TECHNICAL FIELD
[0001] The present invention relates to a method for producing the sealing seat with injection
holes of a fuel injector.
BACKGROUND ART
[0002] Normally, a fuel injector for an internal-combustion engine comprises a cylindrical
tubular supporting body having a central supply channel, which performs the function
of supply channel for the fuel and terminates with an injection nozzle regulated by
an injection valve controlled by an electromagnetic actuator. Set within the supply
channel is a shutter or "needle", mechanically connected to the electromagnetic actuator
to be displaced between a position of closing and a position of opening of the injection
nozzle.
[0003] According to a possible embodiment, for regulating the flow of fuel through the injection
nozzle, the shutter co-operates with a valve seat of a sealing seat, which closes
the supply channel at the bottom and is provided with injection holes.
[0004] Currently, the process of production of the sealing seat of the injector envisages,
in a first step, injection moulding in a common mould of a compound formed by plastic
binders and powdered metal. Subsequently, after extraction from the mould, the sealing
seat undergoes a thermal treatment in furnaces, in which, as a result of the very
high temperatures that are reached, the plastic binders melt whilst the powdered metal
is compacted to form a sintered metal. As is known, the process of sintering of the
metal consists in compacting and transforming materials reduced to powder in an indivisible
compound that at this point of the process has the desired characteristics of hardness
and strength for the sealing seat.
[0005] In a third step, the injection holes or spot facings are made in the sealing seat
using an electric-discharge machine (EDM), in which machining with removal of stock
for creating the injection holes uses, as is known, the erosive capabilities of electrical
discharges.
[0006] The process of production of the sealing seat so far described presents, however,
the drawback of being as a whole very slow and costly, above all because the machining
speed of electric-discharge machines (EDMs) is substantially lower than that of other
technologies with removal of stock.
[0007] WO0148371A1 discloses a method for production of a valve piece for a fuel injector, whereby the
valve piece comprises drillings, especially throttling drillings; the valve piece,
including the drillings and throttling drillings, is prepared by metal injection moulding
and finally brought to target strength and hardness by sintering.
DISCLOSURE OF INVENTION
[0008] Aim of the present invention is to provide a method for the production of a sealing
seat with injection holes of a fuel injector that does not present the drawbacks described
above and in particular is easy and inexpensive to implement.
[0009] Provided according to the present invention is a method for producing the sealing
seat with injection holes of a fuel injector according to what is claimed in the annexed
claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] The present invention will now be described with reference to the annexed drawings,
which illustrate a non-limiting example of embodiment thereof and in which:
Figure 1 is a schematic sectioned view of a detail of a fuel injector having a sealing
seat obtained by means of the production method forming the subject of the present
invention;
Figure 2 is a perspective view in elevation of the sealing seat of Figure 1; and
Figure 3 is a cross-sectional view of a mould of an injection press used for making
the sealing seat of Figure 1.
PREFERRED EMBODIMENTS OF THE INVENTION
[0011] Designated as a whole by 1 in Figure 1 is a fuel injector, which has, at one end
thereof, an injection nozzle 2 provided with injection holes 3 and is controlled for
injecting fuel directly into a combustion chamber (not illustrated) of a cylinder
(not illustrated).
[0012] In greater detail, the injector 1 comprises a supporting body 4 having a cylindrical
tubular shape, which has a longitudinal axis 5 and defines a supply channel 6 for
the fuel, which extends throughout the length of the supporting body 4 for supplying
the fuel under pressure to the injection nozzle 2.
[0013] The supporting body 4 houses within it an electromagnetic actuator (not illustrated)
for actuation of a shutter 7 or "needle", which is designed to regulate the flow of
fuel through the injection nozzle 2 and has a top end, which is integral with the
electromagnetic actuator (not illustrated). In a position corresponding to a bottom
end thereof, the supporting body 4 houses an injection valve 8, which, under the action
of the electromagnetic actuator (not illustrated), regulates the flow of fuel that
traverses the injection nozzle 2.
[0014] The shutter 7 is mobile along the axis 5 and a bottom end 9 thereof co-operates,
in a closing position of the injection valve 8, with a valve seat 10 of a sealing
seat 11. The bottom portion 9 of the shutter 7 is housed within the supply channel
6 and terminates with an plugging head 12 having a substantially spherical shape,
which is designed to engage the valve seat 9 in the closing position of the injection
valve 8.
[0015] According to what is illustrated more fully in Figure 2, the sealing seat 11 is defined
by a monolithic body having a bottom portion designed to close at the bottom in a
sealed way the supply channel 6 for the fuel and a top tubular portion that functions
as guide for the bottom portion 9 of the shutter 7. The injection nozzle 2 is made
immediately downstream of the injection valve 8 and is defined by the plurality of
through injection holes 3, which are distributed about the longitudinal axis 5 and
are made on an outer conical surface 13 of the bottom portion of the sealing seat
11.
[0016] In the stage of assembly of the injector 1, all the components are produced independently
and pre-assembled in different groups prior to final assembly. In the final structure
of the injector 1, in order to guarantee sealing of the welds and to follow the local
deformability of some components subjected to heating, the different pre-assembled
groups are mounted with interposition of different seal rings that meet these needs
and increase the strength of the injector 1.
[0017] The sealing seat 11 of the injector 1 constitutes one of the different units that
are produced independently and assembled in the final stage of the process of production
of the injector 1 and is obtained entirely with metal-injection-moulding (MIM) technology.
[0018] For the production of the sealing seat 11, starting powdered metal is mixed in defined
percentages with a plastic binder in order to obtain a homogeneous compound, which
is then machined in the subsequent steps of the process.
[0019] In particular, the first step of the MIM process consists in injection into a mould
14 (partially illustrated in Figure 3) of said mixture at controlled temperature and
pressure. According to a known injection-moulding technique, the homogeneous starting
compound (i.e., metal and plastic binder) is heated up to fluidification in an injection
press, injected at low pressure into the mould 14, which reproduces in negative the
shape of the sealing seat 11, then left to cool off up to solidification, and finally
extracted from the mould 14.
[0020] The mould 14 is formed by joining two half-moulds together and is provided with punches
15, which reproduce the shape of the injection holes 3 to be obtained. In this way,
within the mould 14 the injection holes 3 are formed directly on the conical surface
13 of the semifinished sealing seat 11. According to a preferred embodiment, each
injection hole 3 comprises an outer portion of larger diameter and an inner portion
of smaller diameter, and the punches 15 are shaped for reproducing in negative only
the outer portion of each injection hole 3.
[0021] The semi-finished sealing seat 11 obtained after the injection-moulding are oversized
with respect to the nominal dimensions of the finished sealing seat 11 on account
of the reduction of dimensions that takes place in the subsequent steps. In fact,
the sealing seats 11, in a second step of the process, undergo a thermal process to
obtain almost complete elimination of the plastic binder without any fractures or
deformations of the sealing seat 11 itself. Basically, the elimination of the binder
is the operation performed for removing the plastic polymers from the powdered metal,
and the method used is determined by the physical properties of the metal, by the
requirements of the finished product, i.e., the sealing seat 11, and by the chemical
composition. The semifinished pieces coming off the injection press are inserted in
furnaces for removal of the binder, which usually occurs by evaporation. When the
process is completed, there is obtained a semifinished piece made of powdered metal,
which, in a further step, must be deprived of the residual plastic binder by sintering.
Sintering of the sealing seat 11 bestows the required mechanical and geometrical properties
upon the sealing seats 11 and certainly constitutes the most delicate point of MIM
technology. With sintering, in fact, the material must obtain the desired properties
and dimensions. During this step, very high temperatures are reached, which cause
a uniform shrinkage of the sealing seat 11. The process of production of the sealing
seat 11 terminates with the step of mechanical drilling of the sealing seat 11 itself
to provide the inner portion of each injection hole 3.
[0022] The process of production described above presents numerous advantages. In the first
place, it enables maximum freedom of design in so far as by means of the injection
of powdered metal it is possible to obtain sealing seats 11 of even very complex shapes,
with particularly reduced dimensional tolerances and with highly automated production
cycles. Furthermore, the process of production described above is particularly convenient
in the presence of high production volumes and in general enables a sensible reduction
of the production costs as a result of a reduction of the machining operations to
which the sealing seat 11 must be subjected; said sealing seat 11, at the end of the
machining cycle performed with MIM technology, is already finished and ready to be
assembled without any further machining operations (or merely requires simple mechanical
drilling).
[0023] It should be noted that, on account of the reduced size of the injection holes 3
(which have a diameter and a longitudinal extension of the order of tenths of millimetre)
it is not possible to make the injection holes 3 entirely using the punches 15. Instead,
by making the outer portions of larger diameter of the injection holes 3 directly
within the mould 14 by the presence of the punches 15 it is possible to complete the
injection holes 3 by making the inner portions of smaller diameter by means of a simple
drilling operation (using a rotary drill or else by shearing or electric-discharge
machining of the remaining thickness) with considerable advantages both in terms of
reduction of the costs of equipment due to a smaller number of drilling stations necessary,
and in terms of reduction of the machining times due to the extremely small thickness
to be drilled.
1. A method for producing the sealing seat (11) of a fuel injector (1) for an internal-combustion
engine, said sealing seat (11) having a plurality of injection holes (3); the method
comprising the steps of:
mixing plastic binder with a powdered metal so as to obtain a homogeneous compound;
injecting, in order to form the sealing seat (11), the homogeneous compound in a mould
(14) that reproduces in negative the shape of the sealing seat (11);
obtaining within the mould (14) a plurality of punches (15) that reproduce in negative
at least partially the shape of the injection holes (3) in such a way as to form within
the mould (14) the sealing seat (11), which already presents the injection holes (3);
and
subjecting the sealing seat (11) to a thermal treatment to eliminate the plastic binder
and sinter the powdered metal;
the production method being characterized in that:
each injection hole (3) comprises an outer portion of larger diameter and an inner
portion of smaller diameter;
each punch (15) reproduces in negative only the outer portion of larger diameter of
a respective injection hole (3); and
the production method comprises the further step of drilling mechanically the sealing
seat (11) in correspondence of each injection hole (3) for providing the inner portion
of the injection hole (3).
2. Production method according to Claim 1, wherein the step of subjecting the sealing
seat (11) to a thermal treatment comprises the further steps of:
subjecting the sealing seat (11) to a first heating to eliminate the plastic binder
at least partially; and
subjecting the sealing seat (11) to a subsequent second heating at temperatures higher
than that for the first heating to eliminate the residual plastic binder and sinter
the powdered metal.
3. Production method according to Claim 1 or 2, wherein the inner portion of each injection
hole (3) of the sealing seat (11) is obtained by means of electric-discharge machining.
4. Production method according to Claim 1 or 2, wherein the inner portion of each injection
hole (3) of the sealing seat (11) is obtained by shearing.
5. The production method according to Claim 1 or 2, wherein the inner portion of each
injection hole (3) of the sealing seat (11) is obtained by means of a rotary drill.
1. Ein Verfahren zur Herstellung des Dichtungssitzes (11) einer Kraftstoffeinspritzdüse
(1) für eine Verbrennungsmaschine, wobei der Dichtungssitz (11) eine Vielzahl von
Einspritzlöchern (3) besitzt; wobei das Verfahren folgende Schritte aufweist:
Mischen eines Kunststoffbinders mit einem pulverisierten Metall, um eine homogene
Masse zu erhalten;
zum Bilden des Dichtungssitzes (11) Einspritzen der homogenen Masse in eine Form (14),
die als Negativ die Form des Dichtungssitzes (11) wiedergibt;
Erzielen, innerhalb der Form (14), einer Vielzahl von Stempeln (15), die als Negativ
mindestens teilweise die Form der Einspritzlöcher (3) wiedergeben dergestalt, dass
sie innerhalb der Form (14) den Dichtungssitz (11) bilden, der bereits die Einspritzlöcher
(3) aufweist; und
Durchführen einer Wärmebehandlung am Dichtungssitz (11), um den Kunststoffbinder zu
entfernen und das pulverisierte Metall zu sintern;
wobei das Herstellungsverfahren dadurch
gekennzeichnet ist, dass:
jedes Einspritzloch (3) einen Außenteil mit größerem Durchmesser und einen Innenteil
mit kleinerem Durchmesser aufweist;
jeder Stempel (15) als Negativ nur den Außenteil mit größerem Durchmesser eines entsprechenden
Einspritzlochs (3) wiedergibt; und
das Herstellungsverfahren den weiteren Schritt des mechanischen Bohrens des Dichtungssitzes
(11) entsprechend jedem Einspritzloch (3) aufweist, um den Innenteil des Einspritzlochs
(3) erzielen.
2. Herstellungsverfahren gemäß Anspruch 1, bei dem der Schritt des Durchführens einer
Wärmebehandlung am Dichtungssitz (11) folgende weitere Schritte aufweist:
Durchführen einer ersten Erwärmung am Dichtungssitz (11), um den Kunststoffbinder
mindestens teilweise zu entfernen; und
Durchführen einer anschließenden zweiten Erwärmung am Dichtungssitz (11) bei höheren
Temperaturen als bei der ersten Erwärmung, um den restlichen Kunststoffbinder zu entfernen
und das pulverisierte Metall zu sintern.
3. Herstellungsverfahren gemäß Anspruch 1 oder 2, bei dem der Innenteil jedes Einspritzlochs
(3) des Dichtungssitzes (11) durch elektroerosives Abtragen erzielt wird.
4. Herstellungsverfahren gemäß Anspruch 1 oder 2, bei dem der Innenteil jedes Einspritzlochs
(3) des Dichtungssitzes (11) durch Scheren erzielt wird.
5. Herstellungsverfahren gemäß Anspruch 1 oder 2, bei dem der Innenteil jedes Einspritzlochs
(3) des Dichtungssitzes (11) mittels eines Drehbohrers erzielt wird.
1. Procédé de fabrication du siège de scellement (11) d'un injecteur de carburant (1)
pour un moteur à combustion interne, ledit siège de scellement (11) comprenant une
pluralité de trous d'injection (3) ; le procédé comprenant les étapes suivantes :
mélanger un liant plastique avec un métal en poudre de façon à obtenir un composé
homogène ;
injecter, afin de former le siège de scellement (11), le composé homogène dans un
moule (14) qui reproduit en négatif la forme du siège de scellement (11) ;
obtenir à l'intérieur du moule (14) une pluralité de poinçons (15) qui reproduisent
en négatif au moins partiellement la forme des trous d'injection (3) de manière à
former, à l'intérieur du moule (14), le siège de scellement (11) qui présente déjà
les trous d'injection (3) ; et
soumettre le siège de scellement (11) à un traitement thermique pour éliminer le liant
plastique et fritter le métal en poudre ;
le procédé de fabrication étant caractérisé en ce que :
chaque trou d'injection (3) comprend une partie extérieure de plus grand diamètre
et une partie intérieure de plus petit diamètre ;
chaque poinçon (15) ne reproduit en négatif que la partie extérieure de plus grand
diamètre d'un trou d'injection respectif (3) ; et
le procédé de fabrication comprend, en outre, l'étape de forage mécanique du siège
de scellement (11) en correspondance avec chaque trou d'injection (3) pour créer la
partie intérieure du trou d'injection (3).
2. Procédé de fabrication selon la revendication 1, dans lequel l'étape consistant à
soumettre le siège de scellement (11) à un traitement thermique comprend, en outre,
les étapes suivantes :
soumettre le siège de scellement (11) à un premier chauffage pour éliminer le liant
plastique au moins partiellement ; et
soumettre le siège de scellement (11) à un second chauffage subséquent à des températures
supérieures à celles du premier chauffage afin d'éliminer le liant plastique résiduel
et fritter le métal en poudre.
3. Procédé de fabrication selon la revendication 1 ou 2, dans lequel la partie intérieure
de chaque trou d'injection (3) du siège de scellement (11) est obtenue au moyen d'un
usinage par décharge électrique.
4. Procédé de fabrication selon la revendication 1 ou 2, dans lequel la partie intérieure
de chaque trou d'injection (3) du siège de scellement (11) est obtenue par cisaillement.
5. Procédé de fabrication selon la revendication 1 ou 2, dans lequel la partie intérieure
de chaque trou d'injection (3) du siège de scellement (11) est obtenue au moyen d'un
foret rotatif.