TECHNICAL FIELD
[0001] The present invention relates to a hand tool, or, for example, a medical edged tool,
having an accommodated state, in which a functional portion such as a blade body is
accommodated in a holder, and a projected state, in which the functional portion projects
from the holder.
BACKGROUND ART
[0002] Conventionally, a hand tool, which is, for example, a medical edged tool, includes
a functional portion such as a blade body and a holder in which the functional portion
is accommodated. The functional portion is bent and moves relative to the holder in
such a manner that the hand tool is switched between an accommodated state and a projected
state of the functional portion (see, for example, Japanese Laid-Open Patent Publication
No.
7-47075
[0003] Document
US2885779 discloses a penknife clipper comprising a main barrel housing defining a longitudinal
guide slot, a carrier slidably supported within said slot for reciprocating longitudinal
movement, a blade pivotally supported upon said carrier, actuating means selectively
extending and retracting said blade relative to said housing, an enlarged slot at
one end of said housing in communication with said guide slot accommodating limited
pivotal movement of said blade upon said carrier within said slot about an axis extending
normal to the longitudinal axis of said housing, said actuating means comprising a
threaded stud rotatably supported at the opposite end of said housing, and said carrier
comprising a cylinder threadingly engaged with said stud for reciprocating longitudinal
movement within said housing in response to rotation of said stud, and a spring secured
at one end to said cylinder having an opposite end in pressure engagement with said
blade resiliently resisting movement of said blade about said axis extending normal
to the longitudinal axis of said housing.
[0004] Document
US2226324 discloses a net mending tool comprising a body having a working point at its forward
end, said body being formed with a longitudinal recess opening through a longitudinal
edge thereof, a knife mounted substantially entirely within said recess longitudinally
inwardly from said working point, assembling means mounting said knife for longitudinal
movement toward and away from said working point, and means operative to project the
forward end portion of said knife in a lateral direction beyond said longitudinal
edge as the knife is moved forwardly so as to expose the knife for cutting in a position
immediately adjacent to said working point, said longitudinal edge of the body being
formed with a cut out portion, and said knife having an operating element exposed
by said cut out portion, said means comprising a cam surface within said recess with
which a portion of the knife is engageable.
SUMMARY OF THE INVENTION
[0005] However, if the functional portion such as the blade body is bent but an inlet opening
of the holder is not sized sufficiently large for the functional portion, the functional
portion cannot be accommodated in the holder. As a result, the conventional hand tool
disadvantageously has a holder with a large-sized inlet opening, which, in turn, increases
the size of the holder as a whole.
[0006] Accordingly, it is an objective of the present invention to reduce the size of an
inlet opening of a holder of a hand tool such as a medical edged tool by improving
operation of a functional portion both in an accommodated state and a projected state.
[0007] In order to achieve the foregoing objective and in accordance with a first aspect
of the present invention, a hand tool having a holder and a movable head portion to
which a functional portion is secured is provided. The movable head portion is supported
by the holder in a manner movable relative to the holder between an accommodated state,
in which the movable head portion is accommodated in the holder together with the
functional portion, and a projected state, in which the functional portion is projected
from the holder. The orientation of the functional portion in the accommodated state
and the orientation of the functional portion in the projected state are different
from each other. This structure is suitable particularly for a hand tool having a
bendable functional portion. Specifically, the orientation of the functional portion
is changed so that the functional portion is switched from the projected state, which
facilitates use of the functional portion, to the accommodated state, which facilitates
accommodation of the functional portion. This reduces the size of the inlet opening
of the holder, which accommodates the functional portion. The hand tool further includes
a manipulation body that supports the movable head portion, and the manipulation body
allows the movable head portion to move between the accommodated state and the projected
state. As a result, the movable head portion is easily moved between the accommodated
state and the projected state. The manipulation body also includes an elastic body
that applies an elastic force to the movable head portion between the accommodated
state and the projected state, and the elastic body causes the movable head portion
to incline. As a result, the movable head portion is easily inclined between the accommodated
state and the projected state by means of the elastic body. The movable head portion
is accommodated in the holder by the elastic force of the elastic body, and the movable
head portion projects the functional portion from the holder against the elastic force
of the elastic body. As a result, the movable head portion is further easily inclined
between the accommodated state and the projected state by means of the elastic body.
[0008] In the above described configuration, it is preferable that the movable head portion
incline when moving relative to the holder between the accommodated state and the
projected state. As a result, the functional portion is easily projected from and
retracted into the inlet opening of the holder.
[0009] In the above configuration, it is preferable that the holder and the movable head
portion include a guiding/restricting portion that guides the movable head portion
in a manner movable relative to the holder between the accommodated state and the
projected state and allows the movable head portion to incline. As a result, the movable
head portion is smoothly inclined by means of the guide and restricting portion.
[0010] In the above configuration, it is preferable that the manipulation body further include
a manipulating portion having a finger support portion, and that the elastic body
be arranged between the manipulating portion and the movable head portion, and wherein
the movable head portion is supported by the elastic body. As a result, the elastic
body that urges the movable head portion becomes compact with respect to the manipulation
body.
[0011] In the above configuration, it is preferable that the manipulating portion and the
elastic body of the manipulation body be formed integrally with the movable head portion.
As a result, the manipulation body and the movable head portion are easily provided.
[0012] In the above configuration, it is preferable that the guiding/restricting portion
of the movable head portion be a guide projection, and that the guiding/restricting
portion of the holder includes a pressing portion that presses and contacts the guide
projection of the movable head portion and a pressing escape hole that releases the
guide projection from pressing and contacting. This simplifies the configuration of
each guiding/restricting portion.
[0013] In accordance with a second aspect of the present invention, a hand tool having a
holder and a movable head portion to which a functional portion is secured is provided.
The movable head portion is supported by the holder in a manner movable relative to
the holder between an accommodated state, in which the movable head portion is accommodated
in the holder together with the functional portion, and a projected state, in which
the functional portion is projected from the holder. The position of the functional
portion in the accommodated state and the position of the functional portion in the
projected state are different in a longitudinal direction of the holder and in a direction
perpendicular to the longitudinal direction. This structure is suitable particularly
for a hand tool having a bendable functional portion. Specifically, the position of
the functional portion is changed so that the functional portion is switched from
the projected state, which facilitates use of the functional portion, to the accommodated
state, which facilitates accommodation of the functional portion. This reduces the
size of the inlet opening of the holder in which the functional portion is accommodated.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014]
Fig. 1(a) is an exploded side view showing a medical edged tool according to one embodiment
of the present invention, with a core member removed from the holder;
Fig. 1(b) is a cross-sectional side view showing the holder;
Fig. 2(a) is a side view illustrating a blade body in a projected state;
Fig. 2(b) is a partial cross-sectional view showing the blade body in the state of
Fig. 2(a);
Fig. 3 (a) is a plan view showing the blade body in a projected state;
Fig. 3(b) is a partial cross-sectional view showing the blade body in the state of
Fig. 3(a);
Fig. 4(a) is a partial cross-sectional view showing the blade body in a transitional
state between the projected state and the accommodated state;
Fig. 4(b) is a plan view showing the blade body in the state of Fig. 4(a);
Fig. 5 (a) is a side view showing the blade body in the accommodated state;
Fig. 5(b) is a partial cross-sectional view showing the blade body in the state of
Fig. 5(a);
Fig. 6(a) is a side view showing the blade body in the accommodated state;
Fig. 6(b) is a partial cross-sectional view showing the blade body in the state of
Fig. 6(a);
Fig. 7(a) is a plan view showing a portion of Fig. 3(a) held in a locked state;
Fig. 7(b) is a cross-sectional view taken along line 7b-7b of Fig. 7 (a) ;
Fig. 8(a) is a plan view showing a portion of Fig. 3 (a) held in an unlocked state;
Fig. 8(b) is a cross-sectional view taken along line 8b-8b of Fig. 8(a);
Fig. 9(a) is a plan view showing a portion of Fig. 6(a) held in the unlocked state;
Fig. 9(b) is a cross-sectional view taken along line 9b-9b of Fig. 9(a);
Fig. 10(a) is a plan view showing a portion of Fig. 6(a) held in the locked state;
Fig. 10(b) is a cross-sectional view taken along line 10b-10b of Fig. 10(a);
Fig. 11(a) is a cross-sectional view taken along line 11a-11a of either Fig. 3(a)
or Fig. 6(a);
Figs. 11(b), 11(c), and 11(d) are diagrams corresponding to Fig. 11(a), each showing
an engagement projection and an engagement recess of a modification;
Fig. 12(a) is a cross-sectional view schematically showing a portion of a blade body
of a modification held in an accommodated state; and
Fig. 12(b) is a cross-sectional view schematically showing a portion of the blade
body held in a projected state.
BEST MODE FOR CARRYING OUT THE INVENTION
[0015] A hand tool according to one embodiment of the present invention will now be described
with reference to the attached drawings. The hand tool of the embodiment is a medical
edged tool. As shown in Figs. 1(a) to 6(b), a holder 1 of the medical edged tool includes
an outer circumferential wall 2 having an elongated cylindrical shape extending along
the longitudinal direction X of the holder 1. An inner bore 3, which is provided in
the space surrounded by the outer circumferential wall 2, is open at a front opening
4, or an inlet opening at the front end of the holder 1, and a rear opening 5, which
is provided at the rear end of the holder 1.
[0016] A pressing portion 6, or a guiding/restricting portion, is provided in an upper portion
of the outer circumferential wall 2 in the up-and-down direction Z of Fig. 2(a) and
extends rearward from the front opening 4. A pressing escape hole 7, or an escape
portion formed continuously from the pressing portion 6 through a step 6a, is formed
in the upper portion of the outer circumferential wall 2 and extends rearward. The
inner bore 3 is exposed to the exterior through the pressing escape hole 7. A guide
groove 8, or an escape portion, is provided in a lower portion of the outer circumferential
wall 2 in the up-and-down direction Z of Fig. 2(a) and extends rearward from the front
opening 4. The guide groove 8 faces the pressing portion 6 and the pressing escape
hole 7. A receiving portion 9, which is formed continuously from the guide groove
8 through a step 8a, is provided in the lower portion of the outer circumferential
wall 2 and extends rearward. The receiving portion 9 faces the pressing escape hole
7.
[0017] A guide hole 10 extends along the longitudinal direction X at a position slightly
rearward from the pressing escape hole 7 in the upper portion of the outer circumferential
wall 2. Engagement recesses 11, 12, or engagement portions extending in the circumferential
direction R of the holder 1, are provided at a front end portion and a rear end portion
of the guide hole 10. Specifically, the engagement recess 11 is provided at the front
end portion of the guide hole 10 and the engagement recess 12 is formed at the rear
end portion of the guide hole 10. As illustrated in Figs. 7(a) to 10(b), end portions
11a and end portions 12a, each serving as a stopper portion, are formed at both front
and rear end portions of the engagement recess 11 and the engagement recess 12, respectively.
The holder 1 is formed of polycarbonate resin by injection molding. The components
forming the holder 1 are molded as an integral body and the holder 1 is transparent.
[0018] A core member 13 of the medical edged tool includes a manipulation body 14 and a
movable head portion 21. The manipulation body 14 has a manipulating portion 15 formed
mainly by a movable rod 16 and a leaf spring portion 17 serving as an elastic body
extending forward from a lower portion of the front end of the movable rod 16. A base
plate 18 having a cantilevered shape extends forward from an upper portion of the
front end of the movable rod 16. An engagement projection 19 projects from the base
plate 18. With reference to Fig. 11(a), a brim 19a serving as a stopper portion projects
from each one of a front end portion and a rear end portion of the engagement projection
19. A finger support portion 20 is formed at a rear end portion of the movable rod
16.
[0019] A proximal portion of the movable head portion 21 is supported by a distal portion
of the leaf spring portion 17 at a position forward from the engagement projection
19 on the base plate 18. Guide projections 22, 23 project from both upper and lower
end portions of the movable head portion 21. Specifically, the guide projection 22
is formed on the upper end portion of the movable head portion 21 and the guide projection
23 is provided at the lower end portion of the movable head portion 21. The guide
projections 22, 23, the pressing portion 6, the pressing escape hole 7, the guide
groove 8, and the receiving portion 9 form a guiding/restricting portion. A blade
body 24, or a functional portion, is secured to a distal surface 21a of the movable
head portion 21. The blade body 24 has a support plate portion 24a extending forward
from the distal surface 21a of the movable head portion 21 and a blade plate portion
24b extending diagonally upward from a distal portion of the support plate portion
24a. The blade body 24 is formed of stainless steel. The core member 13, which is
configured by the movable head portion 21 and the manipulation body 14, is formed
of polybutadiene terephthalate resin. The components forming the core member 13, except
for the blade body 24, are molded as an integral body.
[0020] To insert the core member 13 into the holder 1 and engage the core member 13 with
the holder 1, the finger support portion 20 of the movable rod 16 is inserted into
the holder 1 from the front opening 4 of the holder 1 and thus projected from the
rear opening 5. At this stage, the base plate 18 flexibly deforms in the up-and-down
direction Z against the elastic force of the base plate 18. The engagement projection
19 on the base plate 18 is thus allowed to move along the inner circumference of the
outer circumferential wall 2 and engaged with the guide hole 10. The finger support
portion 20 is always exposed from the rear opening 5 located at a position opposite
to the front opening 4 from which the movable head portion 21 is selectively projected
from and retracted into the holder 1. On the outer circumferential surface of the
outer circumferential wall 2, the arrows illustrated at positions in front of and
at the rear of the guide hole 10, each represent a movement direction of the engagement
projection 19 when the engagement projection 19 is operated.
[0021] In a projected state P, as illustrated in Figs. 2(a) to 3(b), in which a front portion
of the movable head portion 21 and the blade body 24 project outward from the front
opening 4 of the holder 1, the engagement projection 19 is located in the engagement
recess 11 and thus prevented from moving in the longitudinal direction X, as illustrated
in Figs. 7(a) and 7(b). In this state, the engagement projection 19 is engaged with
the engagement recess 11. This locks the core member 13 in the projected state P.
In this state, with reference to Fig. 11(a), the brims 19a of the engagement projection
19 contact the end portions 11a of the engagement recess 11 despite the fact that
the base plate 18 is flexibly deformed and received in the holder 1. This prevents
the engagement projection 19 from entering the holder 1. In the movable head portion
21, the guide projection 22, or particularly an inclined surface 22a of the guide
projection 22, is pressed downward by the pressing portion 6 against the elastic force
of the leaf spring portion 17. The distal surface 21a thus becomes inclined upward
and the guide projection 23 is received in the guide groove 8. The guide projection
23 is thus prevented from pivoting in the circumferential direction R about the axis
16a of the movable rod 16. In this state, the guide projection 23 is engaged with
the guide groove 8. Further, the outer circumferential surface of a portion of the
movable head portion 21 located slightly forward from the guide projections 22, 23
contacts the inner circumferential surface of the outer circumferential wall 2 including
the pressing portion 6. This stops the movable head portion 21 from moving in the
up-and-down direction Z or the left-and-right direction Y, thus stably maintaining
the movable head portion 21 in the projected state P.
[0022] In the projected state P, the finger support portion 20 is gripped and the movable
rod 16 is twisted relative to the holder 1 in the circumferential direction R about
the axis 16a of the movable rod 16 against the elastic force of the leaf spring portion
17. In this state, with the movable head portion 21 fixed without rotating relative
to the holder 1, the engagement projection 19 is released from the engagement recess
11 and received in the guide hole 10, as illustrated in Figs. 8(a) and 8(b). This
unlocks the core member 13 from the projected state P. Anti-slip serrations are formed
on the outer circumference of the finger support portion 20, thus allowing the movable
rod 16 to be easily twisted.
[0023] As illustrated in Figs. 4(a) and 4(b), the movable rod 16 is pulled rearward while
twisted with the finger support portion 20 held in a gripped state. In this state,
the engagement projection 19 is moved along the guide hole 10 and sent to a position
adjacent to the engagement recess 12, as viewed in Figs. 9 (a) and 9(b). In such movement
of the engagement projection 19, the guide projection 22 of the movable head portion
21 is released from the pressing portion 6 and received in the pressing escape hole
7, as illustrated in Figs. 5(a) to 6(b). Meanwhile, the guide projection 23 is disengaged
from the guide groove 8 and supported by the receiving portion 9. In this state, the
guide projection 22 is engaged with the pressing escape hole 7. Then, the elastic
force of the leaf spring portion 17 causes the leaf spring portion 17 to restore its
upper position so that the distal surface 21a becomes inclined downward. If the engagement
projection 19 is arranged in the guide hole 10, the guide hole 10 receives the twisting
force of the movable rod 16. After the movable rod 16 is released from gripping and
the movable head portion 21 becomes fixed without rotating relative to the holder
1, as illustrated in Fig. 10(a) and 10(b), the elastic force of the leaf spring portion
17 causes the movable rod 16 to restore its original position, canceling the twisting
force of the movable rod 16. Further, the engagement projection 19 automatically enters
the engagement recess 12 and is thus prevented from moving in the longitudinal direction
X. This locks the core member 13 in an accommodated state Q. In this state, the engagement
projection 19 is engaged with the engagement recess 12.
[0024] When shifting from the projected state P to the accommodated state Q, the movable
head portion 21 and the blade body 24 become inclined so that the orientations N of
the movable head portion 21 and the blade body 24 are changed by approximately 12
degrees as illustrated in Figs. 2(b), 4(a), and 5(b). In other words, in the projected
state P, the blade plate portion 24b of the blade body 24 is projected outside of
the range S defined by extending the front opening 4 of the holder 1 in the longitudinal
direction X. In the accommodated state Q, the movable head portion 21 and the blade
body 24 are inclined downward and held within the range S.
[0025] In the accommodated state Q, the finger support portion 20 is gripped and the movable
rod 16 is twisted relative to the holder 1 in the circumferential direction R about
the axis 16a of the movable rod 16 against the elastic force of the leaf spring portion
17. In this state, while the movable head portion 21 is maintained fixed without rotating
relative to the holder 1, the engagement projection 19 is disengaged from the engagement
recess 12 and received in the guide hole 10 as illustrated in Figs. 9(a) and 9(b).
This unlocks the core member 13 from the accommodated state Q.
[0026] with reference to Figs. 4(a) and 4(b), the movable rod 16 is pressed forward while
held in a twisted state with the finger support portion 20 gripped. This moves the
engagement projection 19 along the guide hole 10 and sends the engagement projection
19 to the position adjacent to the engagement recess 11 as illustrated in Figs. 8(a)
and 8(b). In such movement of the engagement projection 19, the guide projection 22
of the movable head portion 21 is separated from the pressing escape hole 7 and, particularly,
the inclined surface 22a of the guide projection 22 is pressed downward by the pressing
portion 6 as shown in Figs. 2(a) to 3(b). Further, the guide projection 23 is separated
from the receiving portion 9 and enters the guide groove 8, and the leaf spring portion
17 flexibly deforms downward against the elastic force of the leaf spring portion
17 so that the distal surface 21a becomes inclined upward. In this state, the guide
projection 23 becomes engaged with the guide groove 8. After the movable rod 16 is
released from gripping and the movable head portion 21 is maintained fixed without
rotating relative to the holder 1 as illustrated in Figs. 7(a) and 7(b), the elastic
force of the leaf spring portion 17 causes the movable rod 16 to restore its original
position, canceling the twisting force of the movable rod 16. Further, the engagement
projection 19 automatically enters the engagement recess 11 and is thus prevented
from moving in the longitudinal direction X. This locks the core member 13 in the
projected state P. In this state, the engagement projection 19 is engaged with the
engagement recess 11.
[0027] Serrations 2a are formed on the outer circumference of the front portion of the outer
circumferential wall 2. The fingers contact the serrations 2a when a surgery is performed
or the core member 13 is projected or retracted. A mounting projection 5a, which prevents
rolling of the holder 1, is formed along the outer circumference of a rear end portion
of the outer circumferential wall 2.
[0028] The length of the medical edged tool as a whole in the longitudinal direction X is
set to approximately 142 mm in the projected state P illustrated in Figs. 2(a) to
3(b). The length of the medical edged tool as a whole in the longitudinal direction
X in the accommodated state Q illustrated in Figs. 5(a) to 6(b) is set to approximately
145 mm. The height of the holder 1 in the up-and-down direction Z is set to approximately
9 mm. The height of the front opening 4 in the up-and-down direction Z, or the height
of the range S in the up-and-down direction Z, is set to approximately 6.4 mm. The
maximum movement distance of the movable head portion 21 in the longitudinal direction
X is set to approximately 22 mm. The twisting angle of the movable rod 16 is set to
10 to 45 degrees, or, preferably, 15 to 30 degrees, with easy manipulation by the
user and the twisting strength of the movable rod 16 taken into consideration. In
the leaf spring portion 17 in the states illustrated in Fig. 1(a) and Figs. 5(a) to
6(b), the length between the movable rod 16 and the movable head portion 21 in the
longitudinal direction X is set to approximately 40 mm. The thickness in the vicinity
of the movable head portion 21 in the up-and-down direction Z is set to approximately
1.0 mm. The thickness in the vicinity of the movable rod 16 in the up-and-down direction
Z is set to approximately 1.4 mm. The width in the vicinity of the movable head portion
21 in the left-and-right direction Y is set to approximately 3.7 mm. The width in
the vicinity of the movable rod 16 in the left-and-right direction Y is set to approximately
4.5 mm. In other words, the portion of the leaf spring portion 17 in the vicinity
of the movable head portion 21 is thin with a smaller thickness and narrow with a
smaller width. This makes it easy for the portion to be twisted in the circumferential
direction R and flexibly deformed in the up-and-down direction Z.
[0029] As a result, the hand tool of the illustrated embodiment is suitable particularly
as the medical edged tool with the bendable blade body 24. Specifically, the orientation
N of the blade body 24 is changed between the accommodated state Q and the projected
state P. The blade body 24 is thus easily accommodated. This decreases the size of
the front opening 4 of the holder 1 and thus provides a compact holder 1. Also, such
sizing saves wrapping material.
[0030] The illustrated embodiment may be modified as follows.
[0031] In the illustrated embodiment, the brims 19a each serving as a stopper portion are
formed at both of the front and rear end portions of the engagement projection 19
as illustrated in Fig. 11(a). However, the brim 19a may be provided only in one of
the front and rear end portions of the engagement projection 19. With reference to
Fig. 11b, extended stopper portions 19a, 11a, 12a may be formed at both front and
rear end portions of the engagement projection 19 and both front and rear end portions
of each engagement recess 11, 12. As illustrated in Fig. 11(c), stopper portions 11a,
12a each having a stepped shape may be provided at both front and rear end portions
of each engagement recess 11, 12. With reference to Fig. 11(d), the stopper portions
may be omitted from both the engagement projection 19 and the engagement recesses
11, 12. Alternatively, although not illustrated, three or more engagement recesses
11, 12 may be formed along the guide hole 10.
[0032] As illustrated in Figs. 12(a) and 12(b), the blade body 24 may be translated without
changing the orientation N between the accommodated state and the projected state.
In this state, the position of the blade body 24 in the accommodated state and the
position of the blade body 24 in the projected state is changed by the distance L
in the longitudinal direction X of the holder 1 and by the distance W in the up-and-down
direction Z of the holder 1 perpendicular to the longitudinal direction X. Although
not illustrated, the position of the blade body 24 in the accommodated state and the
position of the blade body 24 in the projected state may be changed by the distance
W in the left-and-right direction Y of the holder 1 perpendicular to the longitudinal
direction X.
[0033] In the blade body 24, the bending angle of the blade plate portion 24b with respect
to the support plate portion 24a is set to approximately 45 degrees. However, the
bending angle may be set to an angle other than approximately 45 degrees. The bending
portion may have a curved shape or a plurality of bending portions may be provided.
Such modifications may be made also in a case in which a component other than the
blade body 24 is employed as the functional portion.
[0034] Various suitable structures may be employed as the guiding/restricting portion instead
of the guide projections 22, 23 of the movable head portion 21, the pressing portion
6, the pressing escape hole 7, the guide groove 8, and the receiving portion 9 of
the holder 1.
[0035] The movable head portion 21 and the leaf spring portion 17 may be provided separately
and secured to each other. Alternatively, the leaf spring portion 17 and the movable
rod 16 may be provided separately and secured to each other.
[0036] Various suitable mechanisms other than the mechanism of the illustrated embodiment
may be employed as the movement mechanism of the movable rod 16 depending on the purpose
and the form of the movable rod 16. The mechanisms include, for example, a knocking
type mechanism generally used in a writing instrument such as a ballpoint pen and
a screw type mechanism that causes the movable rod 16 to rotate and move in the longitudinal
direction like a micrometer.
[0037] The present invention may be used in any suitable hand tool other than the medical
edged tool such as a surgical edged tool. For example, the present invention may be
used ballpoint pens, shavers, box cutters, knives, edged tools like chisels, earpicks,
forks, cosmetic brushes, and lipsticks. Various suitable components may be employed
as the functional portion depending on the type of the hand tools.
1. A hand tool having a holder (1) and a movable head portion (21) to which a functional
portion (24) is secured, wherein the movable head portion (21) is supported by the
holder (1) in a manner movable relative to the holder (1) between an accommodated
state, in which the movable head portion (21) is accommodated in the holder (1) together
with the functional portion (24), and a projected state, in which the functional portion
(24) is projected from the holder (1), wherein the orientation of the functional portion
(24) in the accommodated state and the orientation of the functional portion (24)
in the projected state are different from each other,
wherein the hand tool further comprises a manipulation body (14) that supports the
movable head portion (21), wherein the manipulation body (14) allows the movable head
portion (21) to move between the accommodated state and the projected state,
wherein the manipulation body (14) includes an elastic body (17) that applies an elastic
force to the movable head portion (21) between the accommodated state and the projected
state, wherein the elastic body (17) causes the movable head portion (21) to incline,
characterized in that
the movable head portion (21) is accommodated in the holder (1) by the elastic force
of the elastic body (17), and in that the movable head portion (21) projects the functional portion (24) from the holder
(1) against the elastic force of the elastic body (17).
2. The hand tool according to claim 1, characterized in that the position of the functional portion (24) in the accommodated state and the position
of the functional portion (24) in the projected state are different in a longitudinal
direction of the holder (1) and in a direction perpendicular to the longitudinal direction.
3. The hand tool according to claim 1 or 2, characterized in that the holder (1) and the movable head portion (21) include a guiding/restricting portion
(9) that guides the movable head portion (21) in a manner movable relative to the
holder (1) between the accommodated state and the projected state and allows the movable
head portion (21) to incline.
4. The hand tool according to claim 1, characterized in that the manipulation body (14) further includes a manipulating portion (15) having a
finger support portion (20), wherein the elastic body (17) is arranged between the
manipulating portion (15) and the movable head portion (21), and wherein the movable
head portion (21) is supported by the elastic body (17).
5. The hand tool according to claim 4, characterized in that the manipulating portion (15) and the elastic body (17) of the manipulation body
(14) are formed integrally with the movable head portion (21).
6. The hand tool according to claim 3, characterized in that the guiding/restricting portion (9) of the movable head portion (21) is a guide projection
(22, 23), wherein the guiding/restricting portion (9) of the holder (1) includes a
pressing portion (6) that presses and contacts the guide projection (22, 23) of the
movable head portion (21) and a pressing escape hole (7) that releases the guide projection
(22, 23) from pressing and contacting.
1. Handwerkzeug mit einem Halter (1) und einem beweglichen Kopfteil (21), an dem ein
funktioneller Teil (24) befestigt ist, wobei der bewegliche Kopfteil (21) auf eine
in Bezug zu dem Halter (1) zwischen einem aufgenommenen Zustand, in dem der bewegliche
Kopfteil (21) zusammen mit dem funktionellen Teil (24) im Halter aufgenommen ist,
und einem ausgezogenen Zustand, in dem der funktionelle Teil (24) aus dem Halter (1)
herausragt, bewegliche Weise von dem Halter (1) getragen wird, wobei sich die Ausrichtung
des funktionellen Teils (24) in dem aufgenommenen Zustand und die Ausrichtung des
funktionellen Teils (24) in dem ausgezogenen Zustand unterscheiden,
wobei das Handwerkzeug weiterhin einen Betätigungskörper (14) umfasst, der den beweglichen
Kopfteil (21) trägt, wobei der Betätigungskörper (14) die Bewegung des beweglichen
Kopfteils (21) zwischen dem aufgenommenen Zustand und dem ausgezogenen Zustand ermöglicht,
wobei der Betätigungskörper (14) einen elastischen Körper (17) umfasst, der zwischen
dem aufgenommenen Zustand und dem ausgezogenen Zustand eine elastische Kraft auf den
beweglichen Kopfteil (21) ausübt, wobei der elastische Körper (17) eine Neigung des
beweglichen Kopfteils (21) verursacht, dadurch gekennzeichnet, dass
der bewegliche Kopfteil (21) mittels der elastischen Kraft des elastischen Körpers
(17) in dem Halter (1) aufgenommen ist und dass der bewegliche Kopfteil (21) den funktionellen
Teil (24) gegen die elastische Kraft des elastischen Körpers (17) aus dem Halter (1)
herausdrückt.
2. Handwerkzeug nach Anspruch 1, dadurch gekennzeichnet, dass sich die Position des funktionellen Teils (24) im aufgenommenen Zustand und die Position
des funktionellen Teils (24) im ausgezogenen Zustand in einer Längsrichtung des Halters
(1) und in einer Richtung senkrecht zu der Längsrichtung unterscheidet.
3. Handwerkzeug nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Halter (1) und der bewegliche Kopfteil (21) einen Führungs-/Begrenzungsteil (9)
umfassen, der den beweglichen Kopfteil (21) auf eine in Bezug zu dem Halter (1) zwischen
einem aufgenommenen Zustand und einem ausgezogenen Zustand bewegliche Weise führt
und eine Neigung des beweglichen Kopfteils (21) ermöglicht.
4. Handwerkzeug nach Anspruch 1, dadurch gekennzeichnet, dass der Betätigungskörper (14) weiterhin einen Betätigungsteil (15) mit einem Fingerstützteil
(20) umfasst, wobei der elastische Körper (17) zwischen dem Betätigungsteil (15) und
dem beweglichen Kopfteil (21) angeordnet ist, und wobei der bewegliche Kopfteil (21)
von dem elastischen Körper (17) getragen wird.
5. Handwerkzeug nach Anspruch 4, dadurch gekennzeichnet, dass der Betätigungsteil (15) und der elastische Körper (17) des Betätigungskörpers (14)
einstückig mit dem beweglichen Kopfteil (21) ausgebildet sind.
6. Handwerkzeug nach Anspruch 3, dass der Führungs-/Begrenzungsteil (9) des beweglichen
Kopfteils (21) ein Führungsvorsprung (22, 23) ist, wobei der Führung-/Begrenzungsteil
(9) des Halters (1) einen Druckteil (6) umfasst, der gegen den Führungsvorsprung (22,
23) des beweglichen Kopfteils (21) drückt und mit diesem in Berührung steht sowie
ein Druckfreisetzungsloch (7), das den Führungsvorsprung (22, 23) vom Druck entlastet
und die Berührung aufhebt.
1. Outil à main ayant un support (1) de tenue en main et une partie (21) de tête mobile
de laquelle une partie fonctionnelle (24) est solidaire, où la partie (21) de tête
mobile est tenue en main par le support (1) de manière mobile par rapport au support
(1) entre un état reçue, dans lequel la partie (21) de tête mobile est reçue dans
le support (1) avec la partie fonctionnelle (24), et un état projetée, dans lequel
la partie fonctionnelle (24) se projette du support (1), où l'orientation de la partie
fonctionnelle (24) dans l'état reçue et l'orientation de la partie fonctionnelle (24)
dans l'état projetée sont différentes l'une de l'autre,
où l'outil à main comprend en outre un corps (14) de manipulation qui soutient la
partie (21) de tête mobile, où le corps (14) de manipulation permet à la partie (21)
de tête mobile de se déplacer entre l'état reçue et l'état projetée,
où le corps (14) de manipulation comporte un corps élastique (17) qui applique une
force élastique à la partie (21) de tête mobile entre l'état reçue et l'état projetée,
où le corps élastique (17) amène la partie (21) de tête mobile à s'incliner, caractérisé en ce que
la partie (21) de tête mobile est reçue dans le support (1) par la force élastique
du corps élastique (17), et en ce que la partie (21) de tête mobile projette la partie fonctionnelle (24) à partir du support
(1) contre la force élastique du corps élastique (17).
2. Outil à main selon la revendication 1, caractérisé en ce que la position de la partie fonctionnelle (24) dans l'état reçue et la position de la
partie fonctionnelle (24) dans l'état projetée sont différentes dans une direction
longitudinale du support (1) et dans une direction perpendiculaire à la direction
longitudinale.
3. Outil à main selon la revendication 1 ou 2, caractérisé en ce que le support (1) et la partie (21) de tête mobile comportent une partie (9) de guidage/limitation
qui guide la partie (21) de tête mobile de manière mobile par rapport au support (1)
entre l'état reçue et l'état projetée et permet à la partie (21) de tête mobile de
s'incliner.
4. Outil à main selon la revendication 1, caractérisé en ce que le corps (14) de manipulation comporte en outre une partie (15) de manipulation ayant
une partie (20) de support de doigt, où le corps élastique (17) est agencé entre la
partie (15) de manipulation et la partie (21) de tête mobile, et où la partie (21)
de tête mobile est soutenue par le corps élastique (17).
5. Outil à main selon la revendication 4, caractérisé en ce que la partie (15) de manipulation et le corps élastique (17) du corps (14) de manipulation
sont formés solidaires de la partie (21) de tête mobile.
6. Outil à main selon la revendication 3, caractérisé en ce que la partie (9) de guidage/limitation de la partie (21) de tête mobile est une projection
de guidage (22, 23), où la partie (9) de guidage/limitation du support (1) comporte
une partie (6) de pression qui appuie sur et entre en contact avec la projection de
guidage (22, 23) de la partie (21) de tête mobile et un trou (7) de relâchement de
la pression qui libère la projection de guidage (22, 23) de la pression et du contact.