BACKGROUND
Field of the Invention
[0001] The present invention relates to a capacitor. More specifically, the present invention
relates to a space-saving capacitor circuit for use in the pixel area of a light emitting
display device. The present invention further relates to a display driving circuit
and to a display device.
Description of the Related Technology
[0002] Generally, a flat display panel (FDP), is a display device, in which light emitting
elements are arranged between two substrates. The importance of the FDP has been emphasized
following the development of multimedia technologies. In response to this trend, various
flat displays such as the liquid crystal display (LCD) using a method for scattering
light as the liquid crystals are roiled by an applied voltage, the field emission
display using a phosphor light emission by electron beam, and the organic light emitting
display device (hereinafter, referred to as an OLED device) using light emission of
organic materials have been developed.
[0003] There are a passive matrix method and an active matrix method to provide control
circuits of FDP devices. In the passive matrix method, electrodes are formed crossing
each other, and a line is selected in order to drive the device. The active matrix
method uses thin film transistors (TFT) for driving light emitting elements of FDP
devices. In the active matrix method, the FDP device operates in response to a voltage
maintained by capacitance of a capacitor coupled to a gate of the thin film transistor.
[0004] A unit capacitor is disclosed in
EP-A-698927. An active matrix type organic electroluminescent display device is disclosed in
WO-A-03/071 511.
[0005] FIG. 1 shows a circuit diagram of an OLED device, for example. As shown in FIG. 1,
a pixel circuit of the OLED device include an organic light emitting diode OLED, two
transistors M1 and M2, and a capacitor C
st. A power voltage VDD is coupled to a source of the driving transistor M2, and the
capacitor C
st is coupled between a gate and a source of the driving transistor M2. The capacitor
C
st maintains a gate-source voltage of VGS of the driving transistor M2 for a predetermined
period. The switching transistor M1 transmits a data voltage from a data line Dm to
the gate of the transistor M2 in response to a selection signal from a current scan
line Sn. A cathode of the organic light emitting diode OLED is coupled to a reference
voltage of Vss and emits a light corresponding to a current applied through the driving
transistor M2.
[0006] As shown, in the active matrix method, each pixel circuit includes a thin film transistor
and a capacitor, and the pixel circuit operates in response to a voltage maintained
by capacitance of the capacitor C
st that is coupled to the gate of the thin film transistor. A display quality of the
pixel is better when comparing to the passive matrix method because an image corresponding
to a data signal is continuously displayed in a frame, and therefore the active matrix
method has become very popular these days.
[0007] FIG. 2 shows a sectional view of a configuration of a capacitor used in a display
panel. A buffer layer 11 is formed on a substrate 10, and a conductive layer 12 forming
an electrode of the capacitor is formed on the buffer layer 11. An insulation layer
13 is formed on the conductive layer 12, and a conductive layer 14 forming another
electrode of the capacitor is formed on the insulation layer 13. Therefore the capacitor
including the conductive layer 12 and the conductive layer 14 is formed. The capacitor
is formed in an area forming a pixel circuit, and the horizontal widths of the capacitor
are designed in view of the capacitance required according to characteristics of the
display panel.
[0008] A thin film transistor is formed on a pixel area of the display panel in the active
matrix method as well as the capacitor having a predetermined width, which may limit
an area for forming display elements. Accordingly, an aperture ratio of the display
panel may be decreased in an active matrix display device.
[0009] Further, OLED devices tend to use a pixel circuit having more than two capacitors
and a plurality of thin film transistors in order to compensate a threshold voltage
of a driving transistor. In such devices, the aperture ratio may be further decreased.
In response to the trend, there is a high demand for a space-saving capacitor having
proper capacitance in the pixel area.
[0010] The information disclosed in this Background of the Invention section is only for
understanding of the background of the invention, and therefore, unless explicitly
described to the contrary, it should not be taken as an admission of prior art.
SUMMARY OF CERTAIN INVENTIVE ASPECTS
[0011] The present invention provides a capacitor circuit for use in a display control circuit
as recited in claim 1.
[0012] The present invention further provides a display driving circuit as recited in claim
5.
[0013] The present invention further provides a display device as recited in claim 9.
[0014] In the following detailed description, only the embodiments of the invention have
been shown and described, simply by way of illustration of the best modes contemplated
by the inventor(s) of carrying out the invention. As will be realized, the invention
is capable of modification in various obvious respects, all without departing from
the invention. Accordingly, the drawings and description are to be regarded as illustrative
in nature, and not restrictive.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] FIG. 1 shows a circuit representing a display element or pixel circuit of an OLED
device.
[0016] FIG. 2 shows a sectional view of a configuration of a capacitor formed on a substrate
of a display panel.
[0017] FIG. 3 shows a configuration of display elements and driving circuits of an OLED
device according to an embodiment of the present invention.
[0018] FIG. 4 shows a circuit representing a pixel circuit of an OLED device according to
an embodiment of the present invention.
[0019] FIG. 5 shows a top plan view of an integrated circuit layout of the pixel circuit
shown in FIG. 4.
[0020] FIG. 6 shows a sectional view taken along the line I-I' shown in FIG. 5.
[0021] FIG. 7 shows a sectional view taken along the line II-II' shown in FIG. 5 for representing
a sectional configuration of capacitors C
st and C
vth.
[0022] FIG. 8 shows a circuit representing the configuration shown in FIG. 7.
[0023] FIG. 9 shows a circuit representing the configuration shown in FIG. 7 when a previous
selection signal Sn-1 is applied.
[0024] FIG. 10 shows a diagram representing potential of polysilicon layers 426 and 424
and electrodes 445 and 447 when the previous selection signal Sn-1 is applied.
[0025] FIG. 11 shows a circuit representing the configuration shown in FIG. 7 when a current
selection signal Sn is applied.
[0026] FIG. 12 shows a diagram representing potential of the polysilicon layers 426 and
424 and the electrodes 445 and 447 when the current selection signal Sn is applied.
DETAILED DESCRIPTION OF EMBODIMENTS
[0027] In the specification, like elements are denoted by like numerals. When an element
is coupled to another element, the element may be directly coupled to the other element
or coupled to the other element via a third element. When an element is formed on
or over another element, the element may be formed right on the other element or formed
on the other element including a third element therebetween.
[0028] Various embodiments of the invention are now discussed in the context of an organic
light emitting display (OLED) device. However, the principle disclosed in the following
embodiments can be applied in any flat display panel devices, including liquid crystal
displays, field emission displays, plasma displays, etc.
[0029] As to the definitions, a scan line which is transmitting a current selection signal
is referred to as a "current scan line," and a scan line which transmitted a selection
signal immediately before the current selection signal is referred to as a "previous
scan line." A scan line which is transmitting the current select signal is referred
to as a "current scan line," and a scan line which transmitted the select signal before
the current select signal is transmitted is referred to as a "previous scan line."
Further, a scan line which transmits the selection signal immediately after the current
selection signal is referred to as a "next scan line." Some components belonging to
the immediately above pixel (Pn-1) are shown in FIG. 5 and (') is added to their reference
numbers.
[0030] As shown in FIG. 3, the OLED device includes an array of display elements 100, a
scan driver 200, and a data driver 300. The display array 100 includes a plurality
of data lines D1 to Dm extending in the column direction, a plurality of scan line
S1 to Sn (while it is referred to as a gate line, hereinafter, it will be referred
to as the scan line) extending in the row direction, and a plurality of pixel circuits
110. The data lines D1 to Dm transmit data signals representing an image signal to
the pixel circuits 110. The scan lines S1 to Sn transmit selection signals to the
pixel circuits 110. Each pixel circuit 110 is formed in a pixel area defined between
two neighboring data lines and between two neighboring scan lines.
[0031] The scan driver 200 sequentially applies a selection signal to each of the respective
scan lines S1 to Sn. The data driver 300 applies data voltages representing the image
signal to the data lines D1 to Dm.
[0032] FIG. 4 shows an equivalent circuit representing a pixel circuit 110 of the OLED device
according to an embodiment of the present invention. The illustrated embodiment is
a pixel circuit coupled to an m-th data line Dm, a current scan line Sn, and a previous
scan line Sn-1. The pixel circuit includes five transistors M1 to M5, two capacitors
C
st and C
vth, and an organic light emitting diode (OLED).
[0033] The transistor M1 for driving the organic light emitting diode OLED is coupled between
a voltage source VDD and the organic light emitting diode OLED. The transistor M1
transmits a current to the organic light emitting diode OLED via the transistor M2
depending upon the voltage applied to a gate of the transistor M1. The gate of the
transistor M1 is coupled to a node A of the capacitor C
vth. The capacitor C
st and the transistor M4 are coupled in parallel between a node B of the capacitor C
vth and the power voltage VDD.
[0034] The transistor M5 transmits a data voltage of the data line Dm to the node B of the
capacitor C
vth in response to the selection signal from the current scan line Sn. The transistor
M4 couples between the node B of the capacitor C
vth and the power voltage VDD in response to the selection signal from the previous scan
line Sn-1. The transistor M3 allows the transistor M1 to be diode-connected in response
to the selection signal from the previous scan line Sn-1. The transistor M2 is coupled
between the drain of the transistor M1 and the anode of the OLED, and intercepts the
drain of the transistor M1 to the OLED in response to the selection signal from a
light emitting control line En. The OLED emits a light corresponding to a current
input from the transistor M2.
[0035] An operation of the pixel circuit will now be described. A low level selection signal
is applied to the previous scan line Sn-1, the transistor M3 is turned on, and the
transistor M1 is diode-connected. Accordingly, a voltage between the gate and the
source of the transistor M1 varies until the voltage reaches a threshold voltage V
th of the transistor M1. The power voltage VDD is connected to the source of the transistor
M1. Once the gate-source voltage of the transistor M1 reaches VDD+V
th, a voltage applied to the gate of the transistor M1 (the node A of the capacitor
C
vth) is a sum of the power voltage VDD and the threshold voltage V
th. Also, the transistor M4 is turned on by the low level selection signal of scan line
Sn-1, and the power voltage VDD is applied to the node B of the capacitor C
vth. The voltage of the capacitor C
vth is given as Equation 1.

[0036] In the foregoing equation, V
Cvth denotes a voltage drop between the two electrodes of the capacitor C
vth. V
CvthA denotes a voltage applied to the node A of the capacitor C
vth, and V
CvthB denotes a voltage applied to the node B of the capacitor C
vth.
[0037] Meanwhile, the transistor M2 which is an n-channel transistor is turned off by a
low level signal of the light emitting control line En, and prevents current through
the transistor M1 from flowing to the OLED. The transistor M5 is turned off because
a high level signal is applied to the current scan line Sn when the current scan line
Sn-1 is applied a low level signal.
[0038] When the low level selection signal is applied to the current scan line Sn, the transistor
M5 is turned on, and a data voltage V
data is applied to the node B. The sum of the data voltage V
data and the threshold voltage V
th of the transistor M1 is applied to the gate of the transistor M1 because the threshold
voltage V
th of the transistor M1 was applied to the capacitor C
vth during the previous scan (Sn-1) and the charge has not been cleared. The voltage
V
gs between the gate and the source of transistor M1 is given as Equation 2. At this
time, the low level signal is applied to the light emitting control line En and the
transistor M2 is turned off.

[0039] The transistor M2 is turned on when the high level of the light emitting control
line En is applied. Then, a current I
OLED flows to the OLED, and the OLED emits a light. The current I
OLED is given as Equation 3.

[0040] Here, I
OLED denotes current flowing through the OLED. V
gs denotes a voltage between the source and the gate of the transistor M1. V
th denotes a threshold voltage of the transistor M1. V
data denotes a data voltage, and β denotes a constant specific to the transistor M1.
[0041] As can be seen in Equation 3, in the illustrated pixel circuit, the current supplied
to the organic light emitting diode OLED is independent of any deviation of the threshold
voltage V
th of the transistor M1..
[0042] An arrangement of the pixel circuit according to the embodiment of the present invention
will be described with reference to FIG. 5 and FIG. 6. FIG. 5 shows a top plan view
representing an arrangement of the pixel circuit shown in FIG. 4, and FIG. 6 shows
a sectional view taken along the dotted line I~I' shown in FIG. 5.
[0043] A polysilicon layer is used for a semiconductor layer, in FIG. 5. In FIG. 6, the
areas doped with an n+ or p+ impurity are hatched. The blank (non-hatched) areas are
intrinsic areas in the polysilicon layer. That is, channel areas of transistors respectively
crossing gate electrode lines 442 and 443 are non-doped blank areas. On the other
hand, drains and sources of the transistors are doped with the n+ or p+ impurities
and therefore hatched.
[0044] Two pixel circuits are illustrated in FIG. 5, an upper pixel is a current pixel and
a lower pixel is a next pixel. As shown in FIG. 5 and FIG. 6, a buffer layer 410 including
a silicon dioxide is formed on an insulation substrate 400, and the polysilicon layers
421, 422, 423, 424, and 426 which are semiconductor layers are formed on the buffer
layer 410.
[0045] In FIG. 5, the polysilicon layer 421 which is the semiconductor layer is formed in
a lower part of the pixels in about "U" shape, and forms source, drain, and channel
areas of the switching transistor M5 of the current pixel. The polysilicon layer 421'
which is the semiconductor layer is formed in the like manner of the polysilicon layer
421, and forms source, drain, and channel areas of the switching transistor M5' of
the previous pixel.
[0046] The polysilicon layer 422 is formed neighboring the polysilicon layer 421' in about
"⊂" shape, and forms source, drain, and channel areas of the transistor M3 of the
current pixel.
[0047] The polysilicon layer 423 is elongated in a middle of FIG. 5 in the column direction,
and forms source, drain, and channel areas of the transistor M1 and source, drain,
and channel areas of the transistor M2. The polysilicon layer 423 is arranged to be
coupled to the polysilicon layer 422 as shown in FIG. 6, and the source area of the
transistor M3 is electrically connected to the drain area of the transistor M1.
[0048] The polysilicon layer 424 is formed in a right side of the polysilicon layer 423
in about "U" shape, and forms source, drain, and channel areas of the transistor M4.
[0049] The polysilicon layer 426 is widely formed in the upper part of FIG. 5 in about "n"
shape, and includes a first area forming an electrode of the capacitor C
vth in a left side and a second area forming an electrode of capacitor C
st in a right side. The first area and the second area are formed in a single body,
and form a common electrode (node B shown in FIG. 4). The polysilicon layer 426 is
electrically connected to the polysilicon layer 424, and coupled to the drain area
of the transistor M4 and the electrodes of the capacitor C
st and capacitor C
vth.
[0050] As shown in FIG. 6, a gate insulating layer 430 is formed on the polysilicon layer
421, 422, 423, 424, and 426 formed as above.
[0051] Referring back to FIG. 5, electrode lines for forming gates and electrodes (hereinafter
referred to as a "gate layer") are formed on the gate insulating layer 430. The gate
layer includes an electrode line 441 corresponding to a current scan line Sn, an electrode
line 442 corresponding to the light emitting control line En, an electrode line 443
corresponding to the previous scan line Sn-1, an electrode 445 corresponding to another
electrode of the capacitor C
st, and an electrode 447 corresponding to another electrode of the capacitor C
vth.
[0052] The electrode line 441 which is elongated in the row direction crosses the polysilicon
layer 421, and forms a gate of the transistor M5 of the current pixel. The electrode
line 442 which is elongated in the row direction crosses the polysilicon layer 423,
and forms the gate of the transistor M2 of the current pixel. The electrode line 443
which is elongated in the row direction crosses the polysilicon layer 422 and the
polysilicon layer 424, and respectively forms the transistor M3 and the transistor
M4 of the current pixel. The electrode line 443 also crosses the polysilicon layer
421' and forms the transistor M5' of the previous pixel.
[0053] The electrode 445 is overlapped with the second area (right side) of the doped polysilicon
layer 426 forming the electrode (node B shown in FIG. 4) of the capacitor C
st, and forms the other electrode of the capacitor C
st. The electrode 447 is overlapped with the first area (left side) of the doped polysilicon
layer 426 forming the electrode (node B) of the capacitor C
vth, and forms the other electrode (node A) of the capacitor C
vth. The electrode 447 is elongated crossing the polysilicon layer 423, and forms the
gate of the transistor M1 (node A) electrically connected to the other electrode of
the capacitor C
vth.
[0054] As shown in FIG. 6, the gate electrodes 441, 442, 443, 445, and 446 are formed on
an interlayer insulating layer 450. A power electrode line 461, a data line 463, connecting
electrode lines 465, 467, and 468 are formed on the interlayer insulating layer 450.
[0055] Referring to FIG. 5, the power electrode line 461, the data line 463, and the connecting
electrode lines 465, 467, and 468 are electrically connected to elements through contact
holes 451a, 451 b, 451c, 453a, 453b, 454, 455, 457, and 458. As shown in FIG. 5, the
contact holes 451a, 451 b, 451c, 453a, 454, 457, and 458 represented by "■" are contact
holes touching the polysilicon layer through the interlayer insulating layer 450 and
the gate insulating layer 430, and the contact holes 453b and 455 represented by " "
are contact holes touching the gate layer through the interlayer insulating layer
450.
[0056] The power electrode line 461 which is elongated in the column direction is widely
formed in an area forming the capacitors C
st and C
vth. The power electrode line 461 contacts the source area of the transistor M1 of the
polysilicon layer 423 through the contact hole 454 and is electrically connected to
the source of the transistor M1. The power electrode line 461 contacts the electrode
445 through the contact hole 455 and is electrically connected to the other electrode
of capacitor C
st. The power electrode line 461 contacts the source area of the transistor M4 of the
polysilicon layer 424 through the contact hole 457 and is electrically connected to
the source of the transistor M4.
[0057] The data line 463 is elongated in the column direction, contacts the source area
of the transistor M5 of the polysilicon layer 421 through the contact hole 451 b,
and is electrically connected to the source of the transistor M5. The data line 463
contacts the source area of the transistor M5' of the polysilicon layer 421' through
the contact hole 451b', and is electrically connected to the source of the transistor
M5'.
[0058] The connecting electrode line 465 contacts the drain area of the transistor M5 of
the polysilicon layer 421 through the contact hole 451a, and also contacts a part
of the polysilicon layer 426 through the contact hole 451c. That is, the connecting
electrode line 465 electrically connects the drain of the transistor M5 to the electrode
(node B) of the capacitor C
vth. The connecting electrode line 467 contacts the drain area of the transistor M3 of
the polysilicon layer 422 through the contact hole 453a as shown in FIG. 6, and contacts
the electrode 447 through the contact hole 453b. That is, the connecting electrode
line 467 electrically connects the drain of the transistor M3 to the other electrode
(node A) of the capacitor C
vth.
[0059] The connecting electrode 468 is formed neighboring the electrode line 442 as shown,
contacts the drain area of the transistor M2 of the polysilicon layer 423 through
the contact hole 458, and electrically connects the drain of the transistor M2 to
an anode electrode (not shown) of the organic light emitting diode OLED formed on
the connecting electrode 468.
[0060] A planarization layer 470 is formed on the above configured power electrode line
461, data line 463, and connecting electrode lines 465, 467, and 468. While the anode
of the organic light emitting diode is not illustrated, the anode contacts the connecting
electrode 468 through the contact hole penetrating the planarization layer 470, and
is electrically connected to the drain of the transistor M2. A pixel define layer
(PDL) is formed after the pixel electrode is formed, and a multi-layer structured
organic layer including a light emitting layer (EML), an electron transport layer
(ETL), and a hole transport layer (HTL) is formed on the pixel electrode of the light
emitting area defined by the PDL.
[0061] As described, the capacitors C
vth and C
st are coupled to each other, and the polysilicon layer 426 is formed as the common
electrode (node B) of the capacitors C
vth and C
st. The layers 445 and 447 are respectively formed as the other electrode of the capacitors
C
vth and C
st according to the arrangement of the illustrated embodiment.
[0062] Arrangement and connection of the two capacitors C
st and C
vth coupled to each other in series will be described with reference to FIG. 7 to FIG.
12.
[0063] FIG. 7 shows a sectional view taken along the line II-II' shown in FIG. 5 for representing
a sectional configuration of capacitors C
st and C
vth, and FIG. 8 shows an equivalent circuit diagram representing the configuration shown
in FIG. 7.
[0064] In FIG. 7, the buffer layer 410 is formed on a substrate 400, and the polysilicon
layer 426 and the polysilicon layer 424 in a single body are formed on the buffer
layer 410. The polysilicon layer 426 is substantially entirely doped with n+ or p+
impurities and forms the common electrode (node B) of the capacitors C
vth and C
st. The polysilicon layer 424 forms source 424s, drain 424d, and channel 424c areas
of the transistor M4. In FIG. 7, the hatched areas of the polysilicon layer 424 are
doped with impurities and are the source 424s and drain 424d areas of the transistor
M4, respectively. The area 424c of the polysilicon layer 424 located between the source
424s and drain 424d areas is not doped with impurities and forms the channel area
424c of the transistor M4. Accordingly, the common electrode (node B) of the capacitors
C
st and C
vth is electrically connected to the drain of the transistor M4 because the polysilicon
layer 426 (the common electrode) is directly coupled to the polysilicon layer 424d
(drain of M4). The electrodes 445 and 447 are formed over a dielectric layer 428,
which is formed on the polysilicon layer 426. The polysilicon layer 426, the electrode
445 and the intervening dielectric layer 428 form the capacitor C
st. The polysilicon layer 426, the electrode 447 and the intervening dielectric layer
428 form the capacitor C
vth. The connecting electrode 465 is electrically connected to the drain of the transistor
M5 and contacts a terminal portion of the polysilicon layer 426 via the interconnect
451c. The data voltage V
data applied to the drain of the transistor M5 is transmitted to the polysilicon layer
426 when the transistor M5 is turned on in response to the current selection signal
Sn.
[0065] The layers 443 is connected to the previous scan line Sn-1 and is provided over the
intervening dielectric layer 428 formed on the channel area 424c of the polysilicon
layer 424, and forms the gate of the transistor M4. Dielectric layers 450 are deposited
over the structures 428, 445, 447 and 450. A layer 461 is formed over the dielectric
layers 450 and forms a power electrode line. The power electrode line 461 contacts
the source area 424s of the transistor M4 via the interconnect 457. Accordingly, when
the transistor M4 is turned on in response to the previous selection signal Sn-1,
the power voltage VDD is applied to the polysilicon layer 426 through the transistor
M4.
[0066] The transistor M5, transistor M4, capacitors C
vth and C
st as configured in FIG. 7 is equivalently represented by FIG. 8. When a low level is
applied to the selection signal Sn-1 of the previous scan line, the transistor M4
is turned on and the power voltage VDD is applied to the node B. When the low level
is applied to the selection signal Sn of the current scan line, the transistor M5
is turned on and the data voltage V
data is applied to the node B.
[0067] Referring to FIG. 9 to FIG. 12, operations of the capacitors C
st and C
vth in a case that the previous selection signal Sn-1 is applied and in a case that the
selection signal Sn is applied will be described.
[0068] FIG. 9 shows an equivalent circuit diagram representing the configuration shown in
FIG. 7 when the previous selection signal Sn-1 is applied, and FIG. 10 shows a diagram
representing potential of the polysilicon layers 426 and 424 and the electrodes 445
and 447 when the previous selection signal Sn-1 is applied.
[0069] A solid line shown in FIG. 9 shows that the transistor M4 is turned on and the power
voltage VDD is applied to the node B when the selection signal Sn-1 is at the low
level.
[0070] As shown in FIG. 10, a channel is formed in the channel area 424c of the polysilicon
layer 424, and the power voltage VDD is applied to the source area 424s. The power
voltage VDD is transmitted to the polysilicon layer 426 through the drain area 424d,
and the potential of the polysilicon layers 424 and 426 is VDD. The power voltage
VDD is applied to the electrode 445 via the interconnect 455. A first capacitor C
vth1 is formed between the electrode 447 (Note A) and the polysilicon layer 426 (node
B) at the potential VDD, and a second capacitor C
vth2 is formed between the electrode 447 (node A) and the electrode line 461 at the same
potential VDD, and therefore a multi-layer capacitor is formed. The first capacitor
C
vth1 and second capacitor C
vth2 are parallelly connected as shown in FIG. 9. The potential of the polysilicon layer
426 is identical to that of the electrode 445, and therefore these layers do not operate
as a capacitor as shown with dotted line in FIG. 9.
[0071] The current selection signal Sn is applied after the previous selection signal Sn-1
is applied. FIG. 11 shows an equivalent circuit diagram representing the configuration
shown in FIG. 7 when the current selection signal Sn is applied. FIG. 12 shows a diagram
representing the potentials of the polysilicon layers 426 and 424 and the electrodes
445 and 447 when the current selection signal Sn is applied.
[0072] FIG. 11 shows that the transistor M4 (dotted lines) is turned off and the transistor
M5 (solid lines) is turned on when the selection signal Sn is at the low level. At
this time, the data voltage V
data applied to the data line 463 (shown in FIG. 5) is applied to the node B.
[0073] In FIG. 12, the transistor M4 is turned off, and the power electrode line 461 is
not equipotential with the polysilicon layer 426 which is one of the electrodes of
the capacitor C
vth. The transistor M5 is turned on in response to the selection signal Sn, and the data
voltage V
data is applied to the polysilicon layer 426 through the connecting electrode line 465.
The potential of the electrode 445 is VDD because the electrode 445 is electrically
connected to the power electrode line 461 via the interconnect 455. Accordingly, the
polysilicon layer 426 and the electrode 445 form the capacitor C
st with a potential difference between V
data and VDD.
[0074] As described, the polysilicon layer 426 forms the common electrode (node B) of the
capacitors C
st and C
vth, and therefore it is not necessary to form additional contact hole and an interconnect
or extension between the drain of the transistor M4 and the common electrode 126 of
the capacitor C
st and capacitor C
vth. The lacking of the contact holes makes the process of pixel formation simpler and
less costly. Further, the aperture ratio can be improved because the light emitting
area is increased by reducing the space needed for such interconnects and/or extensions.
[0075] In addition, sufficient capacitance is guaranteed because a planar area is narrowed
by forming the capacitor C
vth as a multi-layer capacitor and two connecting electrodes performs an electrode of
a capacitor. The capacitor C
st is coupled to the capacitor C
vth through the polysilicon layer 426, and therefore it is not necessary to form an additional
connecting electrode for coupling the two capacitors. Accordingly, an area in which
the two capacitors are provided is reduced in the pixel area, and the aperture ratio
is improved because an area including the connecting electrode is reduced in the pixel
area.
[0076] Accordingly to the exemplary embodiments of the present invention, it is not necessary
to form the additional contact hole and connecting electrode line in order to couple
the drain of the transistor to the common electrode of the capacitors C
st and C
vth because the polysilicon layer forms the common electrode of the capacitors C
st and C
vth coupled in series. The reduction of the contact holes allows a process of pixel formation
to be more convenient, and the aperture ratio is improved because the light emitting
area is increased by the reduction of the connecting electrode lines.
[0077] In addition, sufficient capacitance is guaranteed because a planar area is narrowed
by forming the capacitor C
vth as a multi-layer capacitor and two connecting electrodes performs an electrode of
a capacitor. The capacitor C
st is coupled to the capacitor C
vth through the polysilicon layer 426 in series, and therefore it is not necessary to
form the additional connecting electrode for coupling the two capacitors in series.
Accordingly, the area in which the two capacitors are provided is reduced in the pixel
area, and the aperture ratio is improved because an area including the connecting
electrode is reduced in the pixel area
[0078] In the exemplary embodiments of the present invention, the OLED device has been exemplified,
the present invention covers display devices and semiconductor devices in which two
capacitors are coupled to each other in series.
[0079] While this invention has been described in connection with what is presently considered
to be practical exemplary embodiments, it is to be understood that the invention is
not limited to the disclosed embodiments, but, on the contrary, is intended to cover
various modifications and equivalent arrangements included within the spirit and scope
of the appended claims.
1. A capacitor circuit for use in a display control circuit, the capacitor comprising:
a first conductive layer (426) formed in a single body;
a first insulation layer (430) formed on the first conductive layer (426);
a second conductive layer (445) and a third conductive layer (447) separately formed
on the first insulation layer (430);
a second insulation layer (450) formed on the second conductive layer (445) and the
third conductive layer (447), and
a fourth conductive layer (461) formed on the second insulation layer (450) and electrically
connected to the second conductive layer (445),
characterized in that the first conductive layer (426) is electrically connected to the fourth conductive
layer (461) through a first switch (M4) adapted to be turned on in a first period
and a second potential (V
Data) is applied to the first conductive layer (426) through a second switch (M5) adapted
to be turned on in a second period.
2. The capacitor of claim 1, wherein fourth conductive layer (461) is overlapped with
at least a part of the third conductive layer (447).
3. The capacitor of claim 1, wherein the first conductive layer (426) is a polysilicon
layer doped with one or more impurities; second conductive layer (445) and the third
conductive layer (447) is a first metal layer, and the fourth conductive layer (461)
is a second metal layer formed on the second insulation layer (450) and electrically
connected to the second conductive layer (445).
4. The capacitor circuit of claim 1, wherein the first conductive layer (426) and the
second conductive layer (445) comprise a capacitor and/or wherein the second conductive
layer (445) and fourth conductive layers (461) comprise a capacitor and/or wherein
the first conductive layer (426) and the third conductive layer (447) comprise a capacitor
and/or wherein the third conductive layer (447) is located at a level between the
first and fourth conductive layers (426, 461) and/or wherein the third conductive
layer (447) is located at substantially the same level as the second conductive layer
(445).
5. A display driving circuit, comprising:
a first capacitor (Cvth) comprising a first electrode (426) and a fourth electrode
(461), the fourth electrode (461) being electrically connected to a first voltage
(VDD);
a second capacitor (Cst) comprising the first electrode (426) and a second electrode
(445);
characterized by
a first switch (M4) interconnecting the first and fourth electrodes (426, 461), wherein
when turned on, the first switch (M4) is configured to equipotentially connect the
first and fourth electrodes (426, 461), thereby connecting the first voltage (VDD)
to the first electrode (426); and a second switch (M5) interconnecting the first electrode
(426) and a fifth electrode, the fifth electrode being electrically connected to a
second voltage (Vdata), wherein when turned on, the second switch (M5) is configured to equipotentially
connect the first electrode (426) and fifth electrode, thereby connecting the second
voltage (Vdata) to the first electrode (426).
6. The display driving circuit of claim 5, wherein the first electrode (426) comprises
a polysilicon layer.
7. The display driving circuit of claim 5, wherein the first capacitor (Cvth) further
comprises a third electrode (447) electrically insulated from both the first and fourth
electrodes (426, 461), wherein the first and third electrodes (426, 447) comprise
a first sub-capacitor (Cvth1), and wherein the fourth and third electrodes (461, 447)
comprise a second sub-capacitor (Cvth2).
8. The display driving circuit of claim 5, wherein the second capacitor (Cst) is configured
to be charged with a voltage, which is a difference between the first voltage (VDD)
and the second voltage (Vdata) while the second switch (M5) is turned on.
9. A display device comprising an array of a plurality of display units (110), at least
one of the display units (110) comprising:
a first conductive layer (426);
a fourth conductive layer (461) over the first conductive layer (426);
a third conductive layer (447) located between the first and fourth conductive layers
(426, 461), the third conductive layer (447) is electrically insulated from both the
first and fourth conductive layers (426, 461); and
a second conductive layer (445) located over the first conductive layer (426), the
second conductive layer (445) is at a substantially equipotential with the third conductive
layer (447),
characterized in that
the display further comprises a circuit interconnecting the first and fourth conductive
layers (426, 461), wherein the circuit is configured to receive a first control signal
and a second control signal, wherein when the first control signal is received, the
circuit is configured to substantially equipotenitally connect the first and fourth
conductive layers (426, 461), and wherein when the second control signal is received,
the circuit is configured to have a voltage drop therein.
10. The display device of claim 9, wherein the first conductive layer (426) comprises
a polysilicon layer doped with impurity.
11. The display device of claim 9, wherein at least one of the second and third conductive
layers (445, 447) comprises a metal electrode layer.
12. The display device of Claim 9, wherein the circuit comprises a transistor (M4) comprising
a gate, a source and a drain, wherein the gate is configured to receive the first
and second control signals, wherein the source is electrically connected to the fourth
conductive layer (461), and wherein the drain is electrically connected to the first
conductive layer (426) and/or wherein, when the second control signal is received,
the first conductive layer (426) is electrically connected to an electrode other than
the fourth conductive layer (426).
13. The display device of claim 9, wherein the first and third conductive layers (426,
447) comprise a capacitor and/or wherein the third and fourth conductive layers (447,
461) comprise a capacitor and/or wherein first and second conductive layers (426,
445) comprise a capacitor.
1. Ein Kondensatorschaltkreis zur Verwendung in einem Anzeigesteuerschaltkreis, wobei
der Kondensator umfasst:
eine erste leitende Schicht (426), die in einem einzigen Körper ausgebildet ist;
eine erste Isolierschicht (430), die auf der ersten leitenden Schicht (426) ausgebildet
ist;
eine zweite leitende Schicht (445) sowie eine dritte leitende Schicht (447), die getrennt
auf der ersten Isolierschicht (430) angeordnet sind;
eine zweite Isolierschicht (450), die auf der zweiten leitenden Schicht (445) und
der dritten leitenden Schicht (447) ausgebildet ist, und
eine vierte leitende Schicht (461), die auf der zweiten Isolierschicht (450) ausgebildet
ist und elektrisch mit der zweiten leitenden Schicht (445) verbunden ist,
dadurch gekennzeichnet, dass
die erste leitende Schicht (426) durch einen ersten Schalter (M4), der dazu ausgelegt
ist, in einem ersten Zeitabschnitt eingeschaltet zu sein, elektrisch mit der vierten
leitenden Schicht (461) verbunden ist und ein zweites Potential (VData) durch einen zweiten Schalter (M5), der dazu ausgelegt ist, in einem zweiten Zeitabschnitt
eingeschaltet zu sein, an die erste leitende Schicht (426) angelegt wird.
2. Der Kondensator nach Anspruch 1, wobei die vierte leitende Schicht (461) mit mindestens
einem Teil der dritten leitenden Schicht (447) überlappt ist.
3. Der Kondensator nach Anspruch 1, wobei die erste leitende Schicht (426) eine mit einem
oder mehreren Fremdatomen dotierte Polysiliziumschicht ist; die zweite leitende Schicht
(445) und die dritte leitende Schicht (447) eine erste Metallschicht ist und die vierte
leitende Schicht (461) eine auf der zweiten Isolierschicht (450) ausgebildete und
elektrisch mit der zweiten leitenden Schicht (445) verbundene zweite Metallschicht
ist.
4. Der Kondensatorschaltkreis nach Anspruch 1, wobei die erste leitende Schicht (426)
und die zweite leitende Schicht (445) einen Kondensator umfassen und/oder wobei die
zweite leitende Schicht (445) und vierten leitenden Schichten (461) einen Kondensator
umfassen und/oder wobei die erste leitende Schicht (426) und die dritte leitende Schicht
(447) einen Kondensator umfassen und/oder wobei die dritte leitende Schicht (447)
auf einer Ebene zwischen den ersten und vierten leitenden Schichten (426, 461) angeordnet
ist und/oder wobei die dritte leitende Schicht (447) im Wesentlichen auf derselben
Ebene wie die zweite leitende Schicht (445) angeordnet ist.
5. Ein Anzeigeansteuerschaltkreis, umfassend:
einen eine erste Elektrode (426) und eine vierte Elektrode (461) umfassenden ersten
Kondensator (Cvth), wobei die vierte Elektrode (461) elektrisch mit einer ersten Spannung
(VDD) verbunden ist;
einen die erste Elektrode (426) und eine zweite Elektrode (445) umfassenden zweiten
Kondensator (Cst);
gekennzeichnet durch
einen ersten Schalter (M4), der die ersten und vierten Elektroden (426, 461) miteinander
verbindet, wobei der erste Schalter (M4), wenn eingeschaltet, dazu ausgelegt ist,
die ersten und vierten Elektrode (426, 461) äquipotential zu verbinden und dadurch die erste Spannung (VDD) mit der ersten Elektrode (426) zu verbinden; und einen zweiten
Schalter (M5), der die erste Elektrode (426) und eine fünfte Elektrode miteinander
verbindet, wobei die fünfte Elektrode elektrisch mit einer zweiten Spannung (Vdata) verbunden ist, wobei der zweite Schalter (M5), wenn eingeschaltet, dazu ausgelegt
ist, die erste Elektrode (426) und die fünfte Elektrode äquipotential zu verbinden
und dadurch die zweite Spannung (Vdata) mit der ersten Elektrode (426) zu verbinden.
6. Der Anzeigeansteuerschaltkreis nach Anspruch 5, wobei die erste Elektrode (426) eine
Polysiliziumschicht umfasst.
7. Der Anzeigeansteuerschaltkreis nach Anspruch 5, wobei der erste Kondensator (Cvth)
ferner eine dritte Elektrode (447) umfasst, die elektrisch von den ersten und vierten
Elektroden (426, 462) isoliert ist, wobei die ersten und dritten Elektroden (426,
447) einen ersten Unterkondensator (Cvth1) umfassen und wobei die vierten und dritten
Elektroden (461, 447) einen zweiten Unterkondensator (Cvth2) umfassen.
8. Der Anzeigeansteuerschaltkreis nach Anspruch 5, wobei der zweite Kondensator (Cst)
dazu ausgelegt ist, mit einer Spannung geladen zu werden, die eine Differenz zwischen
der ersten Spannung (VDD) und der zweiten Spannung (Vdata) ist, während der zweite Schalter (M5) eingeschaltet ist.
9. Eine Anzeigevorrichtung, die ein Feld einer Vielzahl von Anzeigeeinheiten (110) umfasst,
wobei mindestens eine der Anzeigeeinheiten (110) umfasst:
eine erste leitende Schicht (426);
eine vierte leitende Schicht (461) über der ersten leitenden Schicht (426);
eine zwischen den ersten und vierten leitenden Schichten (426, 461) angeordnete dritte
leitende Schicht (447), wobei die dritte leitende Schicht (447) von den ersten und
vierten leitenden Schichten (426, 461) elektrisch isoliert ist; und
eine über der ersten leitenden Schicht (426) angeordnete zweite leitende Schicht (445),
wobei die zweite leitende Schicht (445) im Wesentlichen äquipotential mit der dritten
leitenden Schicht (447) ist,
dadurch gekennzeichnet, dass
die Anzeige ferner einen Schaltkreis umfasst, der die ersten und vierten leitenden
Schichten (426, 461) miteinander verbindet, wobei der Schaltkreis derart konfiguriert
ist, dass er ein erstes Steuersignal und ein zweites Steuersignal empfängt, wobei,
wenn das erste Steuersignal empfangen wird, der Schaltkreis derart konfiguriert ist,
dass er die ersten und vierten leitenden Schichten (426, 461) im Wesentlichen äquipotential
verbindet und wobei, wenn das zweite Steuersignal empfangen wird, der Schaltkreis
derart konfiguriert ist, dass er einen Spannungsabfall aufweist.
10. Die Anzeigevorrichtung nach Anspruch 9, wobei die erste leitende Schicht (426) eine
mit Fremdatomen dotierte Polysiliziumschicht umfasst.
11. Die Anzeigevorrichtung nach Anspruch 9, wobei mindestens eine der zweiten und dritten
leitenden Schichten (445, 447) eine Metallelektrodenschicht umfasst.
12. Die Anzeigevorrichtung nach Anspruch 9, wobei der Schaltkreis einen Transistor (M4)
umfasst, der ein Gate, eine Source und einen Drain umfasst, wobei das Gate derart
konfiguriert ist, dass es die ersten und zweiten Steuersignale empfängt, wobei die
Source elektrisch mit der vierten leitenden Schicht (461) verbunden ist und wobei
das Drain elektrisch mit der ersten leitenden Schicht (426) verbunden ist und/oder
wobei, wenn das zweite Steuersignal empfangen wird, die erste leitende Schicht (426)
elektrisch mit einer von der vierten leitenden Schicht (426) verschiedenen Elektrode
verbunden ist.
13. Die Anzeigevorrichtung nach Anspruch 9, wobei die ersten und dritten leitenden Schichten
(426, 447) einen Kondensator umfassen und/oder wobei die dritten und vierten leitenden
Schichten (447, 461) einen Kondensator umfassen und/oder wobei erste und zweite leitende
Schichten (426, 445) einen Kondensator umfassen.
1. Circuit de condensateur destiné à être utilisé dans un circuit de commande d'affichage,
le condensateur comprenant :
une première couche conductrice (426) formée dans un corps unique ;
une première couche isolante (430) formée sur la première couche conductrice (426)
;
une deuxième couche conductrice (445) et une troisième couche conductrice (447) formées
séparément sur la première couche isolante (430) ;
une deuxième couche isolante (450) formée sur la deuxième couche conductrice (445)
et la troisième couche conductrice (447), et
une quatrième couche conductrice (461) formée sur la deuxième couche isolante (450)
et électriquement connectée à la deuxième couche conductrice (445),
caractérisé en ce que la première couche conductrice (426) est électriquement connectée à la quatrième
couche conductrice (461) par l'intermédiaire d'un premier commutateur (M4) apte à
être rendu passant pendant une première période et en ce qu'un deuxième potentiel (VData) est appliqué à la première couche conductrice (426) par l'intermédiaire d'un deuxième
commutateur (M5) apte à être rendu passant pendant une deuxième période.
2. Condensateur selon la revendication 1, dans lequel la quatrième couche conductrice
(461) est recouverte d'au moins une partie de la troisième couche conductrice (447).
3. Condensateur selon la revendication 1, dans lequel la première couche conductrice
(426) est une couche de polysilicium dopée par une ou plusieurs impuretés ; la deuxième
couche conductrice (445) et la troisième couche conductrice (447) constituent une
première couche métallique, et la quatrième couche conductrice (461) est une deuxième
couche métallique formée sur la deuxième couche isolante (450) et électriquement connectée
à la deuxième couche conductrice (445).
4. Circuit de condensateur selon la revendication 1, dans lequel la première couche conductrice
(426) et la deuxième couche conductrice (445) comprennent un condensateur et/ou dans
lequel la deuxième couche conductrice (445) et la quatrième couche conductrice (461)
comprennent un condensateur et/ou dans lequel la première couche conductrice (426)
et la troisième couche conductrice (447) comprennent un condensateur et/ou dans lequel
la troisième conductrice (447) est située à un niveau se trouvant entre les première
et quatrième couches conductrices (426, 461) et/ou dans lequel la troisième couche
conductrice (447) est située sensiblement au même niveau que la deuxième couche conductrice
(445).
5. Circuit d'attaque d'affichage comprenant :
un premier condensateur (Cvth) comprenant une première électrode (426) et une quatrième
électrode (461), la quatrième électrode (461) étant électriquement connectée à une
première tension (VDD) ;
un deuxième condensateur (Cst) comprenant la première électrode (426) et une deuxième
électrode (445) ;
caractérisé par un premier commutateur (M4) interconnectant les première et quatrième électrodes
(426, 461), dans lequel, lorsqu'il est rendu passant, le premier commutateur (M4)
est configuré pour connecter de façon équipotentielle les première et quatrième électrodes
(426, 461), connectant ainsi la première tension (VDD) à la première électrode (426)
; et un deuxième commutateur (M5) interconnectant la première électrode (426) à une
cinquième électrode, la cinquième électrode étant électriquement connectée à une deuxième
tension (Vdata), dans lequel, lorsqu'il est rendu passant, le deuxième commutateur (M5) est configuré
pour connecter de façon équipotentielle la première électrode (426) à la cinquième
électrode, connectant ainsi la deuxième tension (Vdata) à la première électrode (426).
6. Circuit d'attaque d'affichage selon la revendication 5, dans lequel la première électrode
(426) comprend une couche de polysilicium.
7. Circuit d'attaque d'affichage selon la revendication 5, dans lequel le premier condensateur
(Cvth) comprend en outre une troisième électrode (447) électriquement isolée à la
fois des première et quatrième électrodes (426, 461), dans lequel les première et
troisième électrodes (426, 447) comprennent un premier sous-condensateur (Cvth1),
et dans lequel les quatrième et troisième électrodes (461, 447) comprennent un deuxième
sous-condensateur (Cvth2).
8. Circuit d'attaque d'affichage selon la revendication 5, dans lequel le deuxième condensateur
(Cst) est configuré pour être chargé avec une tension qui est une différence entre
la première tension (VDD) et la deuxième tension (Vdata) pendant que le deuxième commutateur (M5) est rendu passant.
9. Dispositif d'affichage comprenant une matrice constituée d'une pluralité d'unités
d'affichage (110), au moins l'une des unités d'affichage (110) comprenant :
une première couche conductrice (426) ;
une quatrième couche conductrice (461) sur la première couche conductrice (426) ;
une troisième couche conductrice (447) située entre les première et quatrième couches
conductrices (426, 461), la troisième couche conductrice (447) étant électriquement
isolée à la fois des première et quatrième couches conductrices (426, 461) ; et
une deuxième couche conductrice (445) située sur la première couche conductrice (426),
la deuxième couche conductrice (445) étant sensiblement à un niveau équipotentiel
par rapport à la troisième couche conductrice (447),
caractérisé en ce que l'affichage comprend en outre un circuit interconnectant les première et quatrième
couches conductrices (426, 461), dans lequel le circuit est configuré pour recevoir
un premier signal de commande et un deuxième signal de commande, dans lequel lorsque
le premier signal de commande est reçu, le circuit est configuré pour connecter de
façon sensiblement équipotentielle les première et quatrième couches conductrices
(426, 461), et dans lequel, lorsque le deuxième signal de commande est reçu, le circuit
est configuré pour qu'il se produise dans celui-ci une chute de tension.
10. Dispositif d'affichage selon la revendication 9, dans lequel la première couche conductrice
(426) comprend une couche de polysilicium dopée par une impureté.
11. Dispositif d'affichage selon la revendication 9, dans lequel au moins l'une des deuxième
et troisième couches conductrices (445, 447) comprend une couche d'électrode métallique.
12. Dispositif d'affichage selon la revendication 9, dans lequel le circuit comprend un
transistor (M4) comprenant une grille, une source et un drain, dans lequel la grille
est configurée pour recevoir les premier et deuxième signaux de commande, dans lequel
la source est électriquement connectée à la quatrième couche conductrice (461), et
dans lequel le drain est électriquement connecté à la première couche conductrice
(426) et/ou dans lequel, lorsque le deuxième signal de commande est reçu, la première
couche conductrice (426) est électriquement connectée à une électrode autre que la
quatrième couche conductrice (426).
13. Dispositif d'affichage selon la revendication 9, dans lequel les première et troisième
couches conductrices (426, 447) comprennent un condensateur et/ou dans lequel les
troisième et quatrième couches conductrices (447, 461) comprennent un condensateur
et/ou dans lequel les première et deuxième couches conductrices (426, 445) comprennent
un condensateur.