TECHNICAL FIELD
[0001] The present invention relates to a hermetic compressor used for a refrigeration cycle
of a refrigerator, such as a freezer. Such hermetic compressor reflecting the preamble
of present claim 1 is disclosed by the document
EP-A-0 498 061.
BACKGROUND ART
[0002] Hermetic compressors used for refrigeration devices, such as of refrigerators, have
recently demanded to operate efficiently for low power consumption, to generate low
noise, and to have a high reliability.
[0003] Fig. 7 is a vertical sectional view of conventional hermetic compressor 5001 disclosed
in Japanese Patent Laid-Open Publication No.
2000-1456317. Fig. 8 is a sectional view of an essential part of hermetic compressor 5001. Hermetic
container 1 accommodates therein motor element 4 including stator 2 and rotor 3, and
compression element 5 driven by motor element 4. Hermetic container 1 stores lubrication
oil 6. Shaft 10 includes main shift 11 having rotor 3 fixed thereto and eccentric
shaft 12 arranged eccentrically to main shaft 11. Cylinder block 14 has compression
chamber 15 having a substantially cylindrical shape and main bearing 20. Slot 21 is
provided by cutting an upper wall of cylinder block 14. Piston 23 is inserted in compression
chamber 15 of cylinder block 14 so as to be reciprocally slidable. Piston 23 is coupled
to eccentric shaft 12 via connecting member 24 and piston pin 25.
[0004] Oil-feeding passage 30 is provided in shaft 10. Helical groove 32 is formed along
a periphery of main shaft 11. A lower end of helical groove 32 communicates with a
portion of oil-feeding passage 30 around an upper end of oil-feeding passage 30. Helical
groove 32 is formed helically along the periphery of main shaft 11 from the lower
end thereof toward an upper end thereof and inclines in a direction opposite to a
rotation direction of shaft 10. The upper end of helical groove 32 communicates with
a portion of oil-feeding passage 33 around a lower end of oil-feeding passage 33.
Oil-spattering hole 40 communicates with oil-feeding passage 33 provided in eccentric
shaft 12 and an outer surface of eccentric shaft 12. Oil-spattering hole 40 is directed
in a substantially horizontal direction at the same height as slot 21. Oil cone 41
is fixed to a lower end of main shaft 11. One end of oil cone 41 opens in lubrication
oil 6, and the other end of oil cone 41 communicates with oil-feeding passage 30.
[0005] An operation of hermetic compressor 5001 will be described below.
[0006] Rotor 3 of motor element 4 rotates shaft 10. A rotation of eccentric shaft 12 is
transmitted to piston 23 via connecting member 24. Piston 23 accordingly moves reciprocally
in compression chamber 15. As piston 23 reciprocally moves, refrigerant gas is supplied
from a refrigeration system to compression chamber 15. After being compressed in the
chamber, the refrigerant gas returns back to the refrigeration system.
[0007] The rotation of shaft 10 causes oil cone 41 to function as a pump. Lubrication oil
6 in a bottom of hermetic container 1 is pumped up through oil-feeding passage 30
by a pumping action of oil cone 41. Lubrication oil 6 is pumped up to an upper portion
of oil-feeding passage 30, and is introduced to helical groove 32. Helical groove
32 inclines in the direction opposite to the rotation direction of shaft 10, i.e.,
in a direction in which an inertial force is applied, and generates a force pushing
lubrication oil 6 upward. Lubrication oil 6 is pushed upward along helical groove
32, and is supplied to a sliding portion of shaft 10. Lubrication oil 6 reaches the
upper end of helical groove 32, and then, is introduced into oil-feeding passage 33
provided in eccentric shaft 12. A part of lubrication oil 6 introduced into passage
33 is circumferentially spattered from oil-spattering hole 40 by a centrifugal force
in a horizontal direction. The rest of the lubrication oil is spattered from an upper
end of eccentric shaft 12. Lubrication oil 6 spattered from oil-spattering hole 40
reaches slot 21 and lubricates piston 23 and piston pin 25. Thus, lubrication oil
6 is supplied sufficiently to sliding components of hermetic compressor 5001.
[0008] In conventional hermetic compressor 5001, in the case that the compressor is driven
at slow rotation or in the case that oil-spattering hole 40 has a relatively large
inner diameter, a pressure produced by the centrifugal force may be applied insufficiently
to lubrication oil 6 in oil-spattering hole 40. Lubrication oil 6 flies accordingly
downward, not horizontally, or the oil may be spattered in other directions due to
its viscosity. In this case, lubrication oil 6 does not reach slot 21 stably, thus
being supplied insufficiently to the sliding components of piston 23.
SUMMARY OF THE INVENTION
[0009] A hermetic compressor includes a hermetic container, a compression element accommodated
in the hermetic container, and a motor element driving the compression element. The
hermetic container has an inner space therein arranged to store lubrication oil. The
compression element includes a shaft unit rotating about a rotation axis. The shaft
unit has an oil-feeding passage provided therein. The oil-feeding passage extends
upward from a lower end of the shaft unit. The shaft unit has an oil-spattering hole
provided therein. The oil-spattering hole extends substantially perpendicularly to
the rotation axis. The oil-spattering hole has a first open end communicating with
the oil-feeding passage and a second open end opening in the inner space of the hermetic
container. The second open end has a cross-sectional area smaller than a cross-sectional
area of the first open end.
[0010] This hermetic compressor supplies lubrication oil to sliding component, such as a
piston, of the compression element, thus operating reliably and efficiently.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011]
Fig. 1 is a vertical sectional view of a hermetic compressor in accordance with an
exemplary embodiment of the present invention.
Fig. 2 is a sectional view of an essential part of the hermetic compressor in accordance
with the embodiment.
Fig. 3 is a sectional view of an essential part of the hermetic compressor in accordance
with the embodiment.
Fig. 4 is a sectional view of an essential part of another hermetic compressor in
accordance with the embodiment.
Fig. 5 is a sectional view of an essential part of still another hermetic compressor
in accordance with the embodiment.
Fig. 6 is a sectional view of an essential part of a further hermetic compressor in
accordance with the embodiment.
Fig. 7 is a vertical sectional view of a conventional hermetic compressor.
Fig. 8 is a sectional view of an essential part of the conventional hermetic compressor.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0012] Fig. 1 is a vertical sectional view of hermetic compressor 1001 in accordance with
an exemplary embodiment of the present invention. Figs. 2 and 3 are sectional views
of essential parts of hermetic compressor 1001.
[0013] Inner space 101A of hermetic container 101 accommodates therein motor element 104
including stator 102 and rotor 103, and compression element 105 driven by motor element
104. Inner space 101A of heretic container 101 is arranged to store lubrication oil
106 therein. Shaft 110 includes main shaft 111, eccentric shaft 112, and sub shaft
113. Rotor 103 is fixed to main shaft 111. Eccentric shaft 112 is positioned above
main shaft 111 and is arranged eccentrically to main shaft 111. Sub shaft 113 is positioned
above eccentric shaft 112 and rotates about rotation axis 201A as well as main shaft
111. Balancing weight 142 is fixed to an upper portion of sub shaft 113 of shaft 110
to avoid unbalanced rotation. Shaft unit 201 includes shaft 110, balancing weight
142 assembled to shaft 110, and oil cone 141, and rotates about rotation axis 201A.
[0014] Cylinder block 114 includes compression chamber 115 having a substantially cylindrical
shape, main bearing 120 supporting main shaft 111, and sub bearing 121 supporting
sub shaft 113. Oil fence 122 protrudes from cylinder block 114 and above compression
chamber 115. Slot 123 is formed by cutting an upper wall of compression chamber 115.
Piston 126 is inserted in compression chamber 115 of cylinder block 114, and is slidable
reciprocally. Piston 126 is coupled to eccentric shaft 112 via connecting member 127
and piston pin 128.
[0015] Oil-feeding passage 130 is provided in a lower portion of shaft 110. Helical groove
132 is formed along a periphery of main shaft 111. Lower end 132B of helical groove
132 communicates with upper end 130A of oil-feeding passage 130. Helical groove 132
helically extends upward from lower end 132B along the periphery of main shaft 111,
and inclines in a direction opposite to a rotation direction of shaft 110. Upper end
132A of helical groove 132 communicates with lower end 133B of oil-feeding passage
133. Oil-feeding passage 130 extends through eccentric shaft 112 and sub shaft 113,
and opens at opening 113C provided in upper end 113A of sub shaft 113.
[0016] Oil cone 141 is fixed to lower end 111B of main shaft 111. Lower end 141B of oil
cone 141 opens in lubrication oil 106. Upper end 141A of oil cone 141 communicates
with lower end 130B oil-feeding passage 130. The rotation of shaft 110 allows oil
cone 141 to function as a pump. Balancing weight 142 is fixed to the upper portion
of sub shaft 113 of shaft 110 to avoid unbalanced rotation. Lower end 141B of oil
cone 141 provides the lower end of shaft unit 201.
[0017] Oil-spattering hole 150 is formed in sub shaft 113 and balancing weight 142 provided
at the upper portion of shaft 110, and extends in a substantially horizontal direction
from oil-feeding passage 133. Oil-spattering hole 150 has portions 150A and 150B extending
in the substantially horizontal direction. Portion 150A is formed in sub shaft 113
of shaft 110. Portion 150B is formed in balancing weight 142. Oil-spattering hole
150 extends substantially perpendicularly to rotation axis 201A of shaft unit 201,
that is, portions 150A and 150B extend substantially perpendicularly to rotation axis
201A. Each of portions 150A and 150B has a constant inner diameter and a constant
cross-sectional area. Open end 1150A of portion 150A of oil-spattering hole 150 communicates
with oil-feeding passage 133. Open end 2150A of portion 150A communicates with open
end 1150B of portion 150B. Portion 150A of oil-spattering hole 150 is connected to
open end 1150A. Portion 150B of hole 150 is connected to open end 2150B. Open end
1I50B of portion 150B of oil-spattering hole 150 is connected to open end 2150A of
portion 150A. Open end 2150B of portion 150B of oil-spattering hole 150 extending
in balancing weight 142 opens in inner space 101A of hermetic container 101. Oil-spattering
hole 150 extends substantially perpendicularly to rotation axis 201A of main shaft
111 so that open end 2150B opens in the inner space of hermetic container 101. Open
end 2150B of oil-spattering hole 150 opens substantially at the same height as oil
fence 122. Oil-spattering hole 150 extends in the substantially horizontal direction.
[0018] Open end 2150B of oil-spattering hole 150 has a cross-sectional area smaller than
that of open end 1150A of hole 150. The cross-sectional area of oil-spattering hole
150 becomes smaller as the cross-sectional area is located away radially from rotation
axis 201A of main shaft 111. That is, oil-spattering hole 150 is tapered from open
end 1150A toward open end 2150B. Portion 150A formed in sub shaft 113 and providing
oil-spattering hole 150 has an inner diameter not smaller than 1.5 times the inner
diameter of portion 150B formed in balancing weight 142. The length of portion 150b
of oil-spattering hole 150 is more than twice the inner diameter of portion 150B.
Specifically, portion 150A of oil-spattering hole 150 in sub shaft 113 has a inner
diameter of 3mm and a length of 2mm. Portion 150B in balancing weight 142 has an inner
diameter of 1.5mm and a length of 4mm. The cross-sectional area of portion 150B is
one-fourth the cross-sectional area of portion 150A.
[0019] Refrigerant used for hermetic compressor 1001 is hydrocarbon-based refrigerant, natural
refrigerant, such as R134a or R600a, having ozone depletion potential of zero and
a small global warming potential. The above refrigerant and lubrication oil 106 are
dissolvable in each other.
[0020] An operation of hermetic compressor 1001 will be described below.
[0021] Rotor 103 of motor element 104 rotates shaft 110. The rotation of eccentric shaft
112 is transmitted to piston 126 via connecting member 127, and causes piston 126
to move reciprocally in compression chamber 115. This movement causes refrigerant
gas to be sucked from a refrigeration system into compression chamber 115. After being
compressed in the chamber, the refrigerant gas returns back to the refrigeration system.
[0022] Oil cone 141 functioning as a pump raises lubrication oil 106 in a bottom of hermetic
container 101 up through oil-feeding passage 130. Lubrication oil 106 reaching upper
end 130A of oil-feeding passage 130 is introduced to helical groove 132. Since helical
groove 132 inclines in the direction opposite to the rotation direction of shaft 110,
i.e., in a direction in which an inertial force is applied, helical groove 132 generates
a force for pushing lubrication oil 106 upward.
[0023] Lubrication oil 106 is pushed upward along helical groove 132, and is supplied to
a sliding portion of shaft 110. After reaching upper end 132A of helical groove 132,
lubrication oil 106 is introduced to oil-feeding passage 133 provided in eccentric
shaft 112 and sub shaft 113. A portion of lubrication oil 106 introduced into passage
133 is spattered circumferentially in horizontal directions from oil-spattering hole
150 by a centrifugal force. The rest of the lubrication oil is spattered from opening
133C of upper end 113A of sub shaft 113. The portion of lubrication oil 106 spattered
from oil-spattering hole 150 reaches oil fence 122 and lubricates piston 126 and piston
pin 128 via slot 123. Oil cone 141, oil-feeding passage 130, helical groove 132, and
oil-feeding passage 133 provide an oil-feeding passage formed in shaft unit 201.
[0024] Next, an action of lubrication oil 106 around oil-spattering hole 150 wil be described
below.
[0025] Lubrication oil 106 flown into portion 150A of oil-spattering hole 150 receives a
pressure outwardly produced with the centrifugal force produced by the rotation of
shaft 110, so that the oil flows in the oil-spattering hole outward away from rotation
axis 201A. Lubrication oil 106 receiving this pressure flows from portion 150A to
portion 150B. The cross-sectional are a of portion 150B is one-fourth that of portion
160A. An energy of the pressure applied to the lubrication oil is converted into an
energy of speed which increases the flow speed of lubrication oil 106.
[0026] Then, lubrication oil 106 is spattered hard in horizontal directions from open end
2150B of oil-spattering hole 150 (portion 150B) provided in balancing weight 142,
thus being spattered stably in a long distance. The lubrication oil is accordingly
supplied to sliding components reliably, such as piston 126, thus providing hermetic
compressor 1001 with high reliability. Further, the compressor has a large sealing
property and has a high volumetric efficiency improved. The improvement of the efficiency
appears particularly to an inverter operating in a low-speed rotation which has a
large leakage loss.
[0027] According to the embodiment, portion 150B of oil-spattering hole 150 has a length
about 2.7 times longer than the inner diameter of portion 150B. Portion 150B has the
length greater than the inner diameter of the portion, and fixes the flow of the lubrication
oil when the oil passes through portion 150B. Hence, lubrication oil 106 flies out
stably from open end 2150B of oil-spattering hole 150. Portion 150B has the smallest
inner diameter in the portions forming oil-spattering hole 150. If portion 150B has
a length less than twice the inner diameter of the portion, lubrication oil 106 flies
downward considerably in the low-speed rotation, particularly in rotation less than
30Hz, accordingly being spattered in a short distance.
[0028] Portion 150A provided in sub shaft 113 has the largest inner diameter of the portions
of oil-spattering hole 150. According to the embodiment, the inner diameter of portion
150A provided in sub shaft 113 is about twice larger than that of portion 150B provided
in balancing weight 142. Thus, the inner diameter (cross-sectional area) of oil-spattering
hole 150 changes a lot, a large amount of energy of the pressure applied to lubrication
oil 106 in oil-spattering hole 150 is converted into the energy of speed. The lubrication
oil is accordingly spattered in stable directions from oil-spattering hole 150.
[0029] If the maximum inner diameter of oil-spattering hole 150 is not greater than 1.5
times the minimum inner diameter of hole 150, that is, if the inner diameter of portion
150A of oil-spattering hole 150 is not greater than 1.5 times that of portion 150B,
lubrication oil 106 flies downwardly from open end 2150B of oil-spattering hole 150.
Respective centers of portions 150A and 160B may not be aligned to each other completely
when balancing weight 142 is prese-fitted or shrinkage-fitted to sub shaft 113. In
this case, if the maximum inner diameter of oil-spattering hole 150 being not greater
than 1.5 times the minimum inner diameter of hole 150, lubrication oil 106 flies considerably
downwardly in low-speed rotation operations, particularly in a low rotation less than
30Hz, thus flying in a short distance.
[0030] The lubrication oil may be spattered in an upward direction or a downward direction
due to a particular positional relationship between the centers of portion 150A and
portion 150B. However, as long as portion 150B provided in balancing weight 142 completely
communicates with portion 150A provided in sub shaft 113, the lubrication oil flies
horizontally stably even when the centers of portions 150A and 160B are not aligned
to each other completely.
[0031] According to the embodiment, oil-spattering hole 150 has the large maximum inner
diameter which is about 2 times larger than the minimum inner diameter of the hole.
Hence, even if balancing weight 142 is fixed with a slight deviation, portion 150B
communicates with portion 150A completely, hence allowing balancing weight 142 to
be fixed to sub shaft 113 with high productivity.
[0032] Portions 150A and 150B having the cross-sectional areas different from each other
are formed in sub shaft 113 and balancing weight 142, respectively, before balancing
weight 142 is assembled to sub shaft 113. Balancing weight 142 is assembled to sub
shaft 113 so that portion 153A completely communicates with portion 150B as to form
oil-spattering hole 150, thus forming oil-spattering hole 150 easily with high productivity.
This structure does not require an additional member for forming oil-spattering hole
150 having plural different cross-sectional areas, and does not require to make sub
shaft 113 lopg for forming oil-spattering hole 150 therein, thereby reducing the height
of hermetic compressor 1001.
[0033] In hermetic compressor 1001 of the embodiment, oil-spattering hole 160 consistently
supplies the lubrication oil to piston 126 even in low-rotating operations, such as
a rotation speed of 18 revolutions per second.
[0034] According to the embodiment, the lubrication oil spattered from oil-spattering bole
160 reaches oil fence 122. The height or direction of oil-spattering hole 150 may
be adjusted to cause the lubrication oil to reach other positions.
[0035] Oil-spattering hole 40 of hermetic compressor 5001 shown in Figs. 7 and 8 may have
the same shape as oil-spattering hole 160, thus providing the same effects. In this
case, a balancing weight may be fixed to eccentric shaft 12.
[0036] Fig. 4 is a cross-sectional view of another oil-spattering hole 250 of hermetic compressor
1001 according to the embodiment. In Fig. 4, the same components as those of hermetic
compressor 1001 shown in Figs. 1 and 2 are denoted by the same reference numerals,
and their description are omitted. Shaft unit 210 including sub shaft 113 and balancing
weight 142 has oil-spattering hole 250 formed therein, instead of oil-spattering hole
150 shown in Fig. 2. Oil-spattering hole 250 has open ends 1250 and 2250. Open end
1250 opens in oil-feeding passage 133, and open end 2250 opens in inner space 101A
of hermetic container 101. Open end 2250 has an inner diameter (a cross-sectional
area) smaller than that of open end 1250. The cross-sectional area of oil-spattering
hole 250 decreases monotonically and continuously in a direction away from rotation
axis 201A. That is, oil-spattering hole 250 is tapered continuously from open end
1250 to open end 2250, thus having a truncated cone shape. Oil-spattering hole 250
provides the same effects as those of oil-spattering hole 150 shown in Fig. 2.
[0037] Fig. 5 is a cross-sectional view of still another oil-spattering hole 350 of hermetic
compressor 1001 according to the embodiment. In Fig. 5, the same components as those
of hermetic compressor 1001 shown in Figs. 1 and 2 are denoted by the same reference
numerals, and their description are omitted. Oil-spattering hole 150 shown in Fig.
2 has two portions 150A and 150B provided in two members, sub shaft 113 and balancing
weight 142 of shaft unit 201, respectively. An oil-spattering hole according to the
embodiment may have portions which are provided in more than two members, respectively
As shown in Fig. 4, balancing weight 142 includes inner member 142A provided around
sub shaft 113, and outer member 142B provided outside of inner member 142A. Oil-spattering
hole 350 has portions 350A, 350B, and 350C which are provided in three members, i.e.,
sub shaft 113, inner member 142A, and outer member 142B, respectively. Portions 360A,
350B, and 350C have respective constant cross-sectionel areas (inner diameters). In
oil-spattering hole 350, portion 350B has the cross-sectional area (inner diameter)
smaller than that of portion 350A, and portion 350C has the cross-sectional area (inner
diameter) smaller than that of portion 350B. Oil-spattering hole 350 has open ends
1350A and 2350C. Open end 1350A opens in oil-feeding passage 133, and open end 2350C
opens in inner space 101A of hermetic container 101. Open end 2350C has an inner diameter
(a cross-sectional area) smaller than that of open end 1350A. The oil-spattering hole
according to the embodiment which, is provided in more than two members provides the
same effects as those of oil-spattering hole 150 shown in Fig. 2.
[0038] Fig. 6 is a cross-sectional view of a further oil-spattering hole 450 of hermetic
compressor 1001 according to the embodiment. In Fig. 6, the same components as those
of hermetic compressor 1001 shown in Figs. 1 and 2 are denoted by the same reference
numerals, and their description are omitted. Oil-spattering hole 450 has portion 450A
provided in sub shaft 113 and portion 450B provided in balancing weight 142. Portion
450A of oil-spattering hole 450 has open end 1450A opening in oil-feeding passage
133 and open end 2450A connected to portion 450B. Portion 450A has a constant cross-sectional
area (inner diameter) from open end 1450A to open end 2460A, thus having a cylindrical
shape. Portion 450B of oil-spattering hole 450 has open end 1450B connected to portion
450A and open end 2450B opening in inner space 101A of hermetic container 101. The
cross-sectional area of portion 450B decreases monotonically and continuously from
open end 1450B to open end 2450B. That is, portion 450B is tapered continuously from
open end 1450B to open end 2450B, thus having a truncated cone shape. Open end 2450B
has an inner diameter (a cross-sectional area) smaller than that of open end 1450A.
Open end 1450B of portion 450B has an inner diameter (a cross-sectional area) smaller
that that of open end 2450A of portion 450A connected to open end 1450B. Oil-spattering
hole 450 thus including portion 450A having the cylindrical shape and portion 450B
having the truncated cone shape provides the same effects as those of oil-spattering
hole 150 shown in Fig. 2.
[0039] Thus, the oil spattering hole according to the embodiment has a first open end which
opens in oil-feeding passage 133 and a second open end which opens in inner space
101A of hermetic container 101. The second end has a cross-sectional area (inner diameter)
smaller than that of the first open end. The oil-spattering hole provides the same
effects as those of oil-spattering hole 150 shown in Fig. 2 even if the hole includes
portions having various shapes.
[0040] This exemplary embodiment does not limit the scope of the present invention, which
is defined by the appended claims.
INDUSTRIAL APPLICABILITY
[0041] This hermetic compressor supplies lubrication oil to a sliding component, such as
a piston, of the compression element, thus operating reliably and efficiently, hence
being useful for an air conditioner and a refrigerator, such as a freezer.
Reference Numerals
[0042]
- 101
- Hermetic Container
- 101A
- Inner Space
- 106
- Lubrication Oil
- 111
- Shaft
- 120
- Bearing
- 133
- Oil-Feeding Passage
- 160
- Oil-Spattering Hole
- 150A
- Portion of Oil-Spattering Hole
- 150B
- Portion of Oil-Spattering Hole
- 142
- Balancing Weight
- 201
- Shaft Unit
- 201A
- Rotation Axis
- 1001
- Hermetic Compressor
- 1150A
- Open End of Oil-Spattering Hole
- 2150B
- Open End of Oil-Spattering Hole
1. A hermetic compressor (1001) comprising:
a hermetic container (101) having an inner space (101A) therein, the inner space (101A)
being arranged to store lubrication oil (106) therein,
a compression element (115) accommodated in the hermetic container (101), the compression
element (115) including
a shaft unit (201) rotating about a rotation axis (210A), the shaft unit (210) including
a main shaft (111) and an eccentric shaft (112), and
a bearing (120) supporting the main shaft (111) of the shaft unit (201); and
a motor element (104) accommodated in the hermetic container (101), the motor element
(104) driving the compression element (115), wherein
the shaft unit (201) has an oil-feeding passage (130, 133) provided therein, the oil-feeding
passage (103, 133) extending upward from a lower end of the shaft unit (201),
the shaft unit (201) has an oil-spattering hole (150) provided therein, the oil-spattering
hole (150) extending substantially perpendicularly to the rotation axis (201A), and
the oil-spattering hole (150) has a first open end (1150A) communicating with the
oil-feeding passage (133) and a second open end (2150B) opening in the inner space
(101A) of the hermetic container (101),
characterised in that
the second open end (2150B) has a cross-sectional area smaller than a cross-sectional
area of the first open end (1150A).
2. The hermetic compressor of claim 1, wherein the oil-spattering hole has
a first portion connected to the first open end and
a second portion connected to the second open end, the second portion having a cross-sectional
area smaller than a cross-sectional area of the first portion.
3. The hermetic compressor of claim 2, wherein the second portion of the oil-spattering
hole is connected to the first portion of the oil-spattering hole.
4. The hermetic compressor of claim 2, wherein the first portion and the second portion
of the oil-spattering hole comprise holes having inner diameters different from each
other, respectively.
5. The hermetic compressor of claim 2, wherein the shaft unit includes
a first member having the first portion of the oil-spattering hole provided therein,
and
a second member having the second portion of the oil-spattering hole provided therein,
the second member being assembled to the first member.
6. The hermetic compressor of claim 5, wherein the shaft unit further includes
a shaft having the first portion of the oil-spattering hole provided therein, and
a balancing weight having the second portion of the oil-spattering hole provided therein,
the balancing weight being fixed to the shaft.
7. The hermetic compressor of claim 2, wherein the second portion of the oil-spattering
hole has a length not smaller than twice an inner diameter of the second open end.
8. The hermetic compressor of claim 2, wherein the first open end of the oil-spattering
hole has an inner diameter not smaller than 1.5 times an inner diameter of the second
open end of the oil-spattering hole.
9. The hermetic compressor of claim 1, wherein the compression element further includes
a cylinder block having a compression chamber therein,
a piston moving reciprocally in the compression chamber, and
a connecting member for coupling the piston to the eccentric shaft of the shaft unit.
1. Hermetischer Verdichter (1001) mit:
einem hermetischen Behälter (101) mit einem Innenraum (101A), der so eingerichtet
ist, dass er Schmieröl (106) darin aufbewahrt;
einem in dem hermetischen Behälter (101) untergebrachten Verdichtungselement (115)
mit:
einer sich um eine Drehachse (201A) drehenden Welleneinheit (201) mit einer Hauptwelle
(111) und einer Exzenterwelle (112) und
einem Lager (120), das die Hauptwelle (111) der Welleneinheit (201) trägt; und
einem in dem hermetischen Behälter (101) untergebrachten Motorelement (104), das das
Verdichtungselement (115) antreibt, wobei
in der Welleneinheit (201) ein Ölzuführkanal (130, 133) vorgesehen ist, der von einem
unteren Ende der Welleneinheit (201) nach oben verläuft,
in der Welleneinheit (201) ein Ölspritzloch (150) vorgesehen ist, das im Wesentlichen
senkrecht zu der Drehachse (201A) verläuft, und
das Ölspritzloch (150) ein mit dem Ölzuführkanal (133) verbundenes erstes offenes
Ende (1150A) und ein zweites offenes Ende (2150B) hat, das sich in den Innenraum (101A)
des hermetischen Behälters (101) öffnet,
dadurch gekennzeichnet, dass
das zweite offene Ende (2150B) eine Querschnittsfläche hat, die kleiner als eine Querschnittsfläche
des ersten offenen Endes (1150A) ist.
2. Hermetischer Verdichter nach Anspruch 1,
dadurch gekennzeichnet, dass das Ölspritzloch Folgendes hat:
einen ersten Teil, der mit dem ersten offenen Ende verbunden ist; und
einen mit dem zweiten offenen Ende verbundenen zweiten Teil, der eine Querschnittsfläche
hat, die kleiner als eine Querschnittsfläche des ersten Teils ist.
3. Hermetischer Verdichter nach Anspruch 2, dadurch gekennzeichnet, dass der zweite Teil des Ölspritzlochs mit dem ersten Teil des Ölspritzlochs verbunden
ist.
4. Hermetischer Verdichter nach Anspruch 2, dadurch gekennzeichnet, dass der erste Teil und der zweite Teil des Ölspritzlochs Öffnungen aufweisen, die jeweils
voneinander verschiedene Innendurchmesser haben.
5. Hermetischer Verdichter nach Anspruch 2,
dadurch gekennzeichnet, dass die Welleneinheit Folgendes aufweist:
ein erstes Glied, in dem der erste Teil des Ölspritzlochs vorgesehen ist; und
ein zweites Glied, in dem der zweite Teil des Ölspritzlochs vorgesehen ist, wobei
das zweite Glied an dem ersten Glied montiert ist.
6. Hermetischer Verdichter nach Anspruch 5,
dadurch gekennzeichnet, dass die Welleneinheit weiterhin Folgendes aufweist:
eine Welle, in der der erste Teil des Ölspritzlochs vorgesehen ist; und
ein Ausgleichgewicht, in dem der zweite Teil des Ölspritzlochs vorgesehen ist, wobei
das Ausgleichgewicht an der Welle befestigt ist.
7. Hermetischer Verdichter nach Anspruch 2, dadurch gekennzeichnet, dass der zweite Teil des Ölspritzlochs eine Länge hat, die nicht kleiner als das Zweifache
eines Innendurchmessers des zweiten offenen Endes ist.
8. Hermetischer Verdichter nach Anspruch 2, dadurch gekennzeichnet, dass das erste offene Ende des Ölspritzlochs einen Innendurchmesser hat, der nicht kleiner
als das 1,5-fache eines Innendurchmessers des zweiten offenen Endes des Ölspritzlochs
ist.
9. Hermetischer Verdichter nach Anspruch 1,
dadurch gekennzeichnet, dass das Verdichtungselement weiterhin Folgendes aufweist:
einen Zylinderblock, in dem sich ein Verdichtungsraum befindet;
einen Kolben, der sich in dem Verdichtungsraum hin- und herbewegt; und
ein Verbindungsglied zum Verbinden des Kolbens mit der Exzenterwelle der Welleneinheit.
1. Compresseur hermétique (1001) comprenant :
un réservoir hermétique (101) ayant un espace intérieur (101A) dans celui-ci, l'espace
intérieur (101A) étant agencé de façon à stocker de l'huile de lubrification (106)
dans celui-ci,
un élément de compression (115) reçu dans le réservoir hermétique (101), l'élément
de compression (115) incluant
une unité d'arbre (201) tournant autour d'un axe de rotation (201A), l'unité d'arbre
(201) incluant un arbre principal (111) et un arbre excentrique (112), et
un support (120) supportant l'arbre principal (111) de l'unité d'arbre (201) ; et
un élément moteur (104) reçu dans le réservoir hermétique (101), l'élément moteur
(104) entraînant l'élément de compression (115), dans lequel
l'unité d'arbre (201) a un passage d'alimentation d'huile (130, 133) prévu dans celle-ci,
le passage d'alimentation d'huile (130, 133) s'étendant vers le haut à partir de l'extrémité
inférieure de l'unité d'arbre (201),
l'unité d'arbre (201) a un trou de projection d'huile (150) prévu dans celle-ci, le
trou de projection d'huile (150) s'étendant substantiellement perpendiculairement
à l'axe de rotation (201A), et
le trou de projection d'huile (150) a une première extrémité ouverte (1150A) communiquant
avec le passage d'alimentation d'huile (133) et une deuxième extrémité ouverte (2150B)
s'ouvrant dans l'espace intérieur (101A) du réservoir hermétique (101),
caractérisé en ce que
la deuxième extrémité ouverte (2150B) a une superficie en coupe plus petite qu'une
superficie en coupe de la première extrémité ouverte (1150A).
2. Compresseur hermétique selon la revendication 1, dans lequel le trou de projection
d'huile a
une première partie connectée à la première extrémité ouverte et
une deuxième partie connectée à la deuxième extrémité ouverte, la deuxième partie
ayant une superficie en coupe plus petite qu'une superficie en coupe de la première
partie.
3. Compresseur hermétique selon la revendication 2, dans lequel la deuxième partie du
trou de projection d'huile est connectée à la première partie du trou de projection
d'huile.
4. Compresseur hermétique selon la revendication 2, dans lequel la première partie et
la deuxième partie du trou de projection d'huile comprennent des trous ayant des diamètres
intérieurs différents les uns des autres, respectivement.
5. Compresseur hermétique selon la revendication 2, dans lequel l'unité d'arbre inclut
un premier élément ayant la première partie du trou de projection d'huile prévue dans
celui-ci, et
un deuxième élément ayant la deuxième partie du trou de projection d'huile prévue
dans celui-ci, le deuxième élément étant assemblé au premier élément.
6. Compresseur hermétique selon la revendication 5, dans lequel l'unité d'arbre inclut
en outre
un arbre ayant la première partie du trou de projection d'huile prévue dans celui-ci,
et
un poids d'équilibrage ayant la deuxième partie du trou de projection d'huile prévue
dans celui-ci, le poids d'équilibrage étant fixé à l'arbre.
7. Compresseur hermétique selon la revendication 2, dans lequel la deuxième partie du
trou de projection d'huile a une longueur non inférieure à deux fois un diamètre intérieur
de la deuxième extrémité ouverte.
8. Compresseur hermétique selon la revendication 2, dans lequel la première extrémité
ouverte du trou de projection d'huile a un diamètre intérieur non inférieur à 1,5
fois un diamètre intérieur de la deuxième extrémité ouverte du trou de projection
d'huile.
9. Compresseur hermétique selon la revendication 1, dans lequel l'élément de compression
inclut en outre
un bloc cylindres ayant une chambre de compression dans celui-ci,
un piston se déplaçant en va-et-vient dans la chambre de compression, et
un élément de connexion pour coupler le piston à l'arbre excentrique de l'unité d'arbre.