| (19) |
 |
|
(11) |
EP 1 867 831 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
24.07.2013 Bulletin 2013/30 |
| (22) |
Date of filing: 15.06.2006 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
Methods and apparatus for wireline drilling on coiled tubing
Verfahren und Vorrichtung zum Drahtseilbohren mittels eines gewickelten Rohrstranges
Procédé et dispositif pour le forage au cable parmi tubage enroulé
|
| (84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE
SI SK TR |
| (43) |
Date of publication of application: |
|
19.12.2007 Bulletin 2007/51 |
| (73) |
Proprietors: |
|
- Services Pétroliers Schlumberger
75007 Paris (FR) Designated Contracting States: FR
- Schlumberger Technology B.V.
2514 JG The Hague (NL) Designated Contracting States: BG CZ DE DK GR HU IE IT LT PL RO SI SK TR
- Schlumberger Holdings Limited
Road Town, Tortola (VG) Designated Contracting States: GB NL
- PRAD Research and Development N.V.
Willemstad, Curacao (AN) Designated Contracting States: AT BE CH CY EE ES FI IS LI LU LV MC PT SE
|
|
| (72) |
Inventors: |
|
- Cooper, Iain
Sugar Land, Texas 77479 (US)
- Kotsonis, Spyro
Cheltenham, Glos GL50 2LW (GB)
- Zemlak, Warren
Moscow 123367 (RU)
|
| (74) |
Representative: Hyden, Martin Douglas et al |
|
Etudes et Productions Schlumberger
Intellectual Property Department
1 rue Henri Becquerel
B.P. 202 92142 Clamart Cedex 92142 Clamart Cedex (FR) |
| (56) |
References cited: :
EP-B1- 1 181 432 US-A- 4 844 182
|
US-A- 4 630 691 US-A1- 2004 134 662
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
Technical field
[0001] This invention relates to methods and apparatus for drilling boreholes that is particularly
applicable to drilling with wireline drilling apparatus carried on coiled tubing.
Background art
[0002] Current conventional coiled tubing drilling (CTD) employs high hydraulic power delivered
from the surface through the coiled tubing (CT) to power a drilling positive displacement
motor (PDM) that in turn powers the drill bit. This high drilling power requires a
large-diameter CT that demands larger surface installations.
[0003] Current methods of changing the trajectory in CTD typically involve a fixed bend
on the PDM, and a hydraulic or electric-over-hydraulic means of rotating the bend
azimuth. Apart from the larger and heavier surface equipment, this way of drilling
on CT is limited in reach by the buckling limit of the CT, and involves a low-efficiency
conversion of hydraulic power to drilling footage.
[0004] US 2 548 616 describes a method of drilling a well with a conduit to surface through which a fluid
is pumped (today's CTD). The option of a cable in the CT with an electric motor at
the bottom-hole assembly driving the bit is also described but the conduit still provides
the axial thrust for drilling.
[0005] EP 0 110 182 describes an apparatus with a hydraulic tractor/crawler (with anchors and a stroker),
an umbilical from surface for communications and powering of an electric pump that
powers the hydraulic tractor, and methods of steering. The means of rotating the bit
are described as purely hydraulic (either from the hydraulic distribution system,
or from a hydraulic line from the surface.) CT is also described.
[0006] US 6 629 570 describes a high-power electric motor capable of drilling on CT. In use drilling
fluid flows through the motor to return to the surface through the bit and annulus
(conventional circulation).
[0007] US20040134662 describes a drilling system connected to a composite umbilical. Drilling fluid is
pumped down from the surface outside the umbilical and diverted into the drilling
system to be delivered to the drill bit to return to the surface through the umbilical
(reverse circulation).
US4630691 describes a drilling system for under balanced drilling. A flushing fluid is pumped
down the drill string to the bit. Bypass means discharge upward flowing fluid into
the wellbore annulus above the drilling tool to return to the surface.
[0008] WO 2004 011766 describes a wireline powered drilling system in which produced fluid from the borehole
is circulated as drilling fluid. A downhole pump is used to perform conventional or
reverse circulation through the downhole drilling tool. Flow to the surface is through
production tubing around the cable.
[0010] The object of the invention is to provide a drilling apparatus that does not need
large capacity CT due to reduced hydraulic power requirements yet which still provides
effective hole cleaning in the drilling region to avoid sticking. The invention achieves
this object by providing electric power to the drilling system via a cable and by
providing a flow diverter to allow downward drilling fluid flow around the outside
of the drilling assembly while using normal annulus flow above the drilling system
for good cuttings transport.
Disclosure of the invention
[0011] One aspect of the invention comprises apparatus for drilling an underground borehole,
comprising:
- a tubular conveyance system including an electric cable and a supply of drilling fluid,
the supply of drilling fluid being arranged in use to pump fluid from the surface
down the inside of the tubular conveyance so as to return to the surface via the annulus
between the outside of the tubular conveyance and the borehole;
- a drilling system comprising an electrically powered drilling motor and a pump arranged
in use to pump fluid from the borehole outside the drilling system up through the
inside of the drilling system;
- a connector connecting the drilling system to the tubular conveyance system and to
the electric cable, and
- a flow diverter at which flow down the inside of the tubular conveyance system is
diverted into the annulus, and flow up the inside of the drilling system is diverted
into the annulus, wherein in use the flow diverter directs part of the drilling fluid
down around the outside of the drilling system and the remainder of the fluid back
to the surface around the outside of the tubular conveyance.
[0012] The use of the flow diverter makes it possible to provide reverse circulation (circulation
of fluid from the annulus into the BHA) where drilling is taking place, so improving
hole cleaning in small diameter boreholes and reducing the risk of sticking.
[0013] Preferably, the drilling system has separate axial and rotary drive mechanisms. It
is particularly preferred that the axial drive mechanism comprises a crawler system.
The drilling motor can comprise an electric motor powered through the electric cable.
The drilling system typically comprises an electric pump but can comprise a jet pump
instead of the electrically powered pump.
[0014] Typically the tubular conveyance system comprises coiled tubing. This can be a single
coiled tube or can comprise several sections joined end o end. Because the drilling
action is handled by the drilling system, it is not necessary that the tubular conveyance
system provide the torque four a rotary drilling action nor high axial stiffness to
transfer the weight on the bit necessary for drilling.
[0015] In a particularly preferred configuration, the flow diverter forms part of the connector.
Alternatively, the flow diverter is positioned in the tubular conveyance above the
connector.
[0016] In use, the flow diverter directs part of the drilling fluid down around the outside
of the drilling system and the remainder of the fluid back to the surface around the
outside of the tubular conveyance. Thus the reverse circulation around the drilling
system changes to conventional circulation around the tubular conveyance which allows
improved cuttings transport in the main part of the borehole. The flow diverter can
be arranged to divert flow from the inside of the drilling system to the annulus above
the point at which it diverts flow from the tubular conveyance system into the annulus.
[0017] One embodiment of the apparatus further comprises a jetting system including one
or more flow nozzles arranged to direct jets of fluid inside the borehole to remove
accumulated deposits. Preferably, the flow nozzles are adjustable so as to change
the direction of flow of fluid therefrom.
[0018] In this embodiment, the flow diverter can direct fluid into the flow nozzles for
jetting and further comprises a valve adjustable to vary the amount of fluid directed
through the flow nozzles and the amount of fluid directed into the annulus.
[0019] The apparatus can further comprise a rotatable crown driven by the motor for use
in back reaming. A turbine driven by fluid flow from the tubular conveyance system
can be connected to drive the crown via a gear train. An electric generator can be
connected to the turbine and an electric motor connected to the crown via the gear
train, the output of the generator being used to power the electric motor and drive
the crown.
[0020] Another aspect of the invention comprises a method of drilling an underground borehole
using an apparatus comprising a tubular conveyance system including an electric cable
and a supply of drilling fluid; a drilling system comprising an electrically powered
pump and a drilling motor; a connector connecting the drilling system to the tubular
conveyance system, through which the pump and drilling motor are connected to the
electric cable; and a flow diverter; the method comprising:
- pumping fluid from the surface down the inside of the tubular conveyance so as to
return to the surface via the annulus between the outside of the tubular conveyance
and the borehole; and
- using the electrically powered pump of the drilling system to pump fluid from the
borehole outside the drilling system up through the inside of the bit and drilling
system;
- diverting fluid flow down the inside of the tubular conveyance system into the annulus,
wherein part of the fluid is diverted down around the outside of the drilling system
and the remainder of the fluid is diverted back to the surface around the outside
of the tubular conveyance, and diverting flow up the inside of the drilling system
into the annulus using the flow diverter; and
- using the drilling motor to drill the borehole using the drilling system.
[0021] It is also preferred that method further comprises directing jets of fluid from one
or more nozzles of a jetting system inside the borehole to remove accumulated deposits.
The flow nozzles can be adjusted so as to change the direction of flow of fluid therefrom.
[0022] Fluid can be diverted into the flow nozzles for jetting using the flow diverter and
adjusting a valve to vary the amounts of fluid directed through the flow nozzles and
the amount of fluid directed into the annulus.
[0023] The method can further comprise back reaming the borehole using the drilling system.
The back reaming can be performed using a rotating crown driven by the drilling motor
and/or a hydraulic system.
Brief description of the drawings
[0024]
Figure 1 shows a drilling operation using apparatus according to a first embodiment
of the invention;
Figure 2 shows details of the connection and flow diverter of Figure 1;
Figure 3 shows a drilling operation using apparatus according to a second embodiment
of the invention; and
Figure 4 shows detail of jetting nozzles and the ensuing swirling flow pattern in
a third embodiment of the invention.
Mode(s) for carrying out the invention
[0025] The drilling operation shown in Figure 1 is conducted using a conventional CT unit
10 and injector/pressure control setup 12 at the surface of the well 14 and is being
used to drill a lateral well 16 extending away from the main well 14. The lateral
well has been started in the usual manner by milling a window in the casing and drilling
laterally using a whipstock to provide deviation in drilling direction. The drilling
apparatus comprises a CT conveyance system 18 carrying a drilling assembly 20 at its
lower end. The conveyance system 18 comprises a CT having an electric cable running
inside from the surface. The weight of the tool is carried by the CT 18, so the electric
cable only needs to be able to support its weight. A drilling fluid supply forms part
of the CT unit 10 at the surface and pumps drilling fluid down the inside of the CT.
[0026] The drilling assembly comprises a motor section 22 including an electric motor providing
rotary drive to a drill bit 24. Immediately behind the motor section is a crawler
unit 26 comprising an open hole tractor for providing axial drive to the drill bit
24. Acting together, the electric motor and the crawler unit 26 provide the drive
to the drill bit 24 to allow drilling to proceed. The crawler unit 26 can also be
operated in reverse to pull the motor section and bit from the borehole. A pump section
28 is mounted above the crawler unit 26 and has an electric pump mounted therein.
A channel extends from the drill bit up through the motor section 22 and crawler section
26 to the pump so that in normal use, the pump can draw fluid and drilled cuttings
up through the drill bit 24 and inside the drilling assembly 20.
[0027] The drilling assembly 20 is connected to the end of the CT by means of a connection
unit 30. The connection unit 30 provides a mechanical connection between the CT and
the drilling assembly 20 and an electrical connection between the electric cable and
the electrical components of the drilling assembly 20.
[0028] In the embodiment of Figure 1, the connection unit 30 also comprised a flow diverter
as is shown in more detail in Figure 2. The flow diverter is formed by flow channels
32, 34 in the connection unit 30. Flow channel 32 is connected to the interior of
the CT so that fluid flowing down the CT is vented into the annulus surrounding the
CT and drilling assembly via lower ports 36 in the lower part of the connector 30.
Fluid exiting these lower ports 36 flows mainly back to the surface in the annulus
but a portion of this fluid also flows down the annulus around the drilling assembly
20 to be drawn up through the bit 24 by the action of the pump. Flow channel 34 connects
to the channel running through the inside of the drilling assembly 20 and is vented
into the annulus via upper ports 38 in the upper part of the connector 30 above the
lower ports 36. Thus any fluid and cuttings vented through the upper ports 38 are
carried back to the surface in the annulus by the greater flow of fluids leaving the
lower ports 36. In this way, cuttings are kept out of the region of the annulus around
the drilling assembly 20, so reducing the likelihood of build-up and sticking in the
smaller annular space. Venting to the annulus above the drilling assembly 20 allows
normal well control to be exercised and avoids the possibility of hydrocarbons returning
to the surface in the CT.
[0029] The connector shown in Figure 2 also has a back reaming device comprising a rotatable
crown 40 mounted at the top of the connector 30. The crown 40 is driven by a turbine
and gear train (not shown), the turbine being driven by the flow of fluid along the
tool. In an alternative embodiment, the turbine can drive an electrical generator
(alternator) for powering an electric motor for driving the crown 40. A still further
version can take electric power from the cable. In use, the crown 40 can be operated
when the drilling assembly 20 is pulled out of hole and allows any lips or ledges
that have formed to be smoothed and allow easy passage of the drilling assembly 20
from the well with less likelihood of sticking.
[0030] Figure 3 shows a further embodiment of the invention in which the flow diverter is
positioned in the main well 14 in order to reduce the issues relating to transport
of cuttings in the lateral borehole 16 and possible contamination of the reservoir
with cuttings infiltration through the borehole wall. The CT is split during deployment,
as described in European patent application no.
EP 1780372 and the flow diverter 42 is inserted at this point. The combination with a CT connector
44 between the CT and the drilling assembly 20 allows the drilled cuttings to be returned
to the main well 14 (preferably a cased section) by ejecting the cuttings from the
flow diverter 42 into the annulus. The conventional drilling fluid circulation at
this point is used to transport the cuttings to the surface. This approach eliminates
cuttings transport in the open-hole annulus section of the lateral well 16, and therefore
decreases the possibility of accumulation of cuttings beds. This in turn reduces the
sticking risks when pulling the drilling assembly 20 out of hole.
[0031] Once the drilling operation has been performed, the task of pulling the drilling
assembly 20 out of hole (POOH) can potentially encounter problems depending on the
condition of the drilled hole. Solutions depend on the POOH condition. The drilling
assembly 20 can include sensors to assess the condition of the borehole for the risk
of solids build-up that can potentially impede the movement of the BHA and/or CT in
the well. The sensors included in the tool to detect such conditions include calliper,
azimuthal density neutron, and internal and annular pressure sensors.
[0032] As the drilling assembly 20 is pulled back, it can drag with it cuttings left in
the borehole and these can eventually accumulate sufficiently to create a barrier
through which it cannot be pulled by use of the CT alone. One solution for such a
case is to jet fluid backwards in the annulus while POOH to mobilize cuttings and
transport them in the annulus, so that they do not accumulate to cause a potential
sticking problem. The fluid jetting can be provided by nozzles, preferably in or near
the connector 30 but potentially in other parts of the drilling assembly 20 or elsewhere
in the CT. One preferred form of jetting arrangement is shown in Figure 4. The nozzles
46 are configured to provide a jetting flow with a helical swirl as it exits a nozzle.
Such nozzles are known in other well cleaning applications and can be applied mutatis
mutandis to this application.
[0033] The jetting arrangement can include a mechanism using hydraulic or electric signals
such that allows the direction of the flow from the nozzle to be adjusted in the vicinity
of the cuttings, to further mobilize the cuttings, or to give some directional jetting
focus as necessary. Dictation of the outward and rear jetting flow ratio will give
further control on the cleaning efficiency for the specific conditions. As previously
mentioned, measurements incorporated in the tool (e.g. internal and annular pressures)
can be used to determine the condition, optimum jetting configuration, and to confirm
the effectiveness of the cleaning operation (e.g. by a decreased equivalent circulating
density ECD).
[0034] Hydraulic signalling can include methods such as flow rate changes and modulation
from the surface unit pump, and ball drops. Electric signals can include solenoid
activation, or use of bi-stable valves (to decrease the need for high power consumption
during extended periods of time as is the case with traditional solenoids). Such bi-stable
valves are described by
EP113578.
[0035] A pure jetting of a ledge as the tool is being pulled (or is tractoring) back out,
might not be enough to overcome the 'step' it encounters. Swelling formations such
as shales, coal sloughing, or other such formations can cause large steps to form.
In such a case, mechanical means of smoothing out the ledge or drilling some of the
swelled formation (to a dimension larger than the diameter of the tool) might be required.
Various solutions are described above in relation to Figure 2.
[0036] One solution to this problem is to use an electric motor driving a rotating crown.
However, since the hydraulic power of the CT flow is available, other methods are
possible for creating the reaming action without consuming power from the wireline
cable.
[0037] One such approach involves using the CT flow to power a turbine whose axis turns
the reamer crown via a gear train. Another involves using the CT flow to power a turbine
connected to an alternator to create electrical power that can then run an electric
motor that turns the reamer crown through a gear train.
[0038] It can be particularly advantageous to use both techniques, back reaming with a rotating
crown and jetting, for difficult conditions where one method alone might prove slow
or less effective.
[0039] In the simplest configuration, as shown in Figure 2, all the flow through the CT
exits at the flow diverter in the connector 30 above the drilling assembly 20 and
below the CT connection. If large enough exit ports 36 are provided and the flow rate
is sufficient, cuttings are transported in the annulus, but no jetting is performed
and no extra mobilization of the cuttings is achieved. Of the flow exiting the CT,
a small percentage flows downwards around the drilling assembly 20 as the pump forces
the fluid through the bit 24 and up through the drilling assembly 20 in 'reverse'
circulation, and then ejects it above the exit ports 36 so that the low flow and cuttings
are commingled with the CT flow coming out of the flow diverter.
[0040] In another embodiment, a downhole valve can also be included to dictate the proportion
of flow split between exit ports 36 and jetting nozzles 46. Apart from being able
to change between jetting and simply circulating, this valve can also produce pressure
pulses to remove harder ledges in a similar manner to that described in
US5944123 and
US6062311. The valve can either be electrically activated using surface commands, or hydraulically
commanded using flow variation schemes (e.g. switches to jetting above a specific
flow rate and pressure drop.)
[0041] An additional advantage of power available in the fluid in the CT is the ability
to power a jet pump in the pump section 28. This jet pump can replace the electric
motor driving the pump. The use of a jet pump will create a small increase in surface
power needs but has the advantage that the tool length can be substantially reduced
(pump, transmission, gear box, motor, oil compensation, motor control and drive electronics),
while increasing the reliability.
[0042] Furthermore, a dual pump system can be employed to circulate around the drilling
assembly and in the lateral borehole 16, and to act as a booster in the well 14 to
circulate cuttings to the surface.
[0043] Other changes can be made while staying within the scope of the invention.
1. Apparatus for drilling an underground borehole, comprising:
- a tubular conveyance system (18) including an electric cable and a supply of drilling
fluid, the supply of drilling fluid being arranged in use to pump fluid from the surface
down the inside of the tubular conveyance so as to return to the surface via the annulus
between the outside of the tubular conveyance and the borehole;
- a drilling system (20) comprising an electrically powered drilling motor (22) and
a pump (28) arranged in use to pump fluid from the borehole outside the drilling system
up through the inside of the drilling system (20);
- a connector (30) connecting the drilling system (20) to the tubular conveyance system
(18) and to the electric cable, and
- a flow diverter (32, 34) at which flow down the inside of the tubular conveyance
system (18) is diverted into the annulus, and flow up the inside of the drilling system
(20) is diverted into the annulus, wherein in use the flow diverter (32, 34) directs
part of the drilling fluid down around the outside of the drilling system (20) and
the remainder of the fluid back to the surface around the outside of the tubular conveyance
(18).
2. Apparatus as claimed in claim 1, wherein the drilling system (20) has separate axial
and rotary drive mechanisms.
3. Apparatus as claimed in claim 2, wherein the axial drive mechanism comprises a crawler
system (26).
4. Apparatus as claimed in claim 1, 2 or 3, wherein the drilling motor (22) comprises
an electric motor powered through the electric cable.
5. Apparatus as claimed in claim 1, 2 or 3, wherein the drilling system (20) comprises
a jet pump for pumping fluid through the drilling system (20).
6. Apparatus as claimed in any preceding claim, wherein the tubular conveyance system
(18) comprises coiled tubing.
7. Apparatus as claimed in any preceding claim, wherein the flow diverter forms part
of the connector (30).
8. Apparatus as claimed in any of claims 1-6, wherein the flow diverter is positioned
in the tubular conveyance (18) above the connector (30).
9. Apparatus as claimed in any preceding claim, wherein the flow diverter is arranged
to divert flow from the inside of the drilling system (20) to the annulus above the
point at which it diverts flow from the tubular conveyance system (18) into the annulus.
10. Apparatus as claimed in any preceding claim, further comprising a jetting system including
one or more flow nozzles (46) arranged to direct jets of fluid inside the borehole
to remove accumulated deposits.
11. Apparatus as claimed in claim 10, wherein the flow nozzles (46) are adjustable so
as to change the direction of flow of fluid therefrom.
12. Apparatus as claimed in claim 10 or 11, wherein the flow diverter directs fluid into
the flow nozzles (46) for jetting and further comprises a valve adjustable to vary
the amount of fluid directed through the flow nozzles (46) and the amount of fluid
directed into the annulus.
13. Apparatus as claimed in any preceding claim, further comprising a rotatable crown
(40) driven by a motor powered for use in back reaming.
14. Apparatus as claimed in claim 13, wherein the motor is an electric motor powered by
the electric cable.
15. Apparatus as claimed in claim 13, further comprising a turbine driven by fluid flow
from the tubular conveyance system (18) and connected to drive the crown (40) via
a gear train.
16. Apparatus as claimed in claim 15, further comprising an electric generator connected
to the turbine and an electric motor connected to the crown (40) via the gear train,
the output of the generator being used to power the electric motor and drive the crown
(40).
17. A method of drilling an underground borehole using an apparatus comprising a tubular
conveyance system (18) including an electric cable and a supply of drilling fluid;
a drilling system (20) comprising an electrically powered pump (28) and a drilling
motor (22); a connector (30) connecting the drilling system (20) to the tubular conveyance
system (18), through which the pump (28) and drilling motor (22) are connected to
the electric cable; and a flow diverter; the method comprising:
- pumping fluid from the surface down the inside of the tubular conveyance (18) so
as to return to the surface via the annulus between the outside of the tubular conveyance
and the borehole; and
- using the electrically powered pump (28) of the drilling system (20) to pump fluid
from the borehole outside the drilling system (20) up through the inside of the drilling
system (20);
- diverting fluid flow (32) down the inside of the tubular conveyance system (18)
into the annulus (36, 38), wherein part of the fluid is diverted down around the outside
of the drilling system (20) and the remainder of the fluid is diverted back to the
surface around the outside of the tubular conveyance (18) and diverting flow (34)
up the inside of the drilling system (20) into the annulus using the flow diverter;
and
- using the drilling motor (22) to drill the borehole using the drilling system (20).
18. A method as claimed in claim 17, further comprising directing jets of fluid from one
or more nozzles (46) of a jetting system inside the borehole to remove accumulated
deposits.
19. A method as claimed in claim 18, further comprising adjusting the flow nozzles (46)
so as to change the direction of flow of fluid therefrom.
20. A method as claimed in claim 17, 18 or 19, comprising directing fluid into the flow
nozzles (46) for jetting using the flow diverter and adjusting a valve to vary the
amount of fluid directed through the flow nozzles (46) and the amount of fluid directed
into the annulus.
21. A method as claimed in any of claims 17-20, further comprising back reaming the borehole
using an additional electric motor in the drilling system (20).
22. A method as claimed in claim 17-20, comprising back reaming using a rotating crown
(40) driven by the drilling motor (22).
23. A method as claimed in claim 21 or 22, comprising back reaming using a jetting system.
1. Vorrichtung zum Bohren eines unterirdischen Bohrlochs, die umfasst:
- ein rohrförmiges Fördersystem (18), das ein elektrisches Kabel und eine Versorgung
für Bohrfluid enthält, wobei die Versorgung für Bohrfluid im Gebrauch dafür ausgelegt
ist, Fluid von der Oberfläche nach unten in den Innenraum der rohrförmigen Förderung
zu pumpen, damit es durch den Ringraum zwischen der Außenseite der rohrförmigen Förderung
und dem Bohrloch zur Oberfläche zurückkehrt;
- ein Bohrsystem (20), das einen elektrisch angetriebenen Bohrmotor (22) und eine
Pumpe (28), die dafür ausgelegt ist, Fluid von dem Bohrloch außerhalb des Bohrsystems
durch den Innenraum des Bohrsystems (20) nach oben zu pumpen;
- einen Verbinder (30), um das Bohrsystem (20) mit dem rohrförmigen Fördersystem (18)
und mit dem elektrischen Kabel zu verbinden, und
- einen Strömungsumlenker (32, 34), bei dem eine Strömung nach unten innerhalb des
rohrförmigen Fördersystems (18) in den Ringraum umgelenkt wird und die Strömung nach
oben innerhalb des Bohrsystems (20) in den Ringraum umgelenkt wird, wobei im Gebrauch
der Strömungsumlenker (32, 34) einen Teil des Bohrfluids nach unten um die Außenseite
des Bohrsystems (20) und den Rest des Fluids zurück zu der Oberfläche um die Außenseite
der rohrförmigen Förderung (18) lenkt.
2. Vorrichtung nach Anspruch 1, wobei das Bohrsystem (20) getrennte axiale und rotatorische
Antriebsmechanismen besitzt.
3. Vorrichtung nach Anspruch 2, wobei der axiale Antriebsmechanismus ein Raupensystem
(26) umfasst.
4. Vorrichtung nach Anspruch 1, 2 oder 3, wobei der Bohrmotor (22) einen Elektromotor
umfasst, der durch das elektrische Kabel mit Leistung versorgt wird.
5. Vorrichtung nach Anspruch 1, 2 oder 3, wobei das Bohrsystem (20) eine Strahlpumpe
umfasst, um Fluid durch das Bohrsystem (20) zu pumpen.
6. Vorrichtung nach einem vorhergehenden Anspruch, wobei das rohrförmige Fördersystem
(18) eine Rohrschlange umfasst.
7. Vorrichtung nach einem vorhergehenden Anspruch, wobei der Strömungsumlenker einen
Teil des Verbinders (30) bildet.
8. Vorrichtung nach einem der Ansprüche 1-6, wobei der Strömungsumlenker in der rohrförmigen
Förderung (18) über dem Verbinder (30) positioniert ist.
9. Vorrichtung nach einem vorhergehenden Anspruch, wobei der Strömungsumlenker dafür
ausgelegt ist, Strömung von innerhalb des Bohrsystems (20) in den Ringraum oberhalb
des Punkts, an dem er Strömung von dem rohrförmigen Fördersystem (18) in den Ringraum
umlenkt, umzulenken.
10. Vorrichtung nach einem vorhergehenden Anspruch, die ferner ein Strahlbildungssystem
umfasst, das eine oder mehrere Strömungsdüsen (46) enthält, die dafür ausgelegt sind,
Fluidstrahlen in dem Bohrloch zu lenken, um angesammelte Ablagerungen zu entfernen.
11. Vorrichtung nach Anspruch 10, wobei die Strömungsdüsen (46) einstellbar sind, um die
Richtung der Fluidströmung hiervon zu ändern.
12. Vorrichtung nach Anspruch 10 oder 11, wobei der Strömungsumlenker Fluid in die Strömungsdüsen
(46) für die Strahlbildung lenkt und ferner ein Ventil umfasst, das einstellbar ist,
um die durch die Strömungsdüsen (46) gelenkte Fluidmenge und die in den Ringraum gelenkte
Fluidmenge zu variieren.
13. Vorrichtung nach einem vorhergehenden Anspruch, die ferner eine drehbare Krone (40)
umfasst, die durch einen Motor angetrieben wird, der für die Verwendung beim Rückwärtsräumen
mit Leistung versorgt wird.
14. Vorrichtung nach Anspruch 13, wobei der Motor ein Elektromotor ist, der durch das
elektrische Kabel mit Leistung versorgt wird.
15. Vorrichtung nach Anspruch 13, die ferner eine Turbine umfasst, die durch Fluid angetrieben
wird, das von dem rohrförmigen Fördersystem (18) strömt, und angeschlossen ist, um
die Krone (40) über einen Getriebezug anzutreiben.
16. Vorrichtung nach Anspruch 15, die ferner einen elektrischen Generator, der mit der
Turbine verbunden ist, und einen Elektromotor, der mit der Krone (40) über den Getriebezug
verbunden ist, umfasst, wobei der Ausgang des Generators verwendet wird, um den Elektromotor
mit Leistung zu versorgen und die Krone (40) anzutreiben.
17. Verfahren zum Bohren eines unterirdischen Bohrlochs unter Verwendung einer Vorrichtung,
die ein rohrförmiges Fördersystem (18), das ein elektrisches Kabel und eine Versorgung
für Bohrfluid enthält; ein Bohrsystem (20), das eine mit elektrischer Leistung versorgte
Pumpe (28) und einen Bohrmotor (22) enthält; einen Verbinder (30), um das Bohrsystem
(20) mit dem rohrförmigen Fördersystem (18) zu verbinden, durch den die Pumpe (28)
und der Bohrmotor (22) mit dem elektrischen Kabel verbunden sind; und einen Strömungsumlenker
umfasst, wobei das Verfahren umfasst:
- Pumpen von Fluid von der Oberfläche nach unten innerhalb der rohrförmigen Förderung
(18), damit es durch den Ringraum zwischen der Außenseite der rohrförmigen Förderung
und dem Bohrloch zu der Oberfläche zurückkehrt; und
- Verwenden der mit elektrischer Leistung versorgten Pumpe (28) des Bohrsystems (20),
um Fluid von dem Bohrloch außerhalb des Bohrsystems (20) nach oben durch den Innenraum
des Bohrsystems (20) zu pumpen;
- Umlenken einer Fluidströmung (32) nach unten innerhalb des rohrförmigen Fördersystems
(18) in den Ringraum (36, 38), wobei ein Teil des Fluids nach unten um die Außenseite
des Bohrsystems (20) und der Rest des Fluids zurück um die Außenseite der rohrförmigen
Förderung (18) zu der Oberfläche umgelenkt wird, und Umlenken der Strömung (34) nach
oben in dem Bohrsystem (20) in den Ringraum unter Verwendung des Strömungsumlenkers;
und
- Verwenden des Bohrmotors (22), um das Bohrloch unter Verwendung des Bohrsystems
(20) zu bohren.
18. Verfahren nach Anspruch 17, das ferner das Lenken von Fluidstrahlen von einer oder
von mehreren Düsen (46) eines Strahlbildungssystems in das Bohrloch umfasst, um angesammelte
Ablagerungen zu entfernen.
19. Verfahren nach Anspruch 18, das ferner das Einstellen der Strömungsdüsen (46) umfasst,
um die Richtung der Fluidströmung hiervon zu ändern.
20. Verfahren nach Anspruch 17, 18 oder 19, das das Lenken von Fluid in die Strömungsdüsen
(46) für die Strahlbildung unter Verwendung des Strömungsumlenkers und das Einstellen
eines Ventils, um die durch die Strömungsdüsen (46) gelenkte Fluidmenge und die in
den Ringraum gelenkte Fluidmenge zu variieren, umfasst.
21. Verfahren nach einem der Ansprüche 17-20, das ferner das Rückräumen des Bohrlochs
unter Verwendung eines zusätzlichen Elektromotors in dem Bohrsystem (20) umfasst.
22. Verfahren nach Anspruch 17-20, das das Rückräumen unter Verwendung einer rotierenden
Krone (40), die durch den Bohrmotor (22) angetrieben wird, umfasst.
23. Verfahren nach Anspruch 21 oder 22, das das Rückräumen unter Verwendung eines Strahlbildungssystems
umfasst.
1. Appareil pour forer un trou de forage souterrain, comprenant :
un système de transport tubulaire (18) comprenant un câble électrique et une alimentation
en fluide de forage, l'alimentation en fluide de forage étant agencée, à l'usage,
pour pomper le fluide provenant de la surface descendant à l'intérieur du système
de transport tubulaire afin de le retourner à la surface, via l'espace annulaire situé
entre l'extérieur du système de transport tubulaire et le trou de forage ;
un système de forage (20) comprenant un moteur de forage alimenté électriquement (22)
et une pompe (28) agencée, à l'usage, pour pomper le fluide du trou de forage à l'extérieur
du système de forage en le remontant à l'intérieur du système de forage (20) ;
un connecteur (30) raccordant le système de forage (20) au système de transport tubulaire
(18) et au câble électrique, et
un déflecteur d'écoulement (32, 34) au niveau duquel, l'écoulement descendant à l'intérieur
du système de transport tubulaire (18), est dévié dans l'espace annulaire, et l'écoulement
remontant à l'intérieur du système de forage (20) est dévié dans l'espace annulaire,
dans lequel, à l'usage, le déflecteur d'écoulement (32, 34) dirige une partie du fluide
de forage vers le bas autour de l'extérieur du système de forage (20) et ramène le
reste du fluide à la surface autour de l'extérieur du système de transport tubulaire
(18).
2. Appareil selon la revendication 1, dans lequel le système de forage (20) a des mécanismes
d'entraînement axial et rotatif séparés.
3. Appareil selon la revendication 2, dans lequel le mécanisme d'entraînement axial comprend
un système de chenille (26).
4. Appareil selon la revendication 1, 2 ou 3, dans lequel le moteur de forage (22) comprend
un moteur électrique alimenté par le câble électrique.
5. Appareil selon la revendication 1, 2 ou 3, dans lequel le système de forage (20) comprend
une pompe à jet pour pomper le fluide à travers le système de forage (20).
6. Appareil selon l'une quelconque des revendications précédentes, dans lequel le système
de transport tubulaire (18) comprend un tube spiralé.
7. Appareil selon l'une quelconque des revendications précédentes, dans lequel le déflecteur
d'écoulement forme une partie du connecteur (30).
8. Appareil selon l'une quelconque des revendications 1 à 6, dans lequel le déflecteur
d'écoulement est positionné dans le système de transport tubulaire (18) au dessus
du connecteur (30).
9. Appareil selon l'une quelconque des revendications précédentes, dans lequel le déflecteur
d'écoulement est agencé pour dévier l'écoulement de l'intérieur du système de forage
(20) jusqu'à l'espace annulaire, au dessus du point auquel il dévie l'écoulement provenant
du système de transport tubulaire (18) dans l'espace annulaire.
10. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre
un système de jet comprenant une ou plusieurs buses d'écoulement (46) agencées pour
diriger des jets de fluide à l'intérieur du trou de forage afin de retirer des dépôts
accumulés.
11. Appareil selon la revendication 10, dans lequel les buses d'écoulement (46) sont ajustables
afin de modifier la direction d'écoulement du fluide à partir de ces dernières.
12. Appareil selon la revendication 10 ou 11, dans lequel le déflecteur d'écoulement dirige
le fluide à l'intérieur des buses d'écoulement (46) pour le lançage et comprend en
outre une valve réglable pour modifier la quantité de fluide dirigé à travers les
buses d'écoulement (46) et la quantité de fluide dirigé vers l'espace annulaire.
13. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre
une couronne rotative (40) entraînée par un moteur alimenté pour une utilisation en
alésage en sens inverse.
14. Appareil selon la revendication 13, dans lequel le moteur est un moteur électrique
alimenté par le câble électrique.
15. Appareil selon la revendication 13, comprenant en outre une turbine entraînée par
écoulement de fluide provenant du système de transport tubulaire (18) et raccordée
pour entraîner la couronne (40) via un train d'engrenages.
16. Appareil selon la revendication 15, comprenant en outre un générateur électrique raccordé
à la turbine et un moteur électrique raccordé à la couronne (40) via le train d'engrenages,
la puissance produite par le générateur étant utilisée pour actionner le moteur électrique
et entraîner la couronne (40).
17. Procédé pour forer un trou de forage souterrain à l'aide d'un appareil comprenant
un système de transport tubulaire (18) comprenant un câble électrique et une alimentation
en fluide de forage ; un système de forage (20) comprenant une pompe actionnée électriquement
(28) et un moteur de forage (22) ; un connecteur (30) raccordant le système de forage
(20) au système de transport tubulaire (18), grâce auquel la pompe (28) et le moteur
de forage (22) sont raccordés au câble électrique ; et un déflecteur d'écoulement
; le procédé comprenant les étapes consistant à :
pomper le fluide descendant de la surface à l'intérieur du système de transport tubulaire
(18) afin de le ramener vers la surface via l'espace annulaire situé entre l'extérieur
du système de transport tubulaire et le trou de forage ; et
utiliser la pompe alimentée électriquement (28) du système de forage (20) pour pomper
le fluide du trou de forage à l'extérieur du système de forage (20) en le remontant
par l'intérieur du système de forage (20) ;
dévier l'écoulement de fluide (32) descendant à l'intérieur du système de transport
tubulaire (18) dans l'espace annulaire (36, 38), dans lequel une partie du fluide
est déviée vers le bas autour de l'extérieur du système de forage (20) et le reste
du fluide est remonté à la surface autour de l'extérieur du système de transport tubulaire
(18) et déviant l'écoulement (34) remontant à l'intérieur du système de forage (20)
dans l'espace annulaire à l'aide du déflecteur d'écoulement ; et
utiliser le moteur de forage (22) pour forer le trou de forage à l'aide du système
de forage (20).
18. Procédé selon la revendication 17, comprenant l'étape consistant à diriger des jets
de fluide à partir d'une ou de plusieurs buses (46) d'un système de jet à l'intérieur
du trou de forage pour retirer des dépôts accumulés.
19. Procédé selon la revendication 18, comprenant en outre l'étape consistant à ajuster
les buses d'écoulement (46) afin de modifier la direction d'écoulement du fluide à
partir de ces dernières.
20. Procédé selon la revendication 17, 18 ou 19, comprenant l'étape consistant à diriger
le fluide dans les buses d'écoulement (46) pour le lançage à l'aide du déflecteur
d'écoulement et ajuster une valve afin de modifier la quantité de fluide dirigé à
travers les buses d'écoulement (46) et la quantité de fluide dirigé dans l'espace
annulaire.
21. Procédé selon l'une quelconque des revendications 17 à 20, comprenant en outre l'étape
d'extraction par refoulement en utilisant un moteur électrique supplémentaire dans
le système de forage (20).
22. Procédé selon la revendication 17 à 20, comprenant l'étape d'extraction par refoulement
en utilisant une couronne rotative (40) entraînée par le moteur de forage (22).
23. Procédé selon la revendication 21 ou 22, comprenant l'étape d'extraction par refoulement
en utilisant un système de lançage.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description