[0001] The present invention relates to an apparatus for printing postage value, or other
information, on an envelope for use in a high speed mail processing and inserting
system.
[0002] Inserter systems such as those applicable for use with the present invention, are
typically used by organizations such as banks, insurance companies and utility companies
for producing a large volume of specific mailings where the contents of each mail
item are directed to a particular addressee. Also, other organizations, such as direct
mailers, use inserts for producing a large volume of generic mailings where the contents
of each mail item are substantially identical for each addressee. Examples of such
inserter systems are the 8 series, 9 series, and APS
™ inserter systems available from Pitney Bowes Inc. of Stamford Connecticut, USA.
[0003] In many respects, the typical inserter system resembles a manufacturing assembly
line. Sheets and other raw materials (other sheets, enclosures, and envelopes) enter
the inserter system as inputs. Then, a plurality of different modules or workstations
in the inserter system work cooperatively to process the sheets until a finished mail
piece is produced. The exact configuration of each inserter system depends upon the
needs of each particular customer or installation.
[0004] Typically, inserter systems prepare mail pieces by gathering collations of documents
on a conveyor. The collations are then transported on the conveyor to an insertion
station where they are automatically stuffed into envelopes. After being stuffed with
the collations, the envelopes are removed from the insertion station for further processing.
Such further processing may include automated closing and sealing the envelope flap,
weighing the envelope, applying postage to the envelope, and finally sorting and stacking
the envelopes.
[0005] US 2002/0040354 A1 describes a high-rate franking machine comprising means for printing postal indicia
on a mailpiece and means for transporting this mailpiece along a mailpiece-conveying
path, said printing means comprising, arranged side by side transversely to a direction
D of advance of the mailpieces along said mailpiece-conveying path, a first printing
module arranged in a first position (position of printing) above said mailpiece-conveying
path and a second printing module arranged in a second position (position of maintenance/standby)
set back with respect to said mailpiece-conveying path. The first printing module
is associated with a first maintenance station and the second printing module is associated
with a second maintenance station.
[0006] EP 0 724 234 A2 describes a mail transport for a franking machine in which mail is fed toward a printing
head by input rollers, is fed past the printing head by an impression roller and is
ejected from the franking machine by ejection rollers. Drive to the input rollers
is controlled to initially feed the mail at a transit speed toward the print head,
to feed the mail item at a printing speed, during a printing period, lower than the
transit speed and initially, in an ejection period after the printing period, to feed
the mail item at the transit speed. When the mail item is released from the input
rollers, the ejection rollers are driven to feed the mail item at a higher speed than
the transit speed.
[0007] Current mail processing machines are often required to process up to 18,000 pieces
of mail an hour. Such a high processing speed may require envelopes in an output subsystem
to have a velocity in a range of 80-85 inches per second (ips) (203-216 cm/s) for
processing. Consecutive envelopes will nominally be separated by a 200 ms time interval
for proper processing while traveling through the inserter output subsystem.
[0008] At such a high rate of speed, system modules, such as those for sealing envelopes
and putting postage on envelopes, have very little time in which to perform their
functions. If adequate control of spacing between envelopes is not maintained, the
modules may not have time to perform their functions, envelopes may overlap, and jams
and other errors may occur. In particular, postage meters are time sensitive components
of a mail processing system. Meters must print a clear postal indicia on the appropriate
part of the envelope to meet postal regulations. The meter must also have the time
necessary to perform the necessary bookkeeping and calculations to ensure the appropriate
funds are being stored and printed.
[0009] A typical postage meter used with a conventional high speed mail processing system
has a mechanical print head that imprints postage indicia on envelopes being processed.
Such conventional postage metering technology is available on Pitney Bowes R150 and
R156 mailing machines using model 6500 meters. The mechanical print head is typically
comprised of a rotary drum that impresses an ink image on envelopes traveling underneath.
Using mechanical print head technology, throughput speed for meters is limited by
considerations such as the meter's ability to calculate postage and update postage
meter registers, and the speed at which ink can be applied to the envelopes. In most
cases, solutions using mechanical print head technology have been found adequate for
providing the desired throughput of approximately five envelopes per second.
[0010] However, use of existing mechanical print technology with high speed mail processing
machines presents some challenges. First, some older mailing machines were not designed
to operate at such high speeds for prolonged periods of time. Accordingly, solutions
that allow printing to occur at lower speeds may be desirable in terms of enhancing
long term mailing machine reliability.
[0011] Another problem is that many existing mechanical print head machines are configured
such that once an envelope is in the mailing machine, it is committed to be printed
and translated to a downstream module, regardless of downstream conditions. As a result,
if there is a paper jam downstream, the existing mailing machine component could cause
even more collateral damage to envelopes within the mailing machine. At such high
rates, jams and resultant damage may be more severe than at lower speeds. Accordingly,
improved control and lowered printing speed, while maintaining high throughput rate
in a mechanical print head mailing machine could provide additional advantages.
[0012] Controlling throughput through the metering portion of a mail producing system is
also a significant concern when using non-mechanical print heads. Many current mailing
machines use digital printing technology to print postal indicia on envelopes. One
form of digital printing that is commonly used for postage metering is thermal inkjet
technology. Thermal inkjet technology has been found to be an effective method for
generating images at 300 dpi on material translating up to 50 inches per second (ips)
and 200 dpi at 80 ips. Thus, while thermal inkjet technology is recognized as useful,
it is difficult to apply to high speed mail production systems that operate on mail
pieces that are typically traveling in the range of up to 100 ips in such systems.
[0013] As postage meters using digital print technology become more prevalent in the marketplace,
it is important to find suitable substitutes for the mechanical print technology meters
that have traditionally been used in high speed mail production systems. This need
for substitution is particularly important as it is expected that postal regulations
will require phasing out of older mechanical print technology meters, and replacement
with more sophisticated meters, Ink jet digital print technology is now capable of
printing a desired 200 dpi resolution on paper traveling at 80 ips., but has not yet
been incorporated in the metering portions of high speed mail production systems.
[0014] It is known that many standard ink jet print heads must be stopped occasionally in
order to perform maintenance routines. In particular, "drop-on-demand" style ink jet
print heads are known to require periodic maintenance. Maintenance may include a "print
head wipe" that occurs approximately every 500 prints, and has a duration of approximately
3 seconds. Maintenance also may include a "print head purge" that occurs after approximately
every 3000 prints, and has a duration of approximately 14 seconds. For an inserter
operating at 18,000 pieces per hour, the wipe and purge activities would occur every
100 seconds and ten minutes respectively. These maintenance activities result in reduced
throughput performance. For example, an inserter that would otherwise operate at 18,000
piece per hour, would be reduced to 17,000 pieces per hour as a result of purge and
wipe print head maintenance.
[0015] More expensive ink jet technology is available that does not require such frequent
maintenance. For example, Scitex™ ink jet printers can run continuously, with no significant
interruption. However, such continuous printers can be prohibitively expensive, and
it is preferred that less expensive drop-on-demand ink jet print head technology can
be used.
[0016] Some systems that have been available from Pitney Bowes for a number of years address
some issues relating to using a slower speed meter with a higher speed mail production
system. These systems utilize mechanical print head R150 and R156 mailing machines
using 6500 model postage meters installed on an inserter system. The postage meters
operate at a slower velocity than that of upstream and downstream modules in the system.
When an envelope reaches the postage meter module, a routine is initiated within the
postage meter. Once the envelope is committed within the postage meter unit, this
routine is carried out without regard to conditions outside the postage meter. The
routine decelerates the envelope to a printing velocity. Then, the mechanical print
head of the postage meters imprints an indicia on the envelope. After the indicia
is printed, the envelope is accelerated back to close to the system velocity, and
the envelope is transported out of the meter.
[0017] Using the R150 or R156 mailing machines in this manner postage can be printed on
envelopes at a lower print velocity. However, problems still occur for systems operating
at higher velocities, such as 80 ips (203 cm/s). At this higher speed, the time interval
between consecutive envelopes is so short that the R150 and R156 machines cannot reset
itself in time to print an indicia on a second envelope. To solve this problem, Pitney
Bowes has offered a solution for number of years utilizing two mailing machines arranged
serially in the envelope transport path. A diagram of this prior art system is depicted
in Figure 1.
[0018] In this serial mailing machine solution, envelopes are transported along transport
path 100. When a first of a series envelopes reaches the first serial mechanical mailing
machine 101, the first envelope is decelerated for a printing operation by postage
meter 104. After printing is complete, the first envelope is carried away from the
first serial machine 101 via transport 102 to the second serial mechanical mailing
machine 103.
[0019] At the second mailing machine 103, the first envelope is typically decelerated to
the print velocity. However, since an indicia has already been printed on the first
envelope, no printing operation is performed by the second postage meter 105. The
first envelope is then accelerated back to the system velocity and carried out of
the serial postage printing arrangement.
[0020] The motion control of deceleration and acceleration at the second postage meter 105
without performing a print operation is done in order to maintain the displacements
of consecutive envelopes in the system. Failure to subject subsequent envelopes to
the same displacements may result in one envelope catching up to the other and causing
a jam.
[0021] Following the first envelope, a second envelope arrives at the first mailing machine
101. The second envelope is subjected to the deceleration and acceleration motion profile.
In a high speed system, however, the first postage meter 104 may not have had time
to reset to print another indicia. Accordingly, the second envelope passes through
the first mailing machine
101 without a printing operation. The second envelope is then passed via transport
102 to the second mailing machine
103 where it is again decelerated to the print velocity, This time, mailing machine
103 does perform a printing operation and an indicia is printed on the second envelope
by postage meter
105. Mailing machine
103 then accelerates the envelope back to the system velocity, and the second envelope
is carried away downstream.
[0022] In this manner, some of the shortcomings of conventional mailing machines are avoided
by allowing the serial mailing machines
101 and
103 to alternately take turns printing indicia on every-other envelope. One disadvantage
of this serial arrangement is that it remains very sensitive to gaps sizes between
consecutive envelopes. Gaps between subsequent envelopes are shortened every time
a lead envelope undergoes the printing motion profile. If an error occurs in the processing
to make the gap size smaller than expected, envelopes can catch-up to one another,
and a paper jam can result. Also, the R150 and R156 mailing machines are a bit too
long to have time to carry out printing motion profile before the arrival of the next
envelope, and to still have some margin for error in the arrival of a subsequent envelope.
As a result, envelopes can be passed off between sets of nips that are not going at
the same speed, creating potential for pulling or buckling. Accordingly, a solution
with better space utilization and that is less sensitive to gap size variation is
desirable.
[0023] Another problem with existing solution is that the conventional postage meters are
inflexible in adjusting to conditions present in upstream or downstream meters. For
example, if the downstream module is halted as a result of a jam, the postage meter
will continue to operate on whatever envelope is within its control. This often results
in an additional jam, and collateral damage, as the postage meter attempts to output
the envelope to a stopped downstream module.
[0024] According to a first aspect of the invention, there is provided a printing apparatus
for use in a high velocity document processing system, the printing apparatus comprising:
a transport path for conveying a series of documents; an upstream print head contiguous
with the transport path to print on documents transported thereon; a downstream print
head, downstream of the upstream print head, and contiguous with the transport path
to print on documents transported thereon; and a controller for controlling a first
one of the upstream or downstream print heads to print on transported documents, the
controller operable for further switching to a second of the upstream or downstream
print heads when the first one is out of service; the transport path further comprises
an upstream transport for conveying documents at a transport velocity, a downstream
transport for conveying documents at the transport velocity, a print transport located
between the upstream transport and the downstream transport, the print transport arranged
to be driven independently of the upstream transport and the downstream transport
and comprising a plurality of individually controllable rollers; the controller for
further controlling a roller group of less than all of the plurality of individually
controllable rollers according to a predetermined motion profile, whereby under nominal
conditions the roller group decelerates the print transport to a nominal print velocity
prior to a printing operation in a first segment, maintains the nominal print velocity
during the printing operation in a second segment, and accelerates the print transport
back to the transport velocity after completion of the printing operation in a third
segment; and the controller arranged to control the roller group to comprise of an
upstream portion of the plurality of individually controllable rollers if the upstream
print head is in use, and to comprise a downstream portion of the plurality of individually
controllable rollers if the downstream print head is in use.
[0025] According to a second aspect of the invention, there is provided a printing method
for high velocity document processing, the printing method comprising: transporting
a series of documents on a transport path; positioning an upstream print head contiguous
with the transport path to print on documents transported thereon; positioning a downstream
print head, downstream of the upstream print head, and contiguous with the transport
path to print on documents transported thereon; controlling a first one of the upstream
or downstream print heads to print on transported documents; and switching to a second
of the upstream or downstream print heads for printing when the first one is out of
service, the step of transporting further comprising: transporting a document at a
transport velocity in an upstream transport to a print transport; transporting the
document on the print transport; and transporting the document at the transport velocity
in a downstream transport from the print transport; and including a further step,
while the document is within the print transport during nominal system conditions,
of controlling the velocity of the print transport in accordance with a motion profile,
whereby the motion profile includes the steps of decelerating the document to a print
velocity, maintaining the print velocity during the step of printing, and accelerating
the document to the transport velocity after the step of printing is complete, the
motion profile resulting in a relative displacement of the document with respect to
upstream and downstream documents to vary during the motion profile; and performing
the print transport motion profile with an upstream portion of the print transport
when the upstream print head is in use, and with a downstream portion of the print
transport when the downstream print head is in use, the upstream and downstream portions
each comprising at least one transport mechanism different from the other.
[0026] Further details of the present invention are provided in the accompanying drawings,
detailed description and claims.
Figure 1 depicts a prior art inserter metering system using two mechanical meters
in series.
Figure 2 is a diagrammatic view of a postage printing module in relation to upstream
and downstream modules.
Figure 3 is a graphical representation of a print motion control profile for controlling
the speed of envelopes in the postage printing module.
[0027] The present application describes a printing apparatus and method for use in a continuous
high velocity document processing system. In the preferred embodiment, they printing
system is used in connection with a postage meter for imprinting postal indicia on
mail pieces. The print apparatus is preferably located at the downstream end of an
inserter device for mass producing mail pieces.
[0028] Within the postage printing module, a digital print mechanism is used at high speeds
to create the postal indicia for the envelopes. Also, the motion of the envelope is
controlled to allow continuous high speed envelope throughput, even if the postage
printing device operates at a lower velocity than other parts of the system.
[0029] Within the printing system, a transport path conveys a series of mail pieces at a
print velocity. In the preferred embodiment, there are at least two print heads to
perform printing operations. The print heads are preferably available ink jet print
heads capable of printing at high resolution on documents traveling at high speed.
During normal operation, only one print head is operating at a time. As mail pieces
pass the print head at the print velocity, postal indicia are printed on them.
[0030] However, continuous operation of the printing apparatus is potentially interrupted
when the print head that is in use must stop in order to undergo a maintenance operation.
Accordingly, in accordance with the present invention, the second print head goes
into operation without interruption of the document processing flow.
[0031] In the preferred embodiment, the print heads are in series. Thus, when one print
head is taken out of service, the other one continues to print on documents in the
same transport path. Because the second print head may be at a different location
along the transport path, appropriate adjustments to the triggering of the print cycle
are required.
[0032] In an alternate embodiment, a parallel print head arrangement may be used. Under
this alternate embodiment, a flipper switch redirects documents to a parallel transport
path and a parallel print head, when the first one is out of service. In either embodiment,
the activation of a second print head may also be triggered when the first print head
is subject to a failure that prevents it from being used. Thus, it may not be necessary
to halt operation of the mail production process.
[0033] In a further preferred embodiment, a motion control scheme is used in the printing
module to decelerate a mail piece for slower speed printing, and then returning the
mail piece back to the higher system transport speed after printing. In this embodiment,
different positions of the print heads may require that different portions of the
print module transport act to effectuate the necessary print transport motion profile.
Thus, when an upstream print head is in use, an upstream portion of the print module
transport may be required to undergo the motion profile to account for the lower print
speed. Likewise, when a downstream print head is in use, a downstream portion of the
print module transport may be required for the motion profile.
[0034] Accordingly, the system transports a first envelope at a nominal transport velocity
to the postage printing module. The postage printing module receives the envelope
at the nominal transport velocity. Based on predetermined criteria, one or the other
of the at least two print heads is selected for printing the indicia on the envelope.
If one print head is unavailable because of a failure, or because of a periodic maintenance
sequence, then the other one is used. When the envelope has passed completely into
the control of the postage printing module it is decelerated to a predetermined lower
print velocity for printing an image of a predetermined length. After the printing
is complete the envelope is accelerated back to the transport speed and transported
to a downstream module. None of the intervals of deceleration, low print velocity,
or acceleration may occur while an envelope in the postage printing module is also
in the control of another module.
[0035] This motion control is carried out by different transport elements in the print module
depending on which print head is being used. Transport elements, such as rollers,
are grouped together to act in unison in order to effectuate the motion control at
the appropriate location in relation to the print head. Depending on which print head
is used, a particular transport element may or may not be in the group performing
the motion control. Some transport elements may be in more than one grouping.
[0036] Deceleration in the motion control profile is activated by a sensor sensing the presence
of the envelope at a trigger point. Further sensors at the upstream and downstream
modules can be used to verify that no envelopes are under the shared control of the
postage printing module and another module
[0037] In another preferred embodiment, the print head is geared to operate in synchronism
with the print transport, such that an image will not be distorted if there is a variation
in print velocity.
[0038] The preferred system and method also provide a way to ensure that correct displacement
is maintained between subsequent envelopes under the control of the invention in the
event of a stop and/or restart of the system resulting from an exception condition,
such as an envelope jam. When an envelope is within the print transport during an
exception condition, the envelope must be decelerated to a stop, so as not to create
further jams or collateral damage. In most modules in the system, a linear uniform
deceleration is preferred to minimize disruption of the desired spacing between mail
pieces being processed.
[0039] For the postage printing module, however, optimal performance using the present invention
may require that deceleration not occur in the same uniform linear fashion as the
rest of the system. Rather, deceleration is preferably controlled to maintain the
relative displacement of envelopes in the postage printing module with respect to
upstream and downstream modules, Because displacement varies in that module during
normal operation, a uniform stopping and starting of the print module to mirror other
modules will result in envelope spacing different than originally intended. Such changing
in envelope gaps may result in further jams or misprocessing.
[0040] For this reason, the deceleration and acceleration resulting from the exception condition
is controlled to maintain relative displacements as those displacements would have
been if the exception condition had not occurred. To achieve this result, a controller
in the print module controls the displacement of the print module according to a predetermined
algorithm. This algorithm relates displacements of the print module with other modules
for segments of the motion profile as they would have been executed during normal
operation. During the exception condition, deceleration and acceleration of the print
module is thus controlled as a predetermined function, or set of functions, of the
displacements in other transport modules. The appropriate function is determined as
a result of the position of the envelope in the print module during the course of
the exception condition.
[0041] This displacement mapping functionality of the preferred embodiment operates cooperatively
with the gearing of the print head mechanism to the print transport. In that preferred
embodiment, stopping and restarting of the print module may not affect printing of
an image on the envelope, even if a printing operation had already begun at the time
of the stoppage.
[0042] The principles discussed herein are also applicable to a system condition in which
the system is stopped without the occurrence of any problems. For example, this embodiment
may be applied in a situation where an operator simply wishes to turn off the system
in order to take a lunch break, without waiting for the job to finish. Using this
embodiment, the process of routine stopping and starting of the system is simplified,
and the risk of errors occurring from such stopping and starting is reduced. It will
be understood that these features. Stoppage conditions include errors and exception
conditions, as well as routine starting and stopping.
[0043] For the preferred embodiment of the present invention, it is desired that envelope
printing throughput of 18,000 to 22,000 mail pieces per hour be achieved. To accomplish
this goal, the transport velocity of the inserter system is typically 100 ips or greater.
However, the preferred ink jet printing device to be used for printing a postage indicia
is only capable of achieving a desired resolution of 200 dpi at a speed of 80 ips
(203 cm/s). Such print heads are known to be available from printer manufacturers
Canon, Brother and Hewlett-Packard. Accordingly, the present invention will be described
primarily in regard to a system whereby the print module 1 is used to decelerate envelopes
from 100 ips (245 cm/s), to 80 ips (203 cm/s) for printing, and back to 100 ips (254
cm/s) for further processing.
[0044] As seen in FIG. 2, the present invention includes a postage printing module 1 positioned
between an upstream module 2 and a downstream module 3. Upstream and downstream modules
2 and 3 can be any kinds of modules in an inserter output subsystem. Typically the
upstream module 2 could include a device for wetting and sealing an envelope flap.
Downstream module 3 could be a module for sorting envelopes into appropriate output
bins.
[0045] Postage printing module 1, upstream module 2, and downstream module 3, all include
transport mechanisms for moving envelopes along the processing flow path. In the depicted
embodiment, the modules use sets of upper and lower rollers 10, 20, 30, 40, 70, and
80 called nips, between which envelopes are driven in the flow direction. In the preferred
embodiment rollers 10, 20, 30, 40, 70, and 80 are hard-nip rollers to minimize dither.
The transport for module 1 may also be belts, or other known transport mechanisms.
[0046] Print heads 50 and 60 are preferably located at or near the output end of the print
transport portion of the postage printing module 1 (see locations D and E). To satisfy
desired readability the print heads 50 and 60 should be capable of printing an indicia
at a resolution of 200 dots per inch (dpi). In the preferred embodiment, the print
heads 50 and 60 are drop-on-demand ink jet print heads capable of printing 200 dpi
on media traveling at 80 ips (203 cm/s). Alternatively, the print heads 50 and 60
can be any type of print heads, including those using other digital or mechanical
technology, which may benefit from printing at a rate less than the system velocity.
[0047] In the preferred embodiment only one of print heads 50 or 60 is in use at a given
time. Typically, one of the print heads, for example 50, will be used to print indicia
on the stream of envelopes. When it is time for print head 50 to undergo a maintenance
cycle, rather than stop printing of indicia, print head 60 is brought into service
to do the same job. Thus, only one print head operates at a time, with one print head
operating as a back-up, and going into service when the primary undergoes a maintenance
routine, or otherwise becomes unavailable. The reserve may then continue operation
as the primary print head, and the former primary may become the reserve when the
maintenance operation is complete. Alternately, the primary may be brought back into
service when maintenance is complete, and the reserve returned to inactive status.
Adjustments to the transport system of print module 1 in support using the two print
heads 50 and 60 in this manner are discussed below.
[0048] The rollers 10, 20, 30, and 40 for postage printing module 1 are driven by motors
11, 21, 31, and 41. For modules 2 and 3, rollers 70 and 80 are driven by electric
motors 12 and 13 respectively. Motors 11, 21, 31, 41, 12, and 13 are preferably independently
controllable servo motors. Motors 12 and 13 in upstream and downstream modules 2 and
3 drive rollers 70 and 80 at a constant velocity, preferably at the desired nominal
velocity for envelopes traveling in the system. Thus in the preferred embodiment,
upstream and downstream modules 2 and 3 will transport envelopes at 100 ips (254 cm/s)
in the flow direction.
[0049] Instead of independently controllable motors, the transports for module 1 may be
driven in any known manner. For example, the rollers 10, 20, 30, and 40 could be all
geared to a single driving mechanism. However, the arrangement of separate control
is preferred because it allows for more flexibility in controlling motion within the
print module 1.
[0050] Motors
11, 21, 31, and
41 drive rollers
10, 20, 30, and
40 in the postage printing module
1 at varying speeds in order to provide lower velocity printing capabilities. Postage
printing module motors
11, 21, 31, and
41 are controlled by controller
14 which in turn receives sensor signals. Signals may be provided to the controller
14 from upstream sensor
15, downstream sensor
18, and trigger sensors
16 and
17. Sensors
15 and
18 are preferably used to detect the trailing edges of consecutive envelopes passing
through the postage printing module
1, and to verify that the printing motion control adjustment only occurs while a single
envelope under the control of the set of rollers performing the velocity change. Trigger
sensor 16 determines that an envelope to be printed with an indicia is in the appropriate
position to trigger the beginning of the print motion control scheme for print head
50, as described further below. Similarly trigger sensor
17 may be used for triggering the motion control scheme for print head
60.
[0051] Sensors
15, 16, 17 and
18 are preferably photo sensors that are capable of detecting leading and trailing edges
of envelopes. While four photo sensors are depicted in the embodiment of Fig. 2, the
system can be operated with as few as one photo sensor at an upstream location. The
upstream single photo sensor would generate a signal upon deteting the presence of
a lead or trail edge of an envelope. Subsequent to sensing the envelope, encoder pulses
from the servo motors
(11, 21, 31, 41) transporting the envelope could be counted, and the corresponding displacement can
be accurately determined. Thus the controller
14 could trigger an action based on the sensing of an envelope edge, and then counting
a predetermined quantity of pulses from the motor encoders. The preferred positioning
of the sensors, and the utilization of signals received from the sensors are discussed
in more detail below.
[0052] Referring to FIG.2, the location of the output of the transport for upstream module
2 is location A. The location for the input to the print transport of postage printing
module
1 is location B. An intermediary transport roller
20 is located at point C. Transports
30 and
40 for print heads
50 and
60 are located at points D and E. Point E is also the output of the print transport
mechanism for postage printing module
1. The input for the transport of downstream module
3 is location F.
[0053] The modules may also include other rollers, or other types of transports, at other
locations. To maintain control over envelopes traveling through the system, consecutive
distances between rollers 10, 20, 30, and 40 must be less than the shortest length
envelope expected to be conveyed. In the preferred embodiment, it is expected that
envelopes with a minimum length of 6.5" (16.5 cm) will be conveyed. Accordingly, and
the rollers 10, 20, 30, and 40 will preferably be spaced not more than 6.25" (15.9
cm) apart, so that an envelope can be handed off between sets of rollers without giving
up control transporting the envelope at any time. The preferred embodiment is also
designed to handle an envelope 10.375 inches (26.352 cm) long.
[0054] Upstream sensor 15 is preferably located at or near location B, while downstream
sensor 16 is preferably located at or near location E. Trigger sensors 17 and 18 are
preferably located upstream from print heads 50 and 60 by a sufficient distance to
permit deceleration of the print transport from the nominal transport velocity to
the print velocity upon the detection of a lead envelope edge. The trigger sensors
17 and 18 may be located any distance upstream from the minimum deceleration point,
even as far upstream as upstream sensor 15, so long as the motion control profile
determined by controller 14 is adjusted accordingly.
[0055] Controller 14 controls the motors 11, 21, 31, and 41 in accordance with a print motion
control profile in order to achieve the goals of (1) reducing the speed of an envelope
so that the lower velocity print heads 50 and 60 can print an indicia, (2) controlling
the motion of the envelopes so that consecutive envelopes do not interfere with each
other, and (3) allowing the printing duties to be shared between print heads 50 and
60 located at different positions along the transport path. The preferred motion control
profile further allows that multiple envelopes may be handled within the print module
1 at a given time, and not interfere with one another, even when they are at different
velocities, and without creating mismatches between print module 1 and the upstream
and downstream modules 2 and 3.
[0056] Depending on which of the print heads 50 or 60 is in use, different groupings of
transport rollers (10, 20, 30, 40) in print module 1 will be used to perform the print
motion control profile to decelerate envelopes to the print velocity and to return
them to the transport velocity. A preferred embodiment of a print motion control profile
for use with the present system is depicted in FIG. 3, and described further below.
[0057] Because print heads 50 and 60 are located at different locations along the transport
path, the present system enables the speed adjustment motion profile to begin and
end at different locations in the print module 1. Thus, when print head 50 is in use,
transport rollers 10, 20, and 30 will be used to perform the speed adjustment, while
roller 40 will remain at the constant transport velocity.
[0058] When print head 60 is in use, roller 10 operates at constant velocity, as if it were
part of the upstream module 2. Meanwhile, rollers 20, 30, and 40 are grouped together
to perform the motion profile.
[0059] As a further enhancement to the performance of the system, the groupings of the rollers
will only remain in place so long as the rollers are needed as part of the group.
Upstream members of the groups will return immediately to the transport velocity as
soon as an envelope being printed passes from its control. For example, if print head
50 is in use, rollers 10, 20, and 30 will operate in unison as the envelope comes
under the control of the group, However, the envelope may pass out of the control
of roller 10, even while the printing operation, and corresponding transport motion
control, are being carried out. When this happens, roller 10 leaves the uniformly
controlled group and immediate accelerates back to transport velocity. Similarly,
roller 20 would return immediately to the transport velocity when the envelope leaves
its control. In this manner, the upstream rollers are more quickly ready to receive
envelopes from upstream sources, even as print speed adjustments are still underway.
[0060] A preferred method of controlling the velocity adjustment groups is to designate
master and slave roller nips. When print head 50 is in use, roller 30 (and motor 31)
become a master for slave rollers 10 and 20 when an envelope comes under the complete
control of the group. When the envelopes leave rollers 10 and 20, they cease to be
slaved to roller 30 and may be slaved to the roller 70 for upstream module 2. For
this example, roller 40 was never part of the velocity adjustment grouping, and may
be slaved to roller 80 of downstream module 3.
[0061] When print head 60 is in use, the master roller for the velocity adjustment control
group is roller 40. When an envelope enters the control of the control group, rollers
20 and 30 will be slaved to the master 40. In this situation, roller 10 may be continuously
slaved to roller 70 of upstream module 2. As the envelope passes through the control
group, and out of the control of rollers 20 and 30, they are preferably released from
the master 40 and return to the transport velocity. In returning to the transport
velocity, they may in turn be slaved to upstream roller 70.
[0062] Accordingly, controller 14 is programmed to designate the appropriate individually
controllable rollers and motors as masters and slaves based on positions of envelopes
sensed by the sensors. Concurrently, the controller 14 is also providing the appropriate
motion profile for the control group to allow reduced velocity printing.
[0063] Initiation of the slaving of rollers and the print motion adjustment may be triggered
by the controller when an envelope reaches a predetermined displacement downstream
from sensor 15. The predetermined displacement is based on the distance between the
trip photocell 15 and the print head 50, the deceleration rate, the indicia offset,
upstream module velocity, print velocity, and settle time (before printing begins).
For control purposes, the locations of the edges of envelopes may be detected based
on the positioning of photocells at the exact locations. Alternatively, positions
may be calculated by measuring encoder pulses from the servo motors, and adding the
envelopes positional displacement from a known location of a previously tripped upstream
sensor.
[0064] In the preferred embodiment depicted in Fig. 2, the following distances between components
has been found to most effectively handle the expected range of envelope sizes:
A to B, 3.7 inches (9.40 cm);
B to C, 3.9 inches (9.91 cm);
C to D, 3.9 inches (9.91 cm);
D to E, 6.25 inches (15.9 cm); and
E to F, 6.1 inches (15.5 cm).
[0065] Fig. 3 is an exemplary motion profile of master rollers 30 or 40 at locations D and
E, depending on which of the print heads 50 or 60 is in use. Based on the criteria
discussed above, rollers slaved to the master rollers will also perform portions of
motion profile. Notations provide the translation distances of envelopes within the
velocity adjustment control group of rollers for different intervals. The depicted
profile is based on a system that is printing on envelopes 10.375" inches (26.352
cm) in length, that requires a maximum length printed indicia of 5" (12.7 cm). The
nominal transport velocity is 100 ips (254 cm/s), and the print velocity is 80 ips
(203 cm/s). The accelerations for adjusting speeds are 8.0 G's, or 3091 in/s
2 (7851 cm/s
2). For this embodiment, the throughput rate is 22,000 mailpieces per hour. At the
nominal transport speed the period between envelopes is 164 ms.
[0066] The print heads 50 and 60 are preferably located just downstream of nip roller sets
30 and 40. This location allows greater control at the print head location, and also
minimizes the opportunity for errors relating to an envelope tail kick. Tail kick
occurs when the trail edge of an envelope is not adequately constrained and comes
into contact with a print head, thereby causing print head damage and failure.
[0067] At point 201 on the profile, a lead edge of a first envelope reaches the output of
the upstream module 2, at location A. In this exemplary profile, there is no envelope
to be printed in the cycle before the first envelope. After crossing between the gap
between the module transports, at point 202 the lead edge of the first envelope is
at the most upstream roller of the velocity adjustment control group (location B or
C). At point 202 there can be no unilateral change in velocity of the print module
transport by the control group. Sensors 15 and 16 can provide signals to controller
14 to prevent initiation of a change in velocity white an envelope is under the control
of more than one module, or more than one control group.
[0068] At point 203 on the motion profile, the first envelope is under the sole control
of the control group of roller for print module 1, and the control group may slow
down to allow the slower velocity printing. Controller 14 can begin the necessary
deceleration by sensing the lead edge of the first envelope with the trigger sensor
16, 17. Alternatively, the deceleration can begin as a result of upstream sensor 15
detecting the position of the tail end of the first envelope. Preferably, before printing
begins, 10 ms of settle time is allowed (or 80 ips* .010s = 0.8 inches) (203 cm/s*
0.010s = 2.03 cm) after the mail piece reaches the print velocity.
[0069] After point 203, the three nips of the control group of the print module 1 initiate
a predetermined deceleration to reach the desired print velocity, in this case 80
ips (203 cm/s). The control group master roller then operates at 80 ips (203 cm/s)
to transport the envelope a predetermined distance while an indicia is printed on
it. In this exemplary embodiment the print distance is five inches. After the predetermined
print distance has been completed, the envelope is accelerated back to the transport
speed. Slaved control group rollers upstream of the master roller, preferably return
to the transport velocity of 100 ips (254 cm/s) prior to completion of the motion
control profile of Fig. 3, once the envelope has passed out of their control.
[0070] After the motion control profile has been complete, such as at point 205, the lead
edge of the first envelope reaches the first nip downstream of the master nip. At
this point in time, the first envelope is no longer under the exclusive control of
the control group and variations in the print transport speed are not permissible.
[0071] Using the motion profile depicted in Fig. 3, and the control scheme discussed previously,
envelopes can be slowed for lower speed printing, but without having subsequent envelopes
collide. The nominal distance between envelopes for the example described would be
about 6.025 inches (15.303 cm) before entering the print module 1. After performing
the print motion profile, the minimum distance between envelopes is reduced to 4.49
inches (11.40 cm). However, the nominal distance is restored as the subsequent envelope
has the same motion profile performed on it, and the prior envelope travels away at
the nominal travel velocity of 100 ips (254 cm/s). Accordingly, the throughput of
the system remains intact.
[0072] The exemplary motion profile described above complies with requirements necessary
for a successful reduced velocity print operation. As mentioned above, when print
speed adjustment is performed on an envelope, the velocity adjustment control group
of nip in print module 1 must have total control of the envelope. For example, the
envelope cannot reside between nip rollers at location A or F during execution of
the print motion control profile.
[0073] In a further preferred embodiment of the present invention, to ensure accurate printing,
the rate at which the print heads 50 and 60 print the indicia can be electronically
or mechanically geared to the speed of the print transport in the print module 1.
In such case, under circumstances where the print transport is operating outside of
nominal conditions, a correct size and resolution print image can be generated. In
the electronic version of this preferred embodiment, controller 14, print head 50
or 60, and the master roller servomotor 31 or 41 are geared to the same velocity and
timing signals to provide that the transport and printing are always in synchronism.
[0074] Another preferred embodiment of the present invention addresses a problem that occurs
when the print module 1 is forced to deviate from the motion control profile depicted
in Fig. 3. For example, in a conventional inserter system, when an envelope jam occurs
downstream from the postage printing module, upstream and downstream modules typically
come to a halt in accordance with a uniform rapid linear deceleration profile. Unfortunately,
in conventional inserter systems, the postage printing modules have no mechanism for
halting envelopes that are committed within the postage meter. As a result, additional
paper jams and damaged envelopes commonly occur as the postage printing module forces
envelopes against a halted downstream module.
[0075] To address this problem, in the preferred embodiment of the present invention the
print module
1 will also decelerate to a stop upon the occurrence of an exception event. Such exception
events may include detection of jams, detection that mail pieces are out of order,
or detection of equipment malfunctions. If the print head 50 or
60 is geared to the master motor
31 or
41, then an envelope can be stopped anywhere in the print module
1 upon the occurrence of an exception event without damaging the envelopes, and without
compromising the image to be printed on the envelope. After the error condition has
passed, print module
1 can be accelerated back to the velocities in accordance with the motion profile depicted
in Fig. 3.
[0076] A uniform linear deceleration and acceleration during an exception condition is preferred
for the upstream and downstream modules
2 and
3. However, a deceleration and acceleration having that same uniform linear profile
may cause problems in print module
1. For example, if the print transport was about to reach point
203 in the motion profile of Fig. 3 when the exception condition occurred, the control
group of the print transport could decelerate down to zero velocity in a linear fashion
the same as modules
2 and
3. However, after the exception condition has been cleared, the envelope in the print
module
1 will be closer to the downstream module than it would have been if the normal motion
profile had been executed. This is because during the uniform deceleration, the print
module
1 has essentially skipped a portion of the motion profile. During this "skipped" portion,
it was intended that the envelope decelerate to the print velocity. A result of that
deceleration would have been an increase in the gap with a downstream envelope and
a decrease in a gap with an upstream envelope. A uniform shutdown profile for all
modules interferes with this planned variation in gap sizes.
[0077] Accordingly, the present invention maintains the expected displacements between consecutive
documents by controlling the transport of envelopes in print module
1 as a function of the displacement positions of upstream and/or downstream modules
2 and
3. Thus, the variations in velocity that result from the stoppage and starting in an
exception condition should not affect the relative spacing of the envelopes. In the
equations provided below for determining the appropriate displacement relationship,
the velocity variables will be eliminated, and positions of the transports expressed
in terms of variable displacements and known constants.
[0078] To achieve this desired result, the desired displacements of the print module 1,
as they would have resulted from performance of the motion profile under nominal conditions,
must be describable in terms of the position of upstream or downstream modules. Also,
the descriptions must be expressed in terms of the displacement relationships that
would have resulted from the distinct segments in the motion profile.
[0079] For example, for the portion of the motion profile where the print module 1 should
transport the envelope at the transport velocity, there should be a one-to-one correspondence
in the displacements produced by an upstream module 2 and print module 1. Thus, if
an exception condition occurs while an envelope is at a location within the print
module 1 where it would normally be traveling at the transport velocity, then the
deceleration of the print module 1 during an exception condition will mirror that
of the upstream module 2. For this exemplary situation, the equation relating the
displacement position of the print module 1, "P1," to the displacement position of
the upstream module 2, "P
2," will be:
[0080] If the envelope is located at a position where it would normally be subject to deceleration
in preparation for a printing operation, then, during an exception condition, print
module 1 must decelerate more quickly than upstream module 2 in order that the shortening
of the gap between envelopes in those modules be preserved. To derive the appropriate
displacement relationship for this segment of the print module 1 motion, the following
symbols are defined:
v = velocity of the print module 1 transport;
vtransport = the transport velocity for the system, (nominally 100 ips (254 cm/s));
vprint = the print velocity for print module 1 during the printing segment of the motion
profile (nominally 80ips (203 cm/s));
a1 = acceleration that print module 1 would normally undergo in the deceleration segment
of the motion profile (deceleration being a negative value acceleration) (nominally
-1500 in/sec (3810 cm/s));
a2 = acceleration that print module 1 would normally undergo in the acceleration segment
of the motion profile (nominally 1500 in/sec (3810 cm/s));
Pdecel = the displacement that print module 1 normally undergoes during the deceleration
portion of the motion profile (nominally 0.58 inches (1.47 cm)); and
Paccel = the displacement that print module 1 normally undergoes during the acceleration
portion of the motion profile (nominally 0.58 inches (1.47 cm)).
[0081] During normal operation in accordance with the motion profile, the displacement position,
P1, of the print module 1, starting at the beginning of the deceleration segment,
is described according to the equation:
[0082] An expression can also be derived relating the velocity, v, of print modules 1 as
a function of the displacement position, P
2, of upstream module 2, during normal operation of the deceleration portion of the
motion profile:
[0083] Thus, an equation relating P1 and P2, independent of instantaneous velocities, is
derived by substituting the value of "v" derived in equation [3] into equation [2].
Performing this substitution, displacement relationship between print module 1 with
upstream module 2, for the deceleration segment of the motion profile is:
[0084] Using this relationship in equation [4], controller 14 of print module 1 can adjust
the displacement of print module 1 when an envelope is present at a location where
it normally would undergo the deceleration portion of the motion profile.
[0085] The next segment of the motion profile for discussion is the printing portion. During
that segment the envelope is transported at a constant velocity. vprint. Accordingly,
for that segment, the relative displacements that would be seen in upstream module
2 and print module 1 would be described as a fixed ratio. This relationship is described
by the following equation:
[0086] It should be noted that the appropriate displacement relationship may change white
the print module 1 is decelerating to a stop. For example, an envelope that is slightly
upstream of trigger sensor 16 or 17, and traveling at the transport velocity, may
begin to stop in accordance with the displacement relationship described in equation
[1], above. However, during the deceleration, but before stopping, the envelope may
reach the trigger position marked sensor 16 or 17. After the trigger sensor 16 or
17 has been reached controller 14 will switch the displacement relationship to that
described in equation [4] above. Thus, as many different displacement relationships
may be utilized as may be necessitated by the positions reached by the envelope during
the deceleration process. Thus, if the deceleration were protracted to reach a location
where a printing segment was intended, then displacement may be controlled in accordance
equation [5] above. Also, based on the gearing of the print head
50 or
60 with the motor
31 or
41, the print head may begin printing a portion of the image on the envelope before it
stops. When the print module 1 restarts, the geared print head will also resume printing
at the appropriate geared speed.
[0087] A final segment of the motion profile is the acceleration of the envelope from the
print velocity, back to the transport velocity. The displacement mapping relationship
for this segment can be derived in the same way as for equation [4] above. A difference
in the result being that this acceleration segment is causing an envelope in the print
module
1 to increase its distance from a subsequent envelope in upstream module
2. Accordingly, the displacement relationship when an envelope is at the acceleration
motion profile segment during a stopping or restarting condition is as follows:
[0088] Displacement information for respective print, upstream, and downstream modules
1, 2, and
3 may typically be monitored via encoders in motors
11, 21, 31, and
41. The encoders register the mechanical movement of the module transports and report
the displacements to controller
14 for appropriate use by controller
14 to maintain correct displacement mapping between the modules.
[0089] The preferred embodiment depicted in Fig. 2, depicts an exemplary serial arrangement
of two print heads, whereby one may be taken out of service while the other undergoes
a maintenance cycle, An alternative embodiment could utilize a parallel arrangement.
Under this parallel arrangement, a flipper gate would be activated when the active
print head is taken out of service. The flipper gate would redirect envelopes to a
second parallel transport where the back-up print head prints indicia on envelopes.
An exemplary parallel path system that would be suitable for use in this manner is
depicted in co-pending European Patent Publication number
1391849, published February 25, 2004 and entitled PARALLEL PROCESSING HIGH SPEED PRINTING SYSTEM FOR AN INSERTING SYSTEM.
[0090] In this application, a preferred embodiment of the system has been described in which
documents being processed are envelopes. It should be understood that the present
invention may be applicable for any kind of document on which printing is desired.
Also a package or a parcel to which a printed image is applied as part of a processing
system should also be considered to fall within the scope of the term "document" as
used in this application.
[0091] The preferred embodiment was also described herein as including two print heads.
It will be understood by one of ordinary skill in the art that the invention may utilize
more than two print heads, and that nothing in this description is intended to limit
the invention from using more than two.
[0092] Although the invention has been described with respect to a preferred embodiment
thereof, it will be understood by those skilled in the art that the foregoing and
various other changes, omissions and deviations in the form and detail thereof may
be made without departing from the scope of this invention.
1. A printing apparatus (1, 2, 3) for use in a high velocity document processing system,
the printing apparatus comprising:
a transport path for conveying a series of documents;
an upstream print head (50) contiguous with the transport path to print on documents
transported thereon;
a downstream print head (60), downstream of the upstream print head (50), and contiguous
with the transport path to print on documents transported thereon; and
a controller (14) for controlling a first one of the upstream or downstream print
heads (50, 60) to print on transported documents, the controller operable for further
switching to a second of the upstream or downstream print heads (50, 60) when the
first one is out of service;
the transport path further comprises an upstream transport (70) for conveying documents
at a transport velocity, a downstream transport (80) for conveying documents at the
transport velocity, a print transport (10,20,30,40) located between the upstream transport
(70) and the downstream transport (80), the print transport (10,20,30,40) arranged
to be driven independently of the upstream transport (70) and the downstream transport
(80) and comprising a plurality of individually controllable rollers (10,20,30,40);
the controller (14) for further controlling a roller group of less than all of the
plurality of individually controllable rollers (10,20,30,40) according to a predetermined
motion profile, whereby under nominal conditions the roller group decelerates the
print transport to a nominal print velocity prior to a printing operation in a first
segment, maintains the nominal print velocity during the printing operation in a second
segment, and accelerates the print transport back to the transport velocity after
completion of the printing operation in a third segment; and
the controller arranged to control the roller group to comprise of an upstream portion
(10,20,30) of the plurality of individually controllable rollers if the upstream print
head (50) is in use, and to comprise a downstream portion (20,30,40) of the plurality
of individually controllable rollers if the downstream print head (60) is in use.
2. The printing apparatus of claim 1 wherein the documents are mail pieces and further
comprising a postage meter coupled to the print heads (50,60), whereby postal indicia
are printable on the mail pieces.
3. The printing apparatus of claim 1 or 2 wherein the print heads (50,60) are ink jet
print heads.
4. The printing apparatus of any of claims 1-3 wherein the controller (14) is arranged
periodically to take the print heads (50,60) that is in use out of service to perform
maintenance operations.
5. The printing apparatus of any of claims 1-3 wherein the controller (14) is arranged
to switch from using the first print head (50) to the second print head (60) when
a failure is detected in the first print head.
6. The printing apparatus of claim 1 wherein one or more of the individually controlled
rollers that are not part of the roller group when a given print head is in use are
operated at the transport velocity.
7. The printing apparatus of claim 1 wherein the controller (14) is operable to decelerate
the roller group (10,20,30,40) controlled thereby to a stop upon the occurrence of
a stoppage condition in the document processing system, the deceleration being controllable
by the controller (14) in accordance with a predetermined algorithm to maintain a
relative displacement of the roller group with respect to upstream or downstream transports
to maintain the relative displacements that would have occurred under the predetermined
motion profile under nominal conditions, the predetermined algorithm determining the
displacement of the roller group as a function of displacement of upstream or downstream
transports.
8. The printing apparatus in accordance with claim 7 wherein the controller (14) is further
operable to control the roller group to accelerate from a stop back to nominal condition
upon the occurrence of a restart after the stoppage condition, the acceleration being
controllable by the controller (14) in accordance with the predetermined algorithm
to maintain the relative displacement of the roller group with respect to upstream
or downstream transports to maintain the relative displacements that would have occurred
under the predetermined motion profile under nominal conditions, the predetermined
algorithm determining the displacement of the roller group as a function of displacement
of upstream or downstream transports.
9. The printing apparatus any of claims 1-8 wherein the print heads (50,60) are electronically
or mechanically geared to the corresponding roller group so that variations in print
transport velocity during a printing operation will not affect an image being printed.
10. The printing apparatus of any of claims 8 or 9 wherein the predetermined algorithm
for determining relative displacements includes a first function for accounting for
changes in relative displacements that would have occurred during deceleration of
the roller group in the first segment of the motion profile, a second function for
accounting for changes in relative displacements that would have occurred during the
reduced nominal print velocity of the second segment of the motion profile, and a
third function for accounting for changes in relative displacements that would have
occurred during acceleration of the print transport in the third segment of the motion
profile, the appropriate of the first, second, and third functions being invokable
by the controller (14) based on the position of a document in the roller group during
the occurrence of the stoppage condition.
11. The printing apparatus of any of claims 1-10 wherein the upstream portion and the
downstream portion of the plurality of individually controllable rollers (10,20,30,40)
include at least one same roller (20,30) and at least one different roller (10,40).
12. The printing apparatus of claim 1 wherein the controller (14) is further operable
to control an arrangement of the roller group whereby a member of the roller group
leaves the roller group after an envelope passes downstream from the members control.
13. The printing apparatus of claim 12 wherein the controller (14) is operable to control
a velocity of the member that leaves the roller group after the envelope passes downstream
from the members control to be the transport velocity.
14. A printing method for high velocity document processing, the printing method comprising:
transporting a series of documents on a transport path;
positioning an upstream print head (50) contiguous with the transport path to print
on documents transported thereon;
positioning a downstream print head (60), downstream of the upstream print head (50),
and contiguous with the transport path to print on documents transported thereon;
controlling a first one of the upstream or downstream print heads (50, 60) to print
on transported documents; and
switching to a second of the upstream or downstream print heads (50, 60) for printing
when the first one is out of service,
the step of transporting further comprising:
transporting a document at a transport velocity in an upstream transport (70) to a
print transport (1);
transporting the document on the print transport (1); and
transporting the document at the transport velocity in a downstream transport (80)
from the print transport (1);
and including a further step, while the document is within the print transport (1)
during nominal system conditions, of controlling the velocity of the print transport
(1) in accordance with a motion profile, whereby the motion profile includes the steps
of decelerating the document to a print velocity, maintaining the print velocity during
the step of printing, and accelerating the document to the transport velocity after
the step of printing is complete, the motion profile resulting in a relative displacement
of the document with respect to upstream and downstream documents to vary during the
motion profile; and
performing the print transport motion profile with an upstream portion (10,20,30)
of the print transport when the upstream print head (50) is in use, and with a downstream
portion (20,30,40) of the print transport when the downstream print head (60) is in
use, the upstream and downstream portions each comprising at least one transport mechanism
(10,40) different from the other.
15. The printing method of claim 14 further comprising printing postal indicia on mail
pieces by coupling a postage meter to the print heads (50,60).
16. The printing method of any of claims 14 or 15 wherein the step of printing comprises
ink jet printing.
17. The printing method of any of claims 14-16 further comprising periodically removing
the print heads (50,60) that is in use out of service and performing maintenance operations
on the print head.
18. The printing method of claim 15 wherein further including switching from using the
first print head (50) to the second print head (60) when a failure is detected in
the first print head (50).
19. The printing method of any of claims 14-18 further comprising detecting a document
approaching the upstream or downstream print head (50,60), triggering the upstream
or downstream print heads (50,60) based on a predetermined interval subsequent to
detecting the document, and adjusting the predetermined interval depending on which
of the upstream or downstream print heads (50,60) is in use to account for the different
locations of the upstream and downstream print heads (50,60).
20. The method of claim 14, wherein upon the occurrence of a stoppage condition while
the document is within the print transport (1), further including the steps of:
modifying the motion profile by stopping the document within the print transport (1)
during a stoppage condition,
decelerating the document to a stop, the step of decelerating to the stop including
the step of maintaining the relative displacement of the document on the print transport
(1) with respect to upstream and downstream documents, the step of maintaining the
relative displacement including controlling the deceleration according to a predetermined
algorithm describing relative displacement between documents as such displacement
would have occurred under the motion profile under nominal conditions, the predetermined
algorithm determining the displacement of the print transport (1) as a function of
displacement of upstream or downstream transports (70,80).
21. The printing method in accordance with claim 20 further comprising the steps of:
restarting the print transport (1) while the document is within the print transport
(1) during the stoppage condition, the step of restarting including the step of accelerating
the document from the stop to a velocity of the motion profile, the step of accelerating
including the step of maintaining the relative displacement of the document on the
print transport (1) with respect to upstream and downstream documents, the step of
maintaining the relative displacement including controlling the acceleration according
to the predetermined algorithm.
22. The printing method of any of claims 14-21 including the step of electronically or
mechanically gearing the printing step to the print transport motion so that variations
in print transport velocity during the printing step will not affect the image being
printed.
23. The printing method claim 21 wherein the predetermined algorithm for determining relative
displacements including a first function accounting for changes in relative displacements
that would have occurred during deceleration of the print transport in the first segment
of the motion profile. a second function accounting for changes in relative displacements
that would have occurred during the reduced nominal print velocity of the second segment
of the motion profile, and a third function accounting for changes in relative displacements
that would have occurred during acceleration of the print transport in the third segment
of the motion profile, and
the method further including the step of invoking the appropriate of the first, second,
and third functions based on the position of the document in the print transport (1)
during the occurrence of the stoppage condition.
24. The printing method of claim 14 wherein upstream (10,20,30) and downstream (20,30,40)
portions of the print transport (1) are comprised of a grouping of individually controllable
rollers, the method further comprising:
controlling the grouping of rollers whereby a member of the grouping leaves the grouping
after an envelope passes downstream from the member's control, regardless of the motion
profile.
25. The printing method of claim 24 further comprising controlling a velocity of the member
that leaves the grouping to be the transport velocity.
1. Druckvorrichtung (1, 2, 3) zur Verwendung in einem Hochgeschwindigkeits-Dokumentenbearbeitungssystem,
wobei die Druckvorrichtung umfasst:
einen Transportweg zum Befördern einer Reihe von Dokumenten;
einen vorgelagerten Druckkopf (50) benachbart zum Transportweg, um auf darauf transportierte
Dokumente zu drucken;
einen nachgelagerten Druckkopf (60) stromabwärts des vorgelagerten Druckkopfs (50)
und benachbart zum Transportweg, um auf darauf transportierte Dokumente zu drucken;
und
eine Steuerung (14) zum Steuern eines ersten der vor- oder nachgelagerten Druckköpfe
(50, 60), um auf transportierte Dokumente zu drucken, wobei die Steuerung ferner zum
Umschalten auf einen zweiten der vor- oder nachgelagerten Druckköpfe (50, 60) betrieben
werden kann, wenn der erste außer Betrieb ist;
wobei der Transportweg ferner einen vorgelagerten Transport (70) zum Befördern von
Dokumenten mit einer Transportgeschwindigkeit, einen nachgelagerten Transport (80)
zum Befördern von Dokumenten mit der Transportgeschwindigkeit, und einen Drucktransport
(10, 20, 30, 40) umfasst, der sich zwischen dem vorgelagerten Transport (70) und dem
nachgelagerten Transport (80) befindet, wobei der Drucktransport (10, 20, 30, 40)
so ausgelegt ist, dass er unabhängig vom vorgelagerten Transport (70) und dem nachgelagerten
Transport (80) angetrieben wird, und eine Mehrzahl von individuell steuerbaren Walzen
(10, 20, 30, 40) umfasst;
die Steuerung (14) ferner zum Steuern einer Walzengruppe von weniger als allen der
Mehrzahl von individuell steuerbaren Walzen (10, 20, 30, 40) gemäß einem vorbestimmten
Bewegungsprofil, wobei unter Nominalbedingungen die Walzengruppe den Drucktransport
vor einem Druckvorgang in einem ersten Segment auf eine nominalen Druckgeschwindigkeit
verlangsamt, die nominale Druckgeschwindigkeit während des Druckvorgangs in einem
zweiten Segment aufrechterhält, und den Drucktransport nach Abschluss des Druckvorgangs
in einem dritten Segment wieder zurück auf die Transportgeschwindigkeit beschleunigt;
und
die Steuerung so ausgelegt ist, dass sie die Walzengruppe so steuert, dass sie einen
vorgelagerten Teil (10, 20, 30) der Mehrzahl von individuell steuerbaren Walzen umfasst,
wenn der vorgelagerte Druckkopf (50) in Verwendung ist, und einen nachgelagerten Teil
(20, 30, 40) der Mehrzahl von individuell steuerbaren Walzen umfasst, wenn der nachgelagerte
Druckkopf (60) in Verwendung ist.
2. Druckvorrichtung nach Anspruch 1, wobei die Dokumente Postsendungen sind, und ferner
umfassend eine Frankiermaschine, die mit den Druckköpfen (50, 60) gekoppelt ist und
wodurch postamtliche Freimachungsvermerke auf die Postensendungen gedruckt werden
können.
3. Druckvorrichtung nach Anspruch 1 oder 2, wobei die Druckköpfe (50, 60) Tintenstrahldruckköpfe
sind.
4. Druckvorrichtung nach einem der Ansprüche 1 bis 3, wobei die Steuerung (14) so ausgelegt
ist, dass sie die Druckköpfe (50, 60), der in Verwendung ist, periodisch außer Betrieb
setzt, um Wartungsvorgänge durchzuführen.
5. Druckvorrichtung nach einem der Ansprüche 1 bis 3, wobei die Steuerung (14) so ausgelegt
ist, dass sie vom Verwenden des ersten Druckkopfs (50) auf den zweiten Druckkopf (60)
umschaltet, wenn ein Fehler im ersten Druckkopf erkannt wird.
6. Druckvorrichtung nach Anspruch 1, wobei eine oder mehr der individuell gesteuerten
Walzen, die nicht zur Walzengruppe gehören, wenn ein bestimmter Druckkopf in Verwendung
ist, mit der Transportgeschwindigkeit betrieben werden.
7. Druckvorrichtung nach Anspruch 1, wobei die Steuerung (14) so betrieben werden kann,
dass sie die Walzengruppe (10, 20, 30, 40), die dadurch gesteuert wird, bei Eintritt
eines Unterbrechungszustands im Dokumentenbearbeitungssystem zum Stillstand verlangsamt,
wobei die Verlangsamung durch die Steuerung (14) gemäß einem vorbestimmten Algorithmus
gesteuert werden kann, um eine relative Verschiebung der Walzengruppe in Bezug auf
vor- oder nachgelagerte Transporte aufrechtzuerhalten, um die relativen Verschiebungen,
die gemäß dem vorbestimmten Bewegungsprofil unter Nominalbedingungen stattgefunden
hätten, aufrechtzuerhalten, wobei der vorbestimmte Algorithmus die Verschiebung der
Walzengruppe in Abhängigkeit von einer Verschiebung von vor- oder nachgelagerten Transporten
bestimmt.
8. Druckvorrichtung nach Anspruch 7, wobei die Steuerung (14) ferner so betrieben werden
kann, dass sie die Walzengruppe (10, 20, 30, 40) so steuert, dass sie bei Stattfinden
eines Neustarts nach dem Unterbrechungszustand aus einem Stillstand zurück in den
Nominalzustand beschleunigt, wobei die Beschleunigung durch die Steuerung (14) gemäß
dem vorbestimmten Algorithmus gesteuert werden kann, um die relative Verschiebung
der Walzengruppe in Bezug auf vor- oder nachgelagerte Transporte aufrechtzuerhalten,
um die relativen Verschiebungen, die gemäß dem vorbestimmten Bewegungsprofil unter
Nominalbedingungen stattgefunden hätten, aufrechtzuerhalten, wobei der vorbestimmte
Algorithmus die Verschiebung der Walzengruppe in Abhängigkeit von einer Verschiebung
von vor- oder nachgelagerten Transporten bestimmt.
9. Druckvorrichtung nach einem der Ansprüche 1 bis 8, wobei die Druckköpfe (50, 60) elektronisch
oder mechanisch auf die entsprechende Walzengruppe abgestimmt sind, so dass Änderungen
der Drucktransportgeschwindigkeit während eines Druckvorgangs ein Bild, das gedruckt
wird, nicht beeinflussen.
10. Druckvorrichtung nach einem der Ansprüche 8 oder 9, wobei der vorbestimmte Algorithmus
zum Bestimmen von relativen Verschiebungen eine erste Funktion zum Berücksichtigen
von Änderungen von relativen Verschiebungen, die während einer Verlangsamung der Walzengruppe
im ersten Segment des Bewegungsprofils stattgefunden hätten, eine zweite Funktion
zum Berücksichtigen von Änderungen von relativen Verschiebungen, die während einer
reduzierten nominalen Druckgeschwindigkeit des zweiten Segments des Bewegungsprofils
stattgefunden hätten, und eine dritte Funktion zum Berücksichtigen von Änderungen
von relativen Verschiebungen umfasst, die während einer Beschleunigung des Drucktransports
im dritten Segment des Bewegungsprofils stattgefunden hätten, wobei die entsprechende
der ersten, zweiten und dritten Funktionen durch die Steuerung (14) basierend auf
der Position eines Dokuments in der Walzengruppe während des Eintritts des Unterbrechungszustands
aktiviert werden kann.
11. Druckvorrichtung nach einem der Ansprüche 1 bis 10, wobei der vorgelagerte Teil und
der nachgelagerte Teil der Mehrzahl von steuerbaren Walzen (10, 20, 30, 40) mindestens
eine gleiche Walze (20, 30) und mindestens eine verschiedene Walze (10, 40) umfassen.
12. Druckvorrichtung nach Anspruch 1, wobei die Steuerung (14) ferner so betrieben werden
kann, dass sie eine Anordnung der Walzengruppe steuert, wobei ein Mitglied der Walzengruppe
die Walzengruppe nach dem Durchlauf eines Umschlags stromabwärts von der Steuerung
des Mitglieds verlässt.
13. Druckvorrichtung nach Anspruch 12, wobei die Steuerung (14) so betrieben werden kann,
dass sie eine Geschwindigkeit des Mitglieds, das die Walzengruppe nach dem Durchlauf
des Umschlags stromabwärts von der Steuerung des Mitglieds verlässt, so steuert, dass
sie die Transportgeschwindigkeit ist.
14. Druckverfahren für Hochgeschwindigkeits-Dokumentenbearbeitung, wobei das Druckverfahren
umfasst:
Transportieren einer Reihe von Dokumenten auf einem Transportweg;
Positionieren eines vorgelagerten Druckkopfs (50) benachbart zum Transportweg, um
auf darauf transportierte Dokumente zu drucken;
Positionieren eines nachgelagerten Druckkopfs (60) stromabwärts des vorgelagerten
Druckkopfs (50) und benachbart zum Transportweg, um auf darauf transportierte Dokumente
zu drucken; und
Steuern eines ersten der vor- oder nachgelagerten Druckköpfe (50, 60), um auf transportierte
Dokumente zu drucken;
Umschalten auf einen zweiten der vor- oder nachgelagerten Druckköpfe (50, 60) zum
Drucken, wenn der erste außer Betrieb ist;
wobei der Schritt des Transportierens ferner umfasst:
Transportieren eines Dokuments mit einer Transportgeschwindigkeit in einem vorgelagerten
Transport (70) zu einem Drucktransport (1);
Transportieren des Dokuments auf dem Drucktransport (1); und
Transportieren eines Dokuments mit der Transportgeschwindigkeit in einem nachgelagerten
Transport (80) aus dem Drucktransport (1);
und umfassend einen weiteren Schritt, während das Dokument bei nominalen Systembedingungen
innerhalb des Drucktransports (1) ist, des Steuerns der Geschwindigkeit des Drucktransports
(1) gemäß einem Bewegungsprofil, wobei das Bewegungsprofil die Schritte des Verlangsamens
des Dokuments auf eine Druckgeschwindigkeit, Aufrechterhaltens der Druckgeschwindigkeit
während des Druckschritts und Beschleunigens des Dokuments auf die Transportgeschwindigkeit
nach Abschluss des Druckschritts, wobei das Bewegungsprofil zu einer relativen Verschiebung
des Dokuments in Bezug auf vor- und nachgelagerte Dokumente führt, um während des
Bewegungsprofils zu variieren; und
Durchführen des Drucktransportbewegungsprofils mit einem vorgelagerten Teil (10, 20,
30) des Drucktransports, wenn der vorgelagerte Druckkopf (50) in Verwendung ist, und
mit einem nachgelagerten Teil (20, 30, 40) des Drucktransports, wenn der nachgelagerte
Druckkopf (60) in Verwendung ist, wobei die vor- und nachgelagerten Teile jeweils
mindestens einen voneinander verschiedenen Transportmechanismus (10, 40) umfassen.
15. Druckverfahren nach Anspruch 14, ferner umfassend ein Drucken von postamtlichen Freimachungsvermerken
auf Postensendungen durch Koppeln einer Frankiermaschinen mit den Druckköpfen (50,
60).
16. Druckverfahren nach einem der Ansprüche 14 oder 15, wobei der Schritt des Druckens
ein Tintenstrahldrucken umfasst.
17. Druckverfahren nach einem der Ansprüche 14 bis 16, ferner umfassend ein periodisches
Außerbetriebsetzen der Druckköpfe (50, 60), der in Verwendung ist, und Durchführen
von Wartungsvorgängen am Druckkopf.
18. Druckverfahren nach Anspruch 15, wobei ferner umfassend ein Umschalten vom Verwenden
des ersten Druckkopfs (50) auf den zweiten Druckkopf (60), wenn ein Fehler im ersten
Druckkopf (50) erkannt wird.
19. Druckverfahren nach einem der Ansprüche 14 bis 18, ferner umfassend ein Erkennen,
dass sich ein Dokument dem vor- oder nachgelagerten Druckkopf (50, 60) nähert, Auslösen
der vor- oder nachgelagerten Druckköpfe (50, 60) basierend auf einem vorbestimmten
Intervall nach dem Erkennen des Dokuments und Anpassen des vorbestimmten Intervalls
in Abhängigkeit davon, welcher der vor- oder nachgelagerten Druckköpfe (50, 60) in
Verwendung ist, um verschiedene Positionen der vor- und nachgelagerten Druckköpfe
(50,60) zu berücksichtigen.
20. Druckverfahren nach Anspruch 14, wobei ferner umfassend bei Eintreten eines Unterbrechungszustands,
während das Dokument innerhalb des Drucktransports (1) ist, die folgenden Schritte:
Modifizieren des Bewegungsprofils durch Stoppen des Dokuments innerhalb des Drucktransports
(1) während eines Unterbrechungszustands,
Verlangsamen des Dokuments zu einem Stillstand, wobei der Schritt des Verlangsamens
zum Stillstand den Schritt des Aufrechterhaltens der relativen Verschiebung des Dokuments
auf dem Drucktransport (1) in Bezug auf vor- und nachgelagerte Dokumente umfasst,
der Schritt des Aufrechterhaltens der relativen Verschiebung ein Steuern der Verlangsamung
gemäß einem vorbestimmten Algorithmus umfasst, der relative Verschiebung zwischen
Dokumenten so beschreibt, als hätte solch eine Verschiebung gemäß dem Bewegungsprofil
unter Nominalbedingungen stattgefunden, wobei der vorbestimmte Algorithmus die Verschiebung
des Drucktransports (1) in Abhängigkeit von Verschiebung von vor- und nachgelagerten
Transporten (70, 80) bestimmt.
21. Druckverfahren nach Anspruch 20, ferner umfassend die folgenden Schritte:
Neustarten des Drucktransports (1), während das Dokument während des Unterbrechungszustands
innerhalb des Drucktransports (1) ist, wobei der Schritt des Neustartens den Schritt
des Beschleunigens des Dokuments aus dem Stillstand auf eine Geschwindigkeit des Bewegungsprofils
umfasst, der Schritt des Beschleunigens den Schritt des Aufrechterhaltens der relativen
Verschiebung des Dokuments auf dem Drucktransport (1) in Bezug auf vor- und nachgelagerte
Dokumente umfasst, der Schritt des Aufrechterhaltens der relativen Verschiebung ein
Steuern der Beschleunigung gemäß dem vorbestimmten Algorithmus umfasst.
22. Druckverfahren nach einem der Ansprüche 14 bis 21, umfassend den Schritt des elektronischen
oder mechanischen Abstimmens des Druckschritts auf die Drucktransportbewegung, so
dass Änderungen der Drucktransportgeschwindigkeit während des Druckschritts das Bild,
das gedruckt wird, nicht beeinflussen.
23. Druckverfahren nach Anspruch 21, wobei der vorbestimmte Algorithmus zum Bestimmen
von relativen Verschiebungen eine erste Funktion zum Berücksichtigen von Änderungen
von relativen Verschiebungen, die während einer Verlangsamung Drucktransports im ersten
Segment des Bewegungsprofils stattgefunden hätten, eine zweite Funktion zum Berücksichtigen
von Änderungen von relativen Verschiebungen, die während der reduzierten nominalen
Druckgeschwindigkeit des zweiten Segments des Bewegungsprofils stattgefunden hätten,
und eine dritte Funktion zum Berücksichtigen von Änderungen von relativen Verschiebungen
umfasst, die während einer Beschleunigung des Drucktransports im dritten Segment des
Bewegungsprofils stattgefunden hätten, und
wobei das Verfahren ferner den Schritt des Aktivierens der entsprechenden der ersten,
zweiten und dritten Funktionen basierend auf der Position des Dokuments im Drucktransport
(1) während des Eintritts des Unterbrechungszustands umfasst.
24. Druckverfahren nach Anspruch 14, wobei vorgelagerte (10, 20, 30) und nachgelagerte
(20, 30, 40) Teile des Drucktransports (1) aus einer Gruppierung von individuell steuerbaren
Walzen bestehen, wobei das Verfahren ferner umfasst:
Steuern der Gruppierung von Walzen, wobei ein Mitglied der Gruppierung die Gruppierung
nach dem Durchlauf eines Umschlags stromabwärts von der Steuerung des Mitglieds ungeachtet
des Bewegungsprofils verlässt.
25. Druckverfahren nach Anspruch 24, ferner umfassend ein derartiges Steuern einer Geschwindigkeit
des Mitglieds, das die Gruppierung verlässt, dass sie die Transportgeschwindigkeit
ist.
1. Appareil d'impression (1, 2, 3) destiné à être utilisé dans un système de traitement
de documents à grande vitesse, l'appareil d'impression comprenant :
un passage de transport pour acheminer une série de documents ;
une tête d'impression d'amont (50) contigüe au passage de transport pour impression
sur des documents transportés sur le passage ; et
une tête d'impression d'aval (60), en aval de la tête d'impression d'amont (50), et
contiguë au passage de transport pour impression sur des documents transportés sur
le passage ; et
un dispositif de commande (14) pour commander une première des têtes d'impression
d'amont ou d'aval (50, 60) pour impression sur des documents transportés, le dispositif
de commande permettant, en outre, de passer à une seconde tête des têtes d'impression
d'amont ou d'aval (50, 60) lorsque la première tête n'est pas en service ;
le passage de transport comprend, en outre, un transport d'amont (70) pour acheminer
des documents à une vitesse de transport, un transport d'aval (80) pour acheminer
les documents à la vitesse de transport, un transport d'impression (10, 20, 30, 40)
situé entre le transport d'amont (70) et le transport d'aval (80), le transport d'impression
(10, 20, 30, 40) étant agencé pour être entraîné indépendamment du transport d'amont
(70) et du transport d'aval (80) et comprenant une pluralité de rouleaux (10, 20,
30, 40) pouvant être commandés individuellement ;
le dispositif de commande (14) pour commander, en outre, un groupe de rouleaux inférieur
à la totalité de la pluralité de rouleaux (10, 20, 30, 40) pouvant être commandés
individuellement en fonction d'un profil de déplacement prédéterminé, grâce à quoi
dans des conditions nominales le groupe de rouleaux décélère le transport d'impression
jusqu'à une vitesse d'impression nominale avant une opération d'impression dans un
premier segment, maintient la vitesse d'impression nominale au cours de l'opération
d'impression dans un deuxième segment, et accélère le transport d'impression de nouveau
jusqu'à la vitesse de transport une fois terminée l'opération d'impression dans un
troisième segment ; et
le dispositif de commande conçu pour commander le groupe de rouleaux pour qu'il comprenne
une partie d'amont (10, 20, 30) de la pluralité de rouleaux pouvant être commandés
individuellement si la tête d'impression d'amont (50) est utilisée, et qu'il comprenne
une partie d'aval (20, 30, 40) de la pluralité de rouleaux pouvant être commandés
individuellement si la tête d'impression d'aval (60) est utilisée.
2. Appareil d'impression selon la revendication 1, dans lequel les documents sont des
articles de courrier et comprenant, en outre, une machine à affranchir couplée aux
têtes d'impression (50, 60), grâce à quoi des marques postales peuvent être imprimées
sur les articles de courrier.
3. Appareil d'impression selon la revendication 1 ou 2, dans lequel les têtes d'impression
(50, 60) sont des têtes d'impression par jet d'encre.
4. Appareil d'impression selon l'une quelconque des revendications 1 à 3, dans lequel
le dispositif de commande (14) est agencé périodiquement pour ne plus mettre en service
les têtes d'impression (50, 60) utilisées, afin d'effectuer des opérations de maintenance.
5. Appareil d'impression selon l'une quelconque des revendications 1 à 3, dans lequel
le dispositif de commande (14) est agencé pour passer d'une utilisation de la première
tête d'impression (50) à la seconde tête d'impression (60) lorsqu'une défaillance
est détectée dans la première tête d'impression.
6. Appareil d'impression selon la revendication 1, dans lequel un ou plusieurs des rouleaux
pouvant être commandés individuellement qui ne font pas partie du groupe de rouleaux
lorsqu'une tête d'impression donnée est utilisée sont actionnés à la vitesse de transport.
7. Appareil d'impression selon la revendication 1, dans lequel le dispositif de commande
(14) est apte à décélérer le groupe de rouleaux (10, 20, 30, 40) qu'il commande jusqu'à
un arrêt lors de la survenue d'une mise à l'arrêt dans le système de traitement de
documents, la décélération pouvant être commandée par le dispositif de commande (14)
en fonction d'un algorithme prédéterminé pour maintenir un déplacement relatif du
groupe de rouleaux par rapport aux transports d'amont ou d'aval afin de maintenir
les déplacements relatifs qui auraient eu lieu sous le profil de déplacement prédéterminé
dans les conditions nominales, l'algorithme prédéterminé déterminant le déplacement
du groupe de rouleaux en fonction du déplacement des transports d'amont ou d'aval.
8. Appareil d'impression selon la revendication 7, dans lequel le dispositif de commande
(14) est, en outre, apte à commander le groupe de rouleaux pour l'accélérer depuis
un arrêt de nouveau jusqu'à une condition nominale lors de la survenue d'un redémarrage
après la mise à l'arrêt, l'accélération pouvant être commandée par le dispositif de
commande (14) en fonction de l'algorithme prédéterminé pour maintenir le déplacement
relatif du groupe de rouleaux par rapport aux transports d'amont ou d'aval afin de
maintenir les déplacements relatifs qui auraient eu lieu sous le profil de déplacement
prédéterminé dans les conditions nominales, l'algorithme prédéterminé déterminant
le déplacement de l'autre groupe de rouleaux en fonction du déplacement des transports
d'amont ou d'aval.
9. Appareil d'impression selon l'une quelconque des revendications 1 à 8, dans lequel
les têtes d'impression (50, 60) sont asservies mécaniquement ou électroniquement au
groupe de rouleaux correspondant de manière que des variations de vitesse du transport
d'impression au cours d'une opération d'impression n'aient pas d'effet sur une image
étant imprimée.
10. Appareil d'impression selon l'une quelconque des revendications 8 ou 9, dans lequel
l'algorithme prédéterminé pour déterminer les déplacements relatifs comprend une première
fonction pour tenir compte des changements de déplacements relatifs qui auraient eu
lieu au cours de la décélération du groupe de rouleaux dans le premier segment du
profil de déplacement, une deuxième fonction pour tenir compte des changements de
déplacements relatifs qui auraient eu lieu au cours de la vitesse d'impression nominale
réduite du deuxième segment du profil de déplacement, et une troisième fonction pour
tenir compte des changements de déplacements relatifs qui auraient eu lieu au cours
de l'accélération du transport d'impression dans le troisième segment du profil de
déplacement, la fonction appropriée parmi les première, deuxième et troisième fonctions
pouvant être mise en oeuvre par le dispositif de commande (14) sur la base de la position
d'un document dans le groupe de rouleaux lors de la survenue de la mise à l'arrêt.
11. Appareil d'impression selon l'une quelconque des revendications 1 à 10, dans lequel
la partie d'amont et la partie d'aval de la pluralité de rouleaux (10, 20, 30, 40)
pouvant être commandés individuellement comprennent au moins un rouleau (20, 30) identique
et au moins un rouleau (10, 40) différent.
12. Appareil d'impression selon la revendication 1, dans lequel le dispositif de commande
(14) est, en outre, apte à commander un agencement du groupe de rouleaux, grâce à
quoi un élément du groupe de rouleaux quitte le groupe de rouleaux une fois qu'une
enveloppe est passée en aval de la commande de l'élément.
13. Appareil d'impression selon la revendication 12, dans lequel le dispositif de commande
(14) est apte à commander une vitesse de l'élément qui quitte le groupe de rouleaux
une fois que l'enveloppe est passée en aval de la commande de l'élément pour qu'elle
soit la vitesse de transport.
14. Procédé d'impression pour traitement de documents à grande vitesse, le procédé d'impression
comprenant les étapes consistant à :
transporter une série de documents sur un passage de transport ;
positionner une tête d'impression d'amont (50) contiguë au passage de transport pour
impression sur des documents transportés sur le passage ;
positionner une tête d'impression d'aval (60), en aval de la tête d'impression d'amont
(50), et contiguë au passage de transport pour impression sur des documents transportés
sur le passage ;
commander une première des têtes d'impression d'amont ou d'aval (50, 60) pour impression
sur des documents transportés ; et
passer à une seconde tête des têtes d'impression d'amont ou d'aval (50, 60) pour impression
lorsque la première tête n'est pas en service,
l'étape de transport comprenant, en outre les étapes consistant à :
transporter un document à une vitesse de transport dans un transport d'amont (70)
jusqu'à un transport d'impression (1) ;
transporter le document sur le transport d'impression (1) ; et
transporter le document à la vitesse de transport dans un transport d'aval (80) depuis
le transport d'impression (1) ;
et comprenant une étape supplémentaire, tandis que le document se trouve dans le transport
d'impression (1) au cours de conditions nominales du système, de commande de la vitesse
du transport d'impression (1) en fonction d'un profil de déplacement, grâce à quoi
le profil de déplacement comprend les étapes de décélération du document jusqu'à une
vitesse d'impression, de maintien de la vitesse d'impression au cours de l'étape d'impression,
et d'accélération du document jusqu'à la vitesse de transport une fois terminée l'étape
d'impression, le profil de déplacement se traduisant par une variation du déplacement
relatif du document par rapport aux documents d'amont et d'aval au cours du profil
de déplacement ; et
mettre en oeuvre le profil de déplacement du transport d'impression avec une partie
d'amont (10, 20, 30) du transport d'impression lorsque la tête d'impression d'amont
(50) est utilisée, et avec une partie d'aval (20, 30, 40) du transport d'impression
lorsque la tête d'impression d'aval (50) est utilisée, les partie d'amont et d'aval
comprenant, chacune, au moins un mécanisme de transport (10, 40) différent de celui
de l'autre.
15. Procédé d'impression selon la revendication 14, comprenant, en outre, l'impression
de marques postales sur des articles de courrier en couplant une machine à affranchir
aux têtes d'impression (50, 60).
16. Procédé d'impression selon l'une quelconque des revendications 14 ou 15, dans lequel
l'étape d'impression comprend l'impression par jet d'encre.
17. Procédé d'impression selon l'une quelconque des revendications 14 à 16, comprenant,
en outre, l'étape consistant à, périodiquement, ne pas mettre en service la tête d'impression
(50, 60) qui est utilisée et la réalisation d'opérations de maintenance sur la tête
d'impression.
18. Procédé d'impression selon la revendication 15, comprenant, en outre, le passage de
l'utilisation de la première tête d'impression (50) à la seconde tête d'impression
(60) lorsqu'une défaillance est détectée dans la première tête d'impression (50).
19. Procédé d'impression selon l'une quelconque des revendications 14 à 18, comprenant,
en outre, la détection d'un document approchant des têtes d'impression d'amont ou
d'aval (50, 60), le déclenchement des têtes d'impression d'amont ou d'aval (50, 60)
sur la base d'un intervalle prédéterminé postérieurement à la détection du document,
et le réglage de l'intervalle prédéterminé en fonction de quelle tête parmi les têtes
d'impression d'amont ou d'aval (50, 60) est utilisée pour tenir compte des emplacements
différents des têtes d'impression d'amont ou d'aval (50, 60).
20. Procédé selon la revendication 14, dans lequel lors de la survenue d'une mise à l'arrêt
tandis que le document se trouve dans le transport d'impression (1), comprenant, en
outre, les étapes consistant à :
modifier le profil de déplacement en arrêtant le document au sein du transport d'impression
(1) au cours d'une mise à l'arrêt,
décélérer le document jusqu'à un arrêt, l'étape de décélération jusqu'à l'arrêt comprenant
l'étape de maintien du déplacement relatif du document sur le transport d'impression
(1) par rapport aux documents d'amont et d'aval, l'étape de maintien du déplacement
relatif comprenant la commande de la décélération en fonction d'un algorithme prédéterminé
décrivant un déplacement relatif entre les documents tel que ledit déplacement aurait
eu lieu sous le profil de déplacement dans les conditions nominales, l'algorithme
prédéterminé déterminant le déplacement du transport d'impression (1) en fonction
du déplacement des transports d'amont et d'aval (70, 80).
21. Procédé d'impression selon la revendication 20, comprenant, en outre, les étapes consistant
à :
redémarrer le transport d'impression (1) tandis que le document se trouve dans le
transport d'impression (1) au cours de la mise à l'arrêt, l'étape de redémarrage comprenant
l'étape d'accélération du document depuis l'arrêt jusqu'à une vitesse du profil de
déplacement, l'étape d'accélération comprenant l'étape de maintien du déplacement
relatif du document sur le transport d'impression (1) par rapport aux documents d'amont
et d'aval, l'étape de maintien du déplacement relatif comprenant la commande de l'accélération
en fonction de l'algorithme prédéterminé.
22. Procédé d'impression selon l'une quelconque des revendications 14 à 21, comprenant
l'étape d'asservissement mécanique ou électronique de l'étape d'impression au déplacement
de transport d'impression de manière que des variations de vitesse du transport d'impression
au cours de l'étape d'impression n'aient pas d'effet sur l'image étant imprimée.
23. Procédé d'impression selon la revendication 21, dans lequel l'algorithme prédéterminé
pour déterminer les déplacements relatifs comprend une première fonction tenant compte
des changements de déplacements relatifs qui auraient eu lieu au cours de la décélération
du transport d'impression dans le premier segment du profil de déplacement, une deuxième
fonction tenant compte des changements de déplacements relatifs qui auraient eu lieu
au cours de la vitesse d'impression nominale réduite du deuxième segment du profil
de déplacement, et une troisième fonction tenant compte des changements de déplacements
relatifs qui auraient eu lieu au cours de l'accélération du transport d'impression
dans le troisième segment du profil de déplacement, et
le procédé comprenant, en outre, l'étape consistant à mettre en oeuvre la fonction
appropriée parmi les première, deuxième et troisième fonctions sur la base de la position
du document dans le transport d'impression (1) lors de la survenue de la mise à l'arrêt.
24. Procédé d'impression selon la revendication 14, dans lequel des parties d'amont (10,
20, 30) et d'aval (20, 30, 40) du transport d'impression (1) sont constituées d'un
groupe de rouleaux pouvant être commandés individuellement, le procédé comprenant,
en outre :
la commande du groupe de rouleaux, grâce à quoi un élément du groupe quitte le groupe
une fois qu'une enveloppe est passée en aval de la commande de l'élément, quel que
soit le profil de déplacement.
25. Procédé d'impression selon la revendication 24, comprenant, en outre, la commande
d'une vitesse de l'élément qui quitte le groupe pour qu'elle soit la vitesse de transport.