(19)
(11) EP 1 940 532 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
20.04.2011 Bulletin 2011/16

(21) Application number: 06777157.6

(22) Date of filing: 04.09.2006
(51) International Patent Classification (IPC): 
B01D 39/20(2006.01)
B22C 9/08(2006.01)
C22B 9/02(2006.01)
B22D 43/00(2006.01)
(86) International application number:
PCT/EP2006/008598
(87) International publication number:
WO 2007/028556 (15.03.2007 Gazette 2007/11)

(54)

FILTER DEVICE FOR MOLTEN METAL FILTRATION AND METHOD FOR PRODUCING SUCH FILTERS

FILTERVORRICHTUNG ZUM FILTRIEREN SCHMELZFLÜSSIGER METALLE UND HERSTELLUNGSVERFAHREN FÜR DERARTIGE FILTER

DISPOSITIF DE FILTRATION POUR METAL FONDU ET PROCÉDÉ DE PRODUCTION D'UN TEL FILTRE


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30) Priority: 05.09.2005 EP 05108121
16.05.2006 EP 06114007

(43) Date of publication of application:
09.07.2008 Bulletin 2008/28

(73) Proprietor: Süd-Chemie Hi-Tech Ceramics Inc.
Alfred Station, NY 14803 (US)

(72) Inventor:
  • JUMA, KASSIM
    Staffordshire, Staffordshire ST18 OYP (GB)

(74) Representative: Stolmár, Matthias 
Stolmár Scheele & Partner Patentanwälte Blumenstrasse 17
80331 München
80331 München (DE)


(56) References cited: : 
EP-A- 0 388 010
US-A- 5 039 340
US-A- 4 528 099
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to filter devices for molten metal filtration, a method for producing such filter devices and the use of such filter devices for the filtration of molten steel.

    [0002] For the processing of molten metals it is desirable to remove exogenous intermetallic inclusions such as from impurities of the raw materials, from slag, dross and oxides which form on the surface of the melt and from small fragments of refractory materials that are used to form the chamber or vessel in which the molten metal melt is formed.

    [0003] Removal of these inclusions forms a homogenous melt that insures high quality of the products especially in the casting of steel, iron and aluminum metals. Currently, ceramic filter devices are widely used due to their high ability to withstand extreme thermal shock, due to their resistance to chemical corrosion and their ability to withstand mechanical stresses.

    [0004] The production of such ceramic filter devices generally involves the mixing of ceramic powder with suitable organic binders and water in order to prepare a paste or slurry. The slurry is used to impregnate polyurethane foam, which subsequently is dried and fired at a temperature in the range of from 1000 to 1700°C. By this treatment the combustible material is burnt off during sintering to produce a porous body. US-A-2,360,929 and US-A-2,752,258 may serve as examples for the common procedure.

    [0005] Also, an open pore filter device is known, that instead of a random distribution of irregular interconnecting passages consists of a series of parallel ducts passing through the material as generally being made by hydraulic pressing a damp ceramic powder and organic binder into a mold containing perpendicular pins. A perforated structure is thus obtained which can be in the form of a disk or block. The perforated article is then fired at a temperature in the range of from 1000 to 1700°C depending on the final application to produce a perforated disc. During firing a ceramic and/or glassy bond is developed.

    [0006] WO-A1-0140414 relates to a porous coal-based material for use in various applications such as construction, metal processing or conductors. The material is produced by heating powdered coal particulates in a mould under a non-oxidizing atmosphere. The document suggests the use of a porous coal-based product in filtering of molten aluminum metal as a replacement for the ceramic foam filters. A coal based filter is however mechanically weak.

    [0007] EP A2 0 251 634 describes a process for making defined porous ceramic bodies for metal filtering purposes, having smooth walled cells formed by the pore formers, and pores with rounded edges, which interconnect the cells. The pore formers are volatilized and removed from the ceramic in the production process.

    [0008] US-A-5,520,823 relates to filter devices for filtering molten aluminum only. The bounding is obtained using borosilicate glass. Firing is carried out in air and a considerable amount of graphite would be lost due to oxidation by air.

    [0009] Generally speaking, filter devices used for aluminum filtration are usually fired at about 1200°C while those intended for filtration of iron are fired at temperatures of 1450°C and for steel at above 1600°C. Ceramic zirconia filter devices fired at approximately 1700°C are also conventionally employed in steel filtration.

    [0010] Despite their widespread use for metal filtration ceramic filter devices of the above mentioned types have several drawbacks that limit their applicability.

    [0011] Ceramic filter devices, although preheated, tend to be clogged by freezing particles on the first contact with the molten metal. For this purpose usually superheated molten metal, that is metal at a temperature of about 100°C over liquid temperature, is used for casting to prevent dogging of the filter devices. This practice is extreme wasteful in terms of energy and cost and any improvement that reduces processing temperature of the molten metal is of great benefit Carbon coatings have been applied in the prior art on the surface of ceramic filter devices to reduce the thermal mass of the part that comes into direct contact with the molten metal.

    [0012] Exothermically reacting thermite material applied to a carbon-coated surface of the ceramic filter device has been proposed by EP 0 463 234 B1, The latter solution, while reducing the temperature necessary for the flow of the molten metal, adds to the cost of production of the filter devices and very narrowly limits the applicability since the thermite coating has to be in compliance with the type of molten metal for which it is used.

    [0013] Anyway, both carbon and thermite coating serve in overcoming the drawback of high thermal mass of the ceramic fitter device while the challenge of several additional disadvantages is not met.

    [0014] Ceramic and glassy type bonds tend to soften and creep at high temperature very often resulting in erosion of the filter device and subsequent contamination of the melt.

    [0015] Cracking due to thermal shock or chemical (reductive) corrosion by the hot metal melt is a problem often encountered with ceramic and glass bonded filter devices.

    [0016] The need for extremely high firing temperatures, especially in the case of ceramics intended for steel filtration, is a severe drawback of conventional ceramic filter devices which is even worse when the need for high cost ceramic raw material is considered.

    [0017] In addition, the use of zirconia with its relatively strong background radiation is hazardous and should be avoided.

    [0018] EP 1 421 042 A1 relates to a filter device for molten metal filtration comprising a bonded network of graphitized carbon and its use for the filtration of molten steel. However these filters are relatively weak and suffer from low mechanical strength.

    [0019] EP 1 511 589 A1 relates to a filter device comprising a bonded network of graphitized carbon for molten steel filtration characterized by the presence of at least two sieve plates spaced apart from each other, in particular providing a reservoir chamber.

    [0020] The filter devices according to these documents have a limited mechanical strength which causes problems during transportation and use and limit the capacity of the filters in withstanding the pressure of molten metal on it.

    [0021] Also these filter devices are friable and tend to break into bits which may fall into the mold prior to casting causing contamination of the casting.

    [0022] These drawbacks have been addressed by EP 1 513 600 A1 providing a filter for metal filtration improving the mechanical strength and stiffness by employing a three dimensional network of graphitizable carbon bonding and fibers binding ceramic powder. Traditionally, fibers are added to ceramic and composite materials in order to improve mechanical strength and stiffness to the articles. Known fibers are either metal fibers, organic fibers such as polyester fibers, viscose fibers, polyethylene fibers, polyacrylonitrile (PAN) fibers, aramid fibers, polyamide fibers, etc., or ceramic fibers such as aluminosilicate fibers, alumina fibers or glass fibers, or carbon fibers; carbon fibers may consist of 100% carbon.

    [0023] US-A1-4265659 relates for instance to a filter with improved strength by addition of ceramic fibers to the slurry.

    [0024] Phosphate bonded alumina filters have been used in aluminum filtration. WO-A-82033339 relates to a porous ceramic filter for filtering aluminum metal. The filter is obtained by impregnation of a foam by a slurry comprising ceramic particulate preferably Al2 O3, and a binder. The described binder is an aluminum phosphate binder.

    [0025] US 3947363 relates to an alumina based ceramic foam filter for filtering of molten metals. The binder is an aluminum orthophosphate binder.

    [0026] These conventional alumina filter devices, however, cannot be used for the filtration of e.g. iron or steel due to softness and low refractoriness of the phosphate bonding.

    [0027] These drawbacks have been addressed by EP-A-159963 providing a filter that is suitable for molten steel filtration. The filter is prepared by impregnating a foam with a ceramic strip which contains a phosphate binder, squeezing off the excess slip, drying and burning the foam material at temperature of 1660° C and higher. Thereby, the ceramic filter obtained is essentially phosphate free, ceramic particulates having mutually sintered together.

    [0028] Conventional carbon filter devices are constituted by up to 50 % of a carbon matrix in which ceramic powder is imbedded as described by EP 1282477 A1. This particular patent suggests controlling the firing atmosphere of the carbon bonded filters in which air is injected at the beginning of the firing and then stopped into the firing box in order to control the level of oxygen inside the firing box. Such method is very difficult to control, tedious and liable to produce inconsistent quality of filters. Also practical experience has shown that large filters, more than 200mm in diameter cannot be made using the methods disclosed in this patent. In addition of weak mechanical strength, size limitation and inconsistent quality, filters made according to EP1282477 A1 also suffer from high oxidation rate due to the presence of high level of low oxidation resistance carbon (up to 50%). On the other hand, EP 1 421 042 A1, EP 1 511 589 A1 and EP 1 513 600 A1 disclose filters containing a graphitized bond in amounts of about 10 % with up to about 90 % ceramic. Despite the difference of these two types of filters, both suffer from inconsistency in manufacturing due to the difficulty in controlling the firing atmosphere which results in variation in mechanical strength from one filter device to another and a high reject ratio as well. They also exhibit low mechanical strength causing problems in handling and transportation. These filters also suffer from low oxidation resistance, especially filter devices containing a major carbon phase such as about 50 % carbon matrix, due to the presence of their high level of oxidizable carbon. Due to high shrinkage upon firing and low mechanical strength, filters made according to EP 1282477 A1 cannot be produced in larger sizes. The problems of low mechanical strength and friability have limited the usage of these types of filters due to the reluctance of the foundry men to use weaker filters than ceramic bonded filters which they are familiar with.
    EP 0 388 010 A1 describes filters for light metals, e.g. aluminum or magnesium. The filters comprise a cellular body formed of a composition comprising at least one fluxing agent for the light metal. The filters preferably have a melting point of 800 - 1,000 °C, more preferably 850 - 900 °C. When used filters are added to a furnace with light metal which is to be remelted and the metal is melted in the presence of an exothermic flux, the filters disintegrate allowing metal contained in them to be recovered.
    US 4,528,099 discloses a filter medium in the form of a stable body made of ceramic material and employed for filtering molten metal. The filter medium is made up of at least two effective filter layers such that a relatively thick layer of large pore diameter lies on a relatively thin layer of a small pore diameter. This arrangement aims attaining the maximum possible wetting of the interior of the filter medium.
    US 5,039,340 describes a ceramic foam filter prepared by providing an open cell flexible foam to which is applied an adhesion promoting material. The treated flexible foam is then impregnated with a ceramic slurry and then dried. The impregnated material is then heated to remove the organic component therefrom and fired at an elevated temperature to form the filter.
    The object of the present invention, therefore is to address the above described problems all together, in particular to provide filter devices, and a process of producing such filter devices, being thermally and mechanically hard and strong enough to be handled without excessive care during e.g.transport, and to withstand shock and stress of casting molten metal, including iron and steel, furthermore avoiding the need of overheating the molten metals to prevent clogging of the pores, and which may be produced and reproduced reliably with predetermined properties even in large sizes.
    The problems have been solved by a filter device for molten metal filtration comprising a major ceramic phase and a minor carbon phase bonded by a of phosphate bond.
    Without wishing to be bound by theory it is believed that the carbon phase intertwines with and influences the build-up of the phosphate bonding network, thus fortifies its otherwise soft nature to an extent that exhibits both high hardness, structural mechanical resistance, and elasticity to withstand the challenges of the above mentioned problems. A combination of these mutually influencing structural constituents was not expected to result in the synergistic characteristics of the filter devices of the invention. It results that the filter of the invention does not need to be fired at high temperature while being also suitable for molten steel filtration. Major ceramic phase in the sense of the present invention means alumina, silica, zirconia, zircon, magnesia, graphite, mullite, silicon carbide, clay, metallic borides such as zirconium diboride, or a combination of the above in an amount of at least 50 parts by weight of the filter device.
    It is essential to understand that a filter containing only a ceramic phase bonded by phosphate bond cannot be used for steel filtration due to low refractoriness of the phosphate bond. Hence it is essential to have a carbon phase which makes the filter suitable for steel filtration usage.
    The phosphate bonded with minor carbon phase filters according to the present invention exhibit a relatively low thermal mass. A result of this is that there is no need to overheat the molten metal to be filtered reducing energy consumption. The mechanical strength of a filter device according to the invention is as high as that of a purely ceramic bonded filter. The filter devices may be produced consistently with reliable high quality standards. The filter devices are easy to handle and safe during transportation. They exhibit high oxidation resistance. Due to their higher strength they can be produced in even larger size, which means they are open for further unforeseen applications in e.g. steel filtration.
    The ceramic phase of the filter device of the invention comprises or in particular consists of alumina, zirconia, zircon, silica, magnesia, any type of clay, talcum, mica, silicon, carbide, silicon nitride and the like or a mixture thereof, or graphite, in particular brown fused alumina. In the filter device according to the invention the phosphate constitutes 1 to 15 parts by weight, in particular 1 to 10 parts by weight, more specifically 5 parts by weight.
    Said carbon phase constitutes 1 to 15 parts by weight, in particular 1 to 10 parts by weight more specifically 7 parts by weight of the filter device according to the invention.
    The minor carbon phase comprises or in particular consists of tar, pitch, phenolic resin, synthetic coke, semi-coke products, graphite, sintered carbon, anthracite, lignin, sintered coke products, organic polymers and a mixture or combinations thereof. In a particularly preferred embodiment, the filter device according to the invention may furthermore contain ceramic and/or organic fibers.
    Said ceramic fibers are preferably selected from the group consisting of alumina fibers, silica fibers, aluminosilicate fibers, carbon fibers and mixtures thereof. Said organic fibers are preferably selected from the group consisting of polyester fibers, polyacrylnitrile fibers, polyethylene fibers, polyamide fibers, viscose fibers, aramid fibers, and mixtures thereof.
    Adding 0.1 up to 20 parts by weight, in particular 0.2 up to 10 parts by weight, more particular 4 parts by weight of fibers to the filter device recipes contributes to a significant improvement in the performance of the filter devices. The improvement is mainly due to an increase of mechanical strength, improved stiffness, higher impact resistance and better thermal shock. The improvement manifests itself by an increase in filtration capacity, better mechanical integrity and less contamination to the steel casting. Due to the outstanding mechanical strength of the phosphate bonding in combination with carbon and fibers at high temperature no softening or bending can take place during the process of metal casting. This contributes to an even cleaner metal cast.
    Phosphate bonded filters further including carbon phase and fibers according to the present invention offer the following advantages compared with glassy carbon bonded filters:
    • High oxidation resistance
    • High mechanical strength - High impact resistance
    • Low microporosity
    • Low specific surface.
    • Structural flexibility
    • Non-brittle behavior - Economical use.
    • Ease of manufacturing.
    • Consistent quality.
    The inventor has found that addition of any of the types of fibers to the phosphate bonded with minor carbon phase filter devices causes a further significant improvement in the mechanical strength of the filters as well as improvement in the impact resistance and thermal shock.

    [0029] The inventor has found that the beneficial effect of the addition of fibers depends on the amount of fibers added, length of the fibers, nature and type of fiber devices added. The higher the level of fibers added the stronger the filter devices become. However, a very high level of fibers is not desirable because it has a negative effect on the rheology of the slurry. Best results are obtained from incorporating carbon fiber followed by ceramic fibers. On the other hand, carbon fibers are the most expensive while organic fibers are the cheapest. Organic fibers are the most economic to use since they are added at much lower level than either carbon or ceramic fibers (less than 2 parts by weight). However, organic fibers interfere with the rheology of the slurry more than the ceramic or the carbon fibers. The form of fibers is either chopped or bulk fibers to be added during mixing of the filter ingredients. No extra mixing technique is required.

    [0030] The length of the fibers used according to the present invention, all in the range of 0.1 to 5 mm, preferably have a length from 0.1 mm to 1.0 mm.

    [0031] In a further embodiment of the present invention the ceramic filter devices for molten metal filtration are produced in a first process comprising the steps of

    a) impregnating a foam made of thermoplastic material with a slurry containing a phosphate precursor, a carbon source, ceramic powder, optionally ceramic or carbon fibers, and optionally other additives,

    b) drying, optionally followed by one or two impregnations of a slurry as described in a), followed by final drying,

    c) firing the impregnated foam in non-oxidizing and/or reducing atmosphere at a temperature in the range of from 500 to 1000°C, in particular from 600 ° C to 900°C.



    [0032] Said phosphate precursor is preferably selected from the group consisting of phosphoric acid, sodium phosphate, ortho and mono aluminum phosphate, calcium phosphate, magnesium phosphate, phosphate containing salts, phosphate containing compounds and mixtures thereof.

    [0033] Preferably a thermoplastic foam containing polyurethane is utilized for the production of filter devices according to the present invention.

    [0034] It is advantageous to mix fibers if necessary and carbon source prior to impregnating the foam with ceramic powder, water, organic binder, and rheology control additives, which in one embodiment of the invention may be present in an amount of up to 2 parts by weight, preferably in a range of from 0.1 to 2 parts by weight.

    [0035] In another embodiment of the present invention a second type of ceramic filter is produced by a process comprising the steps of
    1. a) pressing a semi-damp mixture comprising phosphate precursor, carbon source, ceramic powder and optionally other additives including fibers in a hydraulic press,
    2. b) pressing the mixture in the shape of a disk or a block,
    3. c) perforating the pressed mixture of step b) in combined or separate steps,
    4. d) firing the perforated article of step c) in non-oxidizing and/or reducing atmosphere at a temperature in the range of from 500°C to 1000°C, in particular from 600°C to 900°C.


    [0036] The source of the carbon, phase, is preferably a high melting pitch (HMP) because it offers optimal properties with respect to workability, cost and product quality. However, it must be noted that other carbon source can also be used to produce carbon source materials according to the present invention, such as synthetic or natural resins, graphite, coke, polymers, and sinterable carbon as long as it gives a carbon phase. The choice of carbon phase is determined by its health and safety aspects, the level of volatiles during firing, carbon yield, compatibility with other constituents, water compatibility, cost, etc. It is preferable to select a carbon source that gives high carbon yield, has low water absorption, free from environment pollution, safe to handle and use, low cost, and water compatible.

    [0037] In further embodiments of the present invention these processes use a slurry (for the production of a phosphate bonded with carbon phase filter of the first type) or a semi-damp mixture (for the production of the phosphate bonded with carbon phase ceramic filter of the second type) that comprises:

    phosphate precursor in the amount of 1 to 15 parts by weight,

    carbon phase source in the amount of 5 to 90 parts by weight,

    ceramic, in particular alumina powder in the amount of 5 to 90 parts by weight,

    anti-oxidation material in the amount of 0 to 80 part by weight,

    fibers in the amount of 0 to 20 parts by weight,

    organic binder in the amount of from 0 to 10, in particular 0.2 to 2 parts by weight and,

    dispersion agent in the amount of from 0 to 4, in particular 0.1 to 2 parts by weight.



    [0038] Water is added in a quantity as required. For the purpose of slurry-preparation, 15 parts 40 by weight of water are necessary depending on the nature of the ceramic filler materials and the source of carbon phase. For the semi-damp mixture used for pressing, water is necessary in an amount of from 2 to 10 parts by weight, depending of the nature of the ceramic filler materials and the source of carbon phase.

    [0039] The ceramic powder may comprise or preferably consists of alumina, particularly brown fused alumina, zirconia, zircon, silica, magnesia, any type of clay, talcum, mica, silicon, carbide, silicon nitride and the like or a mixture thereof.

    [0040] Preferred anti-oxidation materials according to the present invention are metallic powder such as steel, iron, bronze, silicon, magnesium, aluminum, boron, zirconium boride, calcium boride, titanium boride and the like, and/or glass frits containing 20 to 30 parts by weight by weight of boric oxide.

    [0041] Organic binders that are preferred according to the present invention are green binders such as polyvinyl alcohol (PVA), starch, gum arabic, sugar or the like or any combination thereof. These binders may be added to improve the mechanical properties of the filter devices during handling prior to firing. Starch and gum arabic may also be used as thickening agent

    [0042] Preferred dispersion agents according to the present invention are Despex®, ligninsulphonate or the like, or any combination thereof which help to reduce the water level in the slurry and improve the rheology.

    [0043] In a further embodiment of the present invention the slurry or semi- damp mixture may comprise a plasticizer such as polyethylene glycol (preferred molecular weight: 500 to 10000) in the range of from 0 to 2 parts by weight, preferably 0.5 to 1 part by weight and/or an anti-foam agent such as silicon anti-foam in the range of from 0 to 1 part by weight, preferably 0,1 to 0,5 parts by weight.

    [0044] The filter of the present invention is also suitable for the filtration of molten steel because of its outstanding properties.

    [0045] The invention is further illustrated by the following examples:

    [0046] As graphitizable high melting pitch (HMP) a coal-tar pitch was used having a glass transition temperature of 210°C, a cooking value of 85 %, an ash value of 0,5 % being commercially available as a fine powder.

    Example 1:


    A: Filters according to the first type:



    [0047] A polyurethane foam was cut to the required size and impregnated with a slurry comprising :
    Alumina powder 88 parts by weight (ppw)
    Aluminum phosphate 5 ppw
    Carbon (HMP) 7 ppw
    Organic binder PVA 1.0 ppw
    Deflaculant Despex® 0.2 ppw
    Anti-foam agent Organo silicon Derivitives And water. 0.1 ppw
    The filter was either impregnated manually or by a machine containing rollers used for this purpose. After impregnation the filter was dried using hot air and/or a microwave drier. A further coating was applied by a spraying air gun. The filter device was dried once more and transferred to a furnace and was fired in inert atmosphere at a temperature in the range of from 600°C to 900°C for 20 to 120 min at a heating rate in the range of from 1 °C/min to 10°C/min. Said filter device had a modulus of rupture of 1 MPa. The heavier the filter the higher is the strength. This filter device was significantly lighter than those made from only ceramic or glass bonded material. It was also signficantly cheaper. During field trials it was found that no superheat is required when using this filter since extra heat was generated upon contact of molten metal with the filter device (exothermic reaction).

    Example 2



    [0048] A filters according to example 1 was prepared with a slurry comprising:
    Alumina powder 84 parts by weight (ppw)
    aluminum phosphate 5 ppw
    Carbon (HMP) 7 ppw
    Organic binder PVA 1.0 ppw
    Deflaculant Despex® 0.2 ppw
    Anti-foam agent Organo silicon Derivitives 0.1 ppw
    Carbon fibers 4 ppw
    And water.  
    Said filter device had an increased modulus of rupture with respect to the filter of the example 1.
    A modulus of rupture greater than 3 MPa has been measured. During field trials it was found that no superheat is required when using this filter since extra heat was generated upon contact of molten metal with the filter device (exothermic redaction). Depending on the fiber content, modulus of rupture up to 6 MPa can be measured.

    Example 3:


    B: Filter according to the second type:



    [0049] A mixture according to Example 1 comprising 4 ppw of water was prepared in a Hobart or Eirich mixer. The aim of the mixing process was to make a semi-damp and homogenous mixture. The mixture was aged for 24 hours prior to pressing. A predetermined weight of the mixture was placed in a steel mold containing vertical pins as is described in EP 1 511 589 A1. Pressing the mix produced a perforated article. This perforated article was then removed form the mold, dried and fired in a non-oxidizing or reducing atmosphere at a temperature of 900°C for 1h with a heating rate of 2°C/min.


    Claims

    1. A filter device for molten metal filtration comprising a major ceramic phase in an amount of at least 50 parts by weight and a minor carbon phase in an amount of 1 to 15 parts by weight bonded by phosphate bond present in an amount of 1 to 15 parts by weight, wherein further the ceramic phase comprises alumina, zirconia, zircon, silica, magnesia, any type of clay, talcum, mica, silicon carbide, silicon nitride or a mixture thereof, or graphite.
     
    2. The filter device of claim 1, wherein the ceramic phase comprises brown fused alumina.
     
    3. The filter device of claim 1 or 2, wherein said phosphate constitutes 1 to 10 parts by weight, more specifically 5 parts by weight.
     
    4. The filter device of any one of claims 1 to 3, wherein said carbon phase constitutes 1 to 10 parts by weight, more specifically 7 parts by weight.
     
    5. The filter device of any of claims 1 to 4 furthermore containing ceramic and/or organic fibers.
     
    6. The filter device of claim 5, wherein said ceramic fibers are selected from the group consisting of alumina fibers, silica fibers, aluminosilicate fibers, carbon fibers and mixtures thereof.
     
    7. The filter device of claim 5, wherein the organic fibers are selected from the group consisting of polyester fibers, polyacrylnitrile fibers, polyethylene fibers, polyamide fibers, viscose fibers, aramid fibers, and mixtures thereof.
     
    8. The filter device of anyone of claims 5 to 7, characterized in that it contains an amount of 0.1 to 20 parts in particular 0.2 to 10 parts by weight of said fibers, more preferably 4 parts by weight.
     
    9. The filter device of anyone of claims 5 to 8, characterized in that the length of the fibers is in the range of 0.1 mm to 5 mm, preferably 0.1 mm to 1 mm.
     
    10. A method for producing ceramic filter devices for molten metal filtration according to one of claims 1 to 9 comprising the steps of

    a. impregnating a foam made of thermoplastic material with a slurry containing a phosphate precursor, a carbon phase precursor, ceramic powder, optionally fibers and optionally other additives,

    b. drying, optionally followed by one or two impregnations of the same slurry, followed by final drying,

    c. firing the impregnated foam in non-oxidizing and/or reducing atmosphere at a temperature in the range of from 500 to 1000 °C, in particular from 600 °C to 900 °C.


     
    11. The method of claim 10 , wherein said phosphate precursor is selected from the group consisting of phosphoric acid, sodium phosphate, ortho and mono aluminum phosphate, calcium phosphate, magnesium phosphate, phosphate containing salts, phosphate containing compounds and mixtures thereof.
     
    12. The method of claim 10 or 11, wherein said carbon phase precursor is converted at least partially or fully to a stable carbon phase.
     
    13. The method of any one of claims 10 to 12 utilizing a thermoplastic foam containing polyurethane.
     
    14. The method of any one of claims 10 to 13 wherein the phosphate precursor and the carbon phase precursor is mixed with fibers, ceramic powder, water, organic binder, and rheology control additives prior to impregnating the foam.
     
    15. A method for producing ceramic filter devices for molten metal filtration according to one of claims 1 to 9 comprising the steps of

    a. pressing a semi-damp mixture comprising phosphate precursor, carbon phase precursor, ceramic powder and optionally other additives including fibers in a hydraulic press,

    b. pressing the mixture in the shape of a disk or a block,

    c. perforating the pressed mixture of step b) in combined or separate steps,

    d. firing the perforated article of step c) in non-oxidizing and/or reducing atmosphere at a temperature in the range of from 500 °C to 1000 °C, in particular from 600 °C to 900 °C.


     
    16. The method of any one of claims 10 to 15 wherein graphite, coke, pitch, particularly high melting pitch (HMP) and/or resin is used as the carbon phase source.
     
    17. The method of any one of claims 10 to 16 wherein a slurry or semi-damp mixture is used comprising:

    - phosphate precursor in an amount of 1 to 15 parts by weight,

    - carbon phase source in an amount of 5 to 90 parts by weight,

    - ceramic powder in an amount of 5 to 90 parts by weight,

    - anti-oxidation material in an amount of 0 to 80 part by weight,

    - fibers in an amount of 0 to 20 parts by weight,

    - organic binder in an amount of 0 to 10, in particular 0.2 to 2 parts by weight and,

    - dispersion agent in an amount of 0 to 4, in particular 0.1 to 2 parts by weight.


     
    18. The method of claim 17 wherein said ceramic powder comprises or preferably consists of alumina, particularly brown fused alumina, zirconia, zircon, silica, magnesia, any type of clay, talcum, mica, silicon carbide, silicon nitride or a mixture thereof.
     
    19. The method of claim 17 or 18 wherein metallic powders such as steel, iron, bronze, silicon, magnesium, aluminum, boron, zirconium boride, calcium boride, titanium boride and the like, and/or glass frits containing 20 to 30 parts by weight of boric oxide are used as the antioxidation material.
     
    20. The method of any one of claims 17 to 19 wherein a green binder such as PVA, starch, gums, sugar or a combination thereof is used as the organic binder.
     
    21. The method of any one of claims 17 to 20 wherein ligninsulphonate is used as the dispersion agent.
     
    22. The method of any one of claims 17 to 21 wherein a slurry or semi-damp mixture is used that further comprises: a plasticizer in the amount of 0 to 2 parts by weight, and/or an anti-foam agent in an amount of 0 to 1 part by weight.
     
    23. Use of the filter devices of any one of claims 1 to 9 for the filtration of molten steel.
     


    Ansprüche

    1. Filtervorrichtung zur Filtration von geschmolzenem Metall, umfassend eine keramische Hauptphase in einer Menge von wenigstens 50 Gewichtsteilen und eine Kohlenstoffnebenphase in einer Menge von 1 bis 15 Gewichtsteilen, die durch Phosphatbindung, vorhanden in einer Menge von 1 bis 15 Gewichtsprozent, gebunden ist, wobei weiterhin die keramische Phase Aluminiumoxid, Zirkonoxid, Zirkon, Siliziumdioxid, Magnesiumoxid, jede Art von Ton, Talkum, Glimmer, Silizium Carbid, Siliziumnitrid oder eine Mischung davon umfasst.
     
    2. Filtervorrichtung nach Anspruch 1, wobei die keramische Phase braunen Schmelzkorund umfasst.
     
    3. Filtervorrichtung nach Anspruch 1 oder 2, wobei das Phosphat 1 bis 10 Gewichtsteile, insbesondere 5 Gewichtsteile ausmacht.
     
    4. Filtervorrichtung nach einem der Ansprüche 1 bis 3, wobei die Kohlenstoffphase 1 bis 10 Gewichtsteile, insbesondere 7 Gewichtsteile ausmacht.
     
    5. Filtervorrichtung nach einem der Ansprüche 1 bis 4, die weiterhin keramische und /oder organische Fasern enthält.
     
    6. Filtervorrichtung nach Anspruch 5, wobei die keramischen Fasern ausgewählt sind aus der Gruppe, bestehend aus Aluminiumoxidfasern, Siliziumdioxidfasern, Aluminosilicatfasern, Kohlenstofffasern und Mischungen davon.
     
    7. Filtervorrichtung nach Anspruch 5, wobei die organischen Fasern ausgewählt sind aus der Gruppe, bestehend aus Polyesterfasern, Polyacrylnitrilfasern, Polyethylenfasern, Polyamidfasern, Viscosefasern, Aramidfasern und Mischungen davon.
     
    8. Filtervorrichtung nach einem der Ansprüche 5 bis 7 dadurch gekennzeichnet, dass sie eine Menge von 0,1 bis 20 Gewichtsteile, insbesondere 0,2 bis 10 Gewichtsteile, besonders bevorzugt 4 Gewichtsteile der Fasern enthält.
     
    9. Filtervorrichtung nach einem der Ansprüche 5 bis 8 dadurch gekennzeichnet, dass die Länge der Fasern im Bereich von 0,1 mm bis 5 mm, vorzugsweise 0,1 mm bis 1 mm liegt.
     
    10. Verfahren zur Herstellung keramischer Filtervorrichtungen zur Filtration von geschmolzenem Metall nach einem der Ansprüche 1 bis 9, umfassend die Schritte des

    a. Imprägnierens eines aus einem thermoplastischen Material hergestellten Schaums mit einer Aufschlämmung, die einen Phosphatvorläufer, einen Kohlenstoffphasenvorläufer, keramisches Pulver, gegebenenfalls Fasern und gegebenenfalls andere Zusatzstoffe enthält,

    b. Trocknens, gegebenenfalls gefolgt von einer oder zwei Imprägnierungen mit derselben Aufschlämmung, gefolgt von einer abschließenden Trocknung,

    c. Brennens des imprägnierten Schaums in nichtoxidierender und/oder reduzierender Atmosphäre bei einer Temperatur im Bereich von 500 bis 1000 °C, insbesondere von 600 °C bis 900 °C.


     
    11. Verfahren nach Anspruch 10, wobei der Phosphatvorläufer ausgewählt ist aus der Gruppe, bestehend aus Phosphorsäure, Natriumphosphat, ortho- und mono-Aluminiumphosphat , Calciumphosphat, Magnesiumphosphat, Phosphat enthaltenden Salzen, Phosphat enthaltenden Verbindungen und Mischungen davon.
     
    12. Verfahren nach Anspruch 10 oder 11, wobei der Kohlenstoffphasenvorläufer wenigstens teilweise oder vollständig zu einer stabilen Kohlenstoffphase umgewandelt wird.
     
    13. Verfahren nach einem der Ansprüche 10 bis 12 unter Verwendung eines thermoplastischen Schaums, der Polyurethan enthält.
     
    14. Verfahren nach einem der Ansprüche 10 bis 13, wobei der Phosphatvorläufer und der Kohlenstoffphasenvorläufer vor dem Imprägnieren des Schaums mit Fasern, keramischem Pulver, Wasser, organischem Bindemittel und Zusatzstoffen zur Kontrolle der Rheologie gemischt wird.
     
    15. Verfahren zur Herstellung keramischer Filtervorrichtungen zur Filtration von geschmolzenem Metall nach einem der Ansprüche 1 bis 9, umfassend die Schritte des

    a. Pressens einer halbfeuchten Mischung, umfassend einen Phosphatvorläufer, einen Kohlenstoffphasenvorläufer, keramisches Pulver und gegebenenfalls andere Zusatzstoffe, einschließlich Fasern, in einer hydraulischen Presse,

    b. Pressens der Mischung in die Form einer Scheibe oder eines Blocks,

    c. Perforierens der gepressten Mischung aus Schritt b) in kombinierten oder getrennten Schritten,

    d. Brennens des perforierten Gegenstands aus Schritt c) in nichtoxidierender und/oder reduzierender Atmosphäre bei einer Temperatur im Bereich von 500 °C bis 1000 °C, insbesondere von 600 °C bis 900 °C.


     
    16. Verfahren nach einem der Ansprüche 10 bis 15, wobei als Kohlenstoffphasenquelle Graphit, Koks, Pech, insbesondere hochschmelzendes Pech (HMP) und/oder Harz verwendet wird.
     
    17. Verfahren nach einem der Ansprüche 10 bis 16, wobei eine Aufschlämmung oder halbfeuchte Mischung verwendet wird, umfassend:

    - einen Phosphatvorläufer in einer Menge von 1 bis 15 Gewichtsteilen,

    - eine Kohlenstoffphasenquelle in einer Menge von 5 bis 90 Gewichtsteilen,

    - keramisches Pulver in einer Menge von 5 bis 90 Gewichtsteilen,

    - Antioxidationsmaterial in einer Menge von 0 bis 80 Gewichtsteilen,

    - Fasern in einer Menge von 0 bis 20 Gewichtsteilen,

    - organisches Bindemittel in einer Menge von 0 bis 10, insbesondere 0,2 bis 2 Gewichtsteilen und,

    - ein Dispersionsmittel in einer Menge von 0 bis 4, insbesondere 0,1 bis 2 Gewichtsteilen.


     
    18. Verfahren nach Anspruch 17, wobei das keramische Pulver Aluminiumoxid, insbesondere braunen Schmelzkorund, Zirkonoxid, Zirkon, Siliziumdioxid, Magnesiumoxid, jede Art von Ton, Talkum, Glimmer, Silizium Carbid, Siliziumnitrid oder eine Mischung davon umfasst oder vorzugsweise daraus besteht.
     
    19. Verfahren nach Anspruch 17 oder 18, wobei Metallpulver, wie zum Beispiel Stahl, Eisen, Bronze, Silizium, Magnesium, Aluminium, Bor, Zirkoniumborid, Calciumborid, Titanborid und dergleichen und/oder Glasfritten, die 20 bis 30 Gewichtsteile Boroxid enthalten, als Antioxidationsmaterial verwendet werden.
     
    20. Verfahren nach einem der Ansprüche 17 bis 19, wobei ein Grünbinder, wie zum Beispiel PVA, Stärke, Gummis, Zucker oder eine Kombination davon als organisches Bindemittel verwendet wird.
     
    21. Verfahren nach einem der Ansprüche 17 bis 20, wobei Ligninsulfonat als Dispersionsmittel verwendet wird.
     
    22. Verfahren nach einem der Ansprüche 17 bis 21, wobei eine Aufschlämmung oder halbfeuchte Mischung verwendet wird, die weiterhin umfasst: einen Weichmacher in der Menge von 0 bis 2 Gewichtsteilen, und/oder ein Antischaummittel in einer Menge von 0 bis 1 Gewichtsteilen.
     
    23. Verwendung der Filtervorrichtungen nach einem der Ansprüche 1 bis 9 zur Filtration von geschmolzenem Stahl.
     


    Revendications

    1. Dispositif de filtration pour la filtration de métal fondu comprenant une phase de céramique majeure en une quantité d'au moins 50 parties en poids et une phase de carbone mineure en une quantité de 1 à 15 parties en poids liées par une liaison phosphate présente en une quantité de 1 à 15 parties en poids, dans lequel la phase de céramique comprend en outre de l'alumine, de la zircone, du zircon, de la silice, de la magnésie, tout type d'argile, du talc, du mica, du carbure, du silicium, du nitrure de silicium ou un mélange de ceux-ci, ou du graphite.
     
    2. Dispositif de filtration selon la revendication 1, dans lequel la phase de céramique comprend de l'alumine fusionnée marron.
     
    3. Dispositif de filtration selon la revendication 1 ou 2, dans lequel ledit phosphate constitue 1 à 10 parties en poids, plus spécifiquement 5 parties en poids.
     
    4. Dispositif de filtration selon l'une quelconque des revendications 1 à 3, dans lequel ladite phase de carbone constitue 1 à 10 parties en poids, plus spécifiquement 7 parties en poids.
     
    5. Dispositif de filtration selon l'une quelconque des revendications 1 à 4, contenant en outre des fibres de céramique et/ou organiques.
     
    6. Dispositif de filtration selon la revendication 5, dans lequel lesdites fibres de céramique sont sélectionnées parmi le groupe constitué de fibres d'alumine, de fibres de silice, de fibres d'aluminosilicate, de fibres de carbone et de mélanges de celles-ci.
     
    7. Dispositif de filtration selon la revendication 5, dans lequel les fibres organiques sont sélectionnées parmi le groupe constitué de fibres de polyester, de fibres de polyacrylonitrile, de fibres de polyéthylène, de fibres de polyamide, de fibres de viscose, de fibres d'aramide et de mélanges de celles-ci.
     
    8. Dispositif de filtration selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'il contient une quantité de 0,1 à 20 parties, notamment 0,2 à 10 parties en poids desdites fibres, plus préférablement 4 parties en poids.
     
    9. Dispositif de filtration selon l'une quelconque des revendications 5 à 8, caractérisé en ce que la longueur des fibres est dans la plage de 0,1 mm à 5 mm, de préférence 0,1 mm à 1 mm.
     
    10. Procédé de production de dispositifs de filtration céramiques pour la filtration de métal fondu selon l'une quelconque des revendications 1 à 9 comprenant les étapes de

    a. imprégnation d'une mousse fabriquée en un matériau thermoplastique avec une pâte contenant un précurseur de phosphate, un précurseur de phase de carbone, de la poudre céramique, en option des fibres et en option d'autres additifs,

    b. séchage, en option suivi d'une ou deux imprégnations de la même pâte, suivies d'un séchage final,

    c. cuisson de la mousse imprégnée dans une atmosphère non oxydante et/ou réductrice à une température dans la plage de 500 à 1000°C, notamment de 600°C à 900°C.


     
    11. Procédé selon la revendication 10, dans lequel ledit précurseur de phosphate est sélectionné parmi le groupe constitué d'acide phosphorique, de phosphate de sodium, de phosphate d'alumine ortho et mono, de phosphate de calcium, de phosphate de magnésium, de sels contenant du phosphate, de composés contenant du phosphate et de mélanges de ceux-ci.
     
    12. Procédé selon la revendication 10 ou 11, dans lequel ledit précurseur de phase de carbone est converti au moins partiellement ou entièrement en une phase de carbone stable.
     
    13. Procédé selon l'une quelconque des revendications 10 à 12 utilisant une mousse thermoplastique contenant du polyuréthane.
     
    14. Procédé selon l'une quelconque des revendications 10 à 13, dans lequel le précurseur de phosphate et le précurseur de phase de carbone sont mélangés à des fibres, de la poudre céramique, de l'eau, un liant organique et des additifs de contrôle de rhéologie avant l'imprégnation de la mousse.
     
    15. Procédé de production de dispositifs de filtration céramiques pour la filtration de métal fondu selon l'une quelconque des revendications 1 à 9 comprenant les étapes de

    a. pressage d'un mélange semi-humide comprenant un précurseur de phosphate, un précurseur de phase de carbone, de la poudre céramique et en option d'autres additifs y compris des fibres, dans une presse hydraulique,

    b. pressage du mélange sous la forme d'un disque ou d'un bloc,

    c. perforation du mélange pressé de l'étape b) dans des étapes combinées ou séparées,

    d. cuisson de l'article perforé de l'étape c) dans une atmosphère non oxydante et/ou réductrice à une température dans la plage de 500°C à 1000°C, notamment de 600°C à 900°C.


     
    16. Procédé selon l'une quelconque des revendications 10 à 15, dans lequel du graphite, du coke, du brai, notamment du brai à point de fusion élevé (HMP) et/ou de la résine est utilisé comme source de phase de carbone.
     
    17. Procédé selon l'une quelconque des revendications 10 à 16, dans lequel une pâte ou un mélange semi-humide est utilisé comprenant :

    - un précurseur de phosphate en une quantité de 1 à 15 parties en poids,

    - une source de phase de carbone en une quantité de 5 à 90 parties en poids,

    - une poudre céramique en une quantité de 5 à 90 parties en poids,

    - un matériau antioxydant en une quantité de 0 à 80 parties en poids,

    - des fibres en une quantité de 0 à 20 parties en poids,

    - un liant organique en une quantité de 0 à 10, notamment 0,2 à 2 parties en poids et

    - un agent de dispersion en une quantité de 0 à 4, notamment 0,1 à 2 parties en poids.


     
    18. Procédé selon la revendication 17, dans lequel ladite poudre céramique comprend ou est de préférence constituée d'alumine, notamment d'alumine fusionnée marron, de zircone, de zircon, de silice, de magnésie, de tout type d'argile, de talc, de mica, de carbure, de silicium, de nitrure de silicium ou d'un mélange de ceux-ci.
     
    19. Procédé selon la revendication 17 ou 18, dans lequel des poudres métalliques telles que de l'acier, du fer, du bronze, du silicium, du magnésium, de l'alumine, du bore, du borure de zirconium, du borure de calcium, du borure de titane et similaire, et/ou des frittes de verre contenant 20 à 30 parties en poids d'oxyde borique sont utilisées comme matériau antioxydant.
     
    20. Procédé selon l'une quelconque des revendications 17 à 19, dans lequel un liant vert tel que du PVA, de l'amidon, des gommes, du sucre ou une combinaison de ceux-ci est utilisé comme liant organique.
     
    21. Procédé selon l'une quelconque des revendications 17 à 20, dans lequel du sulfonate de lignine est utilisé comme agent de dispersion.
     
    22. Procédé selon l'une quelconque des revendications 17 à 21, dans lequel une pâte ou un mélange semi-humide est utilisé, lequel comprend en outre : un plastifiant en la quantité de 0 à 2 parties en poids et/ou un antimousse en une quantité de 0 à 1 partie en poids.
     
    23. Utilisation des dispositifs de filtration selon l'une quelconque des revendications 1 à 9 pour la filtration d'acier fondu.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description