FIELD OF THE INVENTION
[0001] The present invention relates to the electric supply of light-emitting loads, in
particular light-emitting diode (LED) lamps. More specifically, the present invention
is concerned with electric circuits and methods required for remote monitoring of
LED lamps.
BACKGROUND OF THE INVENTION
[0002] Light-emitting diode (LED) lamps are becoming more and more popular in automotive
traffic lights, railway signal lights and other applications. Their lower power consumption
is an attractive feature, but the main reason for their popularity is their long life
(100 000 hours) compared to standard incandescent lamps (5 000 hours). Manifestly,
these features allow important reduction in maintenance costs.
[0003] In certain applications, such as railway signal lights, these lamps may be used,
as those skilled in the art would know, for main line signalling and/or grade crossing
signalling. Grade crossing signals are usually situated in populated areas such as
road intersections. Remote monitoring of the LED lamps in grade crossing signals is
therefore not necessary. Main line signals, on the other hand, can be installed in
remote areas, which are not easily accessible. Remote monitoring for checking the
integrity of the lamps signals is therefore common practice.
[0004] For lamps equipped with standard incandescent bulb, electrical integrity can be easily
verified. If the filament of the incandescent bulb is in normal condition, current
flows through the bulb according to Ohm's law (I = V/R). Otherwise, if the filament
is open, no current flows through the bulb and it should be replaced.
[0005] For LED lamps, however, LED current is controlled by a power supply. Current characteristics
are therefore not identical in a LED lamp and in an incandescent lamp. In a LED lamp,
alternative current (ac) line voltage is rectified and then converted to a suitable
level by a dc-dc (direct current) converter, which also regulates LED current. In
case of LED failure, or failure of any other electrical component in the LED lamp,
it is possible for the power supply to continue drawing current at or near the nominal
current value, even if the LED's are not emitting any light. Remote monitoring systems
could therefore see the LED lamp as functioning correctly when in reality it is not.
This situation is not acceptable since it can lead to very hazardous train operations
and cause major accidents.
[0006] Another problem, related to LED lamps and their power supplies and controllers, is
caused by electric components which retain residual voltage differentials after power
is removed from the LED lamp. The resulting characteristic is that a LED lamp will
effectively light up when the power applied to it reaches a first high level while
it will be fumed off only when the power reaches a second lower level. The resulting
problem is that if a certain power is induced by, for example, other nearby cables,
the LED lamp could remain on while in fact it should be off. This could also lead
to dangerous situations.
[0007] These particularities of LED lamps limit their widespread use in situations where
they need to be remotely monitored such as in railway main line signalling applications.
[0008] CA-A-2,225,005 discloses a LED lamp with a fault-indicating impedance changing circuit.
OBJECTS OF THE INVENTION
[0009] An object of the present invention is therefore to allow LED lamps to become compatible
with remote detection systems designed for monitoring of incandescent lamps.
[0010] Another object of the invention is to provide LED lamp circuitry which will emulate
an incandescent lamp's behaviour upon remote monitoring of the LED lamp.
[0011] Yet another object of the invention is to provide a control circuit for enabling/disabling
the power supply to LED lamps in relation to the level of the line voltage.
SUMMARY OF THE INVENTION
[0012] The present invention relates to a system as defined in enclosed claim 1.
[0013] Other objects, advantages and features of the present invention will become more
apparent upon reading of the following non-restrictive description of preferred embodiments
thereof, given by way of example only with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] In the appended drawings:
Figure 1 is a schematic block diagram showing a LED lamp assembly including a fuse
blow-out circuit, a cold filament detection circuit, and a turn-off voltage circuit;
Figure 2A is a schematic electrical circuit diagram of afuse blow-out circuit to be
combined with a system according to the invention;
Figure 2B is a schematic electrical circuit diagram of another fuse blow-out circuit;
Figure 3 is a schematic electrical circuit diagram of a cold filament detection circuit
in accordance with the present invention; and
Figure 4 is a schematic electrical circuit diagram of a turn-off voltage circuit to
be combined with a system according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0015] Referring to Figure 1, an ac (alternating current) line voltage is supplied to a
LED lamp 8 by a voltage and current supply source 10 through a line 11. The AC line
voltage is EMI (Electromagnetic Interference) filtered and surge suppressed by means
of functional block 12 including an EMI filter, a surge suppressor and an input fuse.
Then, the line voltage is rectified through a rectifier 14 and subsequently converted
to a DC voltage through a DC-DC converter 20. The DC voltage from the converter 20
is supplied on line 21 to light up a series/parallel LED (light-emitting diodes) array
22. LEDs are also more generally referred to in the present specification as light-emitting
loads.
[0016] The current flowing through the series/parallel LED array 22 is sensed by a current
sensor 100. This current sensor 100 produces a LED current sense signal 23 supplied
to a power factor controller 28. The function of the power factor controller 28 is
to control the DC-DC converter 20 through a line 27, which in turn controls the DC
current and voltage on line 21.
[0017] In the illustrated example, the series/parallel LED array 22 is formed of a plurality
of subsets 26 of five (5) serially interconnected light-emitting diodes 24. Each subset
26 of serially interconnected light-emitting diodes 24 are connected in parallel to
form the series/paratlel LED array 22. A particularity is that the anodes of the first
light-emitting diodes of the subsets 26 are interconnected, the cathodes the first
light-emitting diodes of the subsets 26 and the anodes of the second light-emitting
diodes of the subsets 26 are interconnected, the cathodes of the second light-emitting
diodes of the subsets 26 and the anodes of the third light-emitting diodes of the
subsets 26 are interconnected, the cathodes of the third light-emitting diodes of
the subsets 26 and the anodes of fourth light-emitting diodes of the subsets 26 are
interconnected, the cathodes of the fourth light-emitting diodes of the subsets 26
and the anodes of the fifth light-emitting diodes of the subsets 26 are interconnected,
and the cathodes of the fifth light-emitting diodes of the subsets 26 are interconnected.
Of course, other types of arrangements comprising various numbers of LEDs are possible
within the scope of the present invention.
[0018] Various embodiments of EMI filter (block 12), surge suppressor (block 12), input
fuse (block 12), rectifier 14 and DC-DC converter 20 can be used. These embodiments
are well known to those of ordinary skill in the art and, accordingly, will not be
further described in the present specification. Also, in a preferred embodiment of
the invention, a Motorola® MC33262P integrated circuit (IC) chip is used as power
factor controller 28. However, it is within the scope of the present invention to
use other IC chips commercially available on the market, or that will become available
on the market in the future.
[0019] Figure 1 shows a fuse blow-out circuit 16, a cold filament detection circuit 18 and
a turn-off voltage circuit 30. These circuits will be described in greater detail
hereinafter.
FUSE BLOW-OUT CIRCUIT
[0020] Referring to Figure 2A, a fuse blow-out circuit is shown and generally designated
by the reference 16. The fuse blow-out circuit 16 receives the rectified voltage from
output terminal 15 of the rectifier 14 on an input 48. The fuse blow-out circuit 16
also comprises a second input 49 to receive the LED current sense signal 23 from the
current sensor 100. As long as no LED current sense signal 23 appears on the input
49, a FET (Field-Effect Transistor) transistor 42 is turned off. While transistor
42 is fumed off, capacitor 34 is being charged through resistor 31 and diode 32 from
the voltage supplied on the input 48. Concurrently, capacitor 41 is being charged
through resistor 31, diode 32 and resistor 37. When the voltage across capacitor 41
reaches the breakdown voltage of Zener diode 40 having its anode grounded through
resistor 47 (while transistor 42 is still turned off), silicon bilateral switch (or
triac) 38 turns on to supply a current to a trigger electrode 103 of a thyristor 39
to thereby trigger this thyristor 39. Triggering of the thyristor 39 into conduction
creates a short-circuit between output terminal 15 of rectifier 14 (see Figures 1
and 2A) and a ground output terminal 101 of the same rectifier 14.
[0021] This short-circuit will effectively blow out the input fuse of functional block 12,
thereby opening the circuit. Detection of that open circuit will indicate that the
lamp is defective thereby emulating the open circuit of a defective incandescent lamp.
[0022] It is to be noted that the sequence of events described above will only take place
after a given period of time (fuse blow-out time) has lapsed during which no current
is sensed by current sensor 100. This given period of time is constant and is dependent
on the values of resistor 31, resistor 33, resistor 35 and capacitor 34.
[0023] If, on the other hand, a LED current sense signal 23 is supplied to the input 49
prior to the end of the above mentioned given period of time, this LED current sense
signal 23 is applied to the gate electrode 102 of FET transistor 42 through resistor
43 to turn this transistor 42 on. Capacitor 41 then discharges to the ground 101 through
resistor 36 and the source/drain junction of transistor 42. Accordingly, capacitor
41 will never become fully charged, the breakdown voltage of Zener diode 40 will never
be reached, and no short circuit will be created between the terminals 15 and 101
of rectifier 14. Then, the input fuse of functional block 12 will remain intact.
[0024] Referring to Figure 2B, a second fuse blow-out circuit is shown and still designated
by the reference 16. Again, the fuse blow-out circuit 16 comprises the input 48 to
receive the rectified voltage from terminal 15 of the rectifier 14. The fuse blow-out
circuit 16 also comprises the second input 49 receiving the LED current sense signal
23 from the current sensor 100 (Figure 1). As long as no LED current sense signal
23 appears on the input 49, FET transistor 42 is turned off. When transistor 42 is
fumed off, capacitor 34 is being charged through resistor 31 and diode 32 from the
voltage supplied on the input 48. When the voltage across the capacitor 34 reaches
the breakdown voltage of the Zener diode 44, (while transistor 42 is still fumed off)
Zener diode 44 starts conducting current A current is then supplied to the base of
a PNP transistor 45 through resistor 31, diode 32 and Zener diode 44 to turn this
transistor 45 on. When fumed on, the collector/emitter junction of the transistor
45 becomes conductive to supply a current to the gate electrode of a FET transistor
46. This turns the FET transistor 46 on to establish a short circuit between output
terminals 15 and 101 of the rectifier 14 through the source/drain junction of the
FET transistor 46. As illustrated, the emitter of the transistor 45 and the gate electrode
of the transistor 46 are both connected to the ground through a resistor 47.
[0025] This short circuit will effectively blow out the input fuse of block 12, thereby
opening the circuit. Detection of that open circuit will indicate that the LED lamp
8 is defective thereby emulating the open circuit of a defective incandescent lamp.
[0026] It should be noted that the sequence of events described above will only take place
after a given period of time (fuse blow-out time) has lapsed during which no LED current
sense signal 23 appears on the input 49. This given period of time is constant and
depends on the values of resistor 31, resistor 33, resistor 35 and capacitor 34.
[0027] If, on the other hand, the LED current sense signal 23 appears on the input 49 prior
to lapsing of the above mentioned given period of time, this signal 23 is supplied
to the gate electrode 102 of FET transistor 42 to thereby turn transistor 42 on. This
connects the positive terminal of capacitor 34 to ground 101 through resistor 36 to
thereby discharge capacitor 34. In this case, the breakdown voltage of Zener diode
44 will never be reached, transistor 45 will remain turned off, and no short circuit
will be created between output terminals 15 and 101 of rectifier 14. The input fuse
of block 12 will, in this case, remain intact.
[0028] It should be noted that the "fuse blow-out time" must be longer than the "LED current
set up time". For example, in an embodiment, the LED current set up time is approximately
100 msec. Just a word to specify that the "LED current set up time" is the period
of time between switching the LED lamp on and appearance of the LED current sense
signal 23 at input 49.
COLD FILAMENT DETECTION CIRCUIT
[0029] The cold filament detection circuit 18 of Figure 3 is used to simulate an incandescent
lamp as seen by a lamp proving system. Lamp proving is usually performed by sending
a voltage pulse on the voltage supply line 11, and verifying that current rises to
a certain level, within a certain period of time. This represents the behaviour of
an incandescent lamp, which is equivalent to a simple resistor.
[0030] A LED lamp uses a power supply which has a current set up time. Therefore, when sending
a pulse on line 11, the current will not rise immediately, but only after the power
factor controller 28 is fumed on (for example after about 100 msec in an embodiment).
The cold filament detection circuit 18 of Figure 3 solves this problem.
[0031] As soon as power is supplied on line 11, the voltage drop across resistor 51, connected
between the output terminal 15 (input 56 of the cold filament detection circuit 18)
and a gate electrode 104 of a FET transistor, will turn on this transistor 53. This
will connect resistor 52 between the output terminals 15 and 101 of the rectifier
14.
[0032] When power is applied on line 11 for a period of time which is longer than the LED
current set up time, the LED current sense signal 23 will be supplied on an input
57 of the cold filament detection circuit 18. This signal 23 is applied to the base
105 of a PNP transistor 54 to turn on this transistor 54 thereby turning transistor
53 off by forcing its gate electrode 104 to the ground 101. The cold filament detection
circuit 18 is thereby disabled to enable the LED lamp 8 to operate normally. Biasing
resistor 50 and Zener diode 55 are connected in series between the input 56 and the
base electrode 105. Biasing resistor 50 is also used for overvoltage protection.
[0033] The cold filament detection circuit 18 also serves as a back up for the fuse blow-out
circuit 16. If fuse blow-out circuit 16 was to fail (that is, it does not cause a
short circuit to blow out the input fuse of block 12 when in fact it should), transistor
53 would remain turned on since no LED current sense signal 23 would appear on input
57. The current draw through resistor 52 is sufficiently high to blow out the input
fuse of block 12 after a certain period of time. For example, in an embodiment of
the invention, this time period is of a few minutes.
TURN-OFF VOLTAGE CIRCUIT
[0034] The turn-off voltage circuit 30 of Figure 4 simply inhibits the power factor controller
28 (see Figure 1) when the input voltage on fine 11 of the circuit 30 is below a first
predetermined trigger voltage.
[0035] The turn-off voltage circuit 30 comprises an input 70 supplied with the voltage on
the output terminal 15 of the rectifier 14. The first predetermined trigger voltage
72 is determined by a voltage divider comprising resistors 60 and 69 serially connected
between the input 70 of the turn-off voltage circuit 30 and the ground 101. The first
predetermined trigger voltage is established after a capacitor 68 has been charged
through the resistor 60 and the diode 61, i.e. after a given period of time following
application of the voltage on the input 70. This period of time is determined by the
values of the resistors 60, 69 and 107 and of the capacitor 68.
[0036] The first predetermined trigger voltage 72 is applied to a gate electrode 106 of
a FET transistor 65 through the diode 61. When the first trigger voltage 72 reaches
the breakdown voltage of the gate electrode 106 of the FET transistor 65, transistor
65 is turned on.
[0037] The turn-off voltage circuit 30 comprises a terminal 71 connected to a control terminal
29 of the power factor controller 28. Before the transistor 65 is fumed on, the power
factor controller 28 produces a voltage drop across high impedance resistor 62, to
thereby produce a second trigger voltage 73, which in turn turns on a FET transistor
63. This in turn creates a low impedance path comprising resistor 67 between terminal
29 of the power factor controller 2 and the ground 101. As long as transistor 63 is
fumed on, the voltage on terminal 29 of power factor controller 28 will be lower than
the voltage level required to turn on the power factor controller 28.
[0038] When transistor 65 is turned on, this will modify the second trigger voltage 73 thereby
fuming off transistor 63. The voltage on terminal 29 will then reach the level required
to turn on the power factor controller 28, due to the high impedance value of the
resistor 62.
[0039] Note that the LED lamp 8 will not be turned on until the first trigger voltage 72
is reached and once the lamp 8 is lit, it will stay on until the voltage on input
70 produces a first trigger voltage 72 which is below the transistor 65 trigger voltage
(breakdown voltage of the gate electrode 106).
[0040] Although the present disclosure describes particular types of transistors in the
different circuits of Figures 2A, 2B, 3 and 3, it should be kept in mind that these
different types of transistors can be substituted or replaced by other available types
of transistors.
1. A system comprising a voltage and current supply source (10) which supplies voltage
and current through first and second lines to a light-emitting load (22) to which
current is only supplied after a set-up time following application of power ; and
a cold filament detection circuit (18) connected between the first and second lines,
said cold detection circuit (18) comprising :
a) a first resistor (51);
b) a second resistor (52);
c) a switching element (53) connected in series to the second resistor (52);
d) a switching control element (54) that controls the state on or off of the switching
element (53);
e) means (18, 23) which connects said second resistor (52) between the first and second
lines (15, 101) by turning on the switching element (53) as soon as the voltage and
current are supplied through the first resistor (51) to thereby establish through
said second resistor (52) a current path between said first and second lines; and
f) means (18, 23) which disconnects said second resistor (52) from between the first
and second lines (15, 21) when power is applied for longer than the set-up time, by
turning on the switching element (54) which thereby turns off the switching element
(53),
whereby, during the set up time no current is supplied to the light-emitting load
(22) and the current path is established through said second resistor (52) to emulate
the impedance of an incandescent lamp, and when current is supplied to the light-emitting
load (22), the second resistor (52) is disconnected from between said first and second
lines (15,101).
2. A system according to claim 1, wherein the switching element (53) includes a current-conductive
junction established in response to the voltage on the first and second lines to thereby
establish through said second resistor (52) a current path between said first and
second lines ; and
wherein the switching control element (54) prevents said current-conductive junction
to establish a connection, when current is supplied to the light-emitting load (22).
3. A system as in claim 1 or 2, wherein said light-emitting load (22) comprises a light-emitting
diode.
4. A system as in one of claims 1 to 3, wherein said switching element (53) includes
a controllable switch member which comprises a first transistor (53) having a control
electrode (104) responsive to the voltage on said first and second lines.
5. A system as in claim 4, wherein said switching control element (54) comprises a switch-disabling
circuit which comprises a second transistor (54) interposed between the control electrode
(104) of the first transistor (53) and one of said first and second lines, said second
transistor having a control electrode responsive to the current supplied to the light-emitting
load.
6. System according to any of the preceding claims, further comprising:
a) a rectifier unit (14) rectifying an alternating voltage and current from an ac
source and supplying the rectified voltage and current to first and second voltage
and current supply lines;
b) a converter (20) of the rectified voltage and current .into the dc voltage and
current supplied to the light-emitting load;
c) a controller (28) of the ,converter (20) in response to the rectified voltage on
the first and second lines.
1. System, bestehend aus einer Spannungs- und Stromquelle (10), die Spannung und Strom
über eine erste und zweite Leitung an eine Lichtlast (22) liefert, die erst nach einer
auf die Stromanlegung folgende Abstimmungszeit mit Strom versorgt wird, und aus einer
Schaltung zur Kaltfadenüberwachung (18), die zwischen der ersten und der zweiten Leitung
geschaltet ist, wobei die Schaltung zur Kaltfadenüberwachung (18) folgendes umfasst:
a) einen ersten Widerstand (51),
b) einen zweiten Widerstand (52),
c) ein Schaltelement (53), das serienmässig mit dem zweiten Widerstand (52) geschaltet
ist,
d) eine Schaltkontrolleinrichtung (54), die den On/Off-Zustand des Schaltelements
(53) überwacht,
e) Mittel (18, 23), die den zweiten Widerstand (52) zwischen der ersten und der zweiten
Leitung (15, 101) durch Einschalten des Schaltelements (53) schalten, sobald Spannung
und Strom durch den ersten Widerstand (51) fließen, um dadurch zwischen der ersten
und der zweiten Leitung durch den zweiten Widerstand (52) einen Strompfad zu erstellen
und
f) Mittel (18, 23) zum Abschalten des zweiten Widerstands (52) zwischen der ersten
und der zweiten Leitung (15, 21) wenn Strom länger als die Abstimmungszeit fließt,
durch Einschalten der Schaltkontrolleinrichtung (54), wodurch das Schaltelement (53)
ausgeschaltet wird, wobei die Lichtlast (22) während der Abstimmungszeit nicht mit
Strom versorgt wird und der Strompfad durch den zweiten Widerstand (52) fließt, um
den Scheinwiderstand einer Glühlampe nachzubilden, und wenn die Lichtlast (22) mit
Strom versorgt wird, der zweite Widerstand (52) von der ersten und zweiten Leitung
(15, 101) getrennt ist.
2. System nach Anspruch 1, dadurch gekennzeichnet, dass das Schaltelement (53) einen stromleitenden Übergang umfasst, der auf die Spannung
der ersten und der zweiten Leitung anspricht, um dadurch durch den zweiten Widerstand
(52) einen Strompfad zwischen der ersten und der zweiten Leitung zu erstellen und
dass die Schaltskontrolleinrichtung (54) den stromleitenden Übergang daran verhindert,
eine Verbindung zu erstellen, wenn die Lichtlast (22) mit Strom versorgt wird.
3. System nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Lichtlast (22) eine Leuchtdiode umfasst.
4. System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Schaltelement (53) ein steuerbares Schaltorgan beinhaltet, das einen ersten Transistor
(53) mit einer Steuerelektrode (104) umschließt, die auf die Spannung der ersten und
der zweiten Leitung anspricht.
5. System nach Anspruch 4, dadurch gekennzeichnet, dass die Schaltkontrolleinrichtung (54) eine Sperrschaltung umfasst, die einen zweiten
Transistor (54) beinhaltet, der zwischen der Steuerelektrode (104) des ersten Transistors
(53) und einer der ersten oder zweiten Leitung zwischengeschaltet ist, wobei der zweite
Transistor mit einer Steuerelektrode versehen ist, die auf den der Lichtlast zugeführten
Strom anspricht.
6. System nach einem der vorangehenden Ansprüche, das außerdem folgendes beinhaltet:
a) eine Gleichrichterstation (14), die Wechselspannung aus einer Wechselspannungsquelle
korrigiert und die korrigierte Wechselspannung der ersten und der zweiten Spannungsleitung
sowie der Stromleitung zuführt,
b) einen Wandler (20), der die korrigierte Wechselspannung in die der Lichtlast gelieferte
Gleichspannung umwandelt,
c) einen Regler (28) des Wandlers (20), der auf die korrigierte Spannung auf der ersten
und zweiten Leitung anspricht.
1. Système comprenant une source d'alimentation en tension et en courant (10) qui délivre
une tension et un courant, par l'intermédiaire de première et deuxième lignes, à une
charge électroluminescente (22) à laquelle un courant n'est délivré qu'après un temps
d'établissement à la suite de l'application de puissance ; et un circuit de détection
de filament froid (18) connecté entre les première et deuxième lignes, ledit circuit
de détection de filament froid (18) comprenant :
a) une première résistance (51) ;
b) une deuxième résistance (52) ;
c) un élément de commutation (53) connecté en série à la deuxième résistance (52)
;
d) un élément de commande de commutation (54) qui commande l'état fermé ou ouvert
de l'élément de commutation (53) ;
e) des moyens (18, 23) qui connecte ladite deuxième résistance (52) entre les première
et deuxième lignes (15, 101) en fermant l'élément de commutation (53) dès que la tension
et le courant sont délivrés par l'intermédiaire de la première résistance (51) pour
établir de ce fait, par l'intermédiaire de ladite deuxième résistance (52), un trajet
de courant entre lesdites première et deuxième lignes ; et
f) des moyens (18, 23) qui déconnectent ladite deuxième résistance (52) d'entre les
première et deuxième lignes (15, 21) lorsqu'une puissance est appliquée pendant un
temps plus long que le temps d'établissement, en fermant l'élément de commutation
(54), ce qui ouvre l'élément de commutation (53),
moyennant quoi, pendant le temps d'établissement, aucun courant n'est délivré à la
charge électroluminescente (22) et le trajet de courant est établi à travers ladite
deuxième résistance (52) pour émuler l'impédance d'une lampe à incandescence, et lorsqu'un
courant est délivré à la charge électroluminescente (22), la deuxième résistance (52)
est déconnectée d'entre lesdites première et deuxième lignes (15, 101).
2. Système selon la revendication 1, dans lequel l'élément de commutation (53) comprend
une jonction conductrice de courant établie en réponse à la tension sur les première
et deuxième lignes pour, de ce fait, établir, à travers ladite deuxième résistance
(52), un trajet de courant entre lesdites première et deuxième lignes ; et
dans lequel l'élément de commande de commutation (54) empêche ladite jonction conductrice
de courant d'établir une connexion, lorsqu'un courant est délivré à la charge électroluminescente
(22).
3. Système selon la revendication 1 ou 2, dans lequel ladite charge électroluminescente
(22) comprend une diode électroluminescente.
4. Système selon l'une des revendications 1 à 3, dans lequel ledit élément de commutation
(53) comprend un élément formant commutateur pouvant être commandé qui comprend un
premier transistor (53) comportant une électrode de commande (104) sensible à la tension
sur lesdites première et deuxième lignes.
5. Système selon la revendication 4, dans lequel ledit élément de commande de commutation
(54) comprend un circuit de désactivation de commutateur qui comprend un deuxième
transistor (54) interposé entre l'électrode de commande (104) du premier transistor
(53) et l'une desdites première et deuxième lignes, ledit deuxième transistor comportant
une électrode de commande sensible au courant délivré à la charge électroluminescente.
6. Système selon l'une quelconque des revendications précédentes, comprenant en outre
:
a) une unité de redressement (14) redressant une tension et un courant alternatifs
d'une source alternative et délivrant la tension et le courant redressés à des première
et deuxième lignes d'alimentation en tension et en courant ;
b) un convertisseur (20) qui convertit la tension et le courant redressés en la tension
et le courant continus délivrés à la charge électroluminescente ;
c) un contrôleur (28) qui commande le convertisseur (20) en réponse à la tension redressée
sur les première et deuxième lignes.