(19)
(11) EP 2 378 109 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
20.03.2013 Bulletin 2013/12

(21) Application number: 11001060.0

(22) Date of filing: 10.02.2011
(51) International Patent Classification (IPC): 
F02M 61/18(2006.01)
F02M 61/06(2006.01)
F02M 61/04(2006.01)

(54)

A fuel valve for large stroke diesel engines

Einspritzdüse für Dieselmotoren mit großem Hubraum

Soupape à carburant pour moteurs diesel à longue course


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 15.04.2010 DK 201000309

(43) Date of publication of application:
19.10.2011 Bulletin 2011/42

(73) Proprietor: MAN DIESEL & TURBO, FILIAL AF MAN DIESEL & TURBO SE, TYSKLAND
2450 København SV (DK)

(72) Inventor:
  • Flarup, Johannes
    2720 Vanløse (DK)

(74) Representative: Nordic Patent Service A/S 
Højbro Plads 10
1200 Copenhagen K
1200 Copenhagen K (DK)


(56) References cited: : 
EP-A1- 0 713 967
JP-A- 8 296 533
EP-A2- 1 063 416
US-A- 4 339 080
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present disclosure relates to a fuel vale for large two-stoke diesel engines.

    BACKGROUND OF THE INVENTION



    [0002] Large two-stroke diesel engines are typically used as prime movers in large ocean going ships, such as container ships or in power plants.

    [0003] These engines are typically provided with two or 3 fuel valves arranged each in the cylinder cover. The fuel valve is provided with a spring biased valve needle that acts as a movable valve member. When the pressure of the fuel (typically heavy fuel oil) exceeds a preset pressure (typically 350 Bar) the spindle is lifted from its seat and the fuel is allowed to flow to the combustion chamber via a nozzle at the front of the fuel valve.

    [0004] A conventional nozzle has a longitudinal axis that is roughly at an angle of 10 to 15 deg to the direction of the movement of the piston in the cylinder of the engine and the nozzle is provided with central bore and a plurality of nozzle bores that direct the fuel away from the cylinder walls and into the combustion chamber. Typically, there is a swirl in the air in the combustion chamber at the moment of injection and most of the nozzle bores are directed to inject the fuel with the flow of the swirl although some of the bores may be directed to inject the fuel into the flow.

    [0005] The volume of the residual fuel e.g. in the longitudinally extending central bore inside the nozzle, the so called sac volume, may leak into the combustion chamber and should be as small as possible since this fuel may enter the combustion chamber at a time where temperatures are too low for a proper combustion of the fuel. Thus this discharge may cause an increase of emissions, like increase smoke generation, higher NOx and VOC emissions and not least deteriorated fuel efficiency.

    [0006] An answer to these emission and fuel consumption problems is the MAN Diesel slide fuel valve that has a design with a minimized sac volume of residual fuel.

    [0007] The nozzle of this known fuel valve is provided with bores from which the fuel spray leave the nozzle that are all at the same longitudinal position near the free tip of the nozzle. The spatial distribution of the nozzle bores is obtained radially and tangentially relative to the longitudinal axis of the fuel injector. Due to space restrictions some of the nozzle bores are substantially radially directed whilst other nozzle bores are mainly tangentially directed. A cut off slide/sleeve inside the central longitudinal bore with holes corresponding the nozzle bores prevent fuel in the central bore of the nozzle from leaking out after the actual injection step has been performed.

    [0008] However, flow conditions, especially from those nozzle bores that are not radially directed mostly tangentially are not optimal.

    [0009] EP 0 713 967 discloses a fuel injector for a combustion engine that uses a single central injector per cylinder. The fuel injector includes a valve needle slidable within a valve needle bore defined in the nozzle body. The valve needle bore is shaped to define a seating. The valve needle is provided with a flow passage, movement of the valve needle away from the seating into a first fuel injecting position permitting fuel delivery through a first nozzle hole and whereby movement of the valve needle away from the seating causes delivery through a second nozzle hole.

    DISCLOSURE OF THE INVENTION



    [0010] On this background, it is an object of the present application to provide a fuel valve that overcomes or at least reduces the drawbacks mentioned above.

    [0011] This object is achieved by providing a fuel valve for injecting fuel into the combustion chamber of a large two stroke diesel engine, the fuel valve comprising a fuel valve housing, an elongated nozzle with axial bore and a closed front, a resiliently biased valve needle cooperating with a valve seat and configured to control the flow of fuel to the nozzle, a plurality of nozzle holes distributed over the nozzle with the center lines of the nozzle holes substantially coinciding with the center line of the axial bore of the nozzle, a hollow cut off shaft moving in unison with the valve needle and received axially displaceable between a lifted position and a closed position in the central bore in the nozzle for opening and closing the nozzle holes, said cut off shaft is provided with a plurality of openings corresponding to the plurality of nozzle holes so as to connect the nozzle holes to the interior of the hollow cut-off shaft in the lifted position of the hollow cut-off shaft and to disconnect the nozzle holes from the interior of the hollow cut-off shaft in the closed position of the hollow cut-off shaft and the cut-off shaft is prevented from rotating relative to the nozzle and fuel valve housing.

    [0012] By providing a cut-off shaft that opens and closes the nozzle hoes in unison with the opening and closing of the valve needle the sac volume is reduced to practically zero whilst the nozzle configuration and orientation provides optimal and stable fuel jets.

    [0013] The openings in said cut-off shaft may overlap with the nozzle holes when the valve needle is lifted from its seat.

    [0014] The openings in said cut-off shaft do may not overlap with the nozzle holes when the valve needle is resting on its seat.

    [0015] According to an embodiment the hollow interior of the cut-off shaft is connected to the inlet port of the fuel valve when the valve needle is lifted from its seat.

    [0016] Preferably, the valve needle and the cut-off shaft are formed as a single component.

    [0017] In an embodiment the nozzle holes are distributed along the length of the nozzle without an overlap of the nozzle holes as seen in direction of the longitudinal extend of the nozzle.

    [0018] In another embodiment the nozzle holes are distributed along the length of the nozzle with a substantial overlap of pairs of the nozzle holes as seen in direction of the longitudinal extend of the nozzle.

    [0019] It is another object of the invention to provide a use of a fuel valve in a large two stroke diesel engine of the crosshead type for injecting fuel into the combustion chamber of the large two stroke diesel engine, said fuel valve comprising: a fuel valve housing with a head at its rearmost end for mounting the fuel valve in a cylinder cover of a large two stroke diesel engine, an elongated nozzle with axial bore and a closed front, a resiliently biased valve needle cooperating with a valve seat and configured to control the flow of fuel to the nozzle, a plurality of nozzle holes distributed over the nozzle with the center lines of the nozzle holes substantially coinciding with the center line of an axial bore of the nozzle, a hollow cut-off shaft moving in unison with the valve needle and received axially displaceable in the central bore in the nozzle for opening and closing the nozzle holes, said cut-off shaft is provided with a plurality of openings corresponding to the plurality of nozzle holes so as to connect the nozzle holes Lo the interior of the hollow cut-off shaft in one position of the hollow cut-off shaft and to disconnect the nozzle holes from the interior of the hollow cut-off shaft in another position of the hollow cut-off shaft, and wherein the cut-off shaft (40) is prevented from rotating relative Lo the nozzle (30) and fuel valve housing (10).

    [0020] Further objects, features, advantages and properties of the fuel valve according to the present disclosure will become apparent from the detailed description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] In the following detailed portion of the present description, the invention will be explained in more detail with reference to the exemplary embodiments shown in the drawings, in which:

    Fig. 1 is a longitudinal-section of an exemplary embodiment of a fuel valve,

    Fig. 2 is a longitudinal-section on a larger scale through the foremost part of the fuel valve illustrated in Fig. 1, the valve needle being shown in the closed position,

    Fig. 3 is an longitudinal-section on a larger scale through the nozzle of the fuel valve shown in Fig. 1,

    Fig. 4 is an elevated view of the nozzle shown in Fig. 3,

    Fig. 5 is an axial section on a larger scale through the valve needle and the cut-off shaft of the fuel valve shown in Fig. 1,

    Fig. 6 is an elevated view of the valve needle and the cut-off shaft shown in Fig. 5,

    Fig. 7 is an elevated view of an alternative embodiment of the nozzle for the fuel valve shown in Fig. 1,

    Fig. 8 is an axial section on a larger scale through the nozzle shown in Fig. 7, and

    Fig. 9 an elevated view of an alternative embodiment of the valve needle as used in combination with the nozzle shown in Figs. 7 and 8.


    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS



    [0022] The fuel valve 1 illustrated in Fig. 1 has an elongated external housing 10 which at its rearmost end has a head 14 by which the fuel valve 1 in a known manner may be mounted in the cylinder cover of a large two stroke diesel engine and be connected with a fuel pump, not shown. The head 14 includes a fuel oil inlet 16 which is in flow connection with a duct 17. The duct extends through a non-return valve 12 to a valve needle 20 axially displaceable in a bore on the valve housing 10. The valve needle 20 is biased to its seat 22 by a closing spring 18. The foremost part of the valve housing 10 holds a nozzle 30 that projects through the valve housing 10 and into the combustion chamber of the engine cylinder, not shown, when the fuel valve 1 is mounted on the cylinder cover.

    [0023] Figs. 2 to 6 show the valve needle 20 and the nozzle 30 in greater detail. The closing spring 18 urges the valve needle 20 to its seat 22. Fig. 2 shows the valve needle 6 resting on the valve seat 22. In this position fluid flow of fuel from the fuel oil inlet 16 to the nozzle 30 is blocked.

    [0024] The valve needle 20 carries a foremost cut-off shaft 40 that is thinner than the rearmost section of the valve needle 20 and the cut-off shaft 40 projects into a central bore 33 in the nozzle 30.

    [0025] The nozzle 30 is provided with a central bore 33 and with a plurality of nozzle holes 35 through which the fuel is injected into the combustion chamber. Thus, during the fuel injection a jet of fuel comes from each of the nozzle holes 35.

    [0026] The nozzle bores 35 are distributed over the nozzle 30 so as to distribute them with a space between them along the longitudinal extent of the nozzle. Thus, even with the dimensions of the nozzle bores 35 taken into account there is no overlap of the nozzle bores 35 in the longitudinal extent. Further, the nozzle bores 35 are spread radially and radially directed in different directions so as to cover a wide sector of the combustion chamber with fuel jets coming from the nozzle bores 35.

    [0027] In an embodiment the nozzle holes 35 are drilled into the nozzle. The centerline 36 of each nozzle hole 35 coincides roughly with the centerline 34 of the central bore 33, i.e. the centerlines 36 of the nozzle holes 35 are not directed tangentially, instead they are all directed towards the centerline 34 of the central bore 33. The centerlines 36 of the nozzle holes 35 do not have to coincide exactly with the centerline and 34 of the central bore 33, but the extent of the nozzle holes 35 should not be substantially tangential relative to the center line 34 of the central bore 33.

    [0028] As can be seen in Fig. 3, the centerline 36 of the nozzle holes 35 can be at a non-perpendicular angle with the centerline 34 of the central bore 33.

    [0029] The cut-off shaft 40 is in an exemplary embodiment made as one piece of material with the valve needle 20. The cut-off shaft 40 is hollow and the hollow interior of the cut-off shaft 40 connects to the space downstream of the valve seat 22. Thus, when the valve needle 20 is lifted from its seat the flow path 17 extends all the way from the fuel oil inlet 16 to the hollow interior of the cut-off shaft 40.

    [0030] The foremost part of the cut-off shaft 40 is cylindrical and fits exactly into the central bore 33. This foremost part of the cut-off shaft 40 is provided with a plurality of openings 45 that correspond to the nozzle holes 35. The angular position of the valve needle 20, and thereby the cut-off shaft 40 is fixed by a pin 48 that prevents the valve needle 20 from rotating relatively to the valve housing 10. This is to ensure that the openings 45 in the cut-off shaft 40 will overlap with the nozzle holes 35 when the valve needle 20 is lifted from its seat 22.

    [0031] In operation, the valve needle 20 is lifted from its seat when the pressure of the fuel supplied to the fuel valve 1 exceeds a predetermined threshold. At this moment the fuel can flow into the hollow cut-off shaft 40 and through the openings 45 that are now overlapping with the nozzle holes 35, and through the nozzle holes 35 into the combustion chamber. When the supply of fuel to the fuel valve 1 is discontinued at the end of the fuel injection process the reduced fuel pressure can no longer keep the valve needle 20 from its valve seat 22 and the closing needle 18 urges the valve needle 20 axially forward to its valve seat 22. Since the cut-off shaft 40 moves in unison with the valve needle 20, the cut-off shaft 40 also moves axially towards the front of the fuel valve 1. In the position where the valve needle 20 rests on its seat 22 the openings 45 in the cutoff shaft no longer overlap with the nozzle holes 35. Thus, the fuel in the nozzle (actually in the hollow cut-off shaft 40) is trapped and cannot leak into the combustion chamber.

    [0032] Thus, the sac volume (the volume of fuel that can drip out of the nozzle after the fuel injection process has ended) is practically zero in combination with an optimal geometry for the nozzle holes 35.

    [0033] Figs. 7 to 9 illustrate another embodiment of the invention that is essentially identical to the embodiments described above, except that the placement of the nozzle bores 35 is slightly different.

    [0034] The nozzle bores 35 are placed in pairs of two nozzle bores 35 that are placed at substantially the same longitudinal position along the longitudinal extend of the nozzle 30. As in the embodiment described above, the nozzle bores 35 are radially distributed in the same way and for the same reasons mentioned above. The advantage of the present embodiment is that it allows for the nozzle 30 to have a reduced longitudinal extent, thereby reducing the heat input during the combustion cycle.

    [0035] The teaching of this disclosure has numerous advantages. Different embodiments or implementations may yield one or more of the following advantages. It should be noted that this is not an exhaustive list and there may be other advantages which are not described herein. One advantage of the teaching of this disclosure is that it provides for a fuel valve for a large two-stroke diesel engine that combines optimal nozzle bore configuration with a very small sac volume. It is another advantage of the present disclosure that it provides for a fuel valve that combines optimal nozzle bore configuration with a very small sac volume and a reduced nozzle length.

    [0036] Although the teaching of this application has been described in detail for purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the scope defined by the appended claims.

    [0037] The term "comprising" as used in the claims does not exclude other elements or steps. The term "a" or "an" as used in the claims does not exclude a plurality. The single processor or other unit may fulfill the functions of several means recited in the claims.


    Claims

    1. A fuel valve (1) for injecting fuel into the combustion chamber of a large two stroke diesel engine, said fuel valve comprising:

    a fuel valve housing (10) with a head (14) at its rearmost end for mounting the fuel valve (1) in a cylinder cover of a large two stroke diesel engine,

    an elongated nozzle (30) with axial bore and a closed front,

    a resiliently biased valve needle (20) cooperating with a valve seat (22) and configured to control the flow of fuel to the nozzle (30),

    a plurality of nozzle holes (35) distributed over the length of the nozzle (30), and with the center lines (36) of the nozzle holes (35) substantially coinciding with the center line (34) of an axial bore (33) of the nozzle (30),

    a hollow cut-off shaft (40) moving in unison with the valve needle (20) and received axially displaceable between a lifted position and a closed position in the central bore (33) in the nozzle (30) for opening and closing the nozzle holes (35),

    said cut-off shaft (40) is provided with a plurality of openings (45) corresponding to the plurality of nozzle holes (35) so as to connect all the nozzle holes (45) to the interior of the hollow cut-off shaft (40) in said lifted position of the hollow cut-off shaft and to disconnect all the nozzle holes (45) from the interior of the hollow cut-off shaft (40) in said closed position of the hollow cut-off shaft, and

    wherein the cut-off shaft (40) is prevented from rotating relative to the nozzle (30) and fuel valve housing (10).


     
    2. A fuel valve (1) according to claim 1, wherein said openings (45) in said cut-off shaft (40) overlap with the nozzle holes (35) when the valve needle (20) is lifted from its seat (22).
     
    3. A fuel valve (1) according to claim 1, wherein said openings (45) in said cut-off shaft (40) do not overlap with the nozzle holes (35) when the valve needle (20) is resting on its seat (22).
     
    4. A fuel valve (1) according to claim 1, wherein the hollow interior of the cut-off shaft (40) is connected to the inlet port (16) of the fuel valve (1) when the valve needle (20) is lifted from its seat (22).
     
    5. A fuel valve (1) according to claim 1, wherein the valve needle (20) and the cut-off shaft (40) are formed as a single component.
     
    6. A fuel valve (1) according to claim 1, wherein the nozzle holes (35) are distributed along the length of the nozzle without an overlap of the nozzle holes (35) as seen in direction of the longitudinal extension of the nozzle (30).
     
    7. A fuel valve (1) according to claim 1, wherein the nozzle holes (35) are distributed along the length of the nozzle (30) with a substantial overlap of pairs of the nozzle holes (35) as seen in direction of the longitudinal extension of the nozzle (30).
     
    8. Use of a fuel valve (1) in a large two stroke diesel engine of the crosshead type (1) for injecting fuel into the combustion chamber of the large two stroke diesel engine, said fuel valve comprising:

    a fuel valve housing (10) with a head (14) at its rearmost end for mounting the fuel valve (1) in a cylinder cover of a large two stroke diesel engine,

    an elongated nozzle (30) with axial bore and a closed front,

    a resiliently biased valve needle (20) cooperating with a valve seat (22) and configured to control the flow of fuel to the nozzle (30),

    a plurality of nozzle holes (35) distributed over the length of the nozzle (30), and with the center lines (36) of the nozzle holes (35) substantially coinciding with the center line (34) of an axial bore (33) of the nozzle (30),

    a hollow cut-off shaft (40) moving in unison with the valve needle (20) and received axially displaceable between a lifted position and a closed position in the central bore (33) in the nozzle (30) for opening and closing the nozzle holes (35),

    said cut-off shaft (40) is provided with a plurality of openings (45) corresponding to the plurality of nozzle holes (35) so as to connect all the nozzle holes (45) to the interior of the hollow cut-off shaft (40) in said lifted position of the hollow cut-off shaft and to disconnect all the nozzle holes (45) from the interior of the hollow cut-off shaft (40) in said closed position of the hollow cut-off shaft, and

    wherein the cut-off shaft (40) is prevented from rotating relative to the nozzle (30) and fuel valve housing (10).


     


    Ansprüche

    1. Kraftstoffventil (1) zum Einspritzen von Kraftstoff in den Brennraum eines Zweitakt-Großdieselmotors, wobei das Kraftstoffventil umfasst:

    ein Kraftstoffventilgehäuse (10) mit einem Kopfstück (14) an seinem hintersten Ende zur Anbringung des Kraftstoffventils (1) in einem Zylinderdeckel eines Zweitakt-Großdieselmotors,

    eine langgestreckte Düse (30) mit axialer Bohrung und einer geschlossenen Vorderseite,

    eine elastisch vorgespannte Ventilnadel (20), die mit einem Ventilsitz (22) zusammenwirkt und dafür ausgebildet ist, den Fluss von Kraftstoff zu der Düse (30) zu steuern,

    mehrere Düsenbohrungen (35), die über die Länge der Düse (30) verteilt sind, und wobei die Mittellinien (36) der Düsenbohrungen (35) im Wesentlichen mit der Mittellinie (34) einer axialen Bohrung (33) der Düse (30) zusammenfallen,

    eine hohle Absperrwelle (40), die sich zusammen mit der Ventilnadel (20) bewegt und axial verschiebbar zwischen einer angehobenen Position und einer geschlossenen Position in der Mittelbohrung (33) in der Düse (30) aufgenommen ist, zum Öffnen und Schließen der Düsenbohrungen (35),

    wobei die Absperrwelle (40) mit mehreren Öffnungen (45) versehen ist, die den mehreren Düsenbohrungen (35) entsprechen, so dass in der angehobenen Position der hohlen Absperrwelle alle Düsenbohrungen (45) mit dem Inneren der hohlen Absperrwelle (40) verbunden sind und in der geschlossenen Position der hohlen Absperrwelle alle Düsenbohrungen (45) von dem Inneren der hohlen Absperrwelle (40) getrennt sind, und

    wobei eine Drehung der Absperrwelle (40) relativ zu der Düse (30) und dem Kraftstoffventilgehäuse (10) verhindert wird.


     
    2. Kraftstoffventil (1) nach Anspruch 1, wobei die Öffnungen (45) in der Absperrwelle (40) sich mit den Düsenbohrungen (35) überlappen, wenn die Ventilnadel (20) von ihrem Sitz (22) abgehoben ist.
     
    3. Kraftstoffventil (1) nach Anspruch 1, wobei die Öffnungen (45) in der Absperrwelle (40) sich nicht mit den Düsenbohrungen (35) überlappen, wenn die Ventilnadel (20) auf ihrem Sitz (22) ruht.
     
    4. Kraftstoffventil (1) nach Anspruch 1, wobei das hohle Innere der Absperrwelle (40) mit dem Einlasskanal (16) des Kraftstoffventils (1) verbunden ist, wenn die Ventilnadel (20) von ihrem Sitz (22) abgehoben ist.
     
    5. Kraftstoffventil (1) nach Anspruch 1, wobei die Ventilnadel (20) und die Absperrwelle (40) als ein einziges Bauteil ausgebildet sind.
     
    6. Kraftstoffventil (1) nach Anspruch 1, wobei die Düsenbohrungen (35) entlang der Länge der Düse ohne eine Überlappung der Düsenbohrungen (35), in Richtung der Längserstreckung der Düse (30) gesehen, verteilt sind.
     
    7. Kraftstoffventil (1) nach Anspruch 1, wobei die Düsenbohrungen (35) entlang der Länge der Düse (30) mit einer wesentlichen Überlappung von Paaren der Düsenbohrungen (35), in Richtung der Längserstreckung der Düse (30) gesehen, verteilt sind.
     
    8. Verwendung eines Kraftstoffventils (1) in einem Zweitakt-Großdieselmotor vom Typ eines Kreuzkopfmotors (1) zum Einspritzen von Kraftstoff in den Brennraum des Zweitakt-Großdieselmotors, wobei das Kraftstoffventil umfasst:

    ein Kraftstoffventilgehäuse (10) mit einem Kopfstück (14) an seinem hintersten Ende zur Anbringung des Kraftstoffventils (1) in einem Zylinderdeckel eines Zweitakt-Großdieselmotors,

    eine langgestreckte Düse (30) mit axialer Bohrung und einer geschlossenen Vorderseite,

    eine elastisch vorgespannte Ventilnadel (20), die mit einem Ventilsitz (22) zusammenwirkt und dafür ausgebildet ist, den Fluss von Kraftstoff zu der Düse (30) zu steuern,

    mehrere Düsenbohrungen (35), die über die Länge der Düse (30) verteilt sind, und wobei die Mittellinien (36) der Düsenbohrungen (35) im Wesentlichen mit der Mittellinie (34) einer axialen Bohrung (33) der Düse (30) zusammenfallen,

    eine hohle Absperrwelle (40), die sich zusammen mit der Ventilnadel (20) bewegt und axial verschiebbar zwischen einer angehobenen Position und einer geschlossenen Position in der Mittelbohrung (33) in der Düse (30) aufgenommen ist, zum Öffnen und Schließen der Düsenbohrungen (35),

    wobei die Absperrwelle (40) mit mehreren Öffnungen (45) versehen ist, die den mehreren Düsenbohrungen (35) entsprechen, so dass in der angehobenen Position der hohlen Absperrwelle alle Düsenbohrungen (45) mit dem Inneren der hohlen Absperrwelle (40) verbunden sind und in der geschlossenen Position der hohlen Absperrwelle alle Düsenbohrungen (45) von dem Inneren der hohlen Absperrwelle (40) getrennt sind, und

    wobei eine Drehung der Absperrwelle (40) relativ zu der Düse (30) und dem Kraftstoffventilgehäuse (10) verhindert wird.


     


    Revendications

    1. Une soupape de carburant (1) pour injecter du carburant dans la chambre de combustion d'un gros moteur Diesel à deux temps, ladite soupape de carburant comprenant :

    un boîtier de soupape de carburant (10) avec une tête (14) à son extrémité arrière pour monter la soupape de carburant (1) dans un couvercle de cylindre d'un gros moteur Diesel à deux temps,

    une buse oblongue (30) avec un alésage axial et un avant fermé,

    un pointeau de soupape biaisé par résilience (20) coopérant avec un siège de soupape (22) et configuré pour réguler le débit du carburant vers l'injecteur (30),

    une pluralité de trous d'injecteur (35) répartis sur la longueur de l'injecteur (30) et avec les axes centraux (36) des trous d'injecteur (35) coïncidant pour l'essentiel avec l'axe central (34) d'un alésage axial (33) de l'injecteur (30),

    un arbre d'arrêt creux (40) se déplaçant à l'unisson avec le pointeau de soupape (20) et reçu axialement déplaçable entre une position levée et une position fermée dans l'alésage central (33) dans l'injecteur (30) pour ouvrir et fermer les trous d'injecteur (35),

    ledit arbre d'arrêt (40) étant muni d'une pluralité d'ouvertures (45) correspondant à la pluralité de trous d'injecteur (35) de manière à raccorder tous les trous d'injecteur (45) à l'intérieur de l'arbre d'arrêt creux (40) dans une dite position levée de l'arbre d'arrêt creux et de déconnecter tous les trous d'injecteur (45) de l'intérieur de l'arbre d'arrêt creux (40) dans une dite position fermée de l'arbre d'arrêt creux et,

    dans laquelle l'arbre d'arrêt (40) est empêché de tourner par rapport à l'injecteur (30) et au boîtier de soupape de carburant (10).


     
    2. Une soupape de carburant (1) selon la revendication 1 dans laquelle lesdites ouvertures (45) dans ledit arbre d'arrêt (40) se chevauchent avec les trous d'injecteur (35) lorsque le pointeau de soupape (20) est soulevé de son siège (22).
     
    3. Une soupape de carburant (1) selon la revendication 1 dans laquelle lesdites ouvertures (45) dans ledit arbre d'arrêt (40) ne chevauchent pas les trous d'injecteur (35) lorsque le pointeau de soupape (20) repose sur son siège (22).
     
    4. Une soupape de carburant (1) selon la revendication 1 dans laquelle l'intérieur creux de l'arbre d'arrêt (40) est raccordé à l'orifice d'entrée (16) de la soupape de carburant (1) lorsque le pointeau de soupape (20) est soulevé de son siège (22).
     
    5. Une soupape de carburant (1) selon la revendication 1 dans laquelle le pointeau de soupape (20) et l'arbre d'arrêt (40) sont constitués comme un unique composant.
     
    6. Une soupape de carburant (1) selon la revendication 1 dans laquelle les trous d'injecteur (35) sont répartis le long de la longueur de l'injecteur sans chevaucher les trous d'injecteur (35), vus dans le sens de l'extension longitudinale de l'injecteur (30).
     
    7. Une soupape de carburant (1) selon la revendication 1 dans laquelle les trous d'injecteur (35) sont répartis le long de la longueur de l'injecteur (30) avec un chevauchement important des paires de trous d'injecteur (35) vus dans le sens de l'extension longitudinale de l'injecteur (30).
     
    8. Utilisation d'une soupape de carburant (1) dans un gros moteur Diesel à deux temps de type à crosse (1) pour injecter du carburant dans la chambre de combustion du gros moteur Diesel à deux temps, ladite soupape de carburant comprenant :

    un boîtier de soupape de carburant (10) avec une tête (14) à son extrémité arrière pour monter la soupape de carburant (1) dans un couvercle de cylindre d'un gros moteur Diesel à deux temps,

    une buse oblongue (30) avec un alésage axial et un avant fermé,

    un pointeau de soupape biaisé par résilience (20) coopérant avec un siège de soupape (22) et configuré pour réguler le débit du carburant vers l'injecteur (30),

    une pluralité de trous d'injecteur (35) répartis sur la longueur de l'injecteur (30) et avec les axes centraux (36) des trous d'injecteur (35) coïncidant pour l'essentiel avec l'axe central (34) d'un alésage axial (33) de l'injecteur (30),

    un arbre d'arrêt creux (40) se déplaçant à l'unisson avec le pointeau de soupape (20) et reçu axialement déplaçable entre une position levée et une position fermée dans l'alésage central (33) dans l'injecteur (30) pour ouvrir et fermer les trous d'injecteur (35),

    ledit arbre d'arrêt (40) étant muni d'une pluralité d'ouvertures (45) correspondant à la pluralité de trous d'injecteur (35) de manière à raccorder tous les trous d'injecteur (45) à l'intérieur de l'arbre d'arrêt creux (40) dans une dite position levée de l'arbre d'arrêt creux et de déconnecter tous les trous d'injecteur (45) de l'intérieur de l'arbre d'arrêt creux (40) dans une dite position fermée de l'arbre d'arrêt creux et,

    dans laquelle l'arbre d'arrêt (40) est empêché de tourner par rapport a l'injecteur (30) et au boîtier de soupape de carburant (10).


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description