(19)
(11) EP 1 481 042 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
18.01.2012 Bulletin 2012/03

(21) Application number: 03709019.8

(22) Date of filing: 07.02.2003
(51) International Patent Classification (IPC): 
C10L 1/32(2006.01)
(86) International application number:
PCT/US2003/003850
(87) International publication number:
WO 2003/074638 (12.09.2003 Gazette 2003/37)

(54)

LOW EMISSIONS FUEL EMULSION COMPRISING FISCHER-TROPSCH DERIVED HYDROCARBON

UMWELTFREUNDLICHE FISCHER-TROPSCH-TREIBSTOFFEMULSION

EMULSION DE COMBUSTIBLE A FAIBLE EMISSION DE PARTICULES, RENFERMANT UN HYDROCARBURE OBTENU PAR PROCEDE FISCHER-TROPSCH


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

(30) Priority: 01.03.2002 US 86775

(43) Date of publication of application:
01.12.2004 Bulletin 2004/49

(73) Proprietor: ExxonMobil Research and Engineering Company
Annandale, NJ 08801-0900 (US)

(72) Inventors:
  • BERLOWITZ, Paul, Joseph
    Glen Gardner, NJ 08826 (US)
  • WITTENBRINK, Robert, Jay
    Kingwood, TX 77345 (US)
  • CHAKRABARTY, Tapan
    Calgary, Alberta T3A 4A1 (CA)

(74) Representative: Troch, Geneviève et al
ExxonMobil Chemical Europe Inc. P.O. Box 105
1830 Machelen
1830 Machelen (BE)


(56) References cited: : 
EP-A- 1 152 049
WO-A1-03/057793
US-B1- 6 325 833
WO-A-99/07465
WO-A2-03/064566
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF INVENTION



    [0001] The present invention relates to an improved fuel which has reduced particulate matter emission characteristics. More particularly the invention is directed to fuels that are in the form of hydrocarbon-in-water emulsions.

    BACKGROUND OF The INVENTION



    [0002] Hydrocarbon-in-water emulsions have many potential uses, such as in internal combustion engines and as a fuel for heating purposes. Indeed, various studies have suggested that burning hydrocarbon-in-water emulsions has the advantage of lowering the nitrogen oxide emissions normally associated with burning hydrocarbons. For example WO 99/074 65 discloses emulsions containing alcohol and/or water in a dispersed phase and a hydrocarbon liquid in me continuous phase. Emulsions are believed to reduce nitrogen oxide (NOx) emissions by lowering the peak flame temperature during their combustion. A lower flame temperature, however, often is associated with an increase in the emission of particulate matter (Pm). This phenomenon, known as the Pm-NOx trade off, is believed to limit the improvements one can make to diesel emissions. For example WO 99/074 65 discloses emulsions containing alcohol and/or water un a dispersed phase and a hydrocarbon liquid in the continuous phase.

    [0003] In recent years there has been a tendency for more stringent emission regulations, including particulate emissions. Therefore, an object of the present invention is to develop a method of more effectively controlling particulate emissions without adversely impacting presently achievable reduced nitrogen oxide emission levels demonstrated for emulsified fuels.

    [0004] In the instance of diesel fueled engines, the reduction of particulate emissions is particularly important. Consequently, another object of the invention is to provide an improved diesel fuel having reduced particulate matter emission characteristics.

    SUMMARY OF INVENTION



    [0005] In accordance with the invention reduced particulate matter emissions are achieved with an emulsion of a hydrocarbon and water in which the hydrocarbon is a Fischer-Tropsch (FT) derived hydrocarbon fuel or a mixture of a FT fuel and a conventional hydrocarbon fuel and in which emulsion greater than 50% of the hydrocarbon has particle sizes in the range of 0.1 to less than 1.0 micron. The emulsion is a hydrocarbon-in-water emulsion.

    [0006] In a particularly preferred embodiment of the invention the hydrocarbon is a FT derived hydrocarbon boiling in the diesel fuel range.

    [0007] These and other embodiments will become apparent upon a reading of the detailed description of the invention which follows.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] Figure 1 is a diagrammatic illustration of one arrangement of multiple static mixers used to prepare an emulsion according to the invention.

    [0009] Figures 2 and 3 graphically compare the performance of an emulsion of the invention with two non-emulsified fuels in a diesel engine without timing adjustments.

    [0010] Figures 4 and 5 graphically compare the performance of the fuels of Figures 2 and 3 with timing adjustment.

    DETAILED DESCRIPTION OF THE INVENTION



    [0011] The emulsions of the present invention contain as the hydrocarbon, a Fischer-Tropsch (FT) derived hydrocarbon fuel or a mixture of a FT fuel and a conventional hydrocarbon fuel. Preferably, the hydrocarbon is a FT derived fuel.

    [0012] As is well known in the art the Fischer-Tropsch process involves the reaction of a hydrogen and carbon monoxide containing feed in the presence of a suitable catalyst to produce a largely normal paraffin synthetic crude. The process is described, for example, in U.S. Patents 5,348,982 and 5,545,674, and suitable catalysts in U.S. Patent 4,568,663.

    [0013] The hydrocarbon fuels produced in the Fischer-Tropsch process may be separated from the product crude by standard distillation techniques. Additionally, however, the waxy component of the crude may be converted into fuels by known techniques such as hydrotreating, hydroisomerization and hydrocracking. An example of one such process can be found in U.S. 5,378,348.

    [0014] In the context of the embodiments of the present invention the Fischer-Tropsch derived hydrocarbon fuel may comprise either the direct liquid product (C5+) from the Fischer-Tropsch process, a converted Fischer-Tropsch product, or a blend of the foregoing. Thus, Fischer-Tropsch products boiling in the range of from about 25°C to about 450°C are suitable. Such fuels include that disclosed in U.S. 5,807,413. Also included are more convention Fischer-Tropsch products such as those boiling, in the range of about 140°C to about 370°C and preferably in the range of about 160°C to about 350°C.

    [0015] The water of the emulsion of the invention may be that typically used in forming fuel emulsions such as tap water, distilled or deionized water. In one embodiment, water from the Fischer-Tropsch process constitutes the continuous phase of the emulsion. Fischer-Tropsch process water typically contains about ≤ 2 wt% of oxygenates. A typical composition is shown in Table 1 below:
    TABLE 1
    Oxygenates Amount
    C1-C12 alcohols 0.05 - 2 wt%
    C2-C6 acids 0 - 50 wppm
    C2-C6 ketones, aldehydes, acetates 0 - 50 wppm
    other 0 - 500 wppm


    [0016] The amount of water used in forming the emulsion may be varied over a wide range. For example, the volume ratio of Fischer-Tropsch hydrocarbon fuel to water may range from about 95:5 to about 60:40.

    [0017] The emulsions of the present invention also include a nonionic surfactant or mixture of nonionic surfactants. The type of nonionic surfactants suitable include ethoxylated alcohols, ethoxylated alkyl phenols, ethoxylated carboxylic esters, glycerol esters, sorbital esters and the like. In general, the nonionic surfactant will have an HLB in the range of 5 to 30 and preferably 8 to 15. Among suitable surfactants ethoxylated alkyl phenols having from about 5 to about 30 and preferably 10 to 15 mole of ethylene oxide groups deserve special mention.

    [0018] The amount of surfactant or mixtures thereof in the emulsion will range from about 0.05 wt% to about 5.0 wt% based on the total weight of hydrocarbons and water with 0.05 wt% to about 2 wt% being typical.

    [0019] The emulsion compositions of the invention may include minor but effective amounts of conventional additives such as emulsions stabilizers, antioxidants and the like. In the case where the fuel is diesel fuel the fuel may also contain conventional quantities of diesel fuel additives such as cetane improvers, detergents, heat stabilizers and the like.

    [0020] As is known in the art emulsions can be formed by any number of procedures. Central to all of these is providing sufficient shearing of the components to cause emulsification. In the practice of the present invention the fuel is added to a mixture of water and surfactant and sheared under conditions sufficient to produce hydrocarbon particles of less than 1.0 micron in size. Stated differently, the particles are substantially uniform in size: greater than 50% are in the range of 0.1 to less than 1.0 microns in size. Experience has shown that extensive shearing results in the formation of a "gel" and consequently the shearing will be less than that which would produce a gel.

    [0021] To achieve the requisite shearing it is particularly preferred to employ one or more static mixtures such as those described in U.S. Patents 5,405,439; 5,236,624; and 4,832,747. In general more than one mixer will be used and the mixers will not be of the same size (length, diameter, number of internal elements). Rather the number, size and elements are selected to adjust mixing efficiency and emulsion particle size. In the practice of the present invention a combination of static mixtures is selected to provide sufficient shearing of the hydrocarbon and water to produce an emulsion having particle sizes predominantly 1 micron or less and less shearing than that which would produce a "gel".

    [0022] A diagrammatic illustration of one arrangement of static mixers suitable for carrying out the emulsification of this invention is shown in the accompanying Figure. As shown, each of the six mixers have different dimensions. Obviously, different members and sizes of mixers may be used so long as the requisite shearing is achieved. The dimensions of the illustrated mixers are given in Table 2 below.
    TABLE 2
    Mixer Length cm, (inches) Diameter cm, (inches)
    1 30.5 (12) 1.3 (1/2)
    2 15.2 (6) 1.3 (1/2)
    3 10.2 (4) 0.6 (1/4)
    4 10.2 (4) 0.6 (1/4)
    5 15.2 (6) 0.5 (3/16)
    6 10.2 (4) 0.5 (3/16)


    [0023] In the arrangement shown in the Figure, a water and surfactant solution is fed to the mixer 1 via line 7 and the Fischer-Tropsch derived hydrocarbon fuel via line 8. The product of each mixer is sequentially fed to the next mixer in the series, e.g., the product of mixer I is fed to mixer 2; the product of mixer 2 is fed to mixer 3 and so on. The emulsion exiting mixer 6 via line 9 has a particle size predominantly less than I micron. The emulsion in the instance where the Fisher-Tropsch fuel is a diesel fuel, has a viscosity in the range of about 50 to 200 mm2/sec at 20°C

    EXAMPLES


    COMPARATIVE EXAMPLE 1



    [0024] 3000 gms of a non-ionic surfactant (an ethoxylated nonyl phenol having 10 mols of ethylene oxide groups) was added to 9700 gms of water and fed through mixers 1 to 4 shown in the Figure. A Fischer-Tropsch diesel fuel (boiling range ∼40°C to 300°C) comprising 90+% of C6 to C16 linear paraffins was also fed with the water and surfactant through the four mixers. The volume ratio of fuel to water was 70:30. The hydrocarbon flow rate was 2650 ml/min and the water surfactant solution flow rate was 1380 ml/min. The temperature was 24°C. The product of mixer 4 was not a hydrocarbon-in-water emulsion.

    EXAMPLE 1



    [0025] The same ingredients and amounts described in Comparative Example 1 were fed through mixers 1 to 6 shown in the Figure. The flow rate and temperature was the same as in Comparative Example 1. In this instance the product of mixer 6 was hydrocarbon-in-water emulsion having a density of 0.82 gm/cc and a viscosity of 150 mm2/sec at 20°C: The hydrocarbon particles averaged 0.7 microns with 95% below 1 micron in size. This emulsion was shelf stable for more than 6 months.

    EXAMPLE 2



    [0026] The performance of the emulsified Fischer-Tropsch fuel of Example 1 was compared to the same but not emulsified Fischer-Tropsch diesel fuel and to Swedish Class 1 Diesel fuel using a Catapillar I Y 540 single cylinder heavy duty Research engine. Two conditions were measured, low load (1500 rpm, 60 Nn torque and 3.0 bar BMEP and medium load (1500 rpm, 110 Nm torques and 5.5 bar BMEP.

    [0027] As is known Swedish Class 1 Diesel fuel (also called Urban Diesel ECI) is a standard low emissions reference diesel fuel that produces about 10% to 20% lower NOx and 40% to 50% lower articulate matter (Pm) than conventional diesel fuel. The specification for Swedish Class 1 diesel fuel are given in Table 3.
    TABLE 3
    Cetane > 50
    Cloud Point  
       Summer 0°C
       Winter - 16°C
    Density, kg/m3 800 - 820
    IBP, °C 180
    T95, °C 285 maximum
    Viscosity at 40°C, mm2/second 1.2 to 4.0
    Sulfur, ppm 10 maximum
    Aromatics, vol% 5 maximum
    Poly aromatics not detectable


    [0028] The unemulsified Fischer-Tropsch fuel (FTF) has been shown to have excellent emissions performance (see U.S. 5,807,413) with NOx reductions of 10-25% and Pm reductions of 40-60% compared with conventional diesel fuels. Figures 2 and 3 show the relative emissions performance of the Fischer-Tropsch fuel and an emulsion of the invention (Example 1) vs. Swedish Class I Diesel fuel at low and medium load.

    [0029] As can be seen in Figure 2, the FTF exhibits similar behavior to Swedish Class I Diesel Fuel whereas the a fuel emulsion of the invention shows NOx emissions 22% below Swedish Class 1 and Pm 53% below.

    [0030] In Figure 3 a fuel emulsion of the invention shows even larger PM reduction (91.5%) than Swedish Class 1 fuel.

    [0031] In Figures 4 and 5 the Pm/NOx performance of the fuels is plotted against change in spark timing. As can be seen in the case of the FTF and Swedish claim 1 fuels one can retard the timing to lower the NOx emissions.


    Claims

    1. A liquid fuel composition comprising an emulsion of hydrocarbon in water wherein the hydrocarbon is a Fischer-Tropsch (FT) derived hydrocarbon fuel or a mixture of a FT fuel and a conventional fuel and wherein greater than 50% of the hydrocarbon particles has particle sizes in the range of 0.1 to less than 1.0 micron, said emulsion having a viscosity of above 50 mm2/sec at 20°C.
     
    2. The liquid composition of claim 1, wherein the hydrocarbon is a FT derived fuel.
     
    3. The liquid composition of claim 1, wherein the volume ratio of hydrocarbon to water is in the range of 95:5 to 60:40.
     
    4. The liquid composition of claim 3, wherein greater than 80% of the hydrocarbon particles are in the range of 0.1 to less than 1.0 microns in size.
     
    5. The liquid composition of any of claims 1 to 4, wherein the hydrocarbon is a FT derived hydrocarbon boiling in the diesel fuel range.
     
    6. The liquid composition of claim 5, wherein the emulsion has a viscosity in the range of 50 to 200 mm2/sec.
     
    7. A method for forming the liquid composition according to claim 1, comprising adding the fuel to a mixture of water and surfactant and shearing under conditions sufficient to produce an emulsion wherein greater than 50% of the hydrocarbon particles has particle size in the range of 0.1 to less than 1.0 micron.
     
    8. The method of claim 7, comprising shearing a Fischer-Tropsch derived hydrocarbon boiling in the diesel fuel range and water in a volume ratio of hydrocarbon to water of 95:5 to 40:60 with a non-ionic surfactant or mixtures thereof having a HLB of 5 to 30 under shearing conditions sufficient to produce a liquid emulsion in which wherein greater than 50% of the hydrocarbon particles has particle size in the range of 0.1 to less than 1.0 micron, the amount of surfactant or mixtures thereof in the emulsion ranging from 0.05 to 5.0 wt% based on the total weight of hydrocarbon and water.
     
    9. Use of the liquid composition according to claim 1 in internal combustion engines or for heating purpose to reduce the particulate emissions associated with burning.
     
    10. Use according to claim 9 in diesel fueled engines.
     


    Ansprüche

    1. Flüssige Brennstoffzusammensetzung, die eine Emulsion von Kohlenwasserstoff in Wasser umfasst, wobei der Kohlenwasserstoff ein Fischer-Tropsch (FT) Kohlenwasserstoffbrennstoff oder eine Mischung eines FT Brennstoffs und eines konventionellen Brennstoffs ist und wobei mehr als 50% der Kohlenwasserstoffteilchen eine Teilchengröße im Bereich von 0,1 bis weiniger als 1,0 µm aufweist, wobei die Emul-sion bei 20°C eine Viskosität von über 50 mm2/s aufweist.
     
    2. Flüssige Zusammensetzung nach Anspruch 1, bei der der Kohlenwasserstoff ein FT Brennstoff ist.
     
    3. Flüssige Zusammensetzung nach Anspruch 1, bei der das Volumenverhältnis von Kohlenwasserstoff zu Wasser im Bereich von 95:5 bis 60:40 liegt.
     
    4. Flüssige Zusammensetzung nach Anspruch 3, bei der mehr als 80% der Kohlenwasserstoffteilchen im Größenbereich von 0,1 bis weiniger als 1 µm liegen.
     
    5. Flüssige Zusammensetzung nach einem der Ansprüche 1 bis 4, bei der der Kohlenwasserstoff ein FT Kohlenwasserstoff ist, der im Dieselbrennstoffbereich siedet.
     
    6. Flüssige Zusammensetzung nach Anspruch 5, bei der die Emulsion eine Viskosität im Bereich von 50 bis 200 mm2/s aufweist.
     
    7. Verfahren zur Bildung der flüssigen Zusammensetzung gemäß Anspruch 1, bei dem der Brennstoff zu einer Mischung von Wasser und Tensid gegeben wird und unter Bedingungen geschert wird, die ausreichen, um eine Emulsion herzustellen, in der mehr als 50 % d e r Kohlenwasserstoffteilchen eine Teilchengröße im Bereich von 0,1 bis weniger als 1 µm aufweisen.
     
    8. Verfahren nach Anspruch 7, bei dem ein Fischer-Tropsch Kohlenwasserstoff, der im Dieselbrennstoffbereich siedet, und Wasser in einem Volumenverhältnis Von Kohlenwasserstoff zu Wasser von 95:5 bis 40:60 zusammen mit nichtionischem Tensid oder Mischungen davon mit einem HLB-Wert von 5 bis 30 unter Scherungsbedingungen geschert werden, die ausreichen, um eine flüssige Emulsion herzustellen, in der mehr als 50% d e r Kohlenwasserstoffteilchen eine Teilchengröße im Bereich von 0,1 bis weniger als 1,0 µm aufweisen, wobei die Menge an Tensid oder Mischungen davon in der Emulsion im Bereich von 0,05 bis 5,0 Gew.-% liegt, bezogen auf das Gesamtgewicht von Kohlenwasserstoff und Wasser.
     
    9. Verwendung der flüssigen Zusammensetzung gemäß Anspruch 1 in einem Verbrennungsmotor oder für Heizzwecke, um die Teilchenemulsion zu reduzieren, die mit der Verbrennung verbunden ist.
     
    10. Verwerdung nach Anspruch 9 in dieselbetriebenen Motoren.
     


    Revendications

    1. Composition de combustible liquide comprenant une émulsion d'hydrocarbure dans de l'eau dans laquelle l'hydrocarbure est un combustible hydrocarbure dérivé de Fischer-Tropsch (FT) ou un mélange d'un combustible FT et d'un combustible classique et dans laquelle plus de 50% des particules d'hydrocarbure ont des granulométries dans la fourchette de 0,1 à moins de 1,0 micron, ladite émulsion ayant une viscosité de plus de 50 mm2/s à 20°C.
     
    2. Composition liquide selon la revendication 1, dans laquelle l'hydrocarbure est un combustible dérivé de FT.
     
    3. Composition liquide selon la revendication 1, dans laquelle le rapport volumique entre l'hydrocarbure et l'eau est dans la fourchette de 95:5 à 60:40.
     
    4. Composition liquide selon la revendication 3, dans laquelle plus de 80% des particules d'hydrocarbure ont une granulométrie dans la fourchette de 0,1 à moins de 1,0 micron.
     
    5. Composition liquide selon l'une quelconque des revendications 1 à 4, dans laquelle l'hydrocarbure est un hydrocarbure dérivé de FT qui bout dans le domaine du combustible diesel.
     
    6. Composition liquide selon la revendication 5, dans laquelle l'émulsion possède une viscosité dans la fourchette de 50 à 200 mm2/s.
     
    7. Procédé de formation de la composition liquide selon la revendication 1, comprenant l'addition du combustible à un mélange d'eau et de tensioactif et le cisaillement dans des conditions suffisantes pour produire une émulsion dans laquelle plus de 50% des particules d'hydrocarbure ont une granulométrie dans la fourchette de 0,1 à moins de 1,0 micron.
     
    8. Procédé selon la revendication 7, comprenant le cisaillement d'un hydrocarbure dérivé de Fischer-Tropsch qui bout dans le domaine du combustible diesel et d'eau, dans un rapport volumique entre l'hydrocarbure et l'eau de 95:5 à 40:60, avec un tensioactif non ionique ou des mélanges de ceux-ci dont le HLB est de 5 à 30 dans des conditions de cisaillement suffisantes pour produire une émulsion liquide dans laquelle plus de 50% des particules d'hydrocarbure ont une granulométrie dans la fourchette de 0,1 à moins de 1,0 micron, la quantité de tensioactif ou de mélanges de ceux-ci dans l'émulsion allant de 0,05 à 5,0 % en poids par rapport au poids total d'hydrocarbure et d'eau.
     
    9. Utilisation de la composition liquide selon la revendication 1 dans des moteurs à combustion interne ou à des fins de chauffage pour réduire les émissions de particules associées à la combustion.
     
    10. Utilisation selon la revendication 9 dans des moteurs diesel.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description