BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] The present invention relates to an air conditioner, and particularly to an air conditioner
using an absorption type refrigerating machine and a fine coil unit.
2. Description of the Related Art
[0002] In order to carry out air conditioning operation on a room by using as a heat source
machine an absorption type cold/hot water machine or a chiller heat source machine,
it is required that a water pipe is laid in abuilding, a fan coil unit is connected
to the water pipe and cold water or hot water generated by the heat source machine
is circulated in thewaterpipeby a circulating pump to carry out the air conditioning
operation. Furthermore, in order to carry out air conditioning operation on a room
by using as a heat source machine an outdoor unit having a compressor for compressing
refrigerant and discharging the refrigerant thus compressed, it is required that a
refrigerant pipe is laid in a building, an indoor unit is connected to the refrigerant
pipe and the refrigerant discharged from the compressor of the heat source is circulated
in the refrigerant pipe to carry out the air conditioning operation.
[0003] In the case where the absorption type cold/hot water machine or the chiller heat
source machine is used as a heat source machine, facilities such as a cooling water
system, etc. are also required. Therefore, it is sufficient to use only one heat source
machine, however, the number of places to which maintenance is required is larger
than the case where the outdoor unit having the compressor is used as a heat source
machine, and also it is impossible to dispersively set up the heat source machine.
[0004] When the air conditioning operation using the absorption type cold/hot water machine
or the chiller heat source machine as a heat source machine is replaced by the air
conditioning operation using the outdoor unit having the compressor as a heat source
machine, the laying of the water pipe in the building must be replaced by the laying
of the refrigerant pipe in the building, that is, the pipe laying is carried out again
by using a water pipe, and also the fan coil unit must be replaced by the indoor unit.
[0005] Accordingly, there has been proposed a chiller heat source machine which is constructed
by connecting an outdoor unit having a compressor and a chiller unit containing a
water heat exchanger or the like and generates cold water or hot water with refrigerant
discharged from the compressor of the outdoor unit (see
JP-A-08-233405).
[0006] However, even in the case of the chiller heat source machine as described above,
it is impossible that a direct expansion type indoor unit for directly heat-exchanging
the refrigerant discharged from the compressor with indoor air is disposed in juxtaposition
with the fan coil unit although the air conditioning can be carried out on a room
by the fan coil unit while supplying cold water or hot water.
[0007] US 5 272 885 A describes an air conditioner according to the preamble of claim 1 wherein during
cooling operation the chiller unit serves as a condenser for the refrigerant and during
heating operation as evaporator.
SUMMARY OF THE INVENTION
[0008] Therefore, an obj ect of the present invention is to provide an air conditioner that
is equipped with a heat source machine having a compressor therein and supplies heat
source from both of a refrigerant pipe and a water pipe to carry out air conditioning
operation.
[0009] This object is achieved by an air conditioner as defined in claim 1; the dependent
claims are related to further developments of the invention.
[0010] According to the present invention, the air conditioner is provided with the fan
coil unit for circulating cold/hot water in a water pipe to carry out air conditioning
operation and also the indoor unit for directly heat-exchanging the refrigerant discharged
from the compressor with indoor air. Therefore, the fan coil unit which has been hitherto
connected to the water pipe can be directly successively used, and also the air conditioning
area can be expanded or the air conditioning performance can be improved by newly
laying a refrigerant pipe. Furthermore, the newly laid pipe is the refrigerant pipe,
and thus the laying cost in a building can be suppressed to a low cost.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011]
Fig. 1 is a diagram showing the construction of an air conditioner according to the
present invention; and
Fig. 2 is a flowchart showing a control operation avoiding an out-of-gas state.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0012] A preferred embodiment according to the present invention will be described hereunder
with reference to the accompanying drawings.
[0013] Fig. 1 is a diagram showing the construction of an air conditioner according to the
present invention.
[0014] An air conditioner 100 comprises an outdoor unit 1 containing an engine 10, a compressor
11, etc., a chiller unit 2 for heat-exchanging refrigerant discharged from the compressor
11 with water in a water heat exchanger to generate cold water or hot water, and direct
expansion type of plural indoor units 3a, 3b for directly heat-exchanging the refrigerant
from the compressor 1 with indoor air, which are connected to one another through
liquid pipes 5a, 5b and a gas pipe 5c, and further comprises fan coil units 4a, 4b
which are connected to the chiller unit 2 through water pipes 7a, 7b and circulate
the cold water or hot water generated in the chiller unit 2 by a circulating pump
6 to heat-exchange the cold water or hot water with the indoor air.
[0015] In the outdoor unit 1 are accommodated an engine 10 for combustion fuel such as gas
or the like to generate driving force, a compressor 11 which is driven by the driving
force generated in the engine 10, a four-way valve 12 for changing the circulating
direction of refrigerant discharged from the compressor 11, an outdoor heat exchanger
13 for carrying out the exchange between the refrigerant and outside air, an outdoor
expansion valve 14 for reducing the pressure of the refrigerant, an accumulator 15
for conducting gas-liquid separation on the refrigerant sucked into the compressor
11, and an outdoor controller 16 for controlling the outdoor unit 1 and carrying out
communications with a chiller controller 24 of the chiller unit 2 and indoor controllers
32a, 32b.
[0016] In the chiller unit 2 are accommodated a plurality of refrigerant/water heat exchangers
20a, 20b as plate type heat exchangers, a refrigerant heat exchanger 20c, a motor-driven
expansion valve 21 for controlling the flow amount of refrigerant flowing through
the refrigerant/water heat exchangers 20a, 20b and the refrigerant heat exchanger
20c, a receiver tank 22 for temporarily stocking the refrigerant, check valves 23a,
23b, and the chiller controller 24 for adjusting the opening degree of the motor-driven
expansion valve 21, controlling the operation of the circulating pump 6 and carrying
out communications with the outdoor controller 16 of the outdoor unit 1 and the fan
coil controllers 42a, 42b of the fan coil units 4a, 4b.
[0017] The connection of the refrigerant pipe in the chiller unit 2 will be described.
[0018] A liquid pipe 5a extending from the outdoor unit 1 is connected to one end of the
receiver tank 22, and the other end of the receiver tank 22 is branched to two parts
at a branch point X. One branched part of the receiver tank 22 extends as a liquid
pipe 5b and is connected to the indoor units 3a, 3b described later, and the other
branched part of the receiver tank 22 is connected through the check valve 23 to a
refrigerant port A of the refrigerant heat exchanger 20c. That is, the chiller unit
2 is connected to the indoor units 3a, 3b in parallel through the liquid pipe 5b and
the gas pipe 5c at the other end side of the receiver tank 22.
[0019] The check valve 23a is disposed so that the refrigerant flows from the receiver tank
22 through the check valve 23a to the refrigerant heat exchanger 20c, and the other
end of the receiver tank 22 is connected to the check valve 23b whose one end is connected
to a refrigerant port B of the refrigerant heat exchanger 20c. The check valve 23b
is disposed so that the refrigerant flows from the refrigerant port B of the refrigerant
heat exchanger 20c through the check valve 23b to the other end of the receiver tank
22. Furthermore, the refrigerant port B of the refrigerant heat exchanger 20c is connected
through the motor-driven expansion valve 21 to a refrigerant port C of the refrigerant/water
heat exchanger 20a, and a refrigerant port D of the refrigerant/water heat exchanger
20a is connected to a refrigerant port E of the refrigerant/water heat exchanger 20b.
A refrigerant port Fof the refrigerant/water heat exchanger 20b is connected to a
refrigerant port of the refrigerant heat exchanger 20c, and a refrigerant port H of
the refrigerant heat exchanger 20c is connected to the refrigerant pipe 5c extending
from the outdoor unit 1. That is, the refrigerant/water heat exchanger 20a, 20b are
connected to each other in series in the refrigerant circuit.
[0020] The chiller unit 2 is provided with the water pipes 7a, 7b for circulating cold water
or hot water generated in the chiller unit 2 into the fan coil units 4a, 4b described
later. One end of the water pipe 7a is branched into two parts which are connected
to cold/hot water ports I, K of the refrigerant/water heat exchangers 20a, 20b, and
the other end of the water pipe 7a is branched into two parts through the circulating
pump 6, the two parts thus branched being connected to one ends of the water heat
exchangers 40a, 40b of the fan coil units 4a, 4b through cold/hot water valves 41a,
41b, respectively. Furthermore, one end of the water pipe 7b is branched and then
connected to cold/hot water ports J, L of the refrigerant/water heat exchangers 20a,
20b while the other end of the water pipe 7b is branched and then connected to the
other ends of the water heat exchangers 40a, 40b of the fan coil units 4a, 4b. That
is, the refrigerant/water heat exchangers 20a, 20b are connected to each other in
parallel through the water pipes 7a, 7b connected to the fan coil units 4a, 4b.
[0021] By constructing the air conditioner 100 as described above, the air conditioner 100
can perform both the air conditioning operation carried out by heat-exchanging the
cold/hot water circulated in the water pipes 7a, 7b with indoor air and the air conditioning
operation carried out by directly heat-exchanging the refrigerant discharged from
the compressor 11 with the indoor air. Therefore, when a heat source machine such
as an absorption type refrigerating machine or the like is replaced by the air conditioner
of this embodiment, water pipes which have been laid in a building can be successively
used. Furthermore, even when an air conditioning area is newly enlarged or the air
conditioning performance is improved, a refrigerant pipe for circulating refrigerant
discharged from the compressor 11 may be laid, so that the laying cost of the pipe
can be reduced to a small level.
[0022] In the indoor units 3a, 3b are accommodated indoor heat exchanges 30a, 30b for directly
heat-exchanging the refrigerant discharged from the compressor 11 of the outdoor unit
1 with indoor air, and indoor expansion valves 31a, 31b for controlling the amounts
of the refrigerant flowing into the indoor heat exchangers 20a, 20b, etc., which are
connected to each other through the refrigerant pipes. Furthermore, in the indoor
units 3a, 3b are also accommodated the indoor controllers 32a, 32b for controlling
the indoor units 3a, 3b respectively and carrying out communications with the outdoor
controller 16 of the outdoor unit 1.
[0023] In the indoor units 3a, 3b are accommodated the indoor heat exchangers 30a, 30b for
directly heat-exchanging the indoor air with the refrigerant discharged from the compressor
11 of the outdoor unit 1, and the indoor expansion valves 31a, 31b for controlling
the amounts of the refrigerant flowing into the indoor heat exchangers 20a, 20b, which
are connected to each other through the refrigerant pipes. Furthermore, in the indoor
units 3a, 3b are also accommodate the indoor controllers 32a, 32b for controlling
the indoor units 3a, 3b respectively and carrying out communications with the outdoor
controller 16 of the outdoor unit 1.
[0024] In the fan coil units 4a, 4b are accommodated the water heat exchangers 40a, 40b
for heat-exchanging indoor air with cold water or hot water generated in the chiller
unit 2 and circulated by the circulating pump 6, and the cold/hot water valves 41a,
41b for controlling flow of the cold water or hot water flowing into the water heat
exchangers 40a, 40b, which are connected to each other through the water pipes, and
in the fan coil units 4a, 4b are also accommodated the fan coil controllers 42a, 42b
for controlling the fan coil units 4a, 4b respectively and carrying out communications
with the chiller controller 24 of the chiller unit 2, respectively.
[0025] Accordingly, at the refrigerant circuit side to which the refrigerant is supplied
from the outdoor unit 1, a passage along which the refrigerant supplied from the chiller
unit 2 to the using side heat exchangers 30 is heat-exchanged with the cold/hot water
can be set to a long value, and thus the heat exchange efficiency between the refrigerant
and the cold/hot water can be enhanced. In addition, at the cold/hot water circuit
side, the flow rate of the cold/hot water in the refrigerant/water heat exchangers
20a, 20b and the respective pipe-connected cold/hot water pipes can be reduced without
reducing the flow amount of the cold/hot water supplied from the chiller unit 2 to
the fan coil units 4a, 4b, so that corrosion of the pipes, etc. by the cold/hot water
can be suppressed.
[0026] When the driving of the air conditioner 100 is started by the outdoor controller
16, combustion gas of the mixture of fuel such as gas or the like from a fuel supply
device (not show) and atmospheric air is supplied to start the driving of the engine
10. The driving of the engine 10 generates driving force, and the compressor 11 is
driven by the driving force thus generated to compress and discharge the refrigerant
from the compressor 11, and also the driving of the circulating pump 6 is started
by the chiller controller 24 of the chiller unit 2. Under cooling operation, the four-way
valve 12 is set as indicated by a solid line by the outdoor controller 16 of the outdoor
unit 1, and the opening degrees of the indoor expansion valves 31a, 31b are set on
the basis of an air conditioning load calculated by the indoor controllers 32a, 32b.
[0027] Furthermore, the opening degree of the motor-driven expansion valve 21 of the chiller
unit 2 is controlled, and also the cold/hot water valves 41a, 41b of the fan coil
units 4a, 4b,are opened, so that the refrigerant discharged from the compressor 11
flows through the four-way valve 12 into the outdoor heat exchanger 13, and the refrigerant
is heat-exchanged with outside air and condensed in the outdoor heat exchanger 13.
The pressure of the refrigerant thus condensed is reduced in the outdoor expansion
valve 14, and the pressure-reduced refrigerant flows into the receiver tank 22 of
the chiller unit 2 and is temporarily stocked in the receiver tank 22. Thereafter,
the refrigerant flows out from the receiver tank 22 and then it is distributed into
two passages. The refrigerant in one distributed passage flows through the refrigerant
pipe 5b to the indoor units 3a, 3b. The refrigerant in the other distributed passage
flows through the check valve 23a to one port of the refrigerant heat exchanger 20c.
[0028] The refrigerant flowing into the refrigerant heat exchanger 20c is heat-exchanged
with the refrigerant flowing through the refrigerant/water heat exchangers 20a, 20b,
and then the refrigerant thus heat-exchanged passes through the motor-driven expansion
valve 21 and flows into the refrigerant/water heat exchangers 20a, 20b successively
to be evaporated, so that cold water is generated. Furthermore, the refrigerant flows
into the other port of the refrigerant heat exchanger 20c and flows out to the refrigerant
pipe 5c.
[0029] Furthermore, the refrigerant passing through the refrigerant pipe 5b and flowing
into the indoor units 3a, 3b is branched in accordance with the opening degrees of
the indoor expansion valves 31a, 31b and then flows into the indoor units 3a, 3b.
The refrigerant flowing into the indoor units 3a, 3b is evaporated, and flows out
to the refrigerant pipe 5c.
[0030] The refrigerant thus evaporated flows in the refrigerant pipe 5c wile being confluent
with the evaporated refrigerant flowing through the chiller unit 2, and is returned
to the outdoor unit 1. The refrigerant thus returned to the outdoor unit 1 passes
through the four-way valve 12 and the accumulator 15 and is returned to the compressor
11.
[0031] The cold water generated in the chiller unit 2 flows through the water pipe 7a by
the driving of the circulating pump 6, and is branched into two streams. These refrigerant
streams are passed through the cold/hot water valves 41a, 41b and heat-exchanged with
indoor air in the water heat exchangers 40a, 40b, and then the refrigerant thus heat-exchanged
with the indoor air is passed through the cold/hot water pipe 7b and returned to the
chiller unit 2.
[0032] When the indoor units 3a, 3b are stopped or the thermo-off operation is set, the
indoor expansion valves 31a, 31b of the indoor units 3a, 3b are fully closed, and
all the refrigerant discharged from the compressor 11 passes from the receiver tank
22 of the chiller unit 2 through the check valve 23a to the refrigerant heat-exchanger
20c, flows through the refrigerant/water heat exchangers 20a, 20b and then returns
to the compressor 11.
[0033] Furthermore, when the fan coil units 4a, 4b are stopped or set to the thermo-off
operation, the cold/hot water valves 41a, 41b of the fan coil units 4a, 4b are closed,
and also the motor-driven valve 21 of the chiller unit 2 is closed, so that all the
refrigerant discharged from the compressor 11 is distributed to the indoor units 3a,
3b.
[0034] In this case, plate type heat exchangers are used as the refrigerant/water heat exchangers
20a, 20b, and they have high heat-exchanger capabilities. Therefore, there is a risk
that the refrigerant which flows from the gas pipe 5c side into the refrigerant/water
heat exchangers 20a, 20b and is heat-exchanged with water trapped in the water pipes
7a, 7b to be condensed and then circulated in the refrigerant pipes 5a to 5c runs
short temporarily, that is, an out-of-gas state may temporarily occur.
[0035] In this case, by opening the motor-driven expansion valve 21, the refrigerant trapped
in the refrigerant/water heat exchangers 20a, 20b is enforced to flow out therefrom,
whereby the out-of-gas state can be overcome.
[0036] At this time, it is preferable that the circulating pump 6 is also driven to prevent
the water trapped in the refrigerant/water heat exchangers 20a, 20b from being frozen.
[0037] The control described above will be described with reference to Fig. 2.
[0038] First, it is judged whether the air conditioner 100 is driven or not (step S1) .
If the air conditioner 100 is not driven, the judgment of step S1 is repeated. If
the air conditioner 100 is driven, it is judged whether both the fan coil units 4a,
4b are at a stop or under the termo-off operation (step S2). If anyone of the fan
coil units 4a, 4b is under the thermo-on operation, the judgment of step S2 is repeated.
If both the fan coil units 4a, 4b are at a stop or under the thermo-off operation,
it is judged on the basis of detection signals from sensors provided to the outdoor
unit 1 and/or the indoor units 3a, 3b whether the air conditioner is under out-of-gas
state or not (step S3). The signal is output from temperature sensors, pressure sensors,
etc. provided to the outdoor unit 1 and/or the indoor units 3a, 3b. Specifically,
in the case of the outdoor unit 1, the signals represent the temperature and pressure
at the inlet/outlet ports of the outdoor heat exchanger 13 or the opening degree of
the outdoor expansion valve 14 or the like. In the case of the indoor units 3a, 3b,
the signals represent the temperature at the suction ports of the indoor units 3a,
3b, the temperature at the discharge ports of the indoor units 3a, 3b, the pressure
at the inlet/outlet ports of the indoor heat exchangers 30a, 30b, or the opening degrees
of the indoor expansion valves 31a, 31b.
[0039] If the air conditioner is not under the out-of-gas state, the processing returns
to step S2 to repeat the judgment as to the driving state of the fan coil units 4a,
4b. If the air conditioner is under the out-of-state, the circulating pump is forcedly
driven by the chiller controller 24 (step S4), and the motor-driven expansion valve
21 is opened (step S5).
[0040] Accordingly, the refrigerant which is condensed and trapped in the refrigerant/water
heat exchangers 20a, 20b, etc. is pushed out from the inside of the chiller unit 2
to the liquid pipe 5a or the gas pipe 5c. Therefore, the out-of-gas state can be overcome.
1. An air conditioner comprising:
a heat source machine containing a compressor (11) for compressing refrigerant;
a direct expansion type indoor unit having an indoor heat exchanger (30a, 30b) for
directly heat-exchanging the refrigerant discharged from the compressor with indoor
air through a refrigerant pipe comprising a liquid pipe (5a, 5b) and a gas pipe (5c);
and
a chiller unit (2) having first and second heat exchangers (20a, 20b) for heat-exchanging
the refrigerant with water to generate cold water or hot water;
characterized by
a fan coil unit (4a, 4b) having a water heat exchanger for heat-exchanging the cold
water or hot water from the chiller unit (2) with the indoor air; and
a water pipe (7a, 7b) that is connected to the fan coil unit (4a, 4b) and through
which the liquid cold water or hot water is circulated between the chiller unit (2)
and the fan coil unit (4a, 4b) by a circulating pump (6), wherein the first and second
heat exchangers (20a, 20b) of the chiller unit (2) are arranged so as to be connected
to the water pipe (7a, 7b) in parallel and connected to the refrigerant pipe in series.
2. The air conditioner according to claim 1, wherein one end of the liquid pipe is connected
to the heat source machine while the other end of the liquid pipe is passed through
a receiver tank (22) provided in the chiller unit (2) and branched into two parts,
one part being connected to one end side of a water heat exchanger provided in the
chiller unit and the other part being connected to the indoor unit, and one end of
the gas pipe is connected to the heat source machine (1) while the other end of the
gas pipe is branched into two parts, one part being connected to the other end side
of the water heat exchanger and the other part being connected to the indoor unit.
3. The air conditioner according to claim 1, wherein a plurality of indoor units are
connected to one another in parallel through the liquid pipe and the gas pipe.
4. The air conditioner according to claim 3, wherein one end of the liquid pipe is connected
to the heat source machine (1) while the other end of the liquid pipe is, passed through
a receiver tank (22) provided in the chiller unit and branched into two parts, one
part being connected to one end side of a water heat exchanger provided in the chiller
unit (2) and the other part being connected to the plural indoor units in parallel,
and one end of the gas pipe is connected to the heat source machine (1) while the
other end of the gas pipe is branched into two parts, one part being connected to
the other end side of the water heat exchanger and the other part being connected
to the plural indoor units in parallel.
5. The air conditioner according to claim 1, wherein the chiller unit (2) has a refrigerant/water
heat exchanger for heat-exchanging the refrigerant discharged from the compressor
(11) with water to generate cold water or hot water.
6. The air conditioner according to claim 5, wherein the chiller unit (2) has a control
valve (21) between the refrigerant/water heat exchanger and a branch point at which
the refrigerant pipe is branched into one part extending to the refrigerant/water
heat exchanger and the other part extending to the indoor unit, and when an out-of-gas
state of refrigerant circulated into the indoor unit is detected while the driving
of the circulating pump (6) is stopped, the control valve is opened and the circulated
pump is driven.
7. The air conditioner according to claim 6, wherein the refrigerant/water heat exchanger
and the control valve are connected to the indoor unit in parallel through the liquid
pipe extending from the other end side of the receiver tank (22) and the gas pipe.
8. The air conditioner according to claim 1, wherein the compressor (11) of the heat
source machine is driven by an engine (10) for generating driving force by combusting
fuel such as gas or the like.
9. The air conditioner according to claim 1, wherein the chiller unit (2) comprises the
two refrigerant/water heat exchangers (20a, 20b) and a refrigerant heat exchanger
(20c) which are connected to one another in series between the liquid pipe (5b) and
the gas pipe (5c).
1. Klimaanlage mit:
einer Wärmequellenmaschine, die einen Kompressor (11) zum Komprimieren eines Kühlmittels
enthält,
einer Inneneinheit vom Direktexpansionstyp mit einem Innenwärmetauscher (30a, 30b)
zum direkten Wärmetauschen des Kühlmittels, das von dem Kompressor abgegeben wird,
mit Innenluft über eine Kühlmittelleitung, die eine Flüssigkeitsleitung (5a, 5b) und
eine Gasleitung (5c) aufweist, und
einer Kühleinheit (2) mit einem ersten und einem zweiten Wärmetauscher (20a, 20b)
zum Wärmetauschen des Kühlmittels mit Wasser, um Kaltwasser oder Heißwasser zu erzeugen,
gekennzeichnet durch
eine Lüfterspiraleneinheit (4a, 4b) mit einem Wasserwärmetauscher zum Wärmetauschen
des Kaltwassers oder des Heißwassers von der Kühleinheit (2) mit Innenluft, und
eine Wasserleitung (7a, 7b), die mit der Lüfterspiraleneinheit (4a, 4b) verbunden
ist und durch die das flüssige Kaltwasser oder Heißwasser zwischen der Kühleinheit (2) und der
Lüfterspiraleneinheit (4a, 4b) durch eine Umlaufpumpe (6) zirkuliert wird, wobei der erste und der zweite Wärmetauscher
(20a, 20b) der Kühleinheit (2) so angeordnet sind, dass sie mit der Wasserleitung
(7a, 7b) parallel und mit der Kühlmittelleitung in Reihe verbunden sind.
2. Klimaanlage nach Anspruch 1, wobei ein Ende der Flüssigkeitsleitung mit der Wärmequellenmaschine
verbunden ist, während das andere Ende der Flüssigkeitsleitung durch einen Aufnahmetank
(22) verläuft, der in der Kühleinheit (2) fest vorgesehen ist und in zwei Teile verzweigt
ist, wobei ein Teil mit einer Endseite eines Wasserwärmetauschers verbunden ist, der
in der Kühleinheit vorgesehen ist, und der andere Teil mit der Inneneinheit verbunden
ist, und wobei ein Ende der Gasleitung mit der Wärmequellenmaschine (1) verbunden
ist, während das andere Ende der Gasleitung in zwei Teile verzweigt ist, wobei ein
Teil mit der anderen Endseite des Wasserwärmetauschers verbunden ist und der andere
Teil mit der Inneneinheit verbunden ist.
3. Klimaanlage nach Anspruch 1, wobei eine Anzahl von Inneneinheiten zueinander parallel
über die Flüssigkeitsleitung und die Gasleitung verbunden sind.
4. Klimaanlage nach Anspruch 3, wobei ein Ende der Flüssigkeitsleitung mit der Wärmequellenmaschine
(1) verbunden ist, während das andere Ende der Flüssigkeitsleitung durch einen Aufnahmetank
(22) verläuft, der in der Kühleinheit vorgesehen ist, und in zwei Teile verzweigt
ist, wobei ein Teil mit einer Endseite eines Wasserwärmetauschers verbunden ist, der
in der Kühleinheit (2) vorgesehen ist, und der andere Teil mit der Anzahl von Inneneinheiten
parallel verbunden ist, und wobei ein Ende der Gasleitung mit der Wärmequellenmaschine
(1) verbunden ist, während das andere Ende der Gasleitung in zwei Teile verzweigt
ist, wobei ein Teil mit der anderen Endseite des Wasserwärmetauschers verbunden ist
und der andere Teil mit der Anzahl der Inneneinheiten parallel verbunden ist.
5. Klimaanlage nach Anspruch 1, wobei die Kühleinheit (2) einen Kühlmittel/Wasserwärmetauscher
zum Wärmetauschen des Kühlmittels, das von dem Kompressor (11) abgegeben wird, mit
Wasser, um Kaltwasser oder Heißwasser zu Erzeugen, aufweist.
6. Klimaanlage nach Anspruch 5, wobei die Kühleinheit (2) ein Steuerventil (21) zwischen
dem Kühlmittel/Wasserwärmetauscher und einem Verzweigungspunkt aufweist, in dem die
Kühlmittelleitung in einen Teil verzweigt, der sich zu dem Kühlmittel/Wasserwärmetauscher
erstreckt, und einen anderen Teil, der sich zu der Inneneinheit erstreckt, und wenn
ein gasloser Zustand des Kühlmittels erfasst wird, das in der Inneneinheit zirkuliert,
während der Antrieb der Umlaufpumpe (6) gestoppt ist, das Steuerventil geöffnet wird
und die Umlaufpumpe betrieben wird.
7. Klimaanlage nach Anspruch 6, wobei der Kühlmittel/Wasserwärmetauscher und das Steuerventil
parallel über die Flüssigkeitsleitung, die sich von einer Endseite des Aufnahmetanks
(22) und der Gasleitung erstreckt, mit der Inneneinheit verbunden sind.
8. Klimaanlage nach Anspruch 1, wobei der Kompressor (11) der Wärmequellenmaschine durch
eine Maschine (10) zum Erzeugen von Antriebskraft durch Brennstoff wie Gas oder dergleichen
angetrieben wird.
9. Klimaanlage nach Anspruch 1, wobei die Kühleinheit (2) zwei Kühlmittel/Wasserwärmetauscher
(20a, 20b) und einen Kühlmittelwärmetauscher (20c) aufweist, die miteinander in Reihe
zwischen der Flüssigkeitsleitung (5b) und der Gasleitung (5c) verbunden sind.
1. Climatiseur d'air comprenant :
une machine source de chaleur qui contient un compresseur (11) qui comprime un réfrigérant,
une unité interne de type à détente directe qui présente un échangeur de chaleur interne
(30a, 30b) qui échange directement de la chaleur entre le réfrigérant déchargé par
le compresseur et l'air interne par un tuyau réfrigérant qui contient un tuyau (5a,
5b) à liquide et un tuyau (5c) à gaz et
une unité (2) de refroidisseur qui présente un premier et un deuxième échangeur de
chaleur (20a, 20b) et qui échangent de chaleur entre le réfrigérant et de l'eau pour
produire de l'eau froide ou de l'eau chaude,
caractérisé par :
une unité (4a, 4b) de ventiloconvecteur qui présente un échangeur de chaleur d'eau
qui échange avec l'air interne la chaleur de l'eau froide ou de l'eau chaude provenant
de l'unité (2) de refroidisseur et
un tuyau (7a, 7b) à eau qui est raccordé à l'unité (4a, 4b) de ventiloconvecteur et
dans lequel l'eau froide liquide ou l'eau chaude circulent entre l'unité (2) de refroidisseur
et l'unité (4a, 4b) de ventiloconvecteur grâce à une pompe de circulation (6), le
premier et le deuxième échangeur de chaleur (20a, 20b) de l'unité (2) de refroidisseur
étant agencés de manière à être raccordés en parallèle au tuyau (7a, 7b) à eau et
en série au tuyau à réfrigérant.
2. Climatiseur d'air selon la revendication 1, dans lequel une extrémité du tuyau à liquide
est raccordée à la machine source de chaleur alors que l'autre extrémité du tuyau
à liquide passe dans un réservoir de réception (22) prévu dans l'unité (2) de refroidisseur
et est ramifiée en deux parties, une partie étant raccordée à un côté d'extrémité
de l'échangeur de chaleur à eau prévu dans l'unité de refroidisseur et l'autre partie
étant raccordée à l'unité interne, une extrémité du tuyau à gaz étant raccordée à
la machine (1) source de chaleur alors que l'autre extrémité du tuyau à gaz est ramifiée
en deux parties, une partie étant raccordée à l'autre côté d'extrémité de l'échangeur
de chaleur à eau et l'autre partie étant raccordée à l'unité interne.
3. Climatiseur d'air selon la revendication 1, dans lequel plusieurs unités internes
sont raccordées en parallèle les unes aux autres par l'intermédiaire du tuyau à liquide
et du tuyau à gaz.
4. Condition d'air selon la revendication 3, dans lequel une extrémité du tuyau à liquide
est raccordée à la machine (1) source de chaleur alors que l'autre extrémité du tuyau
à liquide traverse un réservoir de réception (22) prévu dans l'unité de refroidisseur
et est ramifiée en deux parties, une partie étant raccordée à un côté d'extrémité
de l'échangeur de chaleur à eau prévu dans l'unité (2) de refroidisseur et l'autre
partie étant raccordée en parallèle à plusieurs unités internes, une extrémité du
tuyau à gaz étant raccordée à la machine (1) source de chaleur alors que l'autre extrémité
du tuyau à gaz est ramifiée en deux parties, une partie étant raccordée à l'autre
côté d'extrémité de l'échangeur de chaleur à eau et l'autre partie étant raccordée
en parallèle à plusieurs unités internes.
5. Climatiseur d'air selon la revendication 1, dans lequel l'unité (2) de refroidisseur
présente un échangeur de chaleur réfrigérant/eau qui échange de la chaleur entre le
réfrigérant provenant du compresseur (11) et l'eau afin de produire de l'eau froide
ou de l'eau chaude.
6. Climatiseur d'air selon la revendication 5, dans lequel l'unité (2) de refroidisseur
présente un clapet de contrôle (21) entre l'échangeur de chaleur réfrigérant/eau et
un point de ramification par lequel le tuyau de réfrigérant est ramifié en une partie
qui s'étend dans l'échangeur de chaleur réfrigérant/eau et une autre partie qui s'étend
dans l'unité interne, le clapet de contrôle étant ouvert et la pompe de circulation
étant entraînée lorsque l'entraînement de la pompe de circulation (6) est arrêté et
qu'un état exempt de gaz du réfrigérant qui circule dans l'unité interne est détecté.
7. Climatiseur d'air selon la revendication 6, dans lequel l'échangeur de chaleur réfrigérant/eau
et le clapet de contrôle sont raccordés en parallèle à l'unité interne par un tuyau
à liquide qui déborde de l'autre côté d'extrémité du réservoir (22) de réception et
par tuyau à gaz.
8. Climatiseur d'air selon la revendication 1, dans lequel le compresseur (11) de la
machine source de chaleur est entraîné par un moteur (10) afin de créer une force
d'entraînement en brûlant un combustible, par exemple du gaz ou similaire.
9. Climatiseur d'air selon la revendication 1, dans lequel l'unité (2) de refroidisseur
comprend deux échangeurs de chaleur (20a, 20b) réfrigérant/eau et un échangeur de
chaleur (20c) de réfrigérant qui sont raccordés en série entre le tuyau (5b) à liquide
et le tuyau (5c) à gaz.