(19)
(11) EP 2 687 631 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
22.01.2014  Patentblatt  2014/04

(21) Anmeldenummer: 13188708.5

(22) Anmeldetag:  22.08.2011
(51) Internationale Patentklassifikation (IPC): 
E01C 19/48(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME

(62) Anmeldenummer der früheren Anmeldung nach Art. 76 EPÜ:
11006864.0 / 2562309

(71) Anmelder: Joseph Vögele AG
67075 Ludwigshafen (DE)

(72) Erfinder:
  • Eul, Achim
    68305 Mannheim (DE)

(74) Vertreter: Maatz-Jansen, Gero 
Grünecker Kinkeldey Stockmair & Schwanhäusser Anwaltssozietät Leopoldstrasse 4
80802 München
80802 München (DE)

 
Bemerkungen:
Diese Anmeldung ist am 15-10-2013 als Teilanmeldung zu der unter INID-Code 62 erwähnten Anmeldung eingereicht worden.
 


(54) Straßenfertiger mit Messvorrichtung


(57) Straßenfertiger (1) mit einer Zugmaschine (2), die entlang eines Arbeitsbereichs auf einem Planum (4) bewegbar ist, einer Einbaubohle (5), die zum Aufbringen eines Straßenbelags (7) vorgesehen ist, sowie mit mindestens einer Messvorrichtung (8), die dazu konfiguriert ist, eine Oberfläche zu erfassen, und mit einer Steuervorrichtung (16), die mit der Messvorrichtung (8) verbunden ist, wobei die Oberfläche mittels der Messvorrichtung (8) als Punktwolke (12) darstellbar ist, die sich relativ zu der Messvorrichtung (8) in drei Raumdimensionen erstreckt, um für eine räumliche Darstellung der Oberfläche zu sorgen, sowie mehrere Punkte (13) umfasst, die jeweils durch 3D-Koordinaten definiert sind, wobei mindestens ein Punktepaar der Punktwolke (12) in einer ersten Richtung ausgerichtet ist und mindestens ein anderes Punktepaar der Punktwolke (12) in einem Winkel zur ersten Richtung liegt, wobei die Steuervorrichtung (16) dazu konfiguriert ist, die durch die Messvorrichtung (8) erzeugte Punktwolke (12) in mindestens ein Nivelliersignal für einen Nivellierzylinder umzuwandeln, welcher an der Zugmaschine (2) des Straßenfertigers (1) befestigt ist und einen Zugarm (6) hält, an dem die Einbaubohle (5) befestigt ist, um eine Bewegung der Einbaubohle (5) zu steuern.




Beschreibung


[0001] Die vorliegende Erfindung betrifft einen Straßenfertiger gemäß dem Oberbegriff des Anspruchs 1.

[0002] Ein Straßenfertiger, wie er in der Praxis bekannt ist, umfasst im Wesentlichen eine Zugmaschine, die entlang eines Arbeitsbereichs auf einem Planum bewegbar ist, sowie eine Einbaubohle, die zum Aufbringen des Straßenbelags vorgesehen ist. Gewöhnlicherweise ist die Einbaubohle durch einen Zugarm, der mit der Einbaubohle starr verbunden ist, an der Zugmaschine schwenkbar befestigt.

[0003] Der Zugarm kann durch den Bediener höhengesteuert werden, um die Einbaubohle auf ein gewünschtes Niveau relativ zum Straßenbelag zu heben. Dadurch ist es möglich, je nach Beschaffenheit der Oberfläche des Untergrunds, die Bohlenposition so einzustellen, dass Unebenheiten im Untergrund, über den der Straßenfertiger fährt, ausgeglichen werden. Dies hat zur Folge, dass eine ebene Straßenbelagschicht entsteht. Heutzutage werden auch automatisierte Meßsysteme verwendet, die einen Abstand zu einer Referenz erfassen, um in Reaktion darauf möglichst zeitnah ein Nivelliersignal zu erstellen, welches zur Positionsbestimmung der Einbaubohle verwendet wird.

[0004] Für solche Meßsysteme werden beispielsweise mechanische Sensoren verwendet, die so an der beweglichen Einbaubohle befestigt sind, dass sie vor dem neu eingebauten Straßenbelag mit der Oberfläche des Planums in Kontakt kommen, um darauf Unebenheiten frühzeitig zu erfassen. Nachteilig daran ist jedoch, dass ein mechanischer Sensor Unebenheiten nur auf einem harten Untergrund erfassen kann, weil er auf einem weichen, beispielsweise sandigen Untergrund, nicht auf Unebenheiten anspricht. Außerdem kann es sein, dass der mechanische Sensor, der über das Planum geschoben wird, gegen einen herumliegenden Gegenstand stößt und beschädigt wird. Ebenfalls müssen die mechanischen Sensoren regelmäßig gewartet werden und sind empfindlich gegenüber Verschmutzungen bzw. Feuchtigkeit.

[0005] Alternativ zu den mechanischen, kontaktierenden Meßvorrichtungen werden in der Praxis auch berührungslose Meßsysteme verwendet, um einen Abstand zum Planum zu erfassen. Solche Meßsysteme umfassen beispielsweise eine optische oder akustische Sensorik.

[0006] Gemäß einer weiteren Technik im Straßenbau wird entlang der Einbaustrecke ein Leitdraht als Referenz für die Abstandsmessung verwendet. Dabei wird der Abstand zwischen dem Meßkopf und dem Leitdraht erfasst, um auf Unebenheiten auf der Straßenoberfläche schließen zu können und entsprechend eine Nivellierung der Einbaubohle vorzunehmen. Allerdings ist das Anbringen eines Leitdrahts entlang der Einbaustrecke extrem aufwendig und erfordert viel Zeit. Außerdem kann es sein, dass der Leitdraht, welcher für gewöhnlich ein normales Seil ist, durch aufgesogene Feuchtigkeit über eine Strecke so durchhängt, dass für die Nivellierung verfälschte Abstandswerte erfasst werden.

[0007] Zur Nivellierung der Einbaubohle werden in der Praxis auch Rotationslaser verwendet, welche als externe Referenz so positioniert werden, dass ein durch sie aufgespanntes Laserrotationsfeld von einem am Straßenfertiger angeordneten Empfänger bei entsprechender Höheneinstellung der Einbaubohle empfangen werden kann. Eine Höhenverstellung der Einbaubohle erfolgt dann, wenn der Empfänger am Straßenfertiger das Rotationslaserfeld des Rotationslasers nicht mehr empfängt. Nachteilig daran ist jedoch, dass der Rotationslaser mehrmals entlang der Einbaustrecke umpositioniert werden muss, wozu zusätzliches Bedienpersonal benötigt wird.

[0008] Mit den zuvor beschriebenen Systemen zur Abstandsmessung ist das Erfassen von Unebenheiten auf dem Planum nur in einem beschränkten Maße möglich. Deshalb liegt der vorliegenden Erfindung die Aufgabe zu Grunde, einen Straßenfertiger mit einfachen, konstruktiven technischen Mitteln dahingehend zu verbessern, dass er es ermöglicht, eine verbesserte Straßenbelagsschicht einzubauen.

[0009] Diese Aufgabe wird gelöst mit den technischen Merkmalen des Anspruchs 1. Verbesserte Weiterbildungen der Erfindung sind mit den technischen Merkmalen der Unteransprüche gegeben.

[0010] Die Erfindung bezieht sich auf einen Straßenfertiger mit einer Zugmaschine, die entlang eines Arbeitsbereichs auf einem Planum bewegbar ist, sowie einer Einbaubohle, die zum Aufbringen eines Straßenbelags vorgesehen ist. Außerdem umfasst der erfindungsgemäße Straßenfertiger eine Messvorrichtung, die so konfiguriert ist, dass sie eine Oberfläche erfasst und eine die Oberfläche repräsentierende, virtuelle Punktwolke erzeugt. Anhand der Punktwolke ist die erfaßte Oberfläche darstellbar, wobei die Punktwolke sich relativ zu der Messvorrichtung in drei Raumdimensionen erstreckt, um eine räumliche Darstellung der Oberfläche wiederzugeben. Dabei umfasst die Punktwolke mehrere Punkte, die jeweils durch 3D-Koordinaten definiert sind. Zur räumlichen Darstellung der Oberfläche ist vorgesehen, dass mindestens ein Punktepaar der Punktwolke in einer ersten Richtung, vorzugsweise in Fahrtrichtung ausgerichtet ist und mindestens ein anderes Punktepaar der Punktwolke in einem Winkel zur ersten Richtung, vorzugsweise zur Fahrtrichtung liegt.

[0011] Durch das Erfassen der Oberflächenbeschaffenheit in Form einer Punktwolke können wertvolle Informationen gesammelt werden, die zur Generierung unterschiedlicher Betriebseinstellungen verwendbar sind. Die Erfindung bietet den wesentlichen technischen Vorteil, dass Unebenheiten, beispielsweise Quer- und Längsneigungen im Straßenprofil, aussagekräftig und genau erfassbar sind. Damit kann die Einstellung unterschiedlicher Betriebsparameter, wie beispielsweise das Nivelliersignal, in Reaktion auf den Untergrund, auf welchem sich der Fertiger bewegt, verbessert werden.

[0012] Ebenfalls ist die Erfindung unempfindlich gegen schlechtes Wetter und bietet eine kostengünstige, wartungsarme Alternative zu bisher bekannten Vorrichtungen dieser Art. Hinzu kommt, dass die Meßvorrichtung einfach bedienbar ist und ohne großen Aufwand am Straßenfertiger zu befestigen ist. Des Weiteren kann durch die Erfindung auf eine zusätzliche Meßausrüstung, die zur Erfassung von Querneigungen im Straßenverlauf ausgebildet ist, verzichtet werden.

[0013] In einer vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass die Punktwolke eine Oberflächenbeschaffenheit einer Fläche des Planums und/oder des Straßenbelags definiert. Dabei kann sich das Maß der Fläche über eine variierende Länge sowie eine variierende Breite erstrecken, sodass der erfaßte Oberflächenabschnitt unterschiedlich groß ausfällt. Möglich ist es auch, das Maß der Fläche an eine zu erwartende Oberflächenbeschaffenheit des Planums anzupassen, so dass es beispielsweise bei unebenen Einbauflächen vorab möglich ist, das Maß der Fläche zur Bestimmung der Oberflächenbeschaffenheit so zu wählen, dass dadurch eine ausreichend große Punktwolke darstellbar ist. Andererseits kann es, insbesondere bei einer kurvigen Einbaufahrt, zweckmäßig sein, das Maß der Fläche zur Bestimmung der Oberflächenbeschaffenheit kleiner zu wählen.

[0014] In einer weiteren Ausführungsform der Erfindung umfasst die Meßvorrichtung eine Filtereinheit, die dazu konfiguriert ist, extreme 3D-Koordinaten aus der Punktwolke herauszufiltern. Dadurch ist es möglich die Erfassung unerwünschter Gegenstände zu vernachlässigen. Dies kann insbesondere dann von Vorteil sein, wenn die erzeugte Punktwolke Abschnitte der Zugmaschine oder der Einbaubohle erfasst. Ebenfalls ist es dadurch möglich Komponenten, die in die Punktwolke ragen, herauszufiltern. Schließlich ist es möglich, dass Bedienpersonal, welches sich im Erfassungsbereich der Punktwolke befindet, aus dem Messergebnis herausgefiltert werden kann.

[0015] Für eine besonders zuverlässige Erfassung der Punktwolke umfasst die Messvorrichtung einen 3D-Scanner. Dieser umfasst vorzugsweise mindestens einen optischen Sensor, der zur Erfassung eines Abstands zur erfassten Oberfläche vorgesehen ist. In einer verbesserten Ausführungsform der Erfindung ist der 3D-Scanner ein Laserscanner mit mindestens einem Lasersensor. Der Laserscanner ist selbst bei schlechtem Wetter gut einsetzbar und sorgt für eine genaue Erfassung der Punktwolke.

[0016] Vorzugsweise umfasst der 3D-Scanner mindestens einen beweglichen Spiegel, um den Lichtstrahl des mindestens einen optischen Sensors abzulenken. Dabei ist es vorstellbar, dass der bewegliche Spiegel durch einen vorbestimmten Bewegungsablauf ansteuerbar ist, so dass sich der abgelenkte Lichtstrahl, vorzugsweise Laserstrahl, über die vorbestimmte Fläche, die die Punktwolke wiedergibt, läuft. Zur schnelleren Erfassung der Punktwolke kann vorgesehen sein, dass mehrere bewegliche Spiegel vorhanden sind, um unterschiedliche Laserstrahlen derartig abzulenken, dass sich die Punktwolke darstellen lässt.

[0017] Vorzugsweise ist die Fläche der Punktwolke mit mindestens 300 Laserabtastpunkten definierbar. Durch diese Anzahl an Laserabtastpunkten kann ein aussagekräftiges Flächenbild, also die Punktwolke, erzeugt werden, um Unebenheiten auf der erfassten Oberfläche festzustellen.

[0018] Alternativ zum 3D-Scanner mittels beweglichem Spiegel, ist es vorgesehen, die Messvorrichtung mit mehreren Lasersensoren auszustatten, welche in einer Matrix, also einer Sensoraufnahme, derartig angeordnet sind, dass sie Laserstrahlen über die vorbestimmte Fläche zur Erzeugung der Punktwolke aussenden. Ebenfalls kann es von Vorteil sein, wenn die Messvorrichtung beweglich angeordnet ist, so dass sie durch einen vorbestimmten Bewegungsablauf die Laserstrahlen über die Fläche zur Erzeugung der Punktwolke leitet. Dabei kann die Bewegung der Messvorrichtung dafür sorgen, dass die Laserstrahlen der Lasersensoren linienartig in parallel ausgerichteter Abfolge auf die zu erfassende Oberfläche treffen bzw. die Messvorrichtung so bewegbar ist, dass die Laserstrahlen von außen nach innen oder umgekehrt die Fläche erfassen.

[0019] In einer weiteren Ausführungsform der Erfindung umfasst der Straßenfertiger eine Steuervorrichtung, die mit der Messvorrichtung verbunden ist. Vorzugsweise ist die Steuervorrichtung dazu konfiguriert, die durch die Messvorrichtung erfasste Punktwolke in ein entsprechendes Signal umzuwandeln, um damit eine bestimmte Betriebsfunktion des Straßenfertigers zu steuern. Vorzugsweise ist die Steuervorrichtung jedoch dazu konfiguriert, die durch die Messvorrichtung erfasste Punktwolke in mindestens ein Nivelliersignal umzuwandeln. Das Nivelliersignal kann dazu verwendet werden, die Nivellierzylinder des Straßenfertigers anzusteuern, damit infolgedessen eine Bewegung der Einbaubohle durchführbar ist. Folglich beeinflussen die durch die Punktwolke räumlich erfassten Unebenheiten das Erzeugen des Nivelliersignals, um die Einbaubohle zu bewegen. Dadurch ist es möglich, insbesondere auf unebenen Straßen einen ebenen Straßenbelag aufzubringen.

[0020] In einer weiteren Ausführungsform ist vorgesehen, dass die Messvorrichtung ein Halteelement umfasst, mit dem die Messvorrichtung am Straßenfertiger befestigbar ist. Damit eine Erfassung durch unterschiedlich große Punktwolken möglich ist, kann das Halteelement derart ausgebildet sein, dass es höhenverstellbar ist, beispielsweise teleskopartig ausfahrbar ist, um die Messvorrichtung in unterschiedlichen Höhen anzuordnen. Ein besonders nützliches Maß für die Fläche einer Punktwolke kann damit erzeugt werden, wenn die Messvorrichtung in einem Abstand bis zu zehn Meter über dem Planum angeordnet ist.

[0021] In einer besonders vorteilhaften Ausführung ist die Messvorrichtung dazu konfiguriert, die Punktwolke sowie die daraus resultierende Parametereinstellung mittels Echtzeiterfassung zu regeln. Handelt es sich bei der Parametereinstellung um das Erzeugen eines Nivelliersignals, so kann dieses ohne zeitlichen Verzug auf Unebenheiten im Untergrund reagieren.

[0022] Außerdem ist es möglich, dass in einer Ausführungsform der Erfindung mindestens eine Messvorrichtung in Fahrtrichtung gesehen links und/oder rechts am Straßenfertiger angeordnet ist. Dadurch lassen sich mehrere Punktwolken erzeugen, durch die die Oberflächenbeschaffenheit des Planums bzw. des Straßenbelags darstellbar ist.

[0023] Vorteilhaft ist es jedoch, wenn die Messvorrichtung so konfiguriert ist, dass sie die Punktwolke für eine Fläche links und/oder rechts neben dem Arbeitsbereich erzeugt. Beispielsweise ist es vorteilhaft, dass die Punktwolke im Arbeitsbereich innerhalb kurzen Abstands vor der Einbaubohle erfaßbar ist.

[0024] Möglich ist es auch, dass anhand einer bzw. mehrerer erfassten Punktwolken ein Mittelwert durch die Steuervorrichtung erzeugbar ist, um anhand des erzeugten Mittelwerts ein Signal für weitere Betriebsfunktionen des Straßenfertigers zu erzeugen. Dies bietet den technischen Vorteil, mehrere Flächenabschnitte in der Erstellung eines Betriebsparameters zu berücksichtigen.

[0025] Außerdem kann die Messvorrichtung auch so konfiguriert sein, dass sie die Punktwolke für eine Fläche erzeugt, die teilweise einen Abschnitt des Arbeitsbereichs überlagert. Dabei spielt es keine Rolle, ob die Punktwolke einen Bereich der Einbaubohle, einen Bereich der Zugmaschine bzw. andere am Straßenfertiger vorhandenen technischen Mittel überlagert. Dadurch ist die Messvorrichtung besonders flexibel am Straßenfertiger einsetzbar.

[0026] Vorzugsweise ist die Messvorrichtung jedoch an der beweglichen Einbaubohle, insbesondere am Zugarm, der die Einbaubohle trägt, angeordnet. Andererseits kann die Messvorrichtung jedoch auch an der Zugmaschine des Straßenfertigers angeordnet sein.

[0027] Um Unebenheiten auf einer besonders großen Fläche zu erfassen, kann die Messvorrichtung derart konfiguriert sein, dass sie die Punktwolke über eine Fläche erzeugt, die den Straßenfertiger umgibt. Weil es möglich ist, extreme 3D-Koordinaten, also hier die Zugmaschine und die Einbaubohle auszublenden, kann selbst durch die Flächenabschnitte der Punktwolke, die sich links, rechts bzw. vor und hinter dem Straßenfertiger befinden, ein aussagekräftiges Ergebnis dargestellt werden, welches die Oberflächenbeschaffenheit des Arbeitsbereichs repräsentiert.

[0028] Gemäß einer vorteilhaften Ausführungsform der Erfindung ist die Messvorrichtung dazu ausgebildet, die 3D-Koordinaten der Oberfläche mittels Pulslaufzeit, Phasendifferenz im Vergleich zu einer Referenz oder mittels Triangulation von optischen Strahlen zu erfassen. Dadurch wird eine präzise Abstandsmessung zwischen der Messvorrichtung und der Oberfläche ermöglicht.

[0029] Erfindungsgemäße Ausführungsformen werden anhand der Zeichnungen beschrieben. Es zeigen:
Figur 1
einen erfindungsgemäßen Straßenfertiger mit einer Messvorrichtung,
Figur 2
die Messvorrichtung, wie sie für den erfindungsgemäßen Straßenfertiger verwendet wird, und
Figur 3
eine die Oberflächenbeschaffenheit beschreibende Punktwolke.


[0030] Die Figur 1 zeigt einen Straßenfertiger 1 in Fahrtrichtung F gemäß der Erfindung. Der Straßenfertiger 1 umfasst eine Zugmaschine 2 mit einem Fahrwerk 3, welches sich auf einem Planum 4 bewegt. Der Straßenfertiger 1 umfasst des Weiteren eine Einbaubohle 5, die über einen Zugarm 6 beweglich mit der Zugmaschine 2 des Straßenfertigers 1 verbunden ist. Durch die Einbaubohle 5 wird ein neuer Straßenbelag 7 auf das Planum 4 aufgebracht. Selbst wenn in der Figur 1 das Planum 4, sprich die Oberfläche des Untergrunds, eben dargestellt ist, sind in Wirklichkeit Unebenheiten auf dem Planum 4 vorhanden. Der Straßenbelag 7 hat eine ebene Oberfläche, selbst wenn das darunter liegende Planum 4 Unebenheiten aufweist. Dies kann durch eine entsprechende Nivellierung der Einbaubohle 5 errecht werden, wie es im Folgenden beschrieben wird.

[0031] Am Zugarm 6 des Straßenfertigers 1 ist eine Messvorrichtung 8 befestigt. Die Messvorrichtung 8 ist dazu konfiguriert, einen dreidimensionalen Flächenabschnitt 9 (siehe Figur 2) des Planums 4 zu erfassen. Die Messvorrichtung 8 ist in kurzem Abstand vor der Einbaubohle 5 am Zugarm 6 angebracht. Die Messvorrichtung 8 ist dazu ausgebildet, durch den erfassten dreidimensionalen Flächenabschnitt 9 Unebenheiten des Planums 4 zu erfassen, um daraus während des Einbaus bestimmte Betriebsparameter für den Straßenfertiger festzulegen. Beispielsweise ist es möglich, dass anhand des dreidimensional erfaßten Flächenabschnitt 9 durch die Messvorrichtung 8 ein Nivelliersignal zur Steuerung der Einbaubohle 5 generierbar ist, wobei das Nivelliersignal eine Positionsverlagerung der Einbaubohle 5 zur Folge haben kann.

[0032] Die Figur 2 zeigt die Messvorrichtung 8, wie sie in der Figur 1 an dem Zugarm 6 des Straßenfertigers 1 befestigt ist. Die Messvorrichtung 8 der Figur 2 ist dazu konfiguriert, den Flächenabschnitt 9 des Planums 4 zu erfassen. Der Flächenabschnitt 9 definiert abschnittsweise die Oberflächenbeschaffenheit des Planums 4. Der Flächenabschnitt 9 ist durch eine Länge a und Breite b definiert. Die Messvorrichtung 8 ist dazu ausgebildet, das Maß des Flächenabschnitts 9 zu variieren. Dazu können an der Messvorrichtung 8 Einstellungen vorgenommen werden, die das Längenmaß a und/oder das Breitenmaß b einstellen. Schematisch sind in der Figur 2 außerdem gestrichelte Strahlen 10 gezeigt, die von der Messvorrichtung 8 auf Eckpunkte des Flächenabschnitts 9 gerichtet sind. Die Strahlen 10 schließen untereinander einen Winkel α sowie einen Winkel β ein, wobei in Abhängigkeit der Höhenposition der Messvorrichtung 8 relativ zum Planum 4 ein gewünschtes Maß für den Flächenabschnitt 9 erfaßbar ist. Wie in der Figur 2 gezeigt wird, kann der Winkel α 30° beziehungsweise der Winkel β 40° sein. Die Messvorrichtung 8, die vornehmlich als Laserscanner 14 ausgebildet ist, ist dazu konfiguriert innerhalb des Flächenabschnitts 9 die dreidimensionale Ausbreitung des Planums 4 zu erfassen, um für eine räumliche Darstellung der Oberfläche zu sorgen.

[0033] Des Weiteren zeigt die Figur 2, dass die Messvorrichtung 8 in einer Höhe A über dem Planum 4 angeordnet ist. Die Höhe A ist variierbar, wobei die Messvorrichtung 8 bis zu 10 Meter über dem Untergrund tragbar ist. In einer Höhe von 10 Meter kann die Messvorrichtung 8 beispielsweise durch eine nicht gezeigte Halterung positionierbar sein. Um Unebenheiten auf dem Planum 4 schematisch nachzubilden, ist in der Figur 2 ein quaderförmigen Gegenstand 11 gezeigt, der auf dem Flächenabschnitt 9 liegt. Die Messvorrichtung 8 ist dazu konfiguriert den Gegenstand 11 zu erfassen. Selbst wenn die Unebenheit in der Figur 2 quaderförmig dargestellt ist, kann die Unebenheit auf dem Planum 4 jegliche Form annehmen. Unebenheiten auf dem Planum 4 können beispielsweise Längsbeziehungsweise Querneigungen des Untergrunds umfassen, auf welchem sich der Straßenfertiger 1 bewegt. Ebenfalls erfassbar sind beispielsweise Schlaglöcher beziehungsweise langgezogene Bodensenkungen beziehungsweise Bodenerhebungen.

[0034] Die Messvorrichtung 8 ist dazu konfiguriert, eine virtuelle netzartige Punktwolke 12 zu erzeugen, die in der Figur 3 dargestellt ist. Die Punktwolke 12 stellt den Flächenabschnitt 9 in seiner dreidimensionalen Beschaffenheit dar. Die Punktwolke 12 erstreckt sich relativ zu der Messvorrichtung 8 in drei Raumdimensionen, um für eine räumliche Darstellung der Oberfläche des Planums 4 zu sorgen. Dazu umfasst die Punktwolke 12 mehrere Punkte 13, die durch 3D-Koordinaten relativ zur Messvorrichtung 8 definiert sind. Um für die räumliche Darstellung der Oberfläche zu sorgen, ist mindestens ein Punktepaar der Punktwolke 12 in einer beliebigen ersten Richtung, vorzugsweise in Fahrtrichtung F ausgerichtet und mindestens ein anderes Punktepaar der Punktwolke 12 in einem Winkel zur ersten Richtung, vorzugsweise zur Fahrtrichtung F ausgerichtet. Die Messvorrichtung 8 ist dazu ausgebildet, Unebenheiten, die sich innerhalb des Flächenabschnitts 9 befinden, mittels der Punktwolke 12 zu erfassen, um damit spezifische Betriebsparameter des Straßenfertigers 1 einzustellen, beispielsweise ein Nivelliersignal zur Steuerung der Position der Einbaubohle 5.

[0035] Weitere Beispiele der Erfindung sind:
  1. 1. Straßenfertiger (1) mit einer Zugmaschine (2), die entlang eines Arbeitsbereichs auf einem Planum (4) bewegbar ist, einer Einbaubohle (5), die zum Aufbringen eines Straßenbelags (7) vorgesehen ist, sowie mit mindestens einer Messvorrichtung (8), die dazu konfiguriert ist, eine Oberfläche zu erfassen, wobei die Oberfläche mittels der Messvorrichtung (8) als Punktwolke (12) darstellbar ist, die sich relativ zu der Messvorrichtung (8) in drei Raumdimensionen erstreckt, um für eine räumliche Darstellung der Oberfläche zu sorgen, sowie mehrere Punkte (13) umfasst, die jeweils durch 3D-Koordinaten definiert sind, wobei mindestens ein Punktepaar der Punktwolke (12) in einer ersten Richtung ausgerichtet ist und mindestens ein anderes Punktepaar der Punktwolke (12) in einem Winkel zur ersten Richtung liegt.
  2. 2. Straßenfertiger nach Beispiel 1, dadurch gekennzeichnet, dass die Punktwolke (12) eine Oberflächenbeschaffenheit einer Fläche des Planums (4) und/oder des Straßenbelags (7) definiert.
  3. 3. Straßenfertiger nach einem der vorigen Beispiele, dadurch gekennzeichnet, dass die Messvorrichtung (8) dazu konfiguriert ist, extreme 3D-Koordinaten aus der Punktwolke (12) herauszufiltern.
  4. 4. Straßenfertiger nach einem der vorigen Beispiele, dadurch gekennzeichnet, dass die Messvorrichtung (8) zum Erfassen der Punktwolke (12) einen 3D-Scanner (14) umfasst.
  5. 5. Straßenfertiger nach Beispiel 4, dadurch gekennzeichnet, dass der 3D-Scanner (14) mindestens einen optischen Sensor (15) umfasst.
  6. 6. Straßenfertiger nach Beispiel 4 oder 5, dadurch gekennzeichnet, dass der 3D-Scanner (14) ein Laserscanner mit mindestens einem Lasersensor ist.
  7. 7. Straßenfertiger nach einem der Beispiele 4 bis 6, dadurch gekennzeichnet, dass der 3D-Scanner (14) mindestens einen beweglichen Spiegel umfasst.
  8. 8. Straßenfertiger nach einem der Beispiele 4 bis 6, dadurch gekennzeichnet, dass die Messvorrichtung (8) mehrere in einer Matrix angeordnete Lasersensoren umfasst.
  9. 9. Straßenfertiger nach einem der vorigen Beispiele, gekennzeichnet durch eine Steuervorrichtung (16), die mit der Messvorrichtung (8) verbunden ist.
  10. 10. Straßenfertiger nach Beispiel 9, dadurch gekennzeichnet, dass die Steuervorrichtung (16) dazu konfiguriert ist, die durch die Messvorrichtung (8) erzeugte Punktwolke (12) in mindestens ein Nivelliersignal umzuwandeln.
  11. 11. Straßenfertiger nach Beispiel 10, dadurch gekennzeichnet, dass das Nivelliersignal dazu vorgesehen ist, eine Bewegung der Einbaubohle (5) zu steuern.
  12. 12. Straßenfertiger nach einem der vorigen Beispiele, dadurch gekennzeichnet, dass jeweils eine Messvorrichtung (8) in Fahrtrichtung (F) gesehen links und/oder rechts am Straßenfertiger (1) angeordnet ist.
  13. 13. Straßenfertiger nach einem der vorigen Beispiele, dadurch gekennzeichnet, dass die Messvorrichtung (8) so konfiguriert ist, dass sie eine Punktwolke (12) für eine Fläche (9) links und/oder rechts neben dem Arbeitsbereich erzeugt.
  14. 14. Straßenfertiger nach einem der vorigen Beispiele, dadurch gekennzeichnet, dass die Messvorrichtung (8) so konfiguriert ist, dass sie die Punktwolke (12) für eine Fläche (9) erzeugt, die teilweise einen Abschnitt des Arbeitsbereichs überlagert.
  15. 15. Straßenfertiger nach einem der vorigen Beispiele, dadurch gekennzeichnet, dass die Messvorrichtung (8) dazu ausgebildet ist, die 3D-Koordinaten der Oberfläche mittels Pulslaufzeit, Phasendifferenz im Vergleich zu einer Referenz oder mittels Triangulation von optischen Strahlen zu erfassen.



Ansprüche

1. Straßenfertiger (1) mit einer Zugmaschine (2), die entlang eines Arbeitsbereichs auf einem Planum (4) bewegbar ist, einer Einbaubohle (5), die zum Aufbringen eines Straßenbelags (7) vorgesehen ist, sowie mit mindestens einer Messvorrichtung (8), die dazu konfiguriert ist, eine Oberfläche zu erfassen, und mit einer Steuervorrichtung (16), die mit der Messvorrichtung (8) verbunden ist, wobei die Oberfläche mittels der Messvorrichtung (8) als Punktwolke (12) darstellbar ist, die sich relativ zu der Messvorrichtung (8) in drei Raumdimensionen erstreckt, um für eine räumliche Darstellung der Oberfläche zu sorgen, sowie mehrere Punkte (13) umfasst, die jeweils durch 3D-Koordinaten definiert sind, wobei mindestens ein Punktepaar der Punktwolke (12) in einer ersten Richtung ausgerichtet ist und mindestens ein anderes Punktepaar der Punktwolke (12) in einem Winkel zur ersten Richtung liegt,
dadurch gekennzeichnet, dass
die Steuervorrichtung (16) dazu konfiguriert ist, die durch die Messvorrichtung (8) erzeugte Punktwolke (12) in mindestens ein Nivelliersignal für einen Nivellierzylinder umzuwandeln, welcher an der Zugmaschine (2) des Straßenfertigers (1) befestigt ist und einen Zugarm (6) hält, an dem die Einbaubohle (5) befestigt ist, um eine Bewegung der Einbaubohle (5) zu steuern.
 
2. Straßenfertiger nach Anspruch 1, dadurch gekennzeichnet, dass die Punktwolke (12) eine Oberflächenbeschaffenheit einer Fläche des Planums (4) und/oder des Straßenbelags (7) definiert.
 
3. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (8) dazu konfiguriert ist, extreme 3D-Koordinaten aus der Punktwolke (12) herauszufiltern.
 
4. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (8) zum Erfassen der Punktwolke (12) einen 3D-Scanner (14) umfasst.
 
5. Straßenfertiger nach Anspruch 4, dadurch gekennzeichnet, dass der 3D-Scanner (14) mindestens einen optischen Sensor (15) umfasst.
 
6. Straßenfertiger nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der 3D-Scanner (14) ein Laserscanner mit mindestens einem Lasersensor ist.
 
7. Straßenfertiger nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der 3D-Scanner (14) mindestens einen beweglichen Spiegel umfasst.
 
8. Straßenfertiger nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Messvorrichtung (8) mehrere in einer Matrix angeordnete Lasersensoren umfasst.
 
9. Straßenfertiger nach Anspruch 8, dadurch gekennzeichnet, dass die Messvorrichtung (8) beweglich am Straßenfertiger befestigt ist.
 
10. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass jeweils eine Messvorrichtung (8) in Fahrtrichtung (F) gesehen links und/oder rechts am Straßenfertiger (1) angeordnet ist.
 
11. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (8) so konfiguriert ist, dass sie eine Punktwolke (12) für eine Fläche (9) links und/oder rechts neben dem Arbeitsbereich erzeugt.
 
12. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (8) so konfiguriert ist, dass sie die Punktwolke (12) für eine Fläche (9) erzeugt, die teilweise einen Abschnitt des Arbeitsbereichs überlagert.
 
13. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (8) dazu ausgebildet ist, die 3D-Koordinaten der Oberfläche mittels Pulslaufzeit, Phasendifferenz im Vergleich zu einer Referenz oder mittels Triangulation von optischen Strahlen zu erfassen.
 




Zeichnung













Recherchenbericht









Recherchenbericht