed and heavy gasoline.
5. The process of claim 4 wherein the recontacted gasoline stream contains at least 70
wt-% C8 aromatics.
6. The process of claim 1 wherein not more than 10 wt-% of the reactor riser gaseous
products enter a secondary contacting zone where the secondary feed contacts the partially
spent catalyst.
7. The process of claim 1 wherein gaseous products enter a secondary contacting zone
where the secondary feed contacts the partially spent catalyst and the secondary contacting
zone comprises a dense bed (52) of catalyst contained in a reaction vessel.
8. The process of claim 7 wherein a second outlet (77) withdraws at least 90 wt-% of
the recontacted gasoline stream and less than 10 wt-% of the riser gaseous products
through a second outlet.
9. The process of claim 1 wherein a stripping zone is located in a lower part of a reactor
vessel, catalyst passes from the reactor vessel to the stripping zone, a stripping
fluid passes upwardly through the stripping zone, contacting between the secondary
feed and the partially spent catalyst takes place in the stripping zone; and spent
catalyst passes from the stripping zone to the regeneration zone.
10. The process of claim 1 wherein the separation zone (28) of step b) comprises a disengaging
zone, the reactor riser extends into the separation zone, and the partially spent
catalyst and the riser gaseous products are discharged directly into the disengaging
zone.
11. The process of claim 1 wherein the gaseous product stream enters a first separation
zone (45) and the recontacted gasoline stream enters a second separation zone (83).
12. The process of claim 1 wherein less than 15 wt-% of the secondary feed stream boils
above 177°C (350°F), more than 80 wt-% of the secondary feed stream boils above 93°C
(200°F) and the secondary feed and partially spent catalyst are contacted at a WHSV
not greater than 2.
13. The process of claim 1 wherein the FCC feedstock comprises hydrocarbons boiling above
343°C (650°F), the secondary feed comprises a gasoline heart cut having at least 80
wt-% in a boiling point range of from 121° to 177°C (250° to 350°F), the partially
spent catalyst has a coke concentration of 0.5 to 1.5 wt-% and passes to a stripping
zone located in a lower portion of the reactor vessel, and the secondary feed contacts
the partially spent catalyst in the stripping zone at a temperature of less than 482°C
(900°F) at a catalyst-to-oil ratio of not greater than 8 and a WHSV not greater than
1.5.
1. Verfahren für das katalytische Wirbelschicht-Kracken (FCC) eines FCC-Einsatzmaterials
und die Herstellung von C
8-Aromaten, wobei das Verfahren Folgendes umfasst:
a) Leiten des FCC-Einsatzmaterials und der regenerierten Katalysatorteilchen in ein
Reaktor-Steigrohr (18, 22, 24, 26) und Transportieren des Katalysators und Einsatzmaterials
durch das Steigrohr, wodurch das Einsatzmaterial zu einem gasförmigen Steigrohr-Produktstrom
umgewandelt wird und teilweise verbrauchte Katalysatorteilchen durch die Ablagerung
von Koks auf den regenerierten Katalysatorteilchen erzeugt werden;
b) Abführen einer Mischung aus teilweise verbrauchten Katalysatorteilchen und gasförmigen
Produkten von einem Austragsende (26) des Steigrohrs direkt in eine Trennzone (28)
und Rückgewinnen der gasförmigen Steigrohr-Produkte aus dem Steigrohr in der Trennzone;
c) Abziehen der rückgewonnenen gasförmigen Steigrohr-Produkte aus der Trennzone durch
einen ersten Gasauslass (44);
d) Auftrennen (45) mindestens eines Teils der gasförmigen Steigrohr-Produkte in eine
Sekundäreinspeisung beinhaltend eine Benzin-Herzfraktion mit mindestens 70 Gew.-%
in einem Siedepunktbereich von 93° bis 177°C (200° bis 350°F) ;
e) Kontaktieren der Sekundäreinspeisung und des teilweise verbrauchten Katalysators
bei einer Temperatur von weniger als 510°C (950°F) zur Bildung eines erneut kontaktierten
Benzinstroms; und
f) Abtrennen (75) von verbrauchtem Katalysator von dem erneut kontaktierten Benzinstrom
und Kontaktieren des verbrauchten Katalysators, welcher die Sekundäreinspeisung kontaktierte,
mit einem Regenerierungsgas in einer Regenerierungszone (10) zum Verbrennen von Koks
aus den Katalysatorteilchen und zur Bildung von regenerierten Katalysatorteilchen
für die Übertragung zu dem Reaktor-Steigrohr.
2. Verfahren gemäß Anspruch 1, wobei mindestens 90 Gew.-% der gasförmigen Produkte aus
den teilweise verbrauchten Katalysatorteilchen in der Trennzone rückgewonnen werden.
3. Verfahren gemäß Anspruch 1, wobei in Schritt d) eine Fluidtrennzone den gasförmigen
Produktstrom in einen ersten Produktstrom, umfassend Leichtbenzin mit einem Endsiedepunkt
von unter 121°C (250°F); eine Sekundäreinspeisung mit einem Anfangssiedepunkt von
mindestens 93°C (200°F) und einem Endpunkt von nicht höher als 204°C (400°F); ein
Schwerbenzin mit einem Anfangssiedepunkt von mindestens 177°C (350°F) und einem Endsiedepunkt
von mindestens 204°C (400°F) und einen Erstzyklus-Ölstrom mit einem Anfangssiedepunkt
oberhalb des Endpunkts des Schwerbenzins auftrennt.
4. Verfahren gemäß Anspruch 3, wobei Schwerbenzin mit dem erneut kontaktierten Benzinstrom
vermischt wird zur Herstellung eines aufgewerteten Benzins mit einer Motor- oder Research-Octanzahl,
die um mindestens 3 Nummern bzw. Feinheiten höher liegt als die entsprechende Motor-
oder Research-Octanzahl der Sekundäreinspeisung und von Schwerbenzin.
5. Verfahren gemäß Anspruch 4, wobei der erneut kontaktierte Benzinstrom mindestens 70
Gew.-% C8-Aromaten enthält.
6. Verfahren gemäß Anspruch 1, wobei nicht mehr als 10 Gew.-% der gasförmigen Reaktor-Steigrohrprodukte
in eine sekundäre Kontaktzone eingetragen werden, wo die Sekundäreinspeisung den teilweise
verbrauchten Katalysator kontaktiert.
7. Verfahren gemäß Anspruch 1, wobei gasförmige Produkte in eine sekundäre Kontaktzone
eingetragen werden, wo die Sekundäreinspeisung den teilweise verbrauchten Katalysator
kontaktiert, und die sekundäre Kontaktzone ein in einem Reaktionsbehälter enthaltenes
dichtes Katalysatorbett (52) umfasst.
8. Verfahren gemäß Anspruch 7, wobei ein zweiter Auslass (77) mindestens 90 Gew.-% des
erneut Kontaktierten Benzinstroms und weniger als 10 Gew.-% der gasförmigen Steigrohr-Produkte
durch einen zweiten Auslass abzieht.
9. Verfahren gemäß Anspruch 1, wobei eine Stripping-Zone im unteren Teil eines Reaktorbehälters
angeordnet ist, Katalysator von dem Reaktorbehälter zu der Stripping-Zone strömt,
ein Stripping-Fluid nach oben durch die Stripping-Zone strömt, das Kontaktieren zwischen
der Sekundäreinspeisung und dem teilweise verbrauchten Katalysator in der Stripping-Zone
erfolgt; und verbrauchter Katalysator von der Stripping-Zone zu der Regenerierungszone
strömt.
10. Verfahren gemäß Anspruch 1, wobei die Trennzone (28) von Schritt b) eine Entweichzone
umfasst, das Reaktor-Steigrohr sich in die Trennzone erstreckt und der teilweise verbrauchte
Katalysator und die gasförmigen Steigrohr-Produkte direkt in die Entweichzone abgeführt
werden.
11. Verfahren gemäß Anspruch 1, wobei der gasförmige Produktstrom in eine erste Trennzone
(45) eingetragen wird und der erneut kontaktierte Benzinstrom in eine zweite Trennzone
(83) eingetragen wird.
12. Verfahren gemäß Anspruch 1, wobei weniger als 15 Gew.-% des Sekundäreinspeisungsstroms
oberhalb 177°C (350°F) siedet, mehr als 80 Gew.-% des Sekundäreinspeisungsstroms oberhalb
93°C (200°F) siedet und die Sekundäreinspeisung und teilweise verbrauchter Katalysator
bei einer WHSV von nicht höher als 2 kontaktiert werden.
13. Verfahren gemäß Anspruch 1, wobei das FCC-Einsatzmaterial Kohlenwasserstoffe umfasst,
die oberhalb 343°C (650°F) sieden, die Sekundäreinspeisung eine Benzin-Herzfraktion
mit mindestens 80 Gew.-% in einem Siedepunktbereich von 121° bis 177°C (250° bis 350°F)
umfasst, der teilweise verbrauchte Katalysator eine Koks-Konzentration von 0,5 bis
1,5 Gew.-% aufweist und zu einer Stripping-Zone strömt, die in einem unteren Teil
des Reaktorbehälters angeordnet ist, und die Sekundäreinspeisung den teilweise verbrauchten
Katalysator in der Stripping-Zone bei einer Temperatur von weniger als 482°C (900°F)
bei einem Katalysator-zu-Öl-Verhältnis von nicht höher als 8 und einer WHSV von nicht
höher als 1,5 kontaktiert.
1. Procédé de craquage à catalyseur fluidisé (FCC) d'une charge d'alimentation de FCC
et de production d'aromatiques en C
8, le procédé comprenant les étapes consistant à :
a) envoyer la charge d'alimentation de FCC et les particules de catalyseur régénéré
vers une colonne montante de réacteur (18, 22, 24, 26) et transporter le catalyseur
et la charge d'alimentation dans la colonne montante afin de convertir la charge d'alimentation
en un courant de produit gazeux de colonne montante et de produire des particules
de catalyseur partiellement épuisé par le dépôt de coke sur les particules de catalyseur
régénéré ;
b) décharger un mélange de particules de catalyseur partiellement épuisé et de produits
gazeux à une extrémité de décharge (26) de la colonne montante directement dans une
zone de séparation (28) et récupérer les produits gazeux de la colonne montante sortant
de la colonne montante dans la zone de séparation ;
c) soutirer les produits gazeux de la colonne montante récupérés sortant de la zone
de séparation par une première sortie de gaz (44) ;
d) séparer (45) au moins une partie des produits gazeux de la colonne montante dans
une alimentation secondaire renfermant une fraction de coeur d'essence dont au moins
70 % en poids se situent dans un domaine d'ébullition de 93° à 177°C (200° à 350°F)
;
e) mettre en contact l'alimentation secondaire et le catalyseur partiellement épuisé
à une température inférieure à 510°C (950°F) pour produire un courant d'essence recontacté
; et
f) séparer (75) le catalyseur épuisé du courant d'essence recontacté et mettre en
contact le catalyseur épuisé qui est entré en contact avec l'alimentation secondaire
avec un gaz de régénération dans une zone de régénération (10) pour débarrasser les
particules de catalyseur du coke par combustion et produire des particules de catalyseur
régénéré à envoyer vers ladite colonne montante de réacteur.
2. Procédé selon la revendication 1, dans lequel au moins 90 % en poids des produits
gazeux sont récupérés parmi les particules de catalyseur partiellement épuisé dans
la zone de séparation.
3. Procédé selon la revendication 1, dans lequel, dans l'étape d), une zone de séparation
de fluide sépare le courant de produit gazeux en un premier courant de produit comprenant
de l'essence légère ayant un point d'ébullition final inférieur à 121°C (250°F) ;
une alimentation secondaire ayant un point d'ébullition initial d'au moins 93°C (200°F)
et un point final non supérieur à 204°C (400°F) ; une essence lourde ayant un point
d'ébullition initial d'au moins 177°C (350°F) et un point d'ébullition final d'au
moins 204°C (400°F), et un premier courant de pétrole recyclé ayant un point d'ébullition
initial supérieur au point final de l'essence lourde.
4. Procédé selon la revendication 3, dans lequel l'essence lourde est mélangée avec le
courant d'essence recontacté pour produire une essence valorisée ayant un indice d'octane
moteur ou recherche supérieur d'au moins 3 unités à l'indice d'octane moteur ou recherche
correspondant de l'alimentation secondaire et de l'essence lourde.
5. Procédé selon la revendication 4, dans lequel le courant d'essence recontacté contient
au moins 70 % en poids d'aromatiques en C8.
6. Procédé selon la revendication 1, dans lequel pas plus de 10 % en poids des produits
gazeux de la colonne montante de réacteur pénètrent dans une zone de contact secondaire
dans laquelle l'alimentation secondaire entre en contact avec le catalyseur partiellement
épuisé.
7. Procédé selon la revendication 1, dans lequel les produits gazeux pénètrent dans une
zone de contact secondaire dans laquelle l'alimentation secondaire entre en contact
avec le catalyseur partiellement épuisé et la zone de contact secondaire comprend
un lit dense (52) de catalyseur contenu dans un récipient de réaction.
8. Procédé selon la revendication 7, dans lequel une deuxième sortie (77) soutire au
moins 90 % en poids du courant d'essence recontacté et moins de 10 % en poids des
produits gazeux de la colonne montante à travers une deuxième sortie.
9. Procédé selon la revendication 1, dans lequel une zone d'extraction est située dans
une partie inférieure d'un récipient réacteur, le catalyseur passe du récipient réacteur
à la zone d'extraction, un fluide d'extraction monte à travers la zone d'extraction,
la mise en contact entre l'alimentation secondaire et le catalyseur partiellement
épuisé a lieu dans la zone d'extraction ; et le catalyseur épuisé passe de la zone
d'extraction à la zone de régénération.
10. Procédé selon la revendication 1, dans lequel la zone de séparation (28) de l'étape
b) comprend une zone de dégagement, la colonne montante de réacteur se prolonge dans
la zone de séparation, et le catalyseur partiellement épuisé et les produits gazeux
de la colonne montante sont déchargés directement dans la zone de dégagement.
11. Procédé selon la revendication 1, dans lequel le courant de produit gazeux pénètre
dans une première zone de séparation (45) et le courant d'essence recontacté pénètre
dans une deuxième zone de séparation (83).
12. Procédé selon la revendication 1, dans lequel moins de 15 % en poids du courant d'alimentation
secondaire bout au-dessus de 177°C (350°F), plus de 80 % en poids du courant d'alimentation
secondaire bout au-dessus de 93°C (200°F) et l'alimentation secondaire et le catalyseur
partiellement épuisé sont mis en contact à un VVH non supérieur à 2.
13. Procédé selon la revendication 1, dans lequel la charge d'alimentation de FCC comprend
des hydrocarbures dont le point d'ébullition est supérieur à 343°C (650°F), l'alimentation
secondaire comprend une fraction de coeur d'essence dont au moins 80 % en poids se
situent dans un domaine d'ébullition de 121° à 177°C (250° à 350°F), le catalyseur
partiellement épuisé présente une concentration en coke de 0,5 à 1,5 % en poids et
est envoyé vers une zone d'extraction située dans une partie inférieure du récipient
réacteur, et l'alimenation secondaire entre en contact avec le catalyseur partiellement
épuisé dans la zone d'extraction à une température inférieure à 482°C (900°F), à un
rapport catalyseur/pétrole non supérieur à 8 et à un WH non supérieur à 1,5.