[0001] The present invention relates to filter devices for molten metal filtration, a method
for producing such filter devices and the use of such filter devices for the filtration
of molten steel.
[0002] For the processing of molten metals it is desirable to remove exogenous intermetallic
inclusions such as from impurities of the raw materials, from slag, dross and oxides
which form on the surface of the melt and from small fragments of refractory materials
that are used to form the chamber or vessel in which the molten metal melt is formed.
[0003] Removal of these inclusions forms a homogenous melt that insures high quality of
the products especially in the casting of steel, iron and aluminum metals. Currently,
ceramic filter devices are widely used due to their high ability to withstand extreme
thermal shock, due to their resistance to chemical corrosion and their ability to
withstand mechanical stresses.
[0004] The production of such ceramic filter devices generally involves the mixing of ceramic
powder with suitable organic binders and water in order to prepare a paste or slurry.
The slurry is used to impregnate polyurethane foam, which subsequently is dried and
fired at a temperature in the range of from 1000 to 1700°C. By this treatment the
combustible material is burnt off during sintering to produce a porous body.
US-A-2,360,929 and
US-A-2,752,258 may serve as examples for the common procedure.
[0005] Also, an open pore filter device is known, that instead of a random distribution
of irregular interconnecting passages consists of a series of parallel ducts passing
through the material as generally being made by hydraulic pressing a damp ceramic
powder and organic binder into a mold containing perpendicular pins. A perforated
structure is thus obtained which can be in the form of a disk or block. The perforated
article is then fired at a temperature in the range of from 1000 to 1700°C depending
on the final application to produce a perforated disc. During firing a ceramic and/or
glassy bond is developed.
[0006] WO-A1-0140414 relates to a porous coal-based material for use in various applications such as construction,
metal processing or conductors. The material is produced by heating powdered coal
particulates in a mould under a non-oxidizing atmosphere. The document suggests the
use of a porous coal-based product in filtering of molten aluminum metal as a replacement
for the ceramic foam filters. A coal based filter is however mechanically weak.
[0007] EP A2 0 251 634 describes a process for making defined porous ceramic bodies for metal filtering
purposes, having smooth walled cells formed by the pore formers, and pores with rounded
edges, which interconnect the cells. The pore formers are volatilized and removed
from the ceramic in the production process.
[0008] US-A-5,520,823 relates to filter devices for filtering molten aluminum only. The bounding is obtained
using borosilicate glass. Firing is carried out in air and a considerable amount of
graphite would be lost due to oxidation by air.
[0009] Generally speaking, filter devices used for aluminum filtration are usually fired
at about 1200°C while those intended for filtration of iron are fired at temperatures
of 1450°C and for steel at above 1600°C. Ceramic zirconia filter devices fired at
approximately 1700°C are also conventionally employed in steel filtration.
[0010] Despite their widespread use for metal filtration ceramic filter devices of the above
mentioned types have several drawbacks that limit their applicability.
[0011] Ceramic filter devices, although preheated, tend to be clogged by freezing particles
on the first contact with the molten metal. For this purpose usually superheated molten
metal, that is metal at a temperature of about 100°C over liquid temperature, is used
for casting to prevent dogging of the filter devices. This practice is extreme wasteful
in terms of energy and cost and any improvement that reduces processing temperature
of the molten metal is of great benefit Carbon coatings have been applied in the prior
art on the surface of ceramic filter devices to reduce the thermal mass of the part
that comes into direct contact with the molten metal.
[0012] Exothermically reacting thermite material applied to a carbon-coated surface of the
ceramic filter device has been proposed by
EP 0 463 234 B1, The latter solution, while reducing the temperature necessary for the flow of the
molten metal, adds to the cost of production of the filter devices and very narrowly
limits the applicability since the thermite coating has to be in compliance with the
type of molten metal for which it is used.
[0013] Anyway, both carbon and thermite coating serve in overcoming the drawback of high
thermal mass of the ceramic fitter device while the challenge of several additional
disadvantages is not met.
[0014] Ceramic and glassy type bonds tend to soften and creep at high temperature very often
resulting in erosion of the filter device and subsequent contamination of the melt.
[0015] Cracking due to thermal shock or chemical (reductive) corrosion by the hot metal
melt is a problem often encountered with ceramic and glass bonded filter devices.
[0016] The need for extremely high firing temperatures, especially in the case of ceramics
intended for steel filtration, is a severe drawback of conventional ceramic filter
devices which is even worse when the need for high cost ceramic raw material is considered.
[0017] In addition, the use of zirconia with its relatively strong background radiation
is hazardous and should be avoided.
[0018] EP 1 421 042 A1 relates to a filter device for molten metal filtration comprising a bonded network
of graphitized carbon and its use for the filtration of molten steel. However these
filters are relatively weak and suffer from low mechanical strength.
[0019] EP 1 511 589 A1 relates to a filter device comprising a bonded network of graphitized carbon for
molten steel filtration characterized by the presence of at least two sieve plates
spaced apart from each other, in particular providing a reservoir chamber.
[0020] The filter devices according to these documents have a limited mechanical strength
which causes problems during transportation and use and limit the capacity of the
filters in withstanding the pressure of molten metal on it.
[0021] Also these filter devices are friable and tend to break into bits which may fall
into the mold prior to casting causing contamination of the casting.
[0022] These drawbacks have been addressed by
EP 1 513 600 A1 providing a filter for metal filtration improving the mechanical strength and stiffness
by employing a three dimensional network of graphitizable carbon bonding and fibers
binding ceramic powder. Traditionally, fibers are added to ceramic and composite materials
in order to improve mechanical strength and stiffness to the articles. Known fibers
are either metal fibers, organic fibers such as polyester fibers, viscose fibers,
polyethylene fibers, polyacrylonitrile (PAN) fibers, aramid fibers, polyamide fibers,
etc., or ceramic fibers such as aluminosilicate fibers, alumina fibers or glass fibers,
or carbon fibers; carbon fibers may consist of 100% carbon.
[0023] US-A1-4265659 relates for instance to a filter with improved strength by addition of ceramic fibers
to the slurry.
[0024] Phosphate bonded alumina filters have been used in aluminum filtration.
WO-A-82033339 relates to a porous ceramic filter for filtering aluminum metal. The filter is obtained
by impregnation of a foam by a slurry comprising ceramic particulate preferably Al
2 O
3, and a binder. The described binder is an aluminum phosphate binder.
[0025] US 3947363 relates to an alumina based ceramic foam filter for filtering of molten metals. The
binder is an aluminum orthophosphate binder.
[0026] These conventional alumina filter devices, however, cannot be used for the filtration
of e.g. iron or steel due to softness and low refractoriness of the phosphate bonding.
[0027] These drawbacks have been addressed by
EP-A-159963 providing a filter that is suitable for molten steel filtration. The filter is prepared
by impregnating a foam with a ceramic strip which contains a phosphate binder, squeezing
off the excess slip, drying and burning the foam material at temperature of 1660°
C and higher. Thereby, the ceramic filter obtained is essentially phosphate free,
ceramic particulates having mutually sintered together.
[0028] Conventional carbon filter devices are constituted by up to 50 % of a carbon matrix
in which ceramic powder is imbedded as described by
EP 1282477 A1. This particular patent suggests controlling the firing atmosphere of the carbon
bonded filters in which air is injected at the beginning of the firing and then stopped
into the firing box in order to control the level of oxygen inside the firing box.
Such method is very difficult to control, tedious and liable to produce inconsistent
quality of filters. Also practical experience has shown that large filters, more than
200mm in diameter cannot be made using the methods disclosed in this patent. In addition
of weak mechanical strength, size limitation and inconsistent quality, filters made
according to
EP1282477 A1 also suffer from high oxidation rate due to the presence of high level of low oxidation
resistance carbon (up to 50%). On the other hand,
EP 1 421 042 A1,
EP 1 511 589 A1 and
EP 1 513 600 A1 disclose filters containing a graphitized bond in amounts of about 10 % with up to
about 90 % ceramic. Despite the difference of these two types of filters, both suffer
from inconsistency in manufacturing due to the difficulty in controlling the firing
atmosphere which results in variation in mechanical strength from one filter device
to another and a high reject ratio as well. They also exhibit low mechanical strength
causing problems in handling and transportation. These filters also suffer from low
oxidation resistance, especially filter devices containing a major carbon phase such
as about 50 % carbon matrix, due to the presence of their high level of oxidizable
carbon. Due to high shrinkage upon firing and low mechanical strength, filters made
according to
EP 1282477 A1 cannot be produced in larger sizes. The problems of low mechanical strength and friability
have limited the usage of these types of filters due to the reluctance of the foundry
men to use weaker filters than ceramic bonded filters which they are familiar with.
EP 0 388 010 A1 describes filters for light metals, e.g. aluminum or magnesium. The filters comprise
a cellular body formed of a composition comprising at least one fluxing agent for
the light metal. The filters preferably have a melting point of 800 - 1,000 °C, more
preferably 850 - 900 °C. When used filters are added to a furnace with light metal
which is to be remelted and the metal is melted in the presence of an exothermic flux,
the filters disintegrate allowing metal contained in them to be recovered.
US 4,528,099 discloses a filter medium in the form of a stable body made of ceramic material and
employed for filtering molten metal. The filter medium is made up of at least two
effective filter layers such that a relatively thick layer of large pore diameter
lies on a relatively thin layer of a small pore diameter. This arrangement aims attaining
the maximum possible wetting of the interior of the filter medium.
US 5,039,340 describes a ceramic foam filter prepared by providing an open cell flexible foam
to which is applied an adhesion promoting material. The treated flexible foam is then
impregnated with a ceramic slurry and then dried. The impregnated material is then
heated to remove the organic component therefrom and fired at an elevated temperature
to form the filter.
The object of the present invention, therefore is to address the above described problems
all together, in particular to provide filter devices, and a process of producing
such filter devices, being thermally and mechanically hard and strong enough to be
handled without excessive care during e.g.transport, and to withstand shock and stress
of casting molten metal, including iron and steel, furthermore avoiding the need of
overheating the molten metals to prevent clogging of the pores, and which may be produced
and reproduced reliably with predetermined properties even in large sizes.
The problems have been solved by a filter device for molten metal filtration comprising
a major ceramic phase and a minor carbon phase bonded by a of phosphate bond.
Without wishing to be bound by theory it is believed that the carbon phase intertwines
with and influences the build-up of the phosphate bonding network, thus fortifies
its otherwise soft nature to an extent that exhibits both high hardness, structural
mechanical resistance, and elasticity to withstand the challenges of the above mentioned
problems. A combination of these mutually influencing structural constituents was
not expected to result in the synergistic characteristics of the filter devices of
the invention. It results that the filter of the invention does not need to be fired
at high temperature while being also suitable for molten steel filtration. Major ceramic
phase in the sense of the present invention means alumina, silica, zirconia, zircon,
magnesia, graphite, mullite, silicon carbide, clay, metallic borides such as zirconium
diboride, or a combination of the above in an amount of at least 50 parts by weight
of the filter device.
It is essential to understand that a filter containing only a ceramic phase bonded
by phosphate bond cannot be used for steel filtration due to low refractoriness of
the phosphate bond. Hence it is essential to have a carbon phase which makes the filter
suitable for steel filtration usage.
The phosphate bonded with minor carbon phase filters according to the present invention
exhibit a relatively low thermal mass. A result of this is that there is no need to
overheat the molten metal to be filtered reducing energy consumption. The mechanical
strength of a filter device according to the invention is as high as that of a purely
ceramic bonded filter. The filter devices may be produced consistently with reliable
high quality standards. The filter devices are easy to handle and safe during transportation.
They exhibit high oxidation resistance. Due to their higher strength they can be produced
in even larger size, which means they are open for further unforeseen applications
in e.g. steel filtration.
The ceramic phase of the filter device of the invention comprises or in particular
consists of alumina, zirconia, zircon, silica, magnesia, any type of clay, talcum,
mica, silicon, carbide, silicon nitride and the like or a mixture thereof, or graphite,
in particular brown fused alumina. In the filter device according to the invention
the phosphate constitutes 1 to 15 parts by weight, in particular 1 to 10 parts by
weight, more specifically 5 parts by weight.
Said carbon phase constitutes 1 to 15 parts by weight, in particular 1 to 10 parts
by weight more specifically 7 parts by weight of the filter device according to the
invention.
The minor carbon phase comprises or in particular consists of tar, pitch, phenolic
resin, synthetic coke, semi-coke products, graphite, sintered carbon, anthracite,
lignin, sintered coke products, organic polymers and a mixture or combinations thereof.
In a particularly preferred embodiment, the filter device according to the invention
may furthermore contain ceramic and/or organic fibers.
Said ceramic fibers are preferably selected from the group consisting of alumina fibers,
silica fibers, aluminosilicate fibers, carbon fibers and mixtures thereof. Said organic
fibers are preferably selected from the group consisting of polyester fibers, polyacrylnitrile
fibers, polyethylene fibers, polyamide fibers, viscose fibers, aramid fibers, and
mixtures thereof.
Adding 0.1 up to 20 parts by weight, in particular 0.2 up to 10 parts by weight, more
particular 4 parts by weight of fibers to the filter device recipes contributes to
a significant improvement in the performance of the filter devices. The improvement
is mainly due to an increase of mechanical strength, improved stiffness, higher impact
resistance and better thermal shock. The improvement manifests itself by an increase
in filtration capacity, better mechanical integrity and less contamination to the
steel casting. Due to the outstanding mechanical strength of the phosphate bonding
in combination with carbon and fibers at high temperature no softening or bending
can take place during the process of metal casting. This contributes to an even cleaner
metal cast.
Phosphate bonded filters further including carbon phase and fibers according to the
present invention offer the following advantages compared with glassy carbon bonded
filters:
- High oxidation resistance
- High mechanical strength - High impact resistance
- Low microporosity
- Low specific surface.
- Structural flexibility
- Non-brittle behavior - Economical use.
- Ease of manufacturing.
- Consistent quality.
The inventor has found that addition of any of the types of fibers to the phosphate
bonded with minor carbon phase filter devices causes a further significant improvement
in the mechanical strength of the filters as well as improvement in the impact resistance
and thermal shock.
[0029] The inventor has found that the beneficial effect of the addition of fibers depends
on the amount of fibers added, length of the fibers, nature and type of fiber devices
added. The higher the level of fibers added the stronger the filter devices become.
However, a very high level of fibers is not desirable because it has a negative effect
on the rheology of the slurry. Best results are obtained from incorporating carbon
fiber followed by ceramic fibers. On the other hand, carbon fibers are the most expensive
while organic fibers are the cheapest. Organic fibers are the most economic to use
since they are added at much lower level than either carbon or ceramic fibers (less
than 2 parts by weight). However, organic fibers interfere with the rheology of the
slurry more than the ceramic or the carbon fibers. The form of fibers is either chopped
or bulk fibers to be added during mixing of the filter ingredients. No extra mixing
technique is required.
[0030] The length of the fibers used according to the present invention, all in the range
of 0.1 to 5 mm, preferably have a length from 0.1 mm to 1.0 mm.
[0031] In a further embodiment of the present invention the ceramic filter devices for molten
metal filtration are produced in a first process comprising the steps of
a) impregnating a foam made of thermoplastic material with a slurry containing a phosphate
precursor, a carbon source, ceramic powder, optionally ceramic or carbon fibers, and
optionally other additives,
b) drying, optionally followed by one or two impregnations of a slurry as described
in a), followed by final drying,
c) firing the impregnated foam in non-oxidizing and/or reducing atmosphere at a temperature
in the range of from 500 to 1000°C, in particular from 600 ° C to 900°C.
[0032] Said phosphate precursor is preferably selected from the group consisting of phosphoric
acid, sodium phosphate, ortho and mono aluminum phosphate, calcium phosphate, magnesium
phosphate, phosphate containing salts, phosphate containing compounds and mixtures
thereof.
[0033] Preferably a thermoplastic foam containing polyurethane is utilized for the production
of filter devices according to the present invention.
[0034] It is advantageous to mix fibers if necessary and carbon source prior to impregnating
the foam with ceramic powder, water, organic binder, and rheology control additives,
which in one embodiment of the invention may be present in an amount of up to 2 parts
by weight, preferably in a range of from 0.1 to 2 parts by weight.
[0035] In another embodiment of the present invention a second type of ceramic filter is
produced by a process comprising the steps of
- a) pressing a semi-damp mixture comprising phosphate precursor, carbon source, ceramic
powder and optionally other additives including fibers in a hydraulic press,
- b) pressing the mixture in the shape of a disk or a block,
- c) perforating the pressed mixture of step b) in combined or separate steps,
- d) firing the perforated article of step c) in non-oxidizing and/or reducing atmosphere
at a temperature in the range of from 500°C to 1000°C, in particular from 600°C to
900°C.
[0036] The source of the carbon, phase, is preferably a high melting pitch (HMP) because
it offers optimal properties with respect to workability, cost and product quality.
However, it must be noted that other carbon source can also be used to produce carbon
source materials according to the present invention, such as synthetic or natural
resins, graphite, coke, polymers, and sinterable carbon as long as it gives a carbon
phase. The choice of carbon phase is determined by its health and safety aspects,
the level of volatiles during firing, carbon yield, compatibility with other constituents,
water compatibility, cost, etc. It is preferable to select a carbon source that gives
high carbon yield, has low water absorption, free from environment pollution, safe
to handle and use, low cost, and water compatible.
[0037] In further embodiments of the present invention these processes use a slurry (for
the production of a phosphate bonded with carbon phase filter of the first type) or
a semi-damp mixture (for the production of the phosphate bonded with carbon phase
ceramic filter of the second type) that comprises:
phosphate precursor in the amount of 1 to 15 parts by weight,
carbon phase source in the amount of 5 to 90 parts by weight,
ceramic, in particular alumina powder in the amount of 5 to 90 parts by weight,
anti-oxidation material in the amount of 0 to 80 part by weight,
fibers in the amount of 0 to 20 parts by weight,
organic binder in the amount of from 0 to 10, in particular 0.2 to 2 parts by weight
and,
dispersion agent in the amount of from 0 to 4, in particular 0.1 to 2 parts by weight.
[0038] Water is added in a quantity as required. For the purpose of slurry-preparation,
15 parts 40 by weight of water are necessary depending on the nature of the ceramic
filler materials and the source of carbon phase. For the semi-damp mixture used for
pressing, water is necessary in an amount of from 2 to 10 parts by weight, depending
of the nature of the ceramic filler materials and the source of carbon phase.
[0039] The ceramic powder may comprise or preferably consists of alumina, particularly brown
fused alumina, zirconia, zircon, silica, magnesia, any type of clay, talcum, mica,
silicon, carbide, silicon nitride and the like or a mixture thereof.
[0040] Preferred anti-oxidation materials according to the present invention are metallic
powder such as steel, iron, bronze, silicon, magnesium, aluminum, boron, zirconium
boride, calcium boride, titanium boride and the like, and/or glass frits containing
20 to 30 parts by weight by weight of boric oxide.
[0041] Organic binders that are preferred according to the present invention are green binders
such as polyvinyl alcohol (PVA), starch, gum arabic, sugar or the like or any combination
thereof. These binders may be added to improve the mechanical properties of the filter
devices during handling prior to firing. Starch and gum arabic may also be used as
thickening agent
[0042] Preferred dispersion agents according to the present invention are Despex®, ligninsulphonate
or the like, or any combination thereof which help to reduce the water level in the
slurry and improve the rheology.
[0043] In a further embodiment of the present invention the slurry or semi- damp mixture
may comprise a plasticizer such as polyethylene glycol (preferred molecular weight:
500 to 10000) in the range of from 0 to 2 parts by weight, preferably 0.5 to 1 part
by weight and/or an anti-foam agent such as silicon anti-foam in the range of from
0 to 1 part by weight, preferably 0,1 to 0,5 parts by weight.
[0044] The filter of the present invention is also suitable for the filtration of molten
steel because of its outstanding properties.
[0045] The invention is further illustrated by the following examples:
[0046] As graphitizable high melting pitch (HMP) a coal-tar pitch was used having a glass
transition temperature of 210°C, a cooking value of 85 %, an ash value of 0,5 % being
commercially available as a fine powder.
Example 1:
A: Filters according to the first type:
[0047] A polyurethane foam was cut to the required size and impregnated with a slurry comprising
:
| Alumina powder |
88 parts by weight (ppw) |
| Aluminum phosphate |
5 ppw |
| Carbon (HMP) |
7 ppw |
| Organic binder PVA |
1.0 ppw |
| Deflaculant Despex® |
0.2 ppw |
| Anti-foam agent Organo silicon Derivitives And water. |
0.1 ppw |
The filter was either impregnated manually or by a machine containing rollers used
for this purpose. After impregnation the filter was dried using hot air and/or a microwave
drier. A further coating was applied by a spraying air gun. The filter device was
dried once more and transferred to a furnace and was fired in inert atmosphere at
a temperature in the range of from 600°C to 900°C for 20 to 120 min at a heating rate
in the range of from 1 °C/min to 10°C/min. Said filter device had a modulus of rupture
of 1 MPa. The heavier the filter the higher is the strength. This filter device was
significantly lighter than those made from only ceramic or glass bonded material.
It was also signficantly cheaper. During field trials it was found that no superheat
is required when using this filter since extra heat was generated upon contact of
molten metal with the filter device (exothermic reaction).
Example 2
[0048] A filters according to example 1 was prepared with a slurry comprising:
| Alumina powder |
84 parts by weight (ppw) |
| aluminum phosphate |
5 ppw |
| Carbon (HMP) |
7 ppw |
| Organic binder PVA |
1.0 ppw |
| Deflaculant Despex® |
0.2 ppw |
| Anti-foam agent Organo silicon Derivitives |
0.1 ppw |
| Carbon fibers |
4 ppw |
| And water. |
|
Said filter device had an increased modulus of rupture with respect to the filter
of the example 1.
A modulus of rupture greater than 3 MPa has been measured. During field trials it
was found that no superheat is required when using this filter since extra heat was
generated upon contact of molten metal with the filter device (exothermic redaction).
Depending on the fiber content, modulus of rupture up to 6 MPa can be measured.
Example 3:
B: Filter according to the second type:
[0049] A mixture according to Example 1 comprising 4 ppw of water was prepared in a Hobart
or Eirich mixer. The aim of the mixing process was to make a semi-damp and homogenous
mixture. The mixture was aged for 24 hours prior to pressing. A predetermined weight
of the mixture was placed in a steel mold containing vertical pins as is described
in
EP 1 511 589 A1. Pressing the mix produced a perforated article. This perforated article was then
removed form the mold, dried and fired in a non-oxidizing or reducing atmosphere at
a temperature of 900°C for 1h with a heating rate of 2°C/min.
1. A filter device for molten metal filtration comprising a major ceramic phase in an
amount of at least 50 parts by weight and a minor carbon phase in an amount of 1 to
15 parts by weight bonded by phosphate bond present in an amount of 1 to 15 parts
by weight, wherein further the ceramic phase comprises alumina, zirconia, zircon,
silica, magnesia, any type of clay, talcum, mica, silicon carbide, silicon nitride
or a mixture thereof, or graphite.
2. The filter device of claim 1, wherein the ceramic phase comprises brown fused alumina.
3. The filter device of claim 1 or 2, wherein said phosphate constitutes 1 to 10 parts
by weight, more specifically 5 parts by weight.
4. The filter device of any one of claims 1 to 3, wherein said carbon phase constitutes
1 to 10 parts by weight, more specifically 7 parts by weight.
5. The filter device of any of claims 1 to 4 furthermore containing ceramic and/or organic
fibers.
6. The filter device of claim 5, wherein said ceramic fibers are selected from the group
consisting of alumina fibers, silica fibers, aluminosilicate fibers, carbon fibers
and mixtures thereof.
7. The filter device of claim 5, wherein the organic fibers are selected from the group
consisting of polyester fibers, polyacrylnitrile fibers, polyethylene fibers, polyamide
fibers, viscose fibers, aramid fibers, and mixtures thereof.
8. The filter device of anyone of claims 5 to 7, characterized in that it contains an amount of 0.1 to 20 parts in particular 0.2 to 10 parts by weight
of said fibers, more preferably 4 parts by weight.
9. The filter device of anyone of claims 5 to 8, characterized in that the length of the fibers is in the range of 0.1 mm to 5 mm, preferably 0.1 mm to
1 mm.
10. A method for producing ceramic filter devices for molten metal filtration according
to one of claims 1 to 9 comprising the steps of
a. impregnating a foam made of thermoplastic material with a slurry containing a phosphate
precursor, a carbon phase precursor, ceramic powder, optionally fibers and optionally
other additives,
b. drying, optionally followed by one or two impregnations of the same slurry, followed
by final drying,
c. firing the impregnated foam in non-oxidizing and/or reducing atmosphere at a temperature
in the range of from 500 to 1000 °C, in particular from 600 °C to 900 °C.
11. The method of claim 10 , wherein said phosphate precursor is selected from the group
consisting of phosphoric acid, sodium phosphate, ortho and mono aluminum phosphate,
calcium phosphate, magnesium phosphate, phosphate containing salts, phosphate containing
compounds and mixtures thereof.
12. The method of claim 10 or 11, wherein said carbon phase precursor is converted at
least partially or fully to a stable carbon phase.
13. The method of any one of claims 10 to 12 utilizing a thermoplastic foam containing
polyurethane.
14. The method of any one of claims 10 to 13 wherein the phosphate precursor and the carbon
phase precursor is mixed with fibers, ceramic powder, water, organic binder, and rheology
control additives prior to impregnating the foam.
15. A method for producing ceramic filter devices for molten metal filtration according
to one of claims 1 to 9 comprising the steps of
a. pressing a semi-damp mixture comprising phosphate precursor, carbon phase precursor,
ceramic powder and optionally other additives including fibers in a hydraulic press,
b. pressing the mixture in the shape of a disk or a block,
c. perforating the pressed mixture of step b) in combined or separate steps,
d. firing the perforated article of step c) in non-oxidizing and/or reducing atmosphere
at a temperature in the range of from 500 °C to 1000 °C, in particular from 600 °C
to 900 °C.
16. The method of any one of claims 10 to 15 wherein graphite, coke, pitch, particularly
high melting pitch (HMP) and/or resin is used as the carbon phase source.
17. The method of any one of claims 10 to 16 wherein a slurry or semi-damp mixture is
used comprising:
- phosphate precursor in an amount of 1 to 15 parts by weight,
- carbon phase source in an amount of 5 to 90 parts by weight,
- ceramic powder in an amount of 5 to 90 parts by weight,
- anti-oxidation material in an amount of 0 to 80 part by weight,
- fibers in an amount of 0 to 20 parts by weight,
- organic binder in an amount of 0 to 10, in particular 0.2 to 2 parts by weight and,
- dispersion agent in an amount of 0 to 4, in particular 0.1 to 2 parts by weight.
18. The method of claim 17 wherein said ceramic powder comprises or preferably consists
of alumina, particularly brown fused alumina, zirconia, zircon, silica, magnesia,
any type of clay, talcum, mica, silicon carbide, silicon nitride or a mixture thereof.
19. The method of claim 17 or 18 wherein metallic powders such as steel, iron, bronze,
silicon, magnesium, aluminum, boron, zirconium boride, calcium boride, titanium boride
and the like, and/or glass frits containing 20 to 30 parts by weight of boric oxide
are used as the antioxidation material.
20. The method of any one of claims 17 to 19 wherein a green binder such as PVA, starch,
gums, sugar or a combination thereof is used as the organic binder.
21. The method of any one of claims 17 to 20 wherein ligninsulphonate is used as the dispersion
agent.
22. The method of any one of claims 17 to 21 wherein a slurry or semi-damp mixture is
used that further comprises: a plasticizer in the amount of 0 to 2 parts by weight,
and/or an anti-foam agent in an amount of 0 to 1 part by weight.
23. Use of the filter devices of any one of claims 1 to 9 for the filtration of molten
steel.
1. Filtervorrichtung zur Filtration von geschmolzenem Metall, umfassend eine keramische
Hauptphase in einer Menge von wenigstens 50 Gewichtsteilen und eine Kohlenstoffnebenphase
in einer Menge von 1 bis 15 Gewichtsteilen, die durch Phosphatbindung, vorhanden in
einer Menge von 1 bis 15 Gewichtsprozent, gebunden ist, wobei weiterhin die keramische
Phase Aluminiumoxid, Zirkonoxid, Zirkon, Siliziumdioxid, Magnesiumoxid, jede Art von
Ton, Talkum, Glimmer, Silizium Carbid, Siliziumnitrid oder eine Mischung davon umfasst.
2. Filtervorrichtung nach Anspruch 1, wobei die keramische Phase braunen Schmelzkorund
umfasst.
3. Filtervorrichtung nach Anspruch 1 oder 2, wobei das Phosphat 1 bis 10 Gewichtsteile,
insbesondere 5 Gewichtsteile ausmacht.
4. Filtervorrichtung nach einem der Ansprüche 1 bis 3, wobei die Kohlenstoffphase 1 bis
10 Gewichtsteile, insbesondere 7 Gewichtsteile ausmacht.
5. Filtervorrichtung nach einem der Ansprüche 1 bis 4, die weiterhin keramische und /oder
organische Fasern enthält.
6. Filtervorrichtung nach Anspruch 5, wobei die keramischen Fasern ausgewählt sind aus
der Gruppe, bestehend aus Aluminiumoxidfasern, Siliziumdioxidfasern, Aluminosilicatfasern,
Kohlenstofffasern und Mischungen davon.
7. Filtervorrichtung nach Anspruch 5, wobei die organischen Fasern ausgewählt sind aus
der Gruppe, bestehend aus Polyesterfasern, Polyacrylnitrilfasern, Polyethylenfasern,
Polyamidfasern, Viscosefasern, Aramidfasern und Mischungen davon.
8. Filtervorrichtung nach einem der Ansprüche 5 bis 7 dadurch gekennzeichnet, dass sie eine Menge von 0,1 bis 20 Gewichtsteile, insbesondere 0,2 bis 10 Gewichtsteile,
besonders bevorzugt 4 Gewichtsteile der Fasern enthält.
9. Filtervorrichtung nach einem der Ansprüche 5 bis 8 dadurch gekennzeichnet, dass die Länge der Fasern im Bereich von 0,1 mm bis 5 mm, vorzugsweise 0,1 mm bis 1 mm
liegt.
10. Verfahren zur Herstellung keramischer Filtervorrichtungen zur Filtration von geschmolzenem
Metall nach einem der Ansprüche 1 bis 9, umfassend die Schritte des
a. Imprägnierens eines aus einem thermoplastischen Material hergestellten Schaums
mit einer Aufschlämmung, die einen Phosphatvorläufer, einen Kohlenstoffphasenvorläufer,
keramisches Pulver, gegebenenfalls Fasern und gegebenenfalls andere Zusatzstoffe enthält,
b. Trocknens, gegebenenfalls gefolgt von einer oder zwei Imprägnierungen mit derselben
Aufschlämmung, gefolgt von einer abschließenden Trocknung,
c. Brennens des imprägnierten Schaums in nichtoxidierender und/oder reduzierender
Atmosphäre bei einer Temperatur im Bereich von 500 bis 1000 °C, insbesondere von 600
°C bis 900 °C.
11. Verfahren nach Anspruch 10, wobei der Phosphatvorläufer ausgewählt ist aus der Gruppe,
bestehend aus Phosphorsäure, Natriumphosphat, ortho- und mono-Aluminiumphosphat ,
Calciumphosphat, Magnesiumphosphat, Phosphat enthaltenden Salzen, Phosphat enthaltenden
Verbindungen und Mischungen davon.
12. Verfahren nach Anspruch 10 oder 11, wobei der Kohlenstoffphasenvorläufer wenigstens
teilweise oder vollständig zu einer stabilen Kohlenstoffphase umgewandelt wird.
13. Verfahren nach einem der Ansprüche 10 bis 12 unter Verwendung eines thermoplastischen
Schaums, der Polyurethan enthält.
14. Verfahren nach einem der Ansprüche 10 bis 13, wobei der Phosphatvorläufer und der
Kohlenstoffphasenvorläufer vor dem Imprägnieren des Schaums mit Fasern, keramischem
Pulver, Wasser, organischem Bindemittel und Zusatzstoffen zur Kontrolle der Rheologie
gemischt wird.
15. Verfahren zur Herstellung keramischer Filtervorrichtungen zur Filtration von geschmolzenem
Metall nach einem der Ansprüche 1 bis 9, umfassend die Schritte des
a. Pressens einer halbfeuchten Mischung, umfassend einen Phosphatvorläufer, einen
Kohlenstoffphasenvorläufer, keramisches Pulver und gegebenenfalls andere Zusatzstoffe,
einschließlich Fasern, in einer hydraulischen Presse,
b. Pressens der Mischung in die Form einer Scheibe oder eines Blocks,
c. Perforierens der gepressten Mischung aus Schritt b) in kombinierten oder getrennten
Schritten,
d. Brennens des perforierten Gegenstands aus Schritt c) in nichtoxidierender und/oder
reduzierender Atmosphäre bei einer Temperatur im Bereich von 500 °C bis 1000 °C, insbesondere
von 600 °C bis 900 °C.
16. Verfahren nach einem der Ansprüche 10 bis 15, wobei als Kohlenstoffphasenquelle Graphit,
Koks, Pech, insbesondere hochschmelzendes Pech (HMP) und/oder Harz verwendet wird.
17. Verfahren nach einem der Ansprüche 10 bis 16, wobei eine Aufschlämmung oder halbfeuchte
Mischung verwendet wird, umfassend:
- einen Phosphatvorläufer in einer Menge von 1 bis 15 Gewichtsteilen,
- eine Kohlenstoffphasenquelle in einer Menge von 5 bis 90 Gewichtsteilen,
- keramisches Pulver in einer Menge von 5 bis 90 Gewichtsteilen,
- Antioxidationsmaterial in einer Menge von 0 bis 80 Gewichtsteilen,
- Fasern in einer Menge von 0 bis 20 Gewichtsteilen,
- organisches Bindemittel in einer Menge von 0 bis 10, insbesondere 0,2 bis 2 Gewichtsteilen
und,
- ein Dispersionsmittel in einer Menge von 0 bis 4, insbesondere 0,1 bis 2 Gewichtsteilen.
18. Verfahren nach Anspruch 17, wobei das keramische Pulver Aluminiumoxid, insbesondere
braunen Schmelzkorund, Zirkonoxid, Zirkon, Siliziumdioxid, Magnesiumoxid, jede Art
von Ton, Talkum, Glimmer, Silizium Carbid, Siliziumnitrid oder eine Mischung davon
umfasst oder vorzugsweise daraus besteht.
19. Verfahren nach Anspruch 17 oder 18, wobei Metallpulver, wie zum Beispiel Stahl, Eisen,
Bronze, Silizium, Magnesium, Aluminium, Bor, Zirkoniumborid, Calciumborid, Titanborid
und dergleichen und/oder Glasfritten, die 20 bis 30 Gewichtsteile Boroxid enthalten,
als Antioxidationsmaterial verwendet werden.
20. Verfahren nach einem der Ansprüche 17 bis 19, wobei ein Grünbinder, wie zum Beispiel
PVA, Stärke, Gummis, Zucker oder eine Kombination davon als organisches Bindemittel
verwendet wird.
21. Verfahren nach einem der Ansprüche 17 bis 20, wobei Ligninsulfonat als Dispersionsmittel
verwendet wird.
22. Verfahren nach einem der Ansprüche 17 bis 21, wobei eine Aufschlämmung oder halbfeuchte
Mischung verwendet wird, die weiterhin umfasst: einen Weichmacher in der Menge von
0 bis 2 Gewichtsteilen, und/oder ein Antischaummittel in einer Menge von 0 bis 1 Gewichtsteilen.
23. Verwendung der Filtervorrichtungen nach einem der Ansprüche 1 bis 9 zur Filtration
von geschmolzenem Stahl.
1. Dispositif de filtration pour la filtration de métal fondu comprenant une phase de
céramique majeure en une quantité d'au moins 50 parties en poids et une phase de carbone
mineure en une quantité de 1 à 15 parties en poids liées par une liaison phosphate
présente en une quantité de 1 à 15 parties en poids, dans lequel la phase de céramique
comprend en outre de l'alumine, de la zircone, du zircon, de la silice, de la magnésie,
tout type d'argile, du talc, du mica, du carbure, du silicium, du nitrure de silicium
ou un mélange de ceux-ci, ou du graphite.
2. Dispositif de filtration selon la revendication 1, dans lequel la phase de céramique
comprend de l'alumine fusionnée marron.
3. Dispositif de filtration selon la revendication 1 ou 2, dans lequel ledit phosphate
constitue 1 à 10 parties en poids, plus spécifiquement 5 parties en poids.
4. Dispositif de filtration selon l'une quelconque des revendications 1 à 3, dans lequel
ladite phase de carbone constitue 1 à 10 parties en poids, plus spécifiquement 7 parties
en poids.
5. Dispositif de filtration selon l'une quelconque des revendications 1 à 4, contenant
en outre des fibres de céramique et/ou organiques.
6. Dispositif de filtration selon la revendication 5, dans lequel lesdites fibres de
céramique sont sélectionnées parmi le groupe constitué de fibres d'alumine, de fibres
de silice, de fibres d'aluminosilicate, de fibres de carbone et de mélanges de celles-ci.
7. Dispositif de filtration selon la revendication 5, dans lequel les fibres organiques
sont sélectionnées parmi le groupe constitué de fibres de polyester, de fibres de
polyacrylonitrile, de fibres de polyéthylène, de fibres de polyamide, de fibres de
viscose, de fibres d'aramide et de mélanges de celles-ci.
8. Dispositif de filtration selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'il contient une quantité de 0,1 à 20 parties, notamment 0,2 à 10 parties en poids
desdites fibres, plus préférablement 4 parties en poids.
9. Dispositif de filtration selon l'une quelconque des revendications 5 à 8, caractérisé en ce que la longueur des fibres est dans la plage de 0,1 mm à 5 mm, de préférence 0,1 mm à
1 mm.
10. Procédé de production de dispositifs de filtration céramiques pour la filtration de
métal fondu selon l'une quelconque des revendications 1 à 9 comprenant les étapes
de
a. imprégnation d'une mousse fabriquée en un matériau thermoplastique avec une pâte
contenant un précurseur de phosphate, un précurseur de phase de carbone, de la poudre
céramique, en option des fibres et en option d'autres additifs,
b. séchage, en option suivi d'une ou deux imprégnations de la même pâte, suivies d'un
séchage final,
c. cuisson de la mousse imprégnée dans une atmosphère non oxydante et/ou réductrice
à une température dans la plage de 500 à 1000°C, notamment de 600°C à 900°C.
11. Procédé selon la revendication 10, dans lequel ledit précurseur de phosphate est sélectionné
parmi le groupe constitué d'acide phosphorique, de phosphate de sodium, de phosphate
d'alumine ortho et mono, de phosphate de calcium, de phosphate de magnésium, de sels
contenant du phosphate, de composés contenant du phosphate et de mélanges de ceux-ci.
12. Procédé selon la revendication 10 ou 11, dans lequel ledit précurseur de phase de
carbone est converti au moins partiellement ou entièrement en une phase de carbone
stable.
13. Procédé selon l'une quelconque des revendications 10 à 12 utilisant une mousse thermoplastique
contenant du polyuréthane.
14. Procédé selon l'une quelconque des revendications 10 à 13, dans lequel le précurseur
de phosphate et le précurseur de phase de carbone sont mélangés à des fibres, de la
poudre céramique, de l'eau, un liant organique et des additifs de contrôle de rhéologie
avant l'imprégnation de la mousse.
15. Procédé de production de dispositifs de filtration céramiques pour la filtration de
métal fondu selon l'une quelconque des revendications 1 à 9 comprenant les étapes
de
a. pressage d'un mélange semi-humide comprenant un précurseur de phosphate, un précurseur
de phase de carbone, de la poudre céramique et en option d'autres additifs y compris
des fibres, dans une presse hydraulique,
b. pressage du mélange sous la forme d'un disque ou d'un bloc,
c. perforation du mélange pressé de l'étape b) dans des étapes combinées ou séparées,
d. cuisson de l'article perforé de l'étape c) dans une atmosphère non oxydante et/ou
réductrice à une température dans la plage de 500°C à 1000°C, notamment de 600°C à
900°C.
16. Procédé selon l'une quelconque des revendications 10 à 15, dans lequel du graphite,
du coke, du brai, notamment du brai à point de fusion élevé (HMP) et/ou de la résine
est utilisé comme source de phase de carbone.
17. Procédé selon l'une quelconque des revendications 10 à 16, dans lequel une pâte ou
un mélange semi-humide est utilisé comprenant :
- un précurseur de phosphate en une quantité de 1 à 15 parties en poids,
- une source de phase de carbone en une quantité de 5 à 90 parties en poids,
- une poudre céramique en une quantité de 5 à 90 parties en poids,
- un matériau antioxydant en une quantité de 0 à 80 parties en poids,
- des fibres en une quantité de 0 à 20 parties en poids,
- un liant organique en une quantité de 0 à 10, notamment 0,2 à 2 parties en poids
et
- un agent de dispersion en une quantité de 0 à 4, notamment 0,1 à 2 parties en poids.
18. Procédé selon la revendication 17, dans lequel ladite poudre céramique comprend ou
est de préférence constituée d'alumine, notamment d'alumine fusionnée marron, de zircone,
de zircon, de silice, de magnésie, de tout type d'argile, de talc, de mica, de carbure,
de silicium, de nitrure de silicium ou d'un mélange de ceux-ci.
19. Procédé selon la revendication 17 ou 18, dans lequel des poudres métalliques telles
que de l'acier, du fer, du bronze, du silicium, du magnésium, de l'alumine, du bore,
du borure de zirconium, du borure de calcium, du borure de titane et similaire, et/ou
des frittes de verre contenant 20 à 30 parties en poids d'oxyde borique sont utilisées
comme matériau antioxydant.
20. Procédé selon l'une quelconque des revendications 17 à 19, dans lequel un liant vert
tel que du PVA, de l'amidon, des gommes, du sucre ou une combinaison de ceux-ci est
utilisé comme liant organique.
21. Procédé selon l'une quelconque des revendications 17 à 20, dans lequel du sulfonate
de lignine est utilisé comme agent de dispersion.
22. Procédé selon l'une quelconque des revendications 17 à 21, dans lequel une pâte ou
un mélange semi-humide est utilisé, lequel comprend en outre : un plastifiant en la
quantité de 0 à 2 parties en poids et/ou un antimousse en une quantité de 0 à 1 partie
en poids.
23. Utilisation des dispositifs de filtration selon l'une quelconque des revendications
1 à 9 pour la filtration d'acier fondu.