(19)
(11) EP 1 700 925 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
09.09.2009 Bulletin 2009/37

(21) Application number: 05101801.8

(22) Date of filing: 09.03.2005
(51) International Patent Classification (IPC): 
C22C 38/00(2006.01)

(54)

High-strength air cooled steel alloy and hot worked product

Hochfester luftgekühlter Stahl und daraus resultiertes warmverformte Produkt.

Acier à haute résistance mechanique refroidi par air et son produit à chaud.


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

(43) Date of publication of application:
13.09.2006 Bulletin 2006/37

(73) Proprietor: Ovako Bar Oy Ab
55100 Imatra (FI)

(72) Inventor:
  • Ollilainen, Vesa
    55610, Imatra (FI)

(74) Representative: LEITZINGER OY 
Tammasaarenkatu 1
00180 Helsinki
00180 Helsinki (FI)


(56) References cited: : 
EP-A- 0 572 246
DE-A1- 4 017 973
FI-A- 932 437
DE-A1- 3 434 744
DE-A1- 4 137 240
   
  • PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14, 31 December 1998 (1998-12-31) & JP 10 235447 A (DAIDO STEEL CO LTD), 8 September 1998 (1998-09-08)
  • PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14, 31 December 1998 (1998-12-31) & JP 10 237587 A (SUMITOMO METAL IND LTD), 8 September 1998 (1998-09-08)
  • PATENT ABSTRACTS OF JAPAN vol. 1995, no. 07, 31 August 1995 (1995-08-31) & JP 07 102340 A (NIPPON STEEL CORP), 18 April 1995 (1995-04-18)
  • PATENT ABSTRACTS OF JAPAN vol. 2000, no. 01, 31 January 2000 (2000-01-31) & JP 11 293390 A (SUMITOMO METAL IND LTD), 26 October 1999 (1999-10-26)
  • PATENT ABSTRACTS OF JAPAN vol. 1999, no. 11, 30 September 1999 (1999-09-30) & JP 11 152542 A (KOBE STEEL LTD), 8 June 1999 (1999-06-08)
  • PATENT ABSTRACTS OF JAPAN vol. 1997, no. 08, 29 August 1997 (1997-08-29) & JP 09 111340 A (SUMITOMO METAL IND LTD), 28 April 1997 (1997-04-28)
  • K.SACHS: "Residuals in Engineering Steels" METALS TECHNOLOGY, 1979, pages 33-37, XP002324238 UK
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] High-strengh air cooled steel alloy, and hot worked product.

[0002] The invention relates to an air cooled steel, and to a forged product manufactured therewith and characterized by a totally ferritic-pearlitic microstructure without bainite and, accordingly, by a high strength, a particularly high fatigue strength, and good machinability

[0003] The use of air cooled microalloyed steels in hot-forged products is economically sensible as the pieces require no hardening and tempering. However, a problem with these microsteels is a modest strength, especially a low yield strength, when compared to tempered alloy steels. For example, in EN 10267:1998 standard, the highest strength microalloyed forging steel is 46MnVS6, having a minimum yield limit of 580 MPa. In practice, however, the most popular grade is 38MnVS6, having an Re = 520 N/mm2.

[0004] The strength of air cooled microalloyed steels can be improved by increased alloying, for example by adding manganese and/or chromium. However, increased alloying creates a problem as a result of the formation of bainite in the microstructure of steels. An objective in such steels is to obtain a totally ferritic-pearlitic microstructure capable of providing the desired properties. Even small amounts of bainite in the microstructure undermine mechanical properties by decreasing yield strength and toughness, especially elongation and reduction of area in tensile test, as well as by degrading machinability. An element particularly active with regard to the development of bainite is molybdenum, which in such steels must be considered an impurity and the concentration of which must be often limited to as low as not more than 0,03...0,04 wt-%. Occasionally, in the microstructure is formed not only bainite but also untempered martensite, the effect of which on the above properties is even more deteriorating than that of bainite.

[0005] Since, in addition to molybdenum, there are also other effective alloying elements, the tendency to bainite formation can be practically demonstrated by the following summation in wt-%:

wherein Mn, Mo, Cr and Ni represent concentrations of these particular alloying elements in weight percentage. According to prior experience, if X > 3,1...3,3, bainite develops in air cooling at thin (20 mm) diameters.

[0006] One way of upgrading the strength of air cooled forging steels is to subject them to such intensive alloying that their microstructure becomes completely or at least substantially bainitic. An example of such steels is described in the publication US 5820706. Instead of direct, simple air cooling, a problem in this technique is maintaining the temperature range of bainite formation, which hampers the forging process and brings forth one more source of process error. Moreover, there are problems regarding the machinability of such steels, especially because from retained austenite they can also easily develop small amounts of hard untempered martensite in addition to bainite. Generally, especially with forged products of considerable thickness, it is also necessary to increase the alloy content of such steels, thus resulting in high manufacturing costs.

[0007] Another example of bainitic steels is a steel as set forth in the published EP application 00850178.5, which is cooled in air. A problem in this case is also a poor and uneven machinability and an increase of alloy content. Since attaining a totally bainitic structure by air cooling without retaining a constant temperature is difficult in practice, in the microstructure usually formed untempered martensite as well. In order to attain even a moderate toughness and machinability, it is generally necessary that the pieces be also annealed for softening hard martensite regions, which increases costs even more.

[0008] It is known that a fatigue strength higher than conventional can be achieved in microalloyed steels rich in silicon. A steel like this is disclosed in the publication EP 0572246B1. A problem here is a low yield strength which is also typical of microalloyed steels in general. EP 0572246B1 is the closest prior art document.

[0009] The bainite formation in conventional microalloyed steels rich in manganese is sometimes discouraged by decelerating their post-forging cooling by providing for example a tunnel around the cooling line. However, this represents an extra cost and, at the same time, another source of error in the manufacturing process.

[0010] It is obvious in light of the above that, by finding a steel alloying based way of precluding bainite formation, the strength of microalloyed steels can be enhanced without disrupting the properties. Thus, it is economically feasible to achieve simultaneously high yield strength, good toughness and good machinability.

[0011] In part making usually the greatest individual cost is machining. It is well known that a fine grain size deteriorates machinability of steel. Therefore, a prior austenite grain size coarser than 10 ASTM (greater than about 10 µm in grain diameter) in the material of workpiece is advantageous. Therefore, an object of the invention is to provide a steel alloy having improved machinability combined with high yield stress and toughness.

[0012] In order to accomplish the objectives of the invention, a steel of the invention is characterized by what is set forth in the characterizing clause of claim 1.

[0013] With respect to the inventive steel, the simultaneous use of silicon alloying and molybdenum alloying results economically a high-strength steel, having a structure which is purely ferritic-pearlitic with neither bainite nor martensite nor drawbacks inflicted thereby.

[0014] Further, the use of chromium concentrations within the range of appr. 0,5 wt-% to appr. 1,5 wt-% enables an improvement in the nitriding properties of steel. The chromium concentration is preferably within the range of appr. 0,5 wt-% to appr. 0,8 wt-%.

[0015] Being a major nitride producer, the chromium alloying causes development of chromium nitrides in the ferritic diffusion layer of a nitrided surface, thus increasing the layer's hardness. For example, 1 wt-% of chromium provides a hardness of about 600 HV (K-E. Thelning, Steel and its Heat Treatment, Butterworths 1975 pp. 86-87). This hardness in the diffusion layer is sufficient even for highly demanding mechanical engineering. As nitride producers, titanium and vanadium also provide activities similar to that of chromium, thus enhancing the latter's effect.

[0016] Compared with unalloyed steel or steel with no alloying elements capable of forming nitrides, the diffusion layer in chromium-alloyed steel has a hardness which is several hundred HV degrees higher, which provides a solid base for an extremely hard compound layer present in the outermost surface. Vanadium and titanium alloying enhances this effect. A surface layer nitrided as described is more resistant to a surface pressure without a risk of cracking, which makes it possible to use the steel e.g. for gears and shafts. A hard diffusion layer means usually also a greater consolidated layer thickness for improved fatigue strength. This is favourable, for example in nitrided crankshafts.

[0017] On the other hand, an excessively high chromium concentration reduces the toughness of forged ferritic-pearlitic steel, which is why it is advisable to retain the concentration at less than 1,5 wt-% and in certain cases at less than 1 wt-%.

[0018] Still another object of the invention is a forged product, which is characterized by what is set forth in the characterizing clause of the independent claim 2.

[0019] The invention relates also to a hot rolled steel bar, which is characterized by what is set forth in the characterizing clause of the independent claim 3.

[0020] The following table illustrates mechanical properties and microstructures measured for test steel alloys of the invention as well as corresponding properties in standard reference steels.
Table 1. Chemical composition of test steels and reference steels in weight percentage
Steel C Si Mn P S Cr Ni Mo V Ti Als N
Ref. 1 0,37 0,60 1,31 0,008 0,034 0,13 0,09 0,02 0,11 0,025 0,018 0,011
Ref. 2 0,39 0,55 1,44 0,007 0,037 0,22 0,17 0,04 0,09 0,020 0,021 0,016
Test 1 0,35 1,49 1,57 0,017 0,057 0,18 0,11 0,03 0,12 0,023 0,024 0,014
Test 2 0,36 1,26 1,08 0,010 0,059 0,20 0,14 0,03 0,12 0,014 0,016 0,011
Test 3 0,35 1,46 1,39 0,020 0,059 0,26 0,13 0,06 0,13 0,004 0,007 0,014
Test 4 0,36 1,43 1,33 0,017 0,056 0,27 0,11 0,06 0,16 0,010 0,009 0,021
Test 5 0,36 1,47 1,34 0,017 0,055 0,27 0,11 0,06 0,22 0,010 0,010 0,028
Table 2. Mechanical properties and microstructure in test steels and reference steels. Bar diameter 20 mm. Heat treatment 1200 C air cooling. Legends: Re = yield strength [MPa]; AS = elongation [%]; Z = reduction of area [%]; KCU2 = notch impact strength with 2 mm U-notch bar [J/cm2]; X = sum value representing bainite formation [%], microstructures: F = ferrite, P = pearlite, B = bainite
Steel Re A5 Z KCU2 X Microstructure Austenite grain size
Ref. 1 580 16 50 72 2,94 F + P  
Ref. 2 682 8 10 12 3,47 F + P + B  
Test 1 717 15 45 50 3,58 F + P ASTM 6 (50 µm)
Test 2 651 15 42 39 2,65 F + P ASTM 4 (100 µm)
Test 3 658 10 20 38 3,47 F+ P  
Test 4 735 14 30 40 3,34 F + P  
Test 5 820 13 27 19 3,36 F + P  
Table 3. Mechanical properties and microstructure in test steels and reference steels. Bar diameter 60 mm. Heat treatment 1200 C air cooling. Legends: Re = yield strength [MPa]; AS = elongation [%]; Z = reduction of area [%]; KCU2 = notch impact strength with 2 mm U-notch bar [J/cm2]; X = sum value representing bainite formation [%], microstructures: F = ferrite, P = pearlite, B = bainite
Steel Re A5 Z KCU2 Microstructure Austenite grain size
Ref. 1 555 18 48 46 F + P  
Ref. 2 591 14 34 12 F + P  
Test 1 647 15 42 19 F + P ASTM 4 (100 µm)
Test 2 598 15 42   F + P ASTM 4 (100 µm)
Test 3 665 16 38 27 F + P  
Test 4 695 13 34 20 F + P  
Test 5 744 13 33 15 F + P  


[0021] As indicated by the tables, there is no bainite present in test alloys regardless of high alloying rate and molybdenum concentrations. In test alloys, the sum value representing bainite formation is as high as 3,58 without the presence of bainite.

[0022] In reference alloy 2 of the prior art, as expected, bainite is present at the rate of X = 3,47 wt-%. It is further noted that, as a result of bainite, the elongation, reduction of area and impact ductility of said reference alloy are lower than those of the inventive steels. Because of the absence of bainite it is also clear that the inventive steel is better than the reference steels in terms of machinability.

[0023] Raising the carbon concentration to higher than 0,4 wt-% increases strength, but the effect on tensile strength is lesser than on yield strength. On the other hand, at a lower carbon concentration, e.g. 0,15...0,25 wt-%, it is possible to establish a higher yield ratio, which is beneficial in some cases.

[0024] By virtue of silicon alloying, the inventive steel has a fatigue strength which is better than that of standard quenched and tempered and micro-alloy steels, as disclosed in the publication EP 0572246B1.

[0025] In a steel of this invention, the silicon alloying particularly reduces the tendency to bainite formation as evident by comparing a prior known reference alloy (Ref. 2) with test alloys 2...5 of the invention (Tables 1...3), the sum expression thereof giving the value X of higher than 3,3 wt-%. Table 2 also shows how the yield strength, elongation, reduction of area and impact strength of a bainite containing reference alloy (Ref. 2) are distinctly weaker than those of test alloys containing more silicon.

[0026] Manganese and chromium increase strength, but add to the risk of bainite formation at high concentrations.

[0027] An alloying element with a particularly powerful strengthening effect and at the same time promoting bainite formation is molybdenum. In a steel of the invention, molybdenum alloying, together with silicon alloying, has been utilized for increasing strength without drawbacks resulting from bainite. At small dimensions (20 mm), the inventive steel tolerates 0,06 wt-% of molybdenum with no problems, but at large dimensions the cooling rate is slower and higher molybdenum concentrations (e.g. 0,1...0,2 wt-%) are possible without a risk of bainite.

[0028] Vanadium is an effective precipitation hardener. Provided that hot working temperatures are not overly high, vanadium is also functional as a grain-size growth inhibitor. At rather high concentrations, higher than 0,3 wt-%, the use of vanadium is uneconomical and, in addition, toughness is reduced by vanadium. For these reasons it is in some cases advisable to omit vanadium completely.

[0029] Nitrogen is an effective hardener, either as such or together with vanadium. On the other hand, high concentrations, those higher than 0,03...0,04 wt-%, may nevertheless degrade the surface quality of a hot-rolled bar.

[0030] Niobium functions as a precipitation hardener the same way as vanadium.

[0031] Titanium nitrides are capable of withstanding, without dissolving, extremely high temperatures, even higher than 1200 C, which is why a minor addition of titanium is preferred especially in hot forging to inhibit an excessive growth of grain size and to improve toughness. Oversized additions of titanium, however, result in a structure developing large primary TiN particles, which precipitate as early as during solidification and which are ineffective in terms of grain growth and which, by functioning as a crack initiator, undermine toughness and fatigue strength. Moreover, they deteriorate machinability especially at higher cutting speeds. For the maximum machinability Ti should be kept lower than 0,008 wt-%.

[0032] Strength can be enhanced in hot forging by accelerating the cooling rate of the forged product in flowing air, in water-air mist or in some other flowing gas. The inventive steel is highly suitable for such a process by virtue of its minor tendency to bainite formation.

[0033] The range of application for steels of the invention covers hot-forged products, for example parts of automotive engines, such as crankshafts, connecting rods and pistons.

[0034] In addition, such steels are especially applicable for parts of a vehicular chassis, such as suspension arms, steering arms, front axle beams, etc.

[0035] Chromium-alloyed steel, in particular, is highly applicable for nitrided components, such as crankshafts, gear wheels and pinions.

[0036] In addition, steels of the invention can be used directly in hot rolled condition without forging or heat treatment. Thus, such steels can replace steel bars heat-treated by hardening and tempering. Intended applications include vehicular parts and machine components, for example drive shafts, steering components, fasteners, etc.


Claims

1. An air cooled steel alloy characterized in that, in hot-worked condition, it has a ferritic-pearlitic microstructure, austenite grain size coarser than ASTM 10 (coarser than 10 µm), having the following alloying element contents:
C 0,15...0,6 percent by weight
Si 1,25...2,0 percent by weight
Mn 0,5...1,6 percent by weight
S 0...0,2 percent by weight
Cr 0...1,5 percent by weight
Mo 0,04...0,10 percent by weight
Al 0...0,1 percent by weight
V 0,04...0,2 percent by weight
N 0,12...0,04 percent by weight
Nb 0...0,1 percent by weight
Ti 0...0,05 percent by weight.
with the balance being Fe and that the sum 2Mn + 5Mo + Cr + Ni is more than 3.3 percent by weight.
 
2. A forged product made of an air cooled steel alloy characterized in that, in hot-worked condition, it has a ferritic-pearlitic microstructure as well as a high yield and fatigue strength, and that it has austenite grain size coarser than ASTM 10 (coarser than 10 µm) and the steel alloy having the following alloying element contents:
C 0,15...0,6 percent by weight
Si 1,25...2,0 percent by weight
Mn 0,5...1,6 percent by weight
S 0...0,2 percent by weight
Cr 0...1,5 percent by weight
Mo 0,04...0,10 percent by weight
Al 0...0,1 percent by weight
V 0,04...0,2 percent by weight
N 0,012...0,04 percent by weight
Nb 0...0,1 percent by weight
Ti 0...0,05 percent by weight
the balance being Fe, the sum 2Mn + 5Mo + Cr + Ni being more than 3,3 percent by weight.
 
3. A hot-rolled steel bar made of an air cooled steel alloy characterized in that it has a ferritic-pearlitic microstructure, austenite grain size coarser than ASTM 10 (coarser than 10 µm) as well as a high yield and fatigue strength, that the alloy has the following alloying element contents:
C 0,15...0,6 percent by weight
Si 1,25...2,0 percent by weight
Mn 0,5...1,6 percent by weight
S 0 ...0,2 percent by weight
Cr 0 ...1,5 percent by weight
Mo 0,04...0,10 percent by weight
Al 0...0,1 percent by weight
V 0,04...0,2 percent by weight
N 0,012...0,04 percent by weight
Nb 0...0,1 percent by weight
Ti 0...0,05 percent by weight,
with the balance being Fe and that the sum 2Mn + 5Mo + Cr + Ni is more than 3,3 percent by weight.
 


Ansprüche

1. Luftgekühlte Stahllegierung, dadurch gekennzeichnet, dass sie im warmverformten Zustand eine ferritisch-perlitische Mikrostruktur und eine Austenit-Korngröße, die gröber als ASTM 10 (gröber als 10 µm) ist, aufweist, mit den folgenden Legierungselementgehalten:
C 0,15 - 0,6 Gewichtsprozent
Si 1,25 - 2,0 Gewichtsprozent
Mn 0,5 - 1,6 Gewichtsprozent
S 0 - 0,2 Gewichtsprozent
Cr 0 - 1,5 Gewichtsprozent
Mo 0,04 - 0,10 Gewichtsprozent
Al 0 - 0,1 Gewichtsprozent
V 0,04 - 0,2 Gewichtsprozent
N 0,012 - 0,04 Gewichtsprozent
Nb 0 - 0,1 Gewichtsprozent
Ti 0 - 0,5 Gewichtsprozent
wobei der Rest Fe ist, und dass die Summe 2 Mn + 5 Mo + Cr + Ni mehr als 3,3 Gewichtsprozent beträgt.
 
2. Geschmiedetes Produkt, hergestellt aus einer luftgekühlten Stahllegierung, dadurch gekennzeichnet, dass sie im warmverformten Zustand eine ferritisch-perlitische Mirkostruktur sowie eine hohe Formänderungs- und Ermüdungsfestigkeit aufweist, und dass sie eine Austenit-Korngröße, die gröber als ASTM 10 (gröber als 10 µm) ist, aufweist und die Stahllegierung die folgenden Legierungselementgehalte aufweist:
C 0,15 - 0,6 Gewichtsprozent
Si 1,25 - 2,0 Gewichtsprozent
Mn 0,5 - 1,6 Gewichtsprozent
S 0 - 0,2 Gewichtsprozent
Cr 0 - 1,5 Gewichtsprozent
Mo 0,04 - 0,10 Gewichtsprozent
Al 0 - 0,1 Gewichtsprozent
V 0,04 - 0,2 Gewichtsprozent
N 0,012 - 0,04 Gewichtsprozent
Nb 0 - 0,1 Gewichtsprozent
Ti 0 - 0,5 Gewichtsprozent
wobei der Rest Fe ist, und dass die Summe 2 Mn + 5 Mo + Cr + Ni mehr als 3,3 Gewichtsprozent beträgt.
 
3. Warmgewalzter Stahlstab, hergestellt aus einer luftgekühlten Stahllegierung, dadurch gekennzeichnet, dass sie eine ferritisch-perlitische Mikrostruktur, eine Austenit-Korngröße, die gröber als ASTM 10 (gröber als 10 µm) ist, sowie eine hohe Formänderungs- und Ermüdungsfestigkeit aufweist, dass die Legierung die folgenden Legierungselementgehalte aufweist:
C 0,15 - 0,6 Gewichtsprozent
Si 1,25 - 2,0 Gewichtsprozent
Mn 0,5 - 1,6 Gewichtsprozent
S 0 - 0,2 Gewichtsprozent
Cr 0 - 1,5 Gewichtsprozent
Mo 0,04 - 0,10 Gewichtsprozent
Al 0 - 0,1 Gewichtsprozent
V 0,04 - 0,2 Gewichtsprozent
N 0,012 - 0,04 Gewichtsprozent
Nb 0 - 0,1 Gewichtsprozent
Ti 0 - 0,5 Gewichtsprozent
wobei der Rest Fe ist, und dass die Summe 2 Mn + 5 Mo + Cr + Ni mehr als 3,3 Gewichtsprozent beträgt.
 


Revendications

1. Alliage d'acier refroidi à l'air, caractérisé en ce que, dans des conditions de traitement à chaud, il possède une microstructure perlitique-ferritique, avec une taille de grain austénite supérieure à ASTM 10 (supérieure à 10 µm), contenant les éléments d'alliage suivants :
C 0,15...0,6 pourcent en poids
Si 1,25...2,0 pourcent en poids
Mn 0,5...1,6 pourcent en poids
S 0...0,2 pourcent en poids
Cr 0...1,5 pourcent en poids
Mo 0,04...0,10 pourcent en poids
Al 0...0,1 pourcent en poids
V 0,04...0,2 pourcent en poids
N 0,012...0,04 pourcent en poids
Nb 0...0,1 pourcent en poids
Tl 0...0,05 pourcent en poids
le reste étant du Fe, et caractérisé en ce que la somme 2Mn + 5Mo + Cr + Ni représentant plus de 3,3 pourcent en poids.
 
2. Produit forgé réalisé à partir d'un alliage d'acier refroidi à l'air, caractérisé en ce que, dans des conditions de traitement à chaud, il possède une structure ferritique-perlitique, ainsi qu'un rendement élevé et une résistance à l'usure, et en ce que la taille de grain austénite est supérieure à ASTM 10 (supérieure à 10 µm), et l'alliage d'acier contenant les éléments d'alliage suivants :
C 0,15...0,6 pourcent en poids
Si 1,25...2,0 pourcent en poids
Mn 0,5...1,6 pourcent en poids
S 0...0,2 pourcent en poids
Cr 0...1,5 pourcent en poids
Mo 0,04...0,10 pourcent en poids
Al 0...0,1 pourcent en poids
V 0,04...0,2 pourcent en poids
N 0,012...0,04 pourcent en poids
Nb 0...0,1 pourcent en poids
Tl 0...0,05 pourcent en poids
le reste étant du Fe, et caractérisé en ce que la somme 2Mn + 5Mo + Cr + Ni représentant plus de 3,3 pourcent en poids.
 
3. Barre d'acier laminée à chaud, réalisée à partir d'un alliage d'acier refroidi à l'air, caractérisée en ce qu'il possède une structure ferritique-perlitique, avec une taille de grain austénite supérieure à ASTM 10 (supérieure à 10 µm), ainsi qu'un rendement élevé et une résistance à l'usure, et l'alliage d'acier contenant les éléments d'alliage suivants :
C 0,15...0,6 pourcent en poids
Si 1,25...2,0 pourcent en poids
Mn 0,5...1,6 pourcent en poids
S 0...0,2 pourcent en poids
Cr 0...1,5 pourcent en poids
Mo 0,04...0,10 pourcent en poids
Al 0...0,1 pourcent en poids
V 0,04...0,2 pourcent en poids
N 0,012...0,04 pourcent en poids
Nb 0...0,1 pourcent en poids
Tl 0...0,05 pourcent en poids
le reste étant du Fe, et caractérisé en ce que la somme 2Mn + 5Mo + Cr + Ni représentant plus de 3,3 pourcent en poids.
 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description